
IEEE Network • July/August 2021262 0890-8044/21/$25.00 © 2021 IEEE

AbstrAct
In the past several decades, it has been well

known that the Transmission Control Protocol
(TCP), even with its modern variants such as
CUBIC, may not perform optimally when avail-
able bottleneck bandwidth needs to be fully uti-
lized, yet without unnecessarily increasing the
end-to-end latency. These observations have led
to a recent resurgence of interest in the topic
of redesigning congestion control protocols and
replacing modern TCP variants using machine
learning. In this article, we examine and compare
some of the most prominent recent research
results on the use of machine learning to redesign
congestion control protocols, with an editorial
commentary on potential research directions in
the near-term future.

IntroductIon
Congestion control is one of the most funda-
mental and challenging problems in computer
networking research. The challenge involves the
design of a protocol that is simple and practical to
implement, yet is able to maximize the achieved
throughput between a source and a destination,
avoiding any potential congestion in the network
in between. The first challenge in the design of
congestion control protocols lies in the wide vari-
ety of network characteristics: the network can
be a wireless connection between a smartphone
and an airport WiFi access point, shared with
hundreds of other smartphones; or it can be a
datacenter network operating at 100 Gb/s with
very low propagation delays. Both the available
bottleneck bandwidth and the propagation delay
can vary by a few orders of magnitude, leading
to a wide range in terms of the bandwidth-delay
product (BDP), defined as the product of the bot-
tleneck bandwidth and the round-trip propaga-
tion time, and the congestion control algorithm
must be able to operate effectively over the entire
range of the BDP.

Figure 1 shows an illustration of the band-
width-delay product, which represents the “vol-
ume” of the “pipe” between the source and the
destination at a high level. The ultimate objective
when designing a congestion control algorithm is
to fill such a “pipe” just right: utilizing the bottle-
neck bandwidth as much as possible, and ensur-
ing that the total data in flight between the source
and the destination is equal to the BDP. When
both objectives are achieved, queuing delays, i.e.
the time spent for packets to wait in queues along
the path between the source and the destination,

are kept to the minimum. To further exacerbate
the problem, the bottleneck bandwidth may vary,
as the flows sharing such bandwidth may arrive
and terminate at any time. A well-designed con-
gestion control algorithm should allow these flows
to share bottleneck bandwidth fairly.

In the past several decades, it has been well
known that the Transmission Control Protocol
(TCP), when used as a congestion control mech-
anism, has been simple, effective and highly scal-
able as the scale of the Internet evolves by a few
orders of magnitude. Yet, it has also been wide-
ly acknowledged that TCP suffers from subpar
— some call it notoriously poor — performance
when the network links become lossy or when
the BDP becomes high.

To address the problems of TCP, the com-
munity has resorted to two different directions
of research. The first is to redesign congestion
control algorithms from scratch, a “clean slate”
approach, as a replacement for congestion con-
trol in TCP, without prioritizing backward compat-
ibility but still maintaining TCP-friendliness. As a
prominent example, the eXplicit Control Protocol
(XCP) [1] has been designed specifically for the
high-BDP environments as alternatives to TCP.

The second is to “patch” the protocol while
maintaining backward compatibility with respect
to fairness to the traditional TCP variants such as
TCP-Reno. This is exemplified by CUBIC [2], a
TCP variant that is designed for high-BDP environ-
ments by growing the congestion window more
aggressively beyond the saturation point. Since it
was proposed, CUBIC has become a remarkable
success, making its way into the Linux kernel since
version 2.6.19 as the default TCP implementation,
as well as the Windows 10 kernel. It has been
widely accepted as the de facto TCP implemen-
tation, and appears to be a preferred choice as
compared to other backward-compatible replace-
ments of TCP in the literature, such as XCP and
FAST TCP.

From the perspective of the number of papers
published each year on the topic of congestion
control (Fig. 2), it appears that the popularity of
this topic reached a “plateau” around 2007-2008,
and trended downward since then. Starting in
2017, however, we observed an uptick of interest
in congestion control as a research topic. Such a
“renaissance” may not be reflected in the number
of papers in the literature yet; but as we will elabo-
rate in this article, it has certainly been reflected in
the interest of recent papers to move away from
the conventional wisdom of using heuristics to the
use of machine learning techniques. They have

Congestion Control: A Renaissance with Machine Learning
Wenting Wei, Huaxi Gu, and Baochun Li

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.011.2000603 Wenting Wei and Huaxi Gu are with Xidian University; Baochun Li is with the University of Toronto.

WEI_LAYOUT.indd 262WEI_LAYOUT.indd 262 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021 263

been proposed as alternatives to replace TCP, fol-
lowing the first category of a clean slate design.

