
Custody: Towards Data-Aware Resource Sharing in
Cloud-Based Big Data Processing

Shiyao Ma∗, Jingjie Jiang∗, Bo Li∗, and Baochun Li†
Department of Computer Science and Engineering, Hong Kong University of Science and Technology∗

Department of Electrical and Computer Engineering, University of Toronto†

Abstract—With the advent of big data processing frameworks,
the performance of data-parallel applications is heavily affected
by the time it takes to read input data, making it important to
improve data locality. Existing methods in achieving data locality
have primarily focused on selecting machines to place tasks of
applications. Nevertheless, the set of machines that an application
can choose from is determined by a cluster manager, which is
oblivious to the location of data in existing resource sharing
frameworks. In this paper, we design, implement and evaluate
Custody, a new cluster management framework that helps to
maximize data locality by allocating the executor processes with
local access to data to those applications in need. Custody achieves
this objective by dynamically collecting runtime information of
an application’s input data and by effectively allocating executors
among and within applications through theoretic analyses of the
data-aware resource sharing problem. With significantly better
data locality, Custody avoids unnecessary network transfers and
thus expedites job completion times. Our experimental results
on a 100-node cluster demonstrate that Custody can improve
the data locality for input tasks by 36.9% in comparison with
Spark’s default cluster manager. Meanwhile, it reduces the job
completion times by 14.9% due to fewer network transfers.

I. INTRODUCTION

In recent years, we have witnessed the exponential growth
of applications that perform big data processing, based on a va-
riety of data-parallel computing frameworks (e.g., MapReduce
[1], Pregel [2], and Spark [3]) running in cloud datacenters.
Despite new topologies [4], [5] and better bandwidth allocation
schemes [6], [7], [8] proposed in the literature, reading input
data into these applications are still time-consuming, especially
with the ever-increasing volume of data. As reported in [9],
MapReduce jobs spend more than 59% of their lifetimes in
map stages due to slow network transfers for input data. It is
thus critical to co-locate a task with its input by distributing
the task to a machine (called a worker node) storing or caching
its input data.

Since application tasks are given a limited amount of re-
sources in a cluster, it is impossible for them to directly select
whichever worker nodes they wish for. A cluster manager is
needed to share worker nodes and datasets across applications
by launching multiple executor processes on a worker node to
run tasks from different applications concurrently. To achieve
data locality, an application must first be allowed to launch
executors on those worker nodes that store the inputs for its
tasks, and then distribute its tasks to executors using data-
aware scheduling policies [10].

Nevertheless, existing cluster managers (e.g., Mesos [11],
YARN [12], and Spark standalone [13]) randomly allocate

available resources to applications when launching executors.
For static resource sharing [13], an application only has access
to a subset of executors throughout its lifetime. Therefore,
the best possible locality that can be achieved is restricted
by the set of executors it has access to. In contrast, although
a dynamic resource sharing scheme [11], [14] continuously
offers available resources to different applications, these appli-
cations cannot explicitly express their data demands to acquire
certain worker nodes. Such an offer-and-accept mechanism
incurs additional overhead in launching each task, since it may
need a long time before the cluster manager offers the correct
executors with data locality to an application. The tasks are
thus unnecessarily delayed and ultimately slowed down.

Due to the limitations of current cluster managers, we
propose to improve data locality using data-aware resource
sharing. To achieve this objective, we will need to know the
data demands at runtime, before distributing tasks to executors.
Furthermore, since a job’s completion time is dictated by the
slowest task (called the straggler), achieving data locality for
a subset of tasks would not actually improve job performance.
In other words, minimizing a job’s completion time requires
perfect locality for all its constituent tasks. However, due
to limited resources, it is impossible to satisfy the locality
requirements for all the jobs during peak hours. We should
carefully allocate resources to maximize the number of jobs
with perfect locality while maintaining fairness across concur-
rent applications.

In this paper, we design, implement and evaluate Custody,
a new system framework that helps maximize data locality
by allocating the executors with local access to data to those
applications who need them. Given the limited computation
resources in a cluster, Custody coordinates across multiple
concurrent applications to determine the set of executors that
should be allocated to each application. Such coordination is
based on our theoretical analyses on the data-aware resource
sharing problem. With the objective of achieving max-min
fairness among applications, we translate the resource sharing
problem to the maximum concurrent flow problem with integral
constraints, which proves to be NP-hard [15]. We circumvent
such difficulty by decoupling the resource sharing problem
into a two-level allocation procedure. At the top level, we
decide which application should first select from the current
available executors based on the percentage of local jobs it
has already achieved. At the next level, we decide the locality
requirements from which subset of jobs inside an application

should be satisfied through an effective 2-approximation al-
gorithm, which gives the highest priority to the job with the
fewest remaining tasks. Through such priority-based strategies,
we avoid the situation where each job in the application
only gets a fraction of the desired executors, and cannot be
accelerated due to stragglers that lack locality.

The highlight of Custody lies in its capability of allocat-
ing executors to applications who really need them without
modifying or delaying task submission. The key to enabling
such request-driven resource sharing is to acquire the demand
for executors with different data blocks at runtime. To acquire
such information without incurring extra delay, we put off the
allocation process till users submit analytic jobs but before
the jobs are compiled into parallel tasks. Therefore, we ensure
that Custody never keeps jobs waiting for executors and will
continuously run as if the executors are already allocated to
them at the very beginning.

Last but not the least, Custody is designed to be practical:
it does not require applications to explicitly express their
locality demands. Therefore, it can be easily deployed in
production clusters, improving modern data-parallel frame-
works and can run existing applications with no modification.
We have implemented Custody within Spark 1.4 [16], and
thoroughly evaluated its performance with various workloads.
Our experiments on a Linode [17] cluster with 100 worker
nodes show that Custody can improve the data locality for
input tasks by 36.9% on average, when compared to Spark
with the default cluster manager [13]. The improved data
locality by Custody effectively shortens the input tasks and
thereby reduces the average job completion time by 14.9%.

