
Haste:Practical Online Network Coding
in a Multicast Switch

Shuang Yang, Xin Wang
School of Computer Science

Fudan University, China
{06300720227, xinw}@fudan.edu.cn

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto, Canada
bli@eecg.toronto.edu

Abstract—The use of network coding has been shown to improve
throughput in input-queued multicast switches, but not without
costs of computational complexity and delays. In this paper,
we investigate the design of efficient online network coding
algorithms in a switch with multicast traffic. We present Haste, an
online opportunistic coding algorithm designed to streamline the
computation when network coding is involved in a network switch
with multicast traffic. Haste enjoys the advantage of incurring
no decoding delays, which reduces packet delays compared with
existing network coding algorithms on switches. We have con-
ducted extensive simulations to show the efficiency ofHaste, and
implemented an emulation framework to emulate input-queued
switches using asynchronous network sockets. Our emulation
framework is able to process actual UDP traffic usingHaste with
online network coding, and to show convincing evidence thatHaste
is suitable for practical use, and is beneficial in multicast switches.

I. I NTRODUCTION

Network coding [1] has recently been proposed in input-
queued (IQ) switches to improve the throughput of multicast
[2], [3]. Traditionally, it was shown that [4] 100% throughput
cannot be achieved in IQ switches without aspeedup(the ability
to receive more packets within the same time for output ports),
which needs to be implemented in hardware by adding extra
switching fabric. It has been shown that network coding is able
to effectively substitute the speedup in the switch [2], [3].

Despite its proven theoretical superiority, network coding is
certainly not a panacea. Would it be practical to use linear
network coding in a typical switch in lieu of extra switching
fabric? It would certainly be good news if that is the case,
but Fig. 1 has clearly illustrated some challenges when using
network coding in a switch. Although all three output ports
receive two packets, none of these packets can be sent out of
the switch, since they have not been decoded yet. They have to
be stored in the output buffer waiting for another coded packet
in order to successfully decode. Consequently, a considerable
amount of delay is incurred. In contrast, in a switch without
network coding, packets arriving at the output ports can be
immediately sent out without the buffering delay needed for
decoding. In addition, since packets are used for encoding
and decoding, they cannot be dropped from either the input
or the output buffers. This requires a larger buffering capacity
operating at line speed.

To make matters worse, network coding requires a substantial
amount of computation, which is unacceptable for core Internet

Switching 
fabric

c41p1

+c42p2

+c43p3

input 
buffer

output 
buffer

p3, p2, p1

c11p1 + c12p2 + c13p3

c11p1 + c12p2 + c13p3

c21p1 + c22p2 + c23p3

c21p1 + c22p2 + c23p3

c31p1 + c32p2 + c33p3

c31p1 + c32p2 + c33p3

Fig. 1. Network coding in a multicast switch (c represents coding coefficients,
andp represents packet payloads).

switches dealing with a very high volume of traffic at high
sustainable rates. In the Cisco Catalyst 6500 series, for example,
the switching throughput can be as large as 720 Gbps [5].
Consider the linear way of encoding,E =

∑n

i ci · pi, wheren

is the number of packets arriving in a unit of time. Every byte
needs at leastn multiplications on a finite field. Even if there
is only 0.1% traffic needed to be encoded, andn is chosen
to be a very small number such as 10 (even though a larger
n is desirable in terms of throughput), the switch requires at
least billions of multiplications per second just for encoding. In
general, the additional buffering, delay, and computationthat
are necessary for network coding to be deployed in switches
may not be easily justifiable or practical.

In this paper, we proposeHaste, a practical design of
opportunistic coding for a multicast switch.Haste is designed
to mitigate or overcome the challenges when conventional
network coding is used. It only uses XOR operations for
encoding and decoding, incurring an extremely low compu-
tational complexity. Further, packets sent are always chosen to
be immediately decodable, resulting in zero decoding delay.

To show the efficiency ofHaste, we have not only conducted
extensive simulations, but also implemented an emulation
framework using cross-platform asynchronous sockets beyond
the OS kernel, in order to emulate IQ switches with network
coding. Our experiments will show thatHasteperforms much
better than the existing algorithms, achieving higher throughput
and lower packet delays.