In this article, we present a concise survey
of some of the prominent and most influential
recent research results on the resurgence of rede-
signing congestion control protocols by applying
machine learning techniques. We will outline sev-
eral important challenges and their corresponding
solutions, and share some of the lessons we have
learned. Throughout the article, we will provide
insights toward potential future directions as well.

congestIon control Protocols wIth
offlIne And onlIne leArnIng

As replacements for TCP variants, it is challeng-
ing to design new congestion control protocols
that work efficiently in a wide variety of network
environments. Again, the ultimate design objec-
tives are to maximize the utilization of bottleneck
bandwidth, and to ensure that the total data in
flight between the source and the destination
is equal to the BDP, or equivalently, to reduce
queuing delays as much as possible.

BBR: To achieve both objectives, Cardwell
et al. [3] designed a new congestion-based con-
gestion control protocol, called BBR (Bottleneck
Bandwidth and Round-trip propagation time).
BBR represents the network path between the
source and the destination as a “pipe” with two
parameters: the round-trip propagation time (as
the “length” of the pipe) and the bottleneck band-
width (as the minimum diameter). When there
is not enough data in flight to fill the pipe, the
round-trip propagation time is a fixed value and
the delivered rate is low; when the pipe is full,
the bottleneck bandwidth dominates the deliv-
ery of packets and a queue starts to build at the
bottleneck switch. There exists an optimal oper-
ating point that maximizes the delivered rate and
minimizes queuing delays at the same time. Yet,
before BBR was designed, it remains elusive to
achieve such an optimal point with a distributed
algorithm. In fact, Jaffe et al. [4] stated that it was
not feasible to design a decentralized protocol to
achieve such an optimal point.

BBR, on the other hand, was not as pessimis-
tic, and suggested that such a protocol can be
designed by reacting to careful measurements
over time. For the round-trip propagation time,
BBR proposed to estimate it using the minimum
of the round-trip times (RTTs) over a period of
time (at the scale of tens of seconds or minutes).
For the bottleneck bandwidth, it estimated it using
the maximum of the delivery rate over a period
of time (typically six to 10 RTTs), which can be
accurately measured when acknowledgments are
received. Once both parameters are estimated,
the BDP can then be computed.

When a flow starts, BBR enters a startup state
and uses a binary search for the bottleneck band-
width, roughly doubling the sending rate (with a
gain of 2/ln2) when the delivery rate measured
keeps increasing. Once the bottleneck bandwidth
is reached, it will enter a drain state to drain the
queue. At steady state, BBR pays little attention
to packet losses, as opposed to TCP variants that
it replaces, which react to such packet losses as
congestion signals. Instead of continuing to ramp
up until packet losses occur, BBR paces packets

to be sent so that the data in flight is bounded by
a small multiple of the computed BDP. Periodical-
ly, it enters a probeBW state to probe for a higher
bottleneck bandwidth; and when the round-trip
propagation time starts to increase, it enters the
drain state again to properly drain the queue.

BBR, as well as its recent upgrade called BBRv2
(BBRv2: Alpha/Preview Release — https://github.
com/google/bbr/blob/v2alpha/README.md),
has been extensively tested in production systems
(e.g., Dropbox Evaluating BBRv2 on the Dropbox
Edge Network — https://dropbox.tech/infrastruc-
ture/evaluating-bbrv2-on-the-dropbox-edge-net-
work). It has also been made available as a part
of the Linux kernel (since version 4.9), FreeBSD,
and Chrome. BBR flows are able to converge to
their fair shares when competing with other BBR
flows, but may not be fair to TCP variants, such as
CUBIC (as long as the buffer sizes at intermediate
switches are not too large). While both BBR and
CUBIC saturate the bottleneck bandwidth, BBR
flows experience significantly shorter queuing
delays, thanks to the drain state that BBR flows
need to cycle through.

Though BBR uses a hand-tuned heuristic rather
than machine learning, it nevertheless offers an
excellent benchmark that all congestion control
protocols designed with machine learning should
be compared with.

Copa: Copa [5] represents another notewor-
thy heuristic that applies a similar design philos-
ophy as BBR. Rather than adjusting the sending
rate, Copa adjusts the size of the congestion win-
dow (cwnd) instead, as it optimizes an objective
function, logl – d logd, that combines a flow’s

AFIGURE 1. The bandwidth-delay product (BDP) is the product of the bottleneck
bandwidth and the round-trip propagation time. An ideal congestion con-
trol algorithm will fully utilize the bottleneck bandwidth, yet keeping queu-
ing delays to the minimum by not overfilling the “pipe.”

source destination

round-trip propagation time

bottleneck
bandwidth

FIGURE 2. The “popularity” of congestion control as a topic, approximated by the
number of papers each year with the term congestion control in their titles
(data obtained from Google Scholar).

0

125

250

375

500

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

The number of papers with “congestion control” in their titles

WEI_LAYOUT.indd 263WEI_LAYOUT.indd 263 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021264

average throughput l and the packet queuing
delay d, where d is a tunable parameter. The goal
is to maximize the objective function by seeking
to achieve a steady-state sending rate, called the
target rate, to be inversely proportional to the
measured queuing delay.