II. CUSTODY: BACKGROUND AND MOTIVATION

Data-parallel computing frameworks support a wide range
of applications, such as machine learning algorithms for rec-
ommendation systems, web search and various SQL queries
[18]. These frameworks usually run in a computing cluster
where a distributed file system [19], [20] stores and manages
the data to be processed. Each data file is divided into fixed-
size blocks and stored on worker nodes across the cluster.
To ensure fault tolerance, each data block typically has three
replicas randomly distributed in the cluster. Recent popularity-
based strategies [9] store different numbers of replicas for each
of the data blocks based on its access frequency, such that
applications will not all compete for the computing slots on
worker nodes storing hot data.

To be more general, we consider a cluster that simultane-
ously runs multiple applications with different demands for
data blocks. Each worker node in the cluster can launch
multiple executor processes, and runs tasks on these executors
with multithreading. Leveraging modern container techniques,
such as Docker containers [21], co-located executors could
share the datasets on the same worker nodes while achieving
performance isolation at the same time. Therefore, multiple
applications can concurrently launch executors on the same
worker node to run their own tasks without interference.

A. Achieving Data Locality in a Shared Cluster

Achieving data locality consists of three sequential steps:
1) properly placing data blocks onto different worker nodes
across the cluster; 2) allocating resources on worker nodes
(i.e., executors) to each application; and 3) distributing a task
within the application to an executor process on the worker
node that stores its input data.

Existing works to achieve data locality focused only on how
to replicate data blocks [9], [19], [20] and how to schedule
tasks to worker nodes with their input data [10], [22], [23].
On one hand, distributed file systems in production clusters
[19], [20] store three replicas for each data block to ensure
fault tolerance and data availability. Recent academic research
(e.g., [9]) further proposed a popularity-based replica policy
to eliminate hot spots and improve data accessibility. On the
other hand, task schedulers designed by both the industry [22]
and academia [10], [23] went to great lengths to impose data
locality as constraints when scheduling tasks.

Nevertheless, the indispensable step of allocating executors
to applications in consideration of data locality is still missing.
With a static resource sharing model, each application has
access to a fixed set of executors throughout its lifetime [13].
Since such static partitioning of the cluster only accounts for
the number of executors in each set, it is highly possible that
the executors allocated to an application do not store its input
data. As a result, many tasks in the application cannot achieve
data locality regardless of the task scheduling strategies used.

With a dynamic sharing strategy [11], [12], once an ap-
plication no longer needs to launch tasks onto an executor,
the corresponding resources would be released. The cluster
manager then offers idle resources to another application and
launches a new executor if the offer is accepted. Despite their
improved efficiency, these dynamic resource managers still
ignore data locality and pass the buck to the task scheduler
within each application. A data-aware task scheduler would
reject offers from worker nodes that cannot satisfy locality
requirements, and would wait until it receives an appropriate
offer. Thus, the resource manager has to resend an offer to
multiple applications before any of them accepts it. Such
frequent rejections negatively affect both the efficiency of
the allocation strategy and the utilization of the cluster. To
make things worse, the applications may still not achieve
data locality after waiting for a long time, since the resource
sharing strategies are not aware of such data locality, called
data awareness henceforth in this paper.

B. Data-Aware Resource Sharing: A Motivating Example

To better understand the benefits of data-aware resource
sharing, we consider the following situation as a motivating
example.

Suppose there are four worker nodes, each of which stores
one data block and has one CPU core. Two applications have
just been initiated and will both submit one job consisting of
two input tasks to the cluster. The input data block for each
task is shown in Fig. 1. Without considering the data input
information, the cluster manager would randomly allocate two

Application A1

T111

T112

Datablock 1

Datablock 2

{E1, E3} {E3, E4}

Cluster
Manager

Data-aware
strategies

Worker W2

Datablock D2
Worker W3

Datablock D3
Worker W1

Datablock D1

T212 Datablock 4

Worker W4

Datablock D4

T211 Datablock 3

Data-unaware
strategies

Application A2

{E1, E2}{E2, E4}

Job1 Job1

2 executors to A1 2 executors to A2

Fig. 1. In this example, each worker node can launch one executor. Existing
cluster managers usually allocate executors in a round-robin fashion. For A1

and A2, only one task of a job can achieve data locality. However, data-
aware cluster managers launch executors on nodes that store the task inputs
of applications and achieve 100% data locality.

executors with equal computation power to each application.
It is possible that the cluster manager launches an executor E1

on W1 and E3 on W3 for A1. Similarly, E2 and E4 would
be allocated to A2. As a result, only one task of the job in
each application achieves data locality no matter which task
scheduling policy each application uses. But if we know the
data input information beforehand, it is natural to allocate the
executors E1 and E2 to A1, and E3 and E4 to A2. As a result,
the task schedulers of both applications can easily achieve
perfect data locality by embracing any data-aware scheduling
strategy (e.g., [10], [22]).

We next formally analyze the problem of sharing resources
in a cluster with data awareness.

III. DATA-AWARE RESOURCE SHARING

A. System Model

Without the input information of jobs in an application, it
is impossible to decide whether executors can satisfy data lo-
cality requirements. Nevertheless, traditional cluster managers
dispatch executors even before the application runs [13]. We
propose to postpone the allocation process till users submit
analytic requests to an application.

Such a request is associated with an input dataset, which
is usually divided into multiple equal-sized data blocks, each
of which corresponds to an input task of a job that consists
of a DAG (directed acyclic graph) of tasks [3]. For tasks that
depend on multiple upstream tasks, it is unlikely for them to
achieve data locality since they have to read the outputs from
different worker nodes running the upstream tasks. In contrast,
an input task reads a data block from a single worker node.
Furthermore, the volume of input data is significantly larger
than the volume of intermediate results [24]. Therefore, we
only care about the locality for input tasks.