The remainder of the paper is organized as follows. Sec. II
introduces the preliminaries of online network coding in a
multicast switch. In Sec. III, we present the design ofHaste
in the switch. Sec. IV analyzes the performance of Haste,
compared with conventional network coding. Sec. V presents
our simulation and emulation experiments. Finally, Sec. VI
concludes this paper.



2

input

1

input

2

output

1

output

2

output

3

P1

P1

A

(a)

input

1

input

2

output

1

output

2

output

3

P2

P2

B

(b)

input

1

input

2

output

1

output

2

output

3

P1⊕P2

P1⊕P2

C

(c)

P1�
BC

P3 P2

(d)

Fig. 2. Network coding improves the rate of multicast flows in a switch:
(a)-(c): the use of network coding; (d) the enhanced conflictgraph.

II. PRELIMINARIES AND RELATED WORK

An M×N IQ switch consists ofM input ports andN output
ports. One input port is allowed to send the same multicast
packet to several output ports at one time, but different packets
cannot be sent simultaneously. One output port can only receive
one packet at the same time.

Fanout splitting is allowed in the multicast switch, such that
one multicast packet can be sent to part of its destination ports.
With (2N − 1) fanout splitting sets in total,(2N − 1) virtual
output queues (VOQs) are used to support multicast traffic from
each input port [6]. The Cisco Catalyst 6000 [5] is one of the
real-world switches using VOQs. With network coding, VOQs
are not restricted to be FIFO.

Considering fixed-size packets only, network coding is
proved [2] to improve the multicast throughput of an IQ
switch. Fig. 2(a)–(c) have shown an example given in [2]
how network coding works. Conventionally, packetP1 andP2
cannot transmit simultaneously in one time slot. If we have to
reserve an output port for traffic from input 2, at least 4 slots are
needed to serve these packets. When network coding is used,
it can be finished in 3 time slots.

The Enhanced conflict graph[2] is derived for the example,
shown in Fig. 2(d). In this graph, a node denotes either a
subflow, a part of a multicast flow that goes to a particular
output port, or a unicast flow. Subflows or unicast flows that
cannot be served simultaneously are in conflict with each other
with an edge drawn in the enhanced conflict graph connecting
the corresponding nodes. For example,P1 andA are in conflict,
as well asA andB. With network coding, any stable set of the
enhanced conflict graph can be served at the same time, so the
throughput is improved.

Extending this example to the general case, Sundararajan
et al. [2] have proposed the Maximum Weighted Stable Set
(MWSS) algorithm. In every time-slot, the MWSS algorithm
first computes a maximum weighted stable set of the enhanced
conflict graph using virtual backlogs of the flow in terms of the
degree of freedom as the weight. For every flow in the chosen
set, the algorithm then computes a linear combination of all
packets in the input buffer of the flow up to the current time,
such that the linear combination is innovative to all chosen
output ports of the flow. It finally transmits the computed
linear combinations as the encoded packets to output ports
of all subflows in the stable set. Since it is not guaranteed
that output ports can decode often enough, the Finite Horizon
MWSS algorithm is proposed in [2] to address this deficiency
using a coding window of a smaller size, such that packets are
processed in batches. When a batch of packets finishes decoding

by all output ports, the entire batch is purged from the buffer
and a new batch starts to be processed. A loss of throughput
is incurred, but relatively small when the batch size is large.

The encoding algorithm in Haste,opportunistic coding, has
been studied in the case of wireless networks [7]. However, no
similar algorithms have been designed specifically for network
switches, which are very different from wireless networks.In
wireless networks, there is interference, so senders can only
keep the status of the receivers with feedback. In contrast,since
all input ports and output ports are within the same switch,
input ports know which output ports would receive packets.
Consequently, their conclusions are significantly different.

III. H ASTE: AN OPPORTUNISTICCODING APPROACH

Haste employs opportunistic coding with binary operations
(XOR) only. The basic idea of opportunistic coding is to always
transmit a packete such thate can be immediately decoded by
all output ports received. In this section, we describe the entire
design of Haste, showing how to utilize online information and
XOR operations to improve a switch.

The design of Haste consists of four parts:scheduling, en-
coding, decoding, andbuffer management. We use the concept
of time-slot to describe how Haste works during four stages of
one time-slot.

Scheduling: At the beginning of each time-slott, compute
a maximum weighted stable set in the enhanced conflict graph,
the same as the MWSS algorithm in [2]. The weight for
each subflow is the number of undecoded packets in the
corresponding VOQ. We useS(t) to denote the subflow set
chosen at timet, and the corresponding flow set isF (t).