Since both Copa and BBR use queuing delays
rather than packet losses as the congestion signal,
they both strive to minimize the packet queuing
delays. To minimize queuing delays, Copa and
BBR drain the packet queue periodically. Yet, by
using a default choice of d = 0.5 intended for
low-latency applications, Copa trades off a small
amount of throughput to achieve significantly
lower delays compared to BBR. Copa is slightly
less aggressive than BBR, and uses two different
modes with explicit switching in order to achieve
fairness to competing TCP flows sharing the same
bottleneck bandwidth. Over certain network envi-
ronments such as satellite links, Copa is able to
outperform BBR significantly in both achievable
throughput and average queuing delay.

Remy: For a new congestion control protocol
to cope with link capacities that span (approxi-
mately) 12 orders of magnitude in the Internet,
it is conceivable that optimization and machine
learning techniques can be used to learn and opti-
mize for the dynamic behavior of the network
path between a source and a destination, rather
than using a hand-tuned heuristic such as BBR.

As one of the first attempts toward this direc-
tion, Winstein et al. [6] designed a new mecha-
nism, called Remy, to generate new congestion
control protocols using a data-driven approach.
Based on a pre-specified objective for congestion
control, a set of assumptions for the desired pro-
tocol and models for both the network and the
traffic, Remy generates and deploys an algorithm
that is optimized offline beforehand as a part of
an existing TCP source.

A Remy-generated algorithm involves three
states as its memory (initialized to all zeros at the
start of a flow): a moving average of the interarriv-
al time between new acknowledgments received;
a moving average of the time between TCP
source timestamps reflected in those acknowl-
edgments; and the ratio between the most recent
RTT and the minimum RTT. The objective func-
tion of such an algorithm will avoid building up
queues, reducing both packet losses and queuing
delays as much as possible.

As each acknowledgment is received, a
Remy-generated algorithm updates its memory
and then performs a table lookup to find the cor-
responding action. An action can be an increase
(or decrease) of the congestion window (either
multiplicatively or additively), or pacing the suc-
cessive outgoing packets by setting a lower
bound on the time between them.

In its offline optimization phase, Remy pre-com-
putes the lookup table by finding the mapping
that maximizes the expected value of the objec-
tive function, using simulations of various network
models with parameters drawn within the ranges
of the supplied assumptions. These parameters
include the link rates, delays, and the number of
sources. It was shown that Remy-generated algo-
rithms outperformed TCP variants such as CUBIC,
and protocols that require modifications to inter-
mediate switches, such as XCP [1].

PCC: To avoid hardwired mapping between
congestion control actions and packet loss events
in traditional TCP variants, Dong et al. [7] pro-
posed Performance-oriented Congestion Control
(PCC), a new congestion control architecture that
learns based on live experimental evidence. Dif-
ferent from Remy, PCC learns in an online fashion
using multiple micro-experiments, each sending at
two different rates, and subsequently moving in a
direction that leads to better performance. Its key
idea is to learn the relationship between rate con-
trol actions and the performance that it empirical-
ly observed. The performance is characterized by
a utility function that describes an objective, such
as to achieve a high utilization of the bottleneck
bandwidth with low loss rates.

In each micro-experiment, a PCC source
sends at two different rates: one is marginally
higher than the current rate, and the other is
marginally lower. If it finds that one of these
directions leads to better performance (charac-
terized by a utility function), it will be selected as
the sending rate for the next micro-experiment,
and continues in this direction as long as the
utility continues increasing. Equivalently, over
multiple micro-experiments, we can claim that
PCC runs an online learning algorithm in the spir-
it of gradient ascent. Online learning eliminates
a major disadvantage of Remy’s offline optimiza-
tion: when the actual network environment devi-
ates from the input assumptions and network
models made, performance may degrade due to
such a mismatch.

PCC Vivace: Continuing their own work on
performance-oriented congestion control, Dong
et al. [8] proposed a Vivace variant of PCC. Simi-
lar to PCC, the source in PCC Vivace tests a pair
of rates and computes the corresponding values
of utility respectively. A significant difference in
PCC Vivace, however, is its utility function, which
incorporates not only throughput and loss rates
as in PCC, but also RTT gradients. Unfortunate-
ly, decisions on how the sending rate should be
changed in its online learning based on gradient
ascent is still challenging, due to the trade-off
between the speed of convergence to a steady
state and the stability of sending rates. To address
this challenge, PCC Vivace employs an elaborate
heuristic that converts utility gradients (computed
in its micro-experiments with a pair of sending
rates) to a change in sending rates, with a conser-
vative initial conversion factor to start with, and
increasing the conversion factor as it gains more
confidence.