An application, Ai, consists of ρi different jobs, each of
which consists of µij input tasks. Ai has τi input tasks
in total, each of which, denoted as Tijk, needs to process

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

Eu = {Dx} an executor process that stores multiple data blocks
Ai an application consists of multiple jobs
yui whether an executor Eu is allocated to Ai

σi the total number of executors Ai can get
ζi the number of executors Ai has already got
ρi the total number of jobs Ai has
τi the total number of input tasks that Ai has
Gi Ai’s allocation graph that maps tasks to executors
Ψi the set of edges in Ai’s allocation graph Gi

Ti the set of tasks in Ai’s allocation graph Gi

Jij Ai’s job, consisting of multiple input tasks {Tijk}
Uij whether Jij is a local job
µij the number of input tasks Jij has
Tijk Ai’s input task, belonging to Jij
Lijk whether Tijk is a local task
dijk the data block that Tijk requires
xuijk whether Eu has the data block required by Tijk
zuijk whether Tijk should be assigned to Eu

one data block dijk. A worker node can launch multiple
executors concurrently based on its computation resources.
Each executor, denoted as Eu, has identical computation
capacity, and can run one task at a time [16] for the ease
of analysis. Since we only care about the data blocks stored
in each executor, an executor Eu can be also defined as
Eu = {Dx : Eu stores or caches Dx}. The annotations are
summarized in Table I.

With data-aware resource sharing, we try to allocate execu-
tors to applications in order to improve the maximum data
locality that can be later achieved through task scheduling. A
task satisfies data locality if its input data is stored or cached
on the executor it is assigned to. A job is called local if
it achieves perfect locality, namely, all its constituent input
tasks achieve data locality. We next analyze the problem of
achieving task-level and job-level locality in detail.

B. Achieving Task-level Data Locality

Since multiple applications share the limited resources in a
cluster, we need to balance the demands from all these ap-
plications. Therefore, instead of maximizing the total number
of tasks that can achieve data locality, it is more effective
to maximize the minimum percentage of local tasks in each
application. The problem is formulated as below:

max min
i

1

τi

∑
u

∑
j

∑
k
xuijk · yui · zuijk (1)

subject to
∑

i
yui ≤ 1, ∀ Eu (2)∑
i,j,k

zuijk ≤ 1, ∀ Eu (3)∑
u
zuijk ≤ 1, ∀ Tijk (4)

xuijk, y
u
i , z

u
ijk ∈ {0, 1} (5)

where xuijk indicates whether the executor Eu has the data
block required by Tijk, which is determined by the underlying

file system. yui indicates whether the executor Eu is allocated
to the application Ai, which is to be determined by our
resource sharing strategy. zuijk indicates whether Tijk should
be distributed to Eu in order to maximize locality. Constraints
(2) (3) ensure that each executor can at most be allocated to
one application, and can run one task at a time. Constraints
(4) ensure each task can be only placed onto one executor.

From this formulation, it is clear to see that for a task Tijk
to achieve data locality, one of the executors storing its input
data (namely, {Eu : xuijk = 1}) has to be allocated to Ai. Tijk
then has to be assigned to one of the allocated executors with
its input. Therefore, allocating executors and scheduling tasks
are essentially co-related. On one hand, the executors allocated
to an application determine the upper bound performance that
can be achieved by task scheduling. On the other hand, the
outcome of task scheduling helps evaluate the value of each
executor for an application.

Despite the interdependency of allocating executors and
scheduling tasks, we convert the problem stated in Eq. (1) -
Eq. (5) to a maximum concurrent flow problem by constructing
a flow network through the following steps: 1) add a source
node for each application; 2) add a common virtual sink;
3) add an intermediate node for each input task and each
executor; 4) construct an edge with capacity 1 between an
application and each of its input task; 5) construct an edge with
capacity 1 between each executor and the sink; 6) add an edge
between a task and each of the executors storing its input. The
demand for each application equals to its total number of input
tasks, namely, the maximum locality it wants to achieve. An
example flow network for two applications and three executors
are shown in Fig. 2.

A1

A2

T111

T112

T211

E1

E2

E3

Virtual
sink

1
1

1

1

1

1

Source1

Source2

demand1=2
demand2=1

∞

∞

∞

∞

∞

Fig. 2. The resource sharing problem to achieve max-min fairness among
active applications can be transformed into a maximum concurrent flow
problem, where each application acts as a source with demand equal to its
total number of input tasks.

The constraints in Eq. (2) (3) (4) are then converted to
capacity constraints, and the objective in Eq. (1) is translated
to finding the maximum concurrent flow in the constructed
network [15]. Unfortunately, this problem is NP-hard since
we only allow for integral flows. Adding job-level semantics
further complicates this problem as analyzed next.

C. Achieving Job-level Data Locality

In practice, each application would submit multiple jobs. A
job starts when a user submits an analytic request and ends
when the final computing result is returned to the user. In other
words, job completion times are determined by the slowest

task. The input tasks without data locality would become
stragglers and lag far behind the other tasks, since network
transmission is as much as 20 times slower than local data
access [10]. Therefore, meeting the data locality requirement
for only a subset of tasks would not optimize job performance.
We must take job-level locality into consideration as well.

To examine whether a job is local, we have to inspect
each of its constituent tasks. The problem to maximize the
minimum percentage of local jobs is formulated below:

max min
i

1

ρi

∑
j

Uij (6)

subject to (2), (3), (4)
Lijk = xuijk · yui · zuijk, (7)

Uij =
∏
k

Lijk (8)

where Lijk ∈ {0, 1} indicates whether Tijk achieves data
locality and Uij indicates whether Jij is local. We briefly
prove this problem is also NP-hard by reducing the task-
level resource sharing problem to it. For each task-level prob-
lem, we can construct an equivalent job-level problem where
µij = 1, ∀ i, j and thus ρi = τi, Uij =

∑
u

∑
k x

u
ijk ·yui ·zuijk.