Because the maximum weighted stable set problem is NP-
hard [8], we adopt an approximation algorithm similar to what
has been proposed in [9]. With respect to scheduling, Haste
randomly computes a stable set at timet, compares it to the
stable setS(t − 1), and chooses the one with a larger weight
asS(t). F (t) can be easily obtained byS(t).

Encoding: The encoding scheme runs on every flowf ∈
F (t) at timet afterS(t) andF (t) are computed by scheduling.
Assume thatE = {e1, e2, . . . , en} are packets stored in the
VOQ for the flowf . If there exists a packete ∈ E such thate
has not yet been decoded by any subflows∈ f

⋂

S(t), transfer
the original packete at t for flow f . Otherwise, randomly pick
one packetei in the VOQ. Lete = ei. Then check all packets
ej ∈ E in a random order untile is innovative to all subflows
∈ f

⋂

S(t). If e⊕ej is decodable for output ports off
⋂

S(t),
let e = e ⊕ ej . A packete is decodable for an output port, if
at most one of packets involved in encodinge has not been
decoded by the output yet. Transfer the coded packete at t for
flow f .

Decoding: Whenever an output portOi receives a packet,
it decodes immediately. Assume that the packet received is
e = e1 ⊕ e2 ⊕ . . . ⊕ em. According to the encoding scheme,
e is decodable forOi, namely at most one of the packets in
{e1, e2, . . . , em} has not yet been decoded byOi. If all of
the packets have already been decoded,e is not innovative to
Oi, in which case it should simply be dropped. Otherwise,



3

ei ∈ {e1, e2, . . . , em} has not yet been decoded byOi, and
all other packets∈ {e1, e2, . . . , em} have been decoded. Then
ei can be decoded,ei = e⊕ e1 ⊕ . . .⊕ ei−1 ⊕ ei+1 ⊕ . . .⊕ em.
Whenever a packet has been decoded, it is sent out of the switch
immediately. However, it might still be stored in the output
buffer for decoding other packets.

Buffer Management: Buffer management in Haste involves
the management of both the input and the output buffers.

We manage VOQs for input ports. A packet arriving at an
input port is stored at the end of corresponding VOQ according
to its destinations. When a packet at the front of a VOQ is
decoded by all its destinations, it is removed from the VOQ.

A key issue for input buffer management is to prevent
starvation, since packets are not sent in order in Haste. Haste
thus employs a FIFO batch strategy, such that only packets
in the first L positions in the VOQs can be processed in the
encoding algorithm, whereL is the batch size. In addition,
packets are only removed from the front of VOQs, so theith

packet is always transferred before the(i + L)th packet. This
strategy may lead to a loss of throughput, but largely reduces
the random accessible buffering demand, resulting in a lower
cost, as well as speeding up coding and scheduling. Packets in
the rest of VOQs conform to a FIFO policy.

We manage virtual input queues (VIQs) at the output for
decoding. Decoded packets are stored in VIQs until the original
packet has been removed from the VOQs. We assume that the
VIQs have the knowledge of packet removals in VOQs.

The buffer management strategy ensures that the size of
a VIQ LO can be no larger thanL, the maximum number
of packets that can be processed in a VOQ. We do not use
alternative packet removal schemes in Haste to reduce the size
of the VOQs, such as drop-when-seen [10], since these schemes
are not able to maintain the size of the VIQs, which might grow
in an unbounded fashion with the same batch size.

One final note about Haste is that we do not need to apply
network coding on packets belonging to unicast flows. When a
unicast flow is chosen in the stable set by the Haste scheduling
algorithm, simply transfer the packet at the front of its VOQ.

IV. A NALYSIS: A COMPARISON

Haste is superior to the conventional algorithm in two
aspects: packet delays and computational complexity. We will
first analyze the maximum gain in the switch achieved by using
XOR operations only. We will then show the considerable gap
between Haste and the conventional algorithm with respect to
the computational complexity.

A. Packet delays

Compared with conventional network coding, which has
to wait for receiving enough packets to decode, Haste is
superior in that it eliminates the decoding delay. Therefore,
the only additional packet delay Haste might experience is the
transmission of redundant packets. In this section, we measure
the delay by the number of packets received that cannot be
decoded immediately. In the online situation, only using XOR
operations can achieve zero delay in anN × 3 switch.