With these improvements in protocol design,
it can be proved that a stable global rate alloca-
tion exists as a Nash equilibrium, especially when
multiple flows from sources with different utilities
compete for bottleneck bandwidth. As a result,
PCC Vivace is more TCP-friendly, converges fast-
er, and reacts more swiftly to changes in network
conditions.

Pantheon and Indigo: More recently, Yan
et al. [9] presented Pantheon, an experimental
testbed for evaluating and comparing new con-
gestion control protocols fairly. Pantheon is an
open-source testbed with a growing collection of
congestion control protocols built-in, each verified
to compile and run using a continuous-integration
system.

WEI_LAYOUT.indd 264WEI_LAYOUT.indd 264 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021 265

One of the evaluated protocols in Pantheon,
a hidden treasure, is called Indigo, which once
again employs a congestion control protocol
based on machine learning (ML). As shown in
PCC and PCC Vivace, it is difficult to use online
learning to train a congestion control algorithm,
since ML algorithms require excessively long train-
ing times (ranging from hours to weeks), while
the condition of network paths evolves in much
shorter time scales (seconds). As a result, Indigo
employs offline training using Pantheon’s abun-
dant supply of network emulators.

Instead of changing the sending rates in
existing congestion control protocols (e.g., BBR,
Remy, PCC, or PCC Vivace), Indigo observes the
network states and adjusts the congestion win-
dow, which represents the amount of data in
flight between the source and the destination.
The network state, similar to Remy’s memory, is
characterized by:
• A moving average of the queuing delay

(which, in a similar vein as BBR, is measured
as the difference between the current and
the minimum RTT)

• A moving average of the sending rate
• A moving average of the delivered rate

(again similar to BBR)
• The current congestion window size.

Rather than using a heuristic for adjusting
sending rates with gradient ascent in PCC Vivace,
Indigo uses a Long Short-Term Memory (LSTM)
recurrent neural network (RNN) to store the map-
ping from states to actions, and trains such a RNN
using an offline training phase. Once trained and
deployed, the mapping will be fixed.

However, as both Remy and Indigo employ
offline training, they suffered from the same dis-
advantage that PCC and PCC Vivace avoided: the
training environment should not deviate from the
actual network significantly. If such an assump-
tion is valid, it has been shown in extensive exper-
iments that Indigo outperforms existing online
algorithms, such as BBR, PCC, and PCC Vivace,
in terms of achieved throughput and end-to-end
delays. This comes as no surprise: if the training
phase uses an emulator that characterizes the
actual network precisely, the offline-trained RNN
will bypass the time-consuming online learning
process in BBR, PCC, and PCC Vivace, making
more accurate decisions over time. Though Indi-
go’s speed of convergence to the steady state
and fairness to existing congestion control proto-
cols, such as CUBIC, have not been evaluated, it
remains enlightening to see how offline training
and recurrent neural networks can significantly
improve the performance of congestion control.

Table 1 summarizes some of the common
features and key differences across BBR, Copa,
Remy, PCC, PCC Vivace, and Indigo. In addition,
Fig. 3 provides an illustrative comparison between
BBR, Copa, Remy, PCC Vivace, and Indigo, with
respect to the performance metrics they take into
account, as well as the actions taken by these
protocols. From a practical perspective, Google’s
BBR is a simple yet effective heuristic, and since it
has already been incorporated into recent Linux
kernel releases since early 2017, it is poised to
become a prominent replacement of TCP variants
in practice. From a research perspective, we have
observed a consistent trend toward using learning

techniques to train specific models for different
network conditions, and such learning can be per-
formed in an offline or online fashion.

congestIon control Protocols wIth
deeP reInforcement leArnIng

While new congestion control protocols using
machine learning techniques have shown promise
adapting to dynamic environments, both offline
and online learning algorithms exhibited their
inherent disadvantages. Offline learning requires a
dedicated offline training phase, and may not per-
form well if the actual network differs remarkably
from the emulated one where offline training was
carried out.

Online learning, such as PCC and PCC Viva-
ce, and to some extent even traditional heuris-
tics such as BBR and Copa, requires the design
of elaborate hand-tuned heuristics to balance
the trade-off between rapid convergence to a
high BDP and potentially higher queuing delays
and loss rates. For example, Copa adapts its rate
exponentially so that it can scale up to high-BDP
networks. This is in addition to meeting standard
requirements of congestion control, such as utiliz-
ing the bottleneck bandwidth fully, and sharing it
fairly with other competing flows.

With the recent popularity of deep reinforce-
ment learning (DRL), it is conceivable that it may
provide a fully-automated mechanism to train a
DRL agent by interacting with a real-world net-
work environment, and to avoid hand-tuned heu-
ristics as much as possible. A DRL agent uses both
the states observed from the environment and
a scalar reward to train its deep neural network
model, which is the agent’s strategy that it uses to
produce an action, called its policy. In the context
of congestion control, the action to be taken by
the DRL agent may be an increase in the sending
rate or the size of the congestion window. The
objective of the DRL agent is to train a policy that
maximizes the expected cumulative reward. If
DRL is used for congestion control, the hypothe-
sis would be that a well-designed reward function
and a curated set of states can be used to train
the DRL agent effectively by learning from the
actual network environment, more so than hand-
tuned heuristics.