Despite the difficulty of data-aware resource sharing, we
try to solve it through a two-level decision making procedure.
At the first level, we decide which application should first
choose from the set of idle executors to achieve data-aware
max-min fairness. At the second level, we select from the set
of executors to maximize the number of local jobs within the
application.

IV. CUSTODY: DESIGN

In this section, we walk through the design of Custody
to illustrate how it satisfies the hierarchical locality demands
of active applications in a cluster. We further present how
Custody meets the challenge of acquiring input information
of tasks, and how it can be deployed in current production
clusters without modifying user applications.

A. Data-Aware Allocation: Inter-Application Strategies

If the resources in a cluster are sufficient, it is trivial to
allocate executors to an application that need them once we
acquire the input information. Unfortunately, the resources
in a cluster, namely, the free computing slots on executors
with the desired data blocks, may become too scarce to
satisfy the locality requirements from all the jobs of the active
applications. On one hand, the replications of data blocks may
not promptly change with the dynamic user requests. The
executors storing popular blocks might be desired by multiple
applications, whereas other executors may be left idle since
no task needs the data it has. On the other hand, even if
the placement distribution of data blocks fits the popularity
distribution, the executors might have no free computing slots
during busy hours. Under either situation, Custody needs to
coordinate among different applications to handle conflicted
data demands.

Application A3

T311

T321

Datablock 1

Datablock 2

{E1, E2}

Cluster
Manager

Locality Fair

Worker W2

Datablock D2
Worker W3

Datablock D3
Worker W1

Datablock D1
Worker W4

Datablock D4

2 executors to A3

Naive Fair

{E2, E4}{E3, E4} {E1, E3}

Job1

Job2

Application A4

T411

T421

Datablock 1

Datablock 2

Job1

Job2

2 executors to A4

Fig. 3. Each application has two jobs, each of which has one input task.
We cannot satisfy the locality for all the four jobs due to improper block
placement. Using the naive fairness in existing inter-application strategies,
it is possible that A3 has two local jobs, while A4 has no locality. Under
locality-aware fairness, each application has one local job, and thus users of
the two applications experience similar performance.

Nevertheless, the fair sharing strategy used in existing clus-
ter managers only consider the number of executors allocated
to each application. As a result, the two allocation plans shown
in Fig. 3 will be considered equivalent. If we allocate E1 and
E2 to A3, both jobs of A4 need to fetch input data over the
network and will be significantly slowed down. The seemingly
fair allocation actually leads to different job completion times,
which is directly related to user-experienced performance.

We propose to integrate data awareness into fair sharing
by balancing the percentage of local jobs in each application
to achieve max-min fairness as described in Eq. 9. It is thus
natural to allocate an executor to the application with less
percentage of local jobs when multiple applications compete
for the same executor. The corresponding inter-application
algorithm is presented in Algorithm 1.

Algorithm 1 Data-Aware Inter-Application Allocation
1: procedure MINLOCALITY(apps)
2: Sort apps in the increasing order of the percentage
3: of local jobs
4: . Break ties by the percentage of local tasks
5: return the first app in the sorted list
6: procedure INTER-APP FAIRNESS
7: Initiate: the set of running applications apps
8: Initiate: the set of idle executors executors
9: while executors is not empty do

10: Ai = MINLOCALITY(apps)
11: INTRA-APP ALLOCATION(Ai, executors)
12: . Update executors and re-sort apps during allocation

Whenever there are idle executors in the cluster, Custody
sorts the applications based on the percentage of local jobs
they have achieved and try to allocate the set of executors to
the least localized application. Under this strategy, after one of
the hot executors (e.g., E1) is allocated to A3, A4 would have

Application A5

T511

T512

Datablock 1

Datablock 2

{E1, E3} {E1, E2}

Cluster
Manager

Priority
strategies

Worker W2

Datablock D2
Worker W3

Datablock D3
Worker W1

Datablock D1

T522 Datablock 4

Worker W4

Datablock D4

T521 Datablock 3

2 executors to A5

Fair
strategies

Job1 Job2

Fig. 4. Each worker node has one core and can launch one task at a time.
The application A5 only has access to two executors. Based on fairness-based
strategies, one task within each job should achieve data locality by allocating
E1 and E3 to A5; priority strategies satisfy data locality for both tasks of
the first job by allocating E1 and E2 to A5.

a higher priority and thus achieves the other hot executors E2

such that both applications have one local job.

B. Data-Aware Allocation: Intra-Application Strategies

In practice, apart from data-aware fairness, we still need to
limit the total number of executors each application can get.
As a result, even if all the executors that an application desires
are idle, it can only achieve a portion of these executors. It
is thus necessary to choose the subset of executors that can
maximally improve job-level locality.

Given the set idle of executors, Eidle, and the set of executors
desired by all the jobs in an application, Edesire, we have
the candidate set of executors (Ecandidate = Eidle ∩ Edesire) to
choose from with the objective of maximizing the number of
local jobs. We simplify the intra-application resource sharing
problem by asserting each local task contributes to 1

µij
local

job. The problem can then be formulated as:

max
∑

j

∑
k

1

µij
Lijk (9)

subject to
∑

u
yui ≤ σi, (10)

(3), (4)

The problem above is equivalent to finding a constrained
bipartite matching [25] with cardinality equal to σi in the
graph Gi = (Ti, Ecandidate,Ψi). An edge e = (tijk, Eu) with
weight equal to 1

µij
exists in Ψi if and only if Eu stores dijk.