Theorem 1:For anM × 3 switch, zero delay is achievable
by an online algorithm using XOR operations only.

Proof: We label the packets according to their arrival time.
We consider one multicast flow of three subflows only, because
other cases can be easily extended. There are three cases when
sending packets at timet: one, two or three subflows are chosen
to transmit. When only one subflow is chosen, transmit the
earliest undecoded packet of that flow. When two subflows are
chosen, assumepi, pj are the earliest arrival but undecoded
packets of the two subflows, respectively. One of the three
packetspi, pj , pi ⊕ pj can deliver innovative information to
both output ports. When three subflows are chosen, assume
pi, pj , pk are the earliest arrival but undecoded packets of the
three subflows respectively, andi ≤ j ≤ k. Because of the
schedule of the other two cases,pk has not been decoded by
all three output ports. Transmitpk in this case. In general, it
is always possible to transmit innovative packets in all three
cases, thus incurring zero delay.

We now extend the analysis with the knowledge of a full
scheduleS, which can clear all backlogs by conventional
network coding. In this case, zero delay can be achieved in
a switch of no more than4 output ports by XOR operations
only.

Theorem 2:For anM×4 switch, zero delay is achievable by
an algorithm using XOR operations only, with the knowledge
of a full scheduleS.

Proof: A new schedule can be constructed based onS us-
ing XOR operations only, which incurs no delay. We can divide
the time space into several parts,(0, t1), (t1, t2), . . . , (tn−1, tn)
such that no packets are partially decoded in the given schedule
at time ti. In each time interval, rearrange the schedule such
that 3 or 4 subflows of one flow are always chosen before1
or 2 subflows chosen. Then, no delay would occur using XOR
operations only.

For general cases with more than 4 output ports, binary
operations are not sufficient to construct a zero-delay algorithm.
As a result, a loss of throughput is incurred. Therefore, there
exists a throughput gap between Haste and the ideal network
coding algorithm.

However, the baseline MWSS algorithm mentioned in Sec. II
might result in an infinitely large decoding delay. The employ-
ment of batches also incurs a loss of throughput, as well as
considerable decoding delays. In addition, both throughput and
decoding delay increase with the batch size. Further compar-
isons of delay will be shown in Sec. V.

B. Computational complexity

Haste employs XOR operations only, so we can measure the
computational complexity by the number of operations needed.
The following theorem analyzes the computational complexity
of decoding a residue flow byN output ports.

Theorem 3:Let U(i) be the number of packets not decoded
by output portOi, E be the total number of packets in the
corresponding VOQ. The upper bound of the number of XOR

operations for decoding all packets is
N
∑

i=1

U(i)(2E−U(i)−1)
2 .



4

0.8 0.9 1 1.1 1.2 1.3 1.4
0

1000

2000

3000

4000

load (α)

de
la

y 
(t

im
e−

sl
ot

)

No network coding
Conventional network coding
Haste

(a) packet delays with a batch size of
50 packets.

0.8 0.9 1 1.1 1.2 1.3 1.4
10

2

10
4

10
6

10
8

10
10

load (α)

#o
pe

ra
tio

n

Conventional network coding
Haste

(b) computational complexity with a
batch size of 50 packets.

0 100 200 300 400 500
0

100

200

300

400

500

batch size (#packet)

de
la

y 
(t

im
e−

sl
ot

)

Conventional network coding
Haste

(c) packet delays withα = 1.

0 100 200 300 400 500
10

4

10
6

10
8

10
10

batch size (#packets)

#o
pe

ra
tio

n

Conventional network coding
Haste

(d) computational complexity with
α = 1.

Fig. 3. Delays and computational complexity in the8× 8 switch.

Proof: U(i) implies the number of packets that have not
been decoded by outputOi, so E − U(i) is the number of
packets already decoded byOi but still required for decoding.
Thus, decoding thekth packet requires at mostE−U(i)+k−1
XOR operations. There areU(i) packets in total. Therefore,
the operations needed byOi is U(i)(E−U(i)+E−1)

2 . The sum of

XOR operations of all output ports are
N
∑

i=1

U(i)(2E−U(i)−1)
2 .