In the recent research literature, it was pro-
posed that DRL algorithms can be used to per-

TABLE 1. Recent congestion control protocols designed as replacements to TCP
variants.

Algorithm Tuning knobs
Machine
learning

Design principles
Algorithm
design

BBR [3] Rate-based None Minimizing queuing delays
Hand-tuned
heuristic

Copa [5] Window-based None Minimizing queuing delays
Hand-tuned
heuristic

Remy [6] Rate-based Offline Based on network models Lookup table

PCC [7] Rate-based Online No network models needed Gradient ascent

PCC Vivace [8] Rate-based Online No network models needed Gradient ascent

Indigo [9] Window-based Offline
Based on emulated network
models

LSTM RNN

WEI_LAYOUT.indd 265WEI_LAYOUT.indd 265 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021266

form offline training without relying heavily on the
design of heuristics. This is, as we mentioned, due
to the fact that a DRL agent is able to continuous-
ly evaluate value functions of the environment,
and adjusts its actions taken based on well-de-
signed rewards in a feedback loop.

Aurora: Jay et al. proposed Aurora [10], a rate-
based congestion control protocol based on DRL.
The agent in Aurora uses changes in the sending
rate as its actions, and uses statistics about laten-
cies, as well as the ratio of packets sent to those

acknowledged, as its states. The reward function
Aurora uses is formulated as a simple linear func-
tion: 10 ∙ throughput — 1000 ∙ latency — 2000 ∙
loss. The DRL agent is trained using Proximal Poli-
cy Optimization (PPO).

Aurora has been evaluated experimentally
over Pantheon, with its DRL agent trained in an
offline training phase, on links with bandwidth
between 1.2 and 6 Mb/s, and latencies vary-
ing between 50 and 500 milliseconds. Over a
network link whose capacity varies every five
seconds to a randomly chosen value in the
range of 16 to 32 Mb/s, it has been shown that
Aurora outperforms one of the most popular
TCP variants, CUBIC, and on par with the best
hand-tuned heuristics (BBR and Copa) and PCC
Vivace, arguably the best protocol using online
learning.

However, Aurora suffers from a number of
drawbacks. There are no results presented on any
other types of network links (such as LTE or high-
BDP networks), and it is debatable whether an
artificially simulated link with arbitrary yet periodic
capacity variations would be a good representa-
tive of real-world networking environments. Fur-
thermore, how Aurora reacts to competing flows,
running either TCP CUBIC or Aurora, has not
been experimentally evaluated, which is import-
ant to show how it performs with respect to fairly
sharing the bottleneck bandwidth.

R3Net: R3Net [11] was also proposed by Mic-
rosoft to use DRL to design a congestion control
protocol, again with a focus on minimizing pack-
et latencies as its design targets video streaming
and real-time conferencing applications. It uses a
simulator based on trace replays to train the DRL
agent using simulated network links and cross traf-
fic. Different from Pantheon, its simulator is able
to run 1000x faster than real-time, which helps
speed up the training process.

The state in R3Net is a vector containing the
delivered rate, the average packet interval, loss
rate as a percentage, and the average RTT. The
neural network model it uses consists of both ful-
ly-connected and Gated Recurrent Unit (GRU)
layers, and the action R3Net generates is a send-
ing rate in the range of 0 to 8 Mb/s. The reward
function takes into account the delivered rate,
RTT, and the loss rate, and is defined as 0.6 ln4R
+ 1 – D – 10L, where R is the delivery rate in
Mb/s in a time step of 50 milliseconds, D is the
average RTT in seconds, and L is the packet loss
rate. The training algorithm R3Net uses is again
PPO, with a learning rate of 3 10–5. Its designs
of the reward function and the training algorithm
are both very similar to Aurora.

However, different from Aurora, R3Net was
designed specifically for low-latency real-time traf-
fic, and was not tuned for the general Internet. It
was not evaluated against existing heuristics such
as BBR or Copa, or state-of-the-art learning-based
protocols such as PCC Vivace. As such, its perfor-
mance in the general case is not clear.

MVFST-RL: Another DRL-based congestion
control protocol [12], proposed by Facebook AI
Research, is worthy of some discussions as well. It
proposes to use a non-blocking DRL agent, where
a sender does not need to wait for the agent,
even for a few millisecond, to produce an action.
It has been experimentally shown that RL agents

FIGURE 3. Performance metrics used and actions taken in (1) BBR [3]; (2) Copa
[5]; (3) Remy [6]; (4) PCC Vivace [8]; and (5) Indigo [9].