Despite the existence of polynomial algorithm to the con-
strained bipartite matching problem [25], we illustrate through
the following example that a priority-based algorithm is more
beneficial in practice. Consider an application A5 consisting
of two jobs, each of which would launch two tasks to process
two data blocks. The data requirements and the allocate budget
are shown in Fig. 4. A fairness-based intra-application strategy
might allocate E1 and E3 to A5 such that each job achieves
data locality for one task. As a result, neither job meets locality
requirements for both of its input tasks. The job completion

times would be still bottlenecked by the slower task in the
job. As shown in Fig. 5, the average completion time of two
jobs in Fig. 4 is 2 time units due to slow network trasfers.
Alternatively, a priority-based allocator will choose to satisfy
perfect locality for the first job by allocating E1 and E2 to
A5. The average completion time then reduces to 1.25 time
units.

E3 T521

E1 T511 E1

E2

0 2 2

T512

T522

1

T511

T512

0

T522

0.5

T521

Avg. Time = 2 Avg. Time = 1.25

Fairness-based Strategy Priority-based Strategy

Time Time

Transmission Transmission

Transmission Transmission

Fig. 5. For jobs within an application, if we try to achieve job-level fairness,
each job in Fig. 4 can launch one local task. As a result, their completion
times are both 2 time units due to network transfers. If we prioritize Job1, its
completion time can decrease to 0.5 time unit without slowing down Job2.

The key is how to determine the priorities of jobs. Since
every constrained bipartite matching problem has an equivalent
perfect matching problem, an algorithm to the perfect match-
ing problem also gives a solution to the original problem with
the same approximation ratio. We decide the priorities of jobs
based on the 2-approximation greedy algorithm to the perfect
matching problem, which iteratively selects the edge with
the largest weight. Equivalently, this algorithm implies that
a job with fewer input tasks should be assigned with higher
priority since it is easier to satisfy all its locality demands.
We randomly assign priorities when two jobs have the same
number of input tasks. In accordance with our strict priority-
based strategy, we apply for all the desired executors of a job
before moving to the next job (line 12 of Algorithm 2). For
tasks in low-priority jobs that cannot achieve data locality,
we offer the current idle executors to them and rely on the
task scheduler in the application to reject current executors
and wait for new offers. We can further utilize existing
straggler mitigation schemes (e.g., [26], [27], [10]) to offset
such performance degradation.

C. Bridge the Gap: Custody in Production Clusters

In the underlying distributed file system (i.e., HDFS [19]),
the unique NameNode [28] manages the directory tree of
all files in the system, and tracks where the data is stored
across the whole cluster. Many DataNodes in the system
store the actual data blocks and periodically report to the
NameNode about their states. By inquiring the NameNode,
Custody acquires the list of relevant DataNodes that store the
input data blocks of jobs in an application.

We could further put off the allocation process until the
job scheduler divides the job into parallel tasks and submits

Algorithm 2 Data-Aware Intra-Application Allocation
1: procedure ALLOCATEEXECUTOR(Ai, Eu)
2: Assign Eu to Ai
3: ζi = ζi + 1 . Update application state
4: executors = executors - Eu . Update executors
5: if Ai 6= MINLOCALITY(apps) then return TRUE
6: else return FALSE
7: procedure INTRA-APP ALLOCATION(Ai, executors)
8: Initiate jobs: the set of jobs of app
9: Sort jobs in the increasing order of the number of

10: unsatisfied input tasks
11: for j ∈ jobs do
12: for t ∈ j do . Satisfy all the tasks of j first
13: if ζi == σi then return
14: if ∃ Eu in executors that stores t’s input then
15: flag = ALLOCATEEXECUTOR(Ai, Eu)
16: if flag then return
17: if executors is not empty then
18: while ζi < σi do
19: for Eu ∈ executors do
20: ALLOCATEEXECUTOR(Ai, Eu)

the ready tasks to the system. Nevertheless, tasks then have to
wait for the cluster manager to allocate qualified executors. To
avoid such extra delay, we enforce that executors with suffi-
cient resources must be allocated to the application before task
submissions, such that ready tasks can be directly launched to
the executors and start processing.

Fortunately, we find that lacking detailed task information
has little influence on resource sharing strategies since the in-
put tasks of a job are mostly homogeneous. The requirements
for both computation and network resources of the input tasks
in a job are similar because they share the same processing
logic and read the equal-sized partitions of the same dataset as
input. Therefore, when a job can only get a subset of executors
with its input data, selecting whichever subset is essentially
equivalent in that the resultant job durations would be similar.

After users initiate job requests, Custody will extract the
data input information of each job in the application, then
locates the corresponding worker nodes by inquiring the HDFS
NameNode. With such information, Custody first inquires the
cluster manager about the total amount of resources each
application can use and tracks the available resources on the
worker nodes with input data, such as available cores and
free memory space. Custody then coordinates the conflicting
demands among concurrent applications and jobs using Al-
gorithm 1 and 2. Finally, Custody submits the list of desired
worker nodes and the required resources on each worker node
to the cluster manager to apply for executors. Such executor
application would always succeed since Custody has already
taken the resource restrictions into account.

When application users initiate new requests, Custody re-
evaluates the demand of all the unfinished jobs. If the current
executors allocated to the application cannot satisfy the de-

DriverEndpoint

DAGScheduler

submit
Tasks

TaskScheduler

makeOffer

Tasks

Submit
requests ExecutorRunner

Executor
ExecutorBackend

Worker Nodes

Custody

Desired
Locations

Inter-App
Fair share

Intra-App
Priority

Executor
List

Delay scheduling

HDFS
Name
Node Custody

Plugin

Cluster
Manager

Update
Status

Launch
Tasks

Release
Executor

Fig. 6. Implementing Custody on top of Spark.

mands of the new jobs, Custody tries to dynamically add or
remove executors to adapt to the up-to-date locality require-
ments.