These upper bounds are actually not achievable by Haste,
because Haste can prevent too many redundant packets from
being involved in encoding. We have searched all possibilities
of scheduling and encoding by simulation, and found the
following empirical formula of the largest number of XOR
operations required by the optimal encoding scheme in the
worst scheduling case:

Td =







0 : N ≤ 2 or M ≤ 2
N − 1 : N ≥ 3 andM = 2
N(M − 1) : N > M > 2

(1)

Td is the number of XOR operations used for decoding.
WhenN ≤ M , we can decomposeM = m1 +m2 + . . .+mk,
while mi < max{N, 2} for any i = 1, 2, . . . , k. We can
calculateTdi

by usingN andmi. Td = max
∑

i Tdi
.

According to the analysis, even in the worst case, decoding
one packet requires fewer than one XOR operation on average.
Compared with decoding, the encoding complexity is smaller,
since encoding once can serve multiple output ports.

The conventional algorithm is well known for its large coding
complexity. Assume thatL is the number of packets in a batch,
the complexity isO(L) for encoding andO(L2) for decoding
per packet. In addition, conventional network coding uses linear
operations including additions and multiplications on a large
finite field, which cost much more than XOR operations.

Compared with conventional network coding, Haste reduces
the coding complexity fromO(L2) to O(1), largely speeding
up the coding process with simple binary operations.

V. PERFORMANCEEVALUATION

A. Simulation

In this subsection, we conduct extensive experiments to com-
pare Haste with no network coding and conventional network
coding in both aspects of packet delays and computational
complexity for coding.

The packet delay is the time from a packet arriving at the
input port till when it is decoded at the output port, measured
in time-slots. The computational complexity is measured by
the total XOR operations for Haste and linear operations for
conventional network coding. We countL linear operations
when L packets are involved in encoding, andL3 linear
operations when a batch ofL packets is decoded.

We simulate an8 × 8 switch with two kinds of flows. The
first one is a multicast flow from one input port to all output
ports. The second one includes 7 unicast flows from the other 7
input ports respectively, to 7 different output ports. The load of
all flows is 0.5α. Packets arrive at input ports according to an
i.i.d. Bernoulli process for each flow independently in 10,000
time-slots. After 10,000 time-slots, the simulator finishes when
all backlogs are sent out. We run each algorithm 1000 times
and obtain the average results. In the algorithm with no network
coding, we employ a randomized modification of [4]. In the
conventional algorithm, a batch consists of a fixed number of
packets, except packets in the VOQ are fewer than the number.

Fig. 3 illustrates the simulation results. Although this traffic
pattern does not benefit from offline algorithms, it benefits from
the online algorithm, due to the lack of the randomized online
schedule. There are always performance gaps between the three
algorithms. Since the delay is measured in time-slots, the delay
gain is small. However, note that due to the high computational
complexity, a time-slot in the conventional algorithm might be
much larger than in Haste. We will show this considerable
impact made by time complexity using emulation in the next
subsection. In addition, the delay drops with an increase ofthe
batch size, which implies that transmission delays make a larger
impact on the overall delay.

B. Emulation

It is hard to measure throughput in the simulation because it
is time-slot based, while computational complexity cannotbe
ignored. In this subsection, we build an emulation framework
to measure the achievable throughput.

We emulate a16 × 16 IQ switch in our framework, using
asynchronous sockets beyond the OS kernel to process actual
UDP traffic. Therefore, our implementation is highly efficient,
without redundant thread dispatching or scheduling. The switch
receives packets of 1 KB from 16 different ports, and then stores
the packets in the input buffer. Every input port has a buffer,



5

2 X 3 switch 8 X 8 switch 16 X 16 switch
0

10

20

30

40

50

th
ro

ug
hp

ut
 (

M
B

/s
)

No network coding
Conventional network coding
Haste

(a) achievable throughput.

10 20 30 40 50
0

5

10

15

20

25

30

batch size (#packet)

th
ro

ug
hp

ut
 (

M
B

/s
)

2 X 3 switch
8 X 8 switch
16 X 16 switch

(b) the conventional algorithm.

10 20 30 40 50
26

28

30

32

34

36

batch size (#packet)

th
ro

ug
hp

ut
 (

M
B

/s
)

2 X 3 switch
8 X 8 switch
16 X 16 switch

(c) Haste.

Fig. 4. The throughput of the switch in the emulation.