BBR
round-trip

propagation time

bottleneck bandwidth
sending rate

Remy

inter-arrival time
between ACKs

time between sender
timestamps in ACKs

multiple to current
congestion window

ratio between most recent
and minimum RTTs

increment to
current window

lower bound on time
between successive sends

Memory ActionsO ine learning

HeuristicStates observed Action

PCC
Vivace

Performance
observed

throughput
loss rate
latency

utility
function

Online learning Action

sending rate

Feedback

Indigo

queuing delay

sending rate congestion
window size

Memory ActionO ine learning

delivered rate

current congestion
window size

RTT
gradient

Copa

mean per-packet
queuing delay (in seconds)

the smallest RTT observed
over a recent time-window

congestion
window size

HeuristicValues updated Action

current congestion window

WEI_LAYOUT.indd 266WEI_LAYOUT.indd 266 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021 267

that block the sender would incur a penalty with
respect to the number of bytes transmitted over
the same duration of time.

In MVFST-RL, the state space includes typical
performance metrics such as RTT, queuing delay,
packets sent, acknowledged, and lost, as well as
a history of recent actions. The actions include
additive and multiplicative updates to the size
of the congestion window, and for this reason
MVFST-RL is essentially a window-based conges-
tion control protocol. The reward is a function of
measured throughput and delay: t – bd, where t
is the average throughput in MB/sec, and d is the
maximum delay in milliseconds during a window
of 100 milliseconds.

The neural network model that MVFST-RL uses
is a standard two-layer full-connected network
with ReLU no-linearity. The extracted features and
the reward are first fed into a single-layer LSTM
network, without which the performance would
be substantially worse. MVFST-RL integrates Face-
book’s implementation of the QUIC transport
protocol, and decouples the network thread from
the RL agent thread, so that gradient updates can
be performed in a non-blocking fashion.

Though MVFST-RL shows performance lev-
els competitive with traditional heuristics such as
CUBIC and Copa, it is not clear how it compares
with alternatives based on offline or online learn-
ing, such as Remy or PCC Vivace. It was reported
that MVFST-RL faces challenges generalizing over
networks with widely different ranges of through-
put and delay, as it struggles to achieve high
throughput after being trained with low-capacity
networks.

Orca: Orca was recently proposed as a hybrid
congestion control protocol that depends on TCP
for fine-grained control actions, and engages a
DRL agent to adjust the size of the TCP conges-
tion control window with a coarser time granu-
larity.

Just like existing congestion control proto-
cols that use DRL, Orca also needs to design its
state space, its action space, its reward function,
as well as its neural network model and training
algorithm. Its state space includes average val-
ues of delivered rates, packet loss rates, and aver-
age delays, among other metrics. Its action space
reflects a multiplicative factor 2a, where –2 < a <
2, to be applied to the current congestion win-
dow size in TCP.

Orca’s reward function is defined as a ratio of
the current power over the maximum one, where

power is defined as the ratio of the delivered rate
over the delay. Packet losses are used as a dis-
count factor when calculating the delivered rate.

Finally, Orca chooses a recurrent network as
its neural network model, because the agent does
not have direct knowledge of the exact network
statistics at the current time, and partial informa-
tion from the past must be considered. The train-
ing algorithm Orca uses is an actor-critic method,
operating in a continuous action space using a
twin delayed Deep Deterministic Policy Gradi-
ent (DDPG) algorithm, which is designed to work
well with continuous action spaces.

Performance-wise, after only six hours of train-
ing using emulated network environments, Orca
is able to achieve the best performance to date
in a variety of typical network environments, com-
pared with both traditional hand-tuned heuristics
(such as BBRv2) and recent DRL-based conges-
tion control protocols (such as Aurora). It also
incurs very little computation overhead, on par
with hand-tuned heuristics such as TCP CUBIC
and BBR. With respect to fairness, it is friendly to
competing TCP CUBIC flows, most likely because
it uses TCP CUBIC itself as the underlying con-
gestion control protocol, and therefore does not
show aggressive behavior when trying to saturate
the available bottleneck bandwidth.

While there exist several alternative conges-
tion control protocols based on DRL in the lit-
erature (such as Eagle [13] and DRL-CC [14]),
the protocols we have sampled in this article are
able to represent the state-of-the-art fairly well.
For a summary comparison between existing
DRL-based congestion control protocols, refer
to Table 2 for key differences between Aurora
[10], R3Net [11], MVFSF-RL [12], Eagle [13],
DRL-CC [14], and Orca [15]. In addition, Fig. 4
provides an illustrative comparison with respect
to the performance metrics that they included in
their state spaces, as well as the actions they are
designed to take.

chAllenges And future dIrectIons
It has been both surprising and inspiring to
observe that work on congestion control, one of
the most fundamental problems in computer net-
working research, has been continuing actively,
more than four decades after Cerf and Kahn pub-
lished their seminal paper on TCP in 1974. Recent
works on this topic have seemingly converged on
the use of either offline or online learning algo-
rithms to replace heuristics designed for a wide

TABLE 2.Congestion control protocols designed with deep reinforcement learning.