V. SYSTEM IMPLEMENTATION

We have implemented Custody to evaluate its performance
on a Linode [17] cluster of 100 nodes. Custody is built on top
of Spark 1.4.0 [16] in the Scala programming language. We
run Spark under the standalone mode in our implementation
to use its default cluster manager. In this section, we present
the system components of Custody and discuss its portability.

As shown in Fig. 6, Custody gathers the information of
locality requirements from the applications and collects the in-
formation of data locations from the NameNode. It then makes
resource sharing decisions on behalf the cluster manager and
passes the allocation results to the original cluster manager to
make it allocate the desired executors to applications.

Without Custody, after an application registers with the
cluster manager, it would be immediately allocated with a
set of executors. Since such allocation is done even before
users commit job requests, it is impossible to acquire the input
information. Therefore, we do not allocate executors until
users submit requests. Custody acquires the unique URL of
the input dataset of a job, and then inquires the NameNode of
HDFS to achieve the desired locations of the job before
the DAGScheduler in Spark translates each job into a DAG
of tasks. Because Custody does not require extra information
from jobs, we do not need to design new application interfaces.
Existing applications built upon Spark can enjoy the benefits
of Custody without modification.

Custody then invokes the Inter-App Fair Share module
and the Intra-App Priority module to deal with the pos-
sible conflicts both among and within applications. Our inter-
application allocation module tries to make every application
achieve the same percentage of local jobs. For intra-application
allocation, Custody first satisfies the requests for executors
from the job with the highest priority in the application.

Through these two modules, Custody can actually both
determine the set of executors each application should get, and

on which executor each task should run. Custody can submit
both the list of executors and the scheduling suggestions to
the cluster manager. Since Spark’s standalone cluster manager
does not support proactive requests for specific executors, we
implement a Custody plugin inside the cluster manager to
achieve this functionality. The cluster manager then allocates
the executors to applications based on our proposal. Although
the locality each application actually achieves depends on the
task scheduling policies, we do not impose the applications to
follow the instructions included in our allocation results such
that each application can adopt an independent scheduling
strategy without modification. In our experiments, all the
applications use the standard delay scheduling [22] of Spark
to accept resource offers and schedule tasks.

Custody adds a new type of messages to make the driver of
Spark proactively inform the cluster manager that a specific
executor can be released. As a result, Custody can keep track
of all the idle executors and dynamically allocate executors
once new jobs are submitted to the system. Custody is invoked
whenever new jobs are submitted into the system or existing
jobs finish and leave the system. Therefore, the application is
not restricted to a fixed set of executors, but are dynamically
allocated with the set of most suitable executors that can meet
the locality requirements of its current active jobs.

Custody can be easily built upon other cluster management
schemes (e.g., YARN [12] and Mesos[11]) or acts as an
independent cluster manager. The modifications would depend
on specific interfaces of different cluster managers, while the
key components in Custody remain unchanged. Our current
implementation is only for evaluating the benefits of Custody
over data-unaware cluster managers. The specific type of
cluster manager has little influence on the performance gains.

VI. EXPERIMENTAL EVALUATION

To validate the effectiveness of Custody, we deploy it on a
100-node cluster and evaluate its performance under different
types of workloads. We further analyze the performance of
Custody and compare it with Spark under the default mode.

A. Setup

1) Deploy the Cluster: All our experiments are run on a
100-node cluster with each node having 8 cores, 16GB of
memory and 384GB SSD storage. The bandwidth limit of
a node is 40Gbps downlink and 2Gbps uplink. We write a
customized module based on the popular deployment tool,
Ansible [29], to launch our Linode cluster [17] and uniformly
configure the nodes across the cluster.

The experiments are separately run on clusters with 25, 50
and 100 nodes. Two executors are launched on each node to
run tasks. According to the standard cluster configuration [10],
[3], [11], the block size is set to 128MB and the replication
level is set to three. For each group of experiments, we
compare Custody with the Spark’s current cluster manager,
which performs very well in production datacenters [13].

 PageRank Sort WordCount

25

50

75

100

%
 L
oc

al
 In

pu
t T

as
ks

32.63% 13.82% 14.07%

Spark
Custody

(a) Cluster size = 25

 PageRank Sort WordCount

25

50

75

100

%
 L
oc

al
 In

pu
t T

as
ks

39.85%

38.54% 46.67%

Spark
Custody

(b) Cluster size = 50

 PageRank Sort WordCount

25

50

75

100

%
 L
oc

al
 In

pu
t T

as
ks

49.14% 41.32% 56.04%

Spark
Custody

(c) Cluster size = 100

Fig. 7. The data locality of input tasks under different workloads: in all the three clusters, it is clear to see that Custody improves the data locality significantly
with the performance gains varying between 13.82 % to 56.04%.

PageRank Sort WordCount
0

50

100

150

200

Jo
b
co

m
pl
et
io
n
tim

e
(s
) 14.04%

18.21%
20.12%

Spark
Custody

(a) Cluster size = 25

PageRank Sort WordCount
0

50

100

150

200

Jo
b
co

m
pl
et
io
n
tim

e
(s
) 13.98%

16.31%
18.43%

Spark
Custody

(b) Cluster size = 50

PageRank Sort WordCount
0

50

100

150

200

Jo
b
co

m
pl
et
io
n
tim

e
(s
)

8.26%
15.60%

9.55%

Spark
Custody

(c) Cluster size = 100

Fig. 8. The average job completion times under different workloads: the performance gains brought by Custody are over 8% in all the groups of experiments.
With more worker nodes in the cluster, the performance gains of all the three workloads tend to slightly decrease.

2) Workloads: We choose three representative workloads
with different characteristics.

• PageRank: this is a graph-based algorithm [30] that
computes the rank of each web page to optimize search
engine results. The input is extracted from a 32GB Wiki
dump [31] that records the page-to-page Wikipedia links.
Each job runs on a subset of this dump. Due to the graph-
based nature, PageRank jobs usually involve a large
amount of network transfers and are thus identified as
network-heavy jobs. The size of the input data file for a
PageRank job is 1GB.