TABLE I
EMULATION SCENARIOS

Flow ID multicast input output load
A 2× 3 switch

1 yes 1 1, 2, 3 α
2/3/4 no 2 1/2/3 0.5α

An 8× 8 switch
1 yes 1 1, 2, . . . , 8 α

2/3/ . . . /8 no 2/3/ . . . /8 1/2/ . . . /7 α

9/10/ . . . /15 no 1 1/2/ . . . /7
1

8
α

A 16× 16 switch
1 yes 1 1, 2, . . . , 16 α

2/3/ . . . /16 no 2/3/ . . . /16 1/2/ . . . /15 α

17/18/ . . . /31 no 1 1/2/ . . . /15
1

8
α

which is able to store 1024 packets. New packets are dropped
immediately if the buffer is full.

We build a scheduler within the switch to emulate the switch-
ing fabric that no different packets can be sent simultaneously,
nor can one output port receive multiple packets at once. The
scheduler first randomly computes a schedule, compares it with
the schedule last time, and chooses the one with the larger
weight. The scheduler then computes a coded packet sent to
corresponding output ports, which is checked immediately if
decodable. We use 3 scenarios in the emulation experiments,
described in Table I. We control the load factorα of the
sending rate at the senders, to obtain the maximum achievable
throughput. The results are shown in Fig. 4.

A considerable gap is clear in Fig. 4(a). The performance
of the conventional algorithm is even worse than no network
coding, due to its extremely high time complexity, which cannot
be ignored in real environments. However, Haste performs well,
since its computation load is lighter.

Additional emulation results are shown in Fig. 4(b) and
Fig. 4(c), illustrating how the batch size makes an impact on
both network coding algorithms. With an increase in the batch
size, heavier computational complexity further exacerbates the
performance of conventional network coding. However, similar
to simulation, a larger batch size improves the throughput in
Haste. It can be seen that the throughput gain can be ignored
when the batch size is larger than30. In other words, when
Haste is implemented, a small batch size, say,30, is sufficient,
instead of an exceedingly large random accessible buffer size
with high hardware costs.

VI. CONCLUSIONS

In this paper, we have studied the performance of a switch
with network coding. Though network coding is able to im-

prove the throughput, the conventional network coding algo-
rithm failed in two practical aspects: large packet delays and
high computational complexity. We have proposed Haste, which
only uses XOR operations in an opportunistic coding fashionto
streamline encoding and decoding. We have not only analyzed
the maximum gain that XOR operations can achieve in a switch,
but also conducted extensive experiments with both simulations
and packet-based emulations. In all scenarios, Haste performs
consistently well, compared with existing algorithms. We are
convinced that the design of Haste constitutes one major step
closer towards practical implementations of network coding in
network switches.

ACKNOWLEDGMENTS

This work was supported in part by NSFC under Grant
No. 60702054, Shanghai Municipal R&D Foundation under
Grant No. 09511501200, and the Shanghai Rising-Star Program
under Grant No. 08QA14009, NSERC Discovery Grant RGPIN
238994-06 and NSERC Strategic Grant STPGP 364910-08. Xin
Wang is the corresponding author.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216,
July 2000.

[2] J. Sundararajan, M. Ḿedard, M. Kim, A. Eryilmaz, D. Shah, and R. Koet-
ter, “Network coding in a multicast switch,”in Proc. of INFOCOM, pp.
1145–1153, May 2007.

[3] M. Kim, J. K. Sundararajan, and M. Ḿedard, “Network coding for
speedup in switches,”in Proc. of IEEE International Symposium on
Information Theory (ISIT), pp. 1086–1090, June 2007.

[4] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,”IEEE Transactions on
Communications, vol. 47, no. 8, pp. 1260–1267, August 1999.

[5] [Online]. Available: www.cisco.com
[6] M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Multi-

cast traffic in input-queued switches: optimal scheduling and maximum
throughput,”IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp.
465–477, June 2003.

[7] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Ḿedard, and J. Crowcroft, “Xors
in the air: Practical wireless network coding,”IEEE/ACM Transactions
on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[8] R. M. Karp, “Reducibility among combinatorial problems,”Complexity
of Computer Computations, pp. 85–103, 1972.

[9] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,”in Proc. of INFOCOM, vol. 2,
pp. 533–539, April 1998.

[10] J. Kumar Sundararajan, D. Shah, and M. Médard, “ARQ for network
coding,” in Proc. of IEEE International Symposium on Information
Theory (ISIT), pp. 1651–1655, July 2008.