Algorithm Tuning knob Reward Neural network model Training algorithm

Aurora [10] Rate-based
Linear function of throughput, latency,
and loss

Fully-connected PPO

R3Net [11] Rate-based
Function of the receive rate, the average
RTT, and loss rate

RNN with GRUs PPO

MVFSF-RL
[12]

Window-based
Linear function of the average
throughputand the maximum delay

LSTM and fully-
connected

IMPALA with V-trace
(asynchronously)

Eagle [13] Rate-based Function of goodness, latency, and loss LSTM Cross-entropy method

DRL-CC [14] Window-based Unspecified utility function of MPTCP flows LSTM DDPG

Orca [15] Window-based Function of throughput, latency, and loss RNN DDPG variant

WEI_LAYOUT.indd 267WEI_LAYOUT.indd 267 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021268

variety of network environments, from high-BDP
links across continents to LTE networks. The spe-
cific emphasis in the recent literature is on the
use of deep reinforcement learning techniques in
designing congestion control protocols, in order
to learn from the time-varying characteristics of
network environments automatically.

Open Challenges: Although the new gener-
ation of congestion control protocols based on
DRL are promising and quite exciting, there still
exist several open questions that we do not yet
know definitive answers for. DRL agents are
intended to be trained, and as such they are more
agile adapting to unseen and more challenging
network environments compared to hand-tuned
heuristics. Yet, it is not well and fully understood

how DRL-based congestion control protocols can
be explicitly designed to achieve such a goal.

While hand-tuned heuristics, such as BBR, can
follow a disciplined approach in their designs fol-
lowing a particular design philosophy, it may not
be feasible to do so when tuning DRL agents.
We may have to resort to simple trial-and-error
explorations, which are both time-consuming
and unpredictable in the quality of our design.
To further exacerbate the problem, there are
many components in a DRL agent that need to be
well-designed, including its training algorithm, its
neural network model, its state and action spaces,
as well as its reward function. To some extent,
even more components need to be hand-tuned
compared to traditional heuristics, without intu-
itive links between the designs and their corre-
sponding outcomes.

Finally, one of the most visible roadblocks to
realistic deployments of DRL-based congestion
control is the feasibility of implementing such
protocols efficiently. Congestion control proto-
cols reside in the transport layer, and are tradi-
tionally part of the operating system kernel. As
examples, TCP CUBIC and BBR are parts of the
Linux kernel. There are many practical limitations
on what can be implemented in the kernel; TCP
CUBIC, for example, uses approximation algo-
rithms to avoid floating-point computation in the
kernel due to these limitations. DRL algorithms,
however, require computational power that may
have to be carried out in user space. Orca, for
example, implements its DRL agent in user space
with TensorFlow, and communicates with TCP
CUBIC in the kernel via socket options. These
implementation challenges, together with the per-
formance overhead they may impose, may need
to be solved satisfactorily before we see wide-
spread adoption of DRL-based congestion control
protocols.

Future Directions: As one of the future
research directions, the fact remains that train-
ing neural networks to make correct decisions
may take a much longer time scale to complete
(at least hours), while data flows complete at a
much shorter time scale (typically seconds).
How do we mix the best “ingredients” of both
online and offline learning? Some of the recent
machine learning techniques, transfer learning
and meta-learning, may become quite promising
to bridge such a gap. With these new techniques,
a pre-trained model is reused as a starting point
for each new network environment, allowing
rapid progress adapting to new and unfamiliar
network conditions. With some luck, this may
just be the key to solve our dilemma of applying
learning techniques in designing congestion con-
trol protocols that adapt well to a wide variety of
network conditions.

Acknowledgments
This work was supported in part by the Nation-
al Key R&D Program of China under Grant
2018YFE0202800; the National Natural Science
Foundation of China under Grant 61634004 and
61934002; the Natural Science Foundation of
Shaanxi Province for Distinguished Young Schol-
ars under Grant 2020JC-26; the Fundamental
Research Funds for the Central Universities under
Grant XJS200119 and JB190105; the Open Proj-

FIGURE 4. Performance metrics used and actions taken in (1) Aurora [10]; (2)
R3Net [11]; (3) MVFSF-RL [12]; and (4) Orca [15].