• WordCount: this application computes the occurrence
frequency of each word in the data file. Since the inter-
mediate results of WordCount are significantly reduced
in comparison with the input, it is usually identified as a
representative of network-light jobs. The size of the input
file for a WordCount job ranges between 4GB and 8GB.

• Sort: this type of jobs sorts the same Wiki dump based
on the content of each line. Such Sort jobs not only call
for extensive computation resources but also incur a large
amount of network transmissions. The size of the input
file for a Sort job ranges between 1GB and 8GB.

For each workload, we compare the average job completion
times and the data locality for input tasks under Custody and
Spark’s default resource manager. We generate a common job
submission schedule that is shared by all the experiments to
minimize the influence of random factors. The distribution
of inter-arrival times is roughly exponential with a mean of
14 seconds in accordance with the Facebook trace [22]. In
all the following experiments, we register four applications to

the cluster manager and submit 30 jobs with an independent
submission schedule to each application.

B. Overall Performance

We summarize the performance gains in terms of data
locality and job completion time in Fig. 7 and 8 respectively.

The percentage of input tasks in a job that achieve data
locality is shown in Fig. 7. We plot the mean and standard
deviation of that percentage in each workload. In comparison
with Spark’s default cluster manager, Custody improves data
locality significantly: the best case performance gain is as high
as 56.04% whereas the worst case gain is still larger than
10%. Furthermore, we can see from Fig. 7(a) - Fig. 7(c) that
the locality achieved by the default cluster manager is very
unstable. For instance, although it meets locality requirements
for about 65% of input tasks on average, some jobs only have
less than 35% of local tasks. In contrast, Custody achieves
over 50% data locality for all the jobs in the cluster. Since
we have not achieved perfect locality for jobs on average, the
completion times of input tasks are not minimized. However,
improving data locality for a portion of tasks still helps
expedite the jobs since the tail completion times of all the
input tasks are essentially shorten.

In Fig 8, we evaluate the average job completion times
under different settings. Even in the cluster with 100 nodes,
Custody can reduce job completion times by more than 8%
for all the workloads. It is worth noticing that the performance
gain in terms of job completion times is not as significant as
that of data locality. There are two reasons for this interesting
phenomenon. Firstly, improving task locality can only reduce
the completion times of tasks in the input stages as shown

0 20 40 60 80 100 120
Average completion time of input stage (s)

Page
Rank

Sort

Word
Count

Spark
Custody

Fig. 9. The average completion time of map (input) stages in the 100-
node cluster: compared to Spark’s standalone cluster manager, the input tasks
running with the help of Custody are expedited due to improved data locality.

in Fig. 9, whereas tasks in the downstream stages are not di-
rectly influenced. Secondly, the nodes we use for experiments
guarantee about 2 Gbps bisection bandwidth for each node,
which means transmitting a data block does not need too much
time. Therefore, the benefit of data locality is actually under-
estimated since most production clusters do not have such a
high-speed network [22].

In addition, it is clear to see that the three workloads
have various behavior under different experiment settings:
PageRank jobs have lower performance gains in terms of
job completion times. Such difference is mainly caused by
the multiple iterations involved in the PageRank algorithm.
In contrast, Sort jobs and WordCount jobs only involve one
map stage and one very short reduce stage [32]. Expediting
input tasks thus has less influence on PageRank jobs.

C. Influence of Cluster Size

By comparing the results in different cluster sizes, we
find that Custody is more beneficial in a larger cluster. For
each workload, the improvement of locality over the base-
line increases with the sizes of clusters. For instance, the
locality improvement of Sort jobs increases from 14.07%
in Fig. 7(a) to 56.04% in Fig. 7(c). Essentially, the locality
level under Custody is relatively insensitive to the sizes of
clusters. No matter how many executors are available in the
cluster, Custody can always effectively select the best set
of executors that meet the data demands for tasks in an
application. However, the locality level under Spark’s default
cluster manager decreases dramatically in larger clusters. This
is due to the fact that the standalone manager randomly selects
among all the available resources and allocates whichever set
of executors that have sufficient computation resources to an
application. With more executors spreading out in a larger
cluster, it is less likely that the default manager happens to
select the set of executors that store the right data blocks.

The trend of job completion times, however, is inconsistent
with the data locality: the performance gain decreases from
17% in the 25-node cluster to 11% in the 100-node cluster on
average. Certainly, the applications in the larger cluster can
launch tasks on more executors. Even if input tasks cannot
achieve data locality, they can be easily launched onto idle
executors and receive their inputs without too much delay.
Therefore, the benefit of data locality is largely offset.

25 50 100
Cluster size

0
20
40
60
80
100
120

Sc
he

du
le
r D

el
ay

 (s
) Spark

Custody

Fig. 10. Compared to Spark, tasks under Custody experience shorter delay
since they are easier to be offered with executors that store their data.

D. Allocation Overhead of Custody
The scheduler delay of a task is the time period between

the task is submitted to the system and the task is actually
launched onto an idle executor. We evaluate the overhead
of using Custody to allocate executors by comparing the
scheduler delay with that of Spark standalone. From Fig. 10
we can see that the scheduler delay using Custody is less than
the standalone cluster manager on average. This extra benefit
stems from the better locality Custody has achieved. Under the
delay scheduling used in Spark, a task waits for executors that
store its input for a certain amount of time before it accepts a
resource offer from an executor without locality. By allocating
the right executors to an application, the input tasks are easier
to find the desired executors and thus spend less time waiting
in the scheduler.