Aurora

States

latency gradient

latency ratio

sending ratio

O ine learning Action

 change index
to sending rate

throughput,
latency, loss

R3Net

States

receive rate
average packet interval

packet loss

O ine learning Action
for agent

sending
rate

QoE metrics

average RTT

MVFST-
RL

States

latest RTT
 TTR muminim

 yaled gniueuq 20 network
statistics

O ine learning Action

adjustment to the
congestion window

the average throughput in MB/sec,
the maximum delay in milliseconds

instantaneous throughout

estimated
bandwidth

Action

Orca

States

throughput
loss

smooth RTT

O ine learning Action

 a multiplicative
factor to the
congestion window

time interval between
the last and current report

the number of valid ACK packets

minimum packet delay

current congestion window

packet delay

maximum delivery rate

9 network
statistics

throughput,
latency, loss

WEI_LAYOUT.indd 268WEI_LAYOUT.indd 268 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2021 269

ect Program of the State Key Laboratory of Math-
ematical Engineering and Advanced Computing
under Grant 2019A01; and the China Postdoctor-
al Science Foundation 2018M633465. This work
was supported by The Youth Innovation Team of
Shaanxi Universities.

references
[1] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control

for High Bandwidth-Delay Product Networks,” Proc. ACM
SIGCOMM, 2002.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Operating Systems
Review, 2008.

[3] N. Cardwell et al., “BBR: Congestion-Based Congestion Con-
trol,” Commun. ACM, vol. 60, no. 2, Feb. 2017, pp. 58–66.

[5] V. Arun and H. Balakrishnan, “Copa: Practical Delay-Based
Congestion Control for the Internet,” Proc. 15th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI), Renton, WA, 2018, pp. 329–42.

[6] K. Winstein and H. Balakrishnan, “TCP ex Machina: Comput-
er-Generated Congestion Control,” Proc. ACM SIGCOMM,
2013, pp. 123–34.

[7] M. Dong et al., “PCC: Re-Architecting Congestion Control
for Consistent High Performance,” Proc. 12th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2015, pp. 395–408.

[8] M. Dong et al., “PCC Vivace: Online-Learning Congestion
Control,” Proc. 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2018, pp. 343–56.

[9] F. Y. Yan et al., “Pantheon: The Training Ground for Internet
Congestion-control Research,” Proc. USENIX Annual Techni-
cal Conference (ATC), 2018, pp. 731–43.

[4] J. Jaffe, “Flow Control Power Is Nondecentralizable,” IEEE
Trans. Commun., vol. 29, no. 9, 1981, pp. 1301–06.

[10] N. Jaya et al., “A Deep Reinforcement Learning Perspec-
tive on Internet Congestion Control,” Proc. 36th Int’l Conf.
Machine Learning (ICML), 2019.

[11] J. Fang et al., “Reinforcement Learning for Bandwidth Esti-
mation and Congestion Control in Real-Time Communica-
tions,” Proc. NeurIPS Workshop on Machine Learning for
Systems, 2019.

[12] V. Sivakumar et al., “MVFST-RL: An Asynchronous RL
Framework for Congestion Control with Delayed Actions,”
Proc. NeurIPS Workshop on Machine Learning for Systems,
2019.

[13] S. Emara, B. Li, and Y. Chen, “Eagle: Refining Congestion
Control by Learning from the Experts,” Proc. 39th IEEE Conf.
Computer Commun. (INFOCOM), 2020, pp. 676–85.

[14] Z. Xu et al., “Experience-Driven Congestion Control: When
Multi-Path TCP Meets Deep Reinforcement Learning,” IEEE
JSAC, vol. 37, no. 6, 2019, pp. 1325–36.

[15] S. Abbasloo et al., “Classic Meets Modern: A Pragmatic
Learning-Based Congestion Control for the Internet,” Proc.
ACM SIGCOMM, 2020, pp. 632–47.

bIogrAPhIes
Wenting Wei received the M.E. and Ph.D. degrees in telecom-
munication and information systems from Xidian University in
2014 and 2019, respectively. Since 2019, she has been working
at the State Key Lab of ISN, Xidian University. Her main research
interests include data center networking, network virtualization,
cloud computing and intelligent transportation.

Huaxi gu received the B.E. and Ph.D. degrees in telecommuni-
cation engineering and telecommunication and information sys-
tems from Xidian University in 2000 and 2005, respectively. He
is a full Professor at the State Key Lab of ISN, Telecommunication
Department at Xidian University. His current interests include net-
working technologies, network on chip and optical interconnect.

BaocHun Li received his B.Engr. degree from Tsinghua Univer-
sity in 1995, and his M.S. and Ph.D. degrees from the University
of Illinois at Urbana-Champaign in 1997 and 2000, respectively.
He is a professor in the Department of Electrical and Computer
Engineering at the University of Toronto. His research interests
include large-scale distributed systems, cloud computing and
wireless networks.

WEI_LAYOUT.indd 269WEI_LAYOUT.indd 269 8/4/21 2:09 PM8/4/21 2:09 PMAuthorized licensed use limited to: The University of Toronto. Downloaded on January 09,2023 at 17:09:09 UTC from IEEE Xplore. Restrictions apply.