VII. RELATED WORK

Cluster managers: Spark’s current cluster manager [13]
allocates a fixed set of executors to an application throughout
its lifetime. The resource manager in YARN [12] dynamically
[33] partitions the cluster resources among various applications
into different resource pools, which only captures computation
resources as metrics and still lacks data awareness. Mesos [11]
is an offer-based platform for multiple applications to share
a cluster. It offers idle computation resources to an applica-
tion once an executor terminates and releases its resources.
The fine-grained resource allocation in Mesos significantly
improves cluster utilization. However, without data awareness,
it suffers from repetitive offer rejections if data locality is
required by the pending tasks.

All the schemes mentioned above as well as the cluster
managers used in production clusters (e.g., Omega [34] and
Borg [14]) ignore data locality when allocating resources.
Custody improves existing schemes by considering the input
information of jobs and allocate the desired executors to the
applications. Through carefully handling the conflicts both
inter- and intra- applications, Custody is able to meet the
locality demands of applications when they share the limited
resources in clusters.

Task schedulers: Quincy [35] makes a trade-off between
fairness and locality by frequently killing running tasks based
on the solution to a minimum-cost flow problem. Instead, the
delay scheduling used in HFS [22] waits for running tasks

to release executors with desired data blocks at the cost of
delayed task placement. Sparrow [23] imposes data locality
as hard constraints when scheduling tasks, while lacks discus-
sions about how to access the executors storing the relevant
data. KMN [10] improves the possibility of data locality by
processing a subset of input data blocks. The best locality
these schedulers can achieve depends on the executors that
the cluster manager has allocated to an application. Custody
essentially complements task schedulers by maximizing the
upper bound locality that task schedulers can achieve.

Caching and storage management: Distributed file sys-
tems in production clusters typically maintain three replicas
for each data block [19], [20]. However, different data blocks
have different access patterns. The worker nodes that store
the popular blocks thus become hot spots. Anantharayanan
et al. propose to replicate blocks based on their popularity
to improve data locality [9]. Adopting these sophisticated
techniques will further enhance the performance of Custody
since they reinforce the foundation of data locality.

VIII. CONCLUSION

In this paper, we have proposed, designed and implemented
a new resource sharing framework, Custody, to maximize
data locality for parallel-computing applications in cloud dat-
acenters. Custody’s core principle is to enable data-aware
executor allocation through postponing the allocation process
till users submit job requests. Utilizing the input information,
Custody selects executors that can best meet an application’s
data locality requirements without delaying task submissions.
We have implemented Custody in Spark and demonstrate it
outperforms Spark’s current cluster manager both through
theoretic analyses and extensive experiments in a large-scale
cluster under various workloads. Although Custody is cur-
rently built on top of Spark’s cluster manager, it can be easily
integrated into other resource management systems with little
modification.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. USENIX OSDI, 2004.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD, 2010.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proc. USENIX NSDI, 2012.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review, vol. 38, no. 4, pp. 63–74, 2008.

[5] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[6] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al.,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in Proc. ACM SIGCOMM, 2014, pp. 503–514.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014, pp. 443–454.

[8] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior
knowledge,” in Proc. ACM SIGCOMM, 2015, pp. 393–406.

[9] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Sto-
ica, D. Harlan, and E. Harris, “Scarlett: Coping with skewed content
popularity in MapReduce clusters,” in Proc. Conference on Computer
Systems (Eurosys), 2011, pp. 287–300.

[10] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and
I. Stoica, “The power of choice in data-aware cluster scheduling,” in
Proc. USENIX OSDI, 2014, pp. 301–316.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proc. USENIX NSDI, 2011.

[12] “Apache Hadoop NextGen MapReduce (YARN),” http://hadoop.apache.
org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[13] “Spark standalone mode,” http://spark.apache.org/docs/latest/
spark-standalone.html.

[14] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
Proceedings of the Tenth European Conference on Computer Systems
(EuroSys), 2015, pp. 18:1–18:17.

[15] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” Journal of the ACM, vol. 37, no. 2, pp. 318–334, 1990.

[16] “Apache Spark,” https://github.com/apache/spark.
[17] “Linode: SSD cloud hosting,” http://www.linode.com/.
[18] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,

“Shark: SQL and rich analytics at scale,” in Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, 2013,
pp. 13–24.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010, pp. 1–10.

[20] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proc. ACM Symposium on Operating Systems Principles (SOSP),
2003, pp. 29–43.

[21] “Docker: An open platform for distributed applications for developers
and sysadmins,” https://www.docker.com/.

[22] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. European conference on
Computer systems (Eurosys), 2010, pp. 265–278.

[23] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proc. ACM Symposium on
Operating Systems Principles (SOSP), 2013, pp. 69–84.

[24] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “WANalytics: Geo-distributed analytics
for a data intensive world,” in Proc. ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2015, pp. 1087–1092.

[25] J. Plesnk, “Constrained weighted matchings and edge coverings in
graphs,” Discrete Applied Mathematics, vol. 92, no. 23, pp. 229 – 241,
1999.

[26] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu, “Grass: Trimming stragglers in approximation analytics,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, 2014, pp. 289–302.

[27] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2013, pp.
185–198.

[28] “Hadoop NameNode,” http://wiki.apache.org/hadoop/NameNode.
[29] “Ansible is simple IT automation,” http://www.ansible.com/.
[30] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation

ranking: bringing order to the Web. Stanford InfoLab, 1999.
[31] “English Wikipedia dump,” http://dumps.wikimedia.org/enwiki/.
[32] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-

ing data transfers in computer clusters with Orchestra,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 98–109, 2011.

[33] “Cloudera: Dynamic resource pool,” http://www.cloudera.com/content/
cloudera/en/documentation/core/latest/topics/cm mc resource pools.
html.

[34] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
Proc. ACM European Conference on Computer Systems (EuroSys), 2013.

[35] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,”
in Proc. ACM SIGOPS Symposium on Operating Systems Principles
(SOSP), 2009, pp. 261–276.

