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Abstract
Training deep neural networks (DNNs) requires
an increasing amount of computation resources,
and it becomes typical to use a mixture of GPU
and CPU devices. Due to the heterogeneity of
these devices, a recent challenge is how each oper-
ation in a neural network can be optimally placed
on these devices, so that the training process can
take the shortest amount of time possible. The cur-
rent state-of-the-art solution uses reinforcement
learning based on the policy gradient method, and
it suffers from suboptimal training times. In this
paper, we propose Spotlight, a new reinforcement
learning algorithm based on proximal policy op-
timization, designed specifically for finding an
optimal device placement for training DNNs. The
design of our new algorithm relies upon a new
model of the device placement problem: by mod-
eling it as a Markov decision process with mul-
tiple stages, we are able to prove that Spotlight
achieves a theoretical guarantee on performance
improvements. We have implemented Spotlight
in the CIFAR-10 benchmark and deployed it on
the Google Cloud platform. Extensive experi-
ments have demonstrated that the training time
with placements recommended by Spotlight is
60.9% of that recommended by the policy gradi-
ent method.

1. Introduction
It takes an increasing amount of computation resources to
train today’s neural networks, and it is typical to employ
a heterogeneous mixture of both CPU and GPU devices
to meet such computation requirements (Sutskever et al.,
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Figure 1. Using a multi-stage Markov decision process to model
the device placement problem.

2014; Bahdanau et al., 2015; He et al., 2016). With such
a distributed environment of CPU and GPU devices, it is
important to specify how each operation in a neural network
should be matched to each of these CPU and GPU devices,
referred to as the device placement problem. The objective is
to find a match — or placement — of operations to devices,
so that the time required to train a neural network can be
minimized.

In recent literature, Mirhoseini et al. (Mirhoseini et al., 2017)
proposed to solve the device placement problem using a re-
inforcement learning approach, based on the policy gradient
method (Sutton et al., 2000). Unfortunately, the standard
policy gradient method is known to be inefficient, as it per-
forms one gradient update for each data sample (Shulman
et al., 2017). With the vanilla policy gradient method, it took
27 hours over a cluster of 160 workers to find a placement
that outperforms an existing heuristic (Mirhoseini et al.,
2017). Such training costs are prohibitive and hardly accept-
able by machine learning practitioners.

In broad strokes, we argue that the device placement prob-
lem can be solved more efficiently by using a more modern
reinforcement learning approach in the literature, called
proximal policy optimization (PPO) (Shulman et al., 2015;
2017; Heess et al., 2017). Proximal policy optimization was
originally applied in the domain of continuous robot control,
and was effective in teaching a simulated robot to perform
complex tasks. While promising, applying proximal pol-
icy optimization to solve the device placement problem
involves a non-trivial challenge that must be addressed: the
device placement problem needs to be modeled as a Markov
decision process (MDP).
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In this paper, our first contribution is to model the prob-
lem as a multi-stage MDP, as illustrated in Fig. 1. At each
stage, the system occupies a state about the placements of
the previous operations on GPU and CPU devices. We then
select the next operation and sample a probability distribu-
tion to obtain a placement recommendation on one of the
available devices. After the operation is placed at a rec-
ommended device, the system transitions to the next stage
with a new placement state where the previous operation
has been placed. By repeating these transitions, the entire
neural network is completely placed. The training time of
the neural network with the final placement state is the re-
ward of the MDP. With this reward, we update the set of
probability distributions and repeat the placements again.
Our objective is to guide the set of probability distributions
towards desirable distributions that provide near-optimal
training times.

Though proximal policy optimization provides a general
framework to analyze MDPs, a highlight of this paper is a
new and customized proximal policy optimization algorithm,
called Spotlight, that is tailored for the device placement
problem in particular. Since the device placement MDP
has multiple stages, given a particular placement, the train-
ing time can be decomposed into the training time within
each stage. We have found an approximation of such per-
stage training times with a simple form, which leads to a
lower bound for device placement. Based on these insights,
Spotlight maximizes the lower bound of training times in
each stage, and we are able to prove mathematically that it
guarantees lower training times in future placements.

We have implemented Spotlight in the TensorFlow CIFAR-
10 image classification benchmark, and deployed it on 10
CPU and GPU nodes in the Google Cloud platform. Spot-
light takes only 9 hours on five worker machines to find
even better placements than (Mirhoseini et al., 2017), and
the training time using the placement found by Spotlight is
60.9% of that obtained from (Mirhoseini et al., 2017). Our
detailed performance profiles have clearly shown that Spot-
light discovered a non-trivial placement “trick” to improve
its performance: it learns to utilize the partial connectivity of
a convolutional neural network to balance the computation
load on the GPUs, without incurring any communication
overhead.

2. Device Placement MDP
To show a better intuition of the device placement problem
in the framework of Markov Decision Processes (MDP),
we present an example of placing a neural network on four
devices (GPU1, GPU2, GPU3 and CPU), as illustrated in
Fig. 2. The operations are placed one by one, and can be
characterized by the state transition graph, which is a full
4-ary tree in the MDP. Each state corresponds to a particular
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Figure 2. The state tree of a device placement MDP.

placement that is represented by a box with four squares
(devices), each with different circles (operations).

Starting from the initial state at the root of the tree, we
have four options to place the first operation. Selecting a
particular placement transitions the current state in Stage 0
to its next state in Stage 1. The decision on the placement is
made based on the probability distribution q(a0|s0), which
indicates the preference of choosing each of the possible
assignments at the current stage s0. As shown in the figure,
the fourth option of placement, i.e., placing the operation
on the CPU device, has the highest probability. Hence, this
placement is the most probable to be selected and state s0
transitions to s1 in Stage 1. In a similar vein, the placement
of the second operation will be selected based on q(a1|s1),
which implies a high preference for the placement on GPU1,
leading to the transition to the next state s2 in Stage 2.

Such a state transition continues until all the operations are
assigned at the final state. The training time of the neural
network given by the complete placement along the state
transition trajectory can be evaluated, which is used as a
reward signal that is propagated backwards to adjust the set
of assignment probability distributions. With the adjustment,
our goal is to reduce the expected training time resulted
from the placement given by the new set of probability
distributions. This way, the set of assignment distributions
would be gradually guided towards the distributions that
lead to near-optimal performance, as evaluated by the time
required for the training to complete.

3. Guaranteed Performance Improvements in
Device Placement

We are now ready to elaborate how the device placement
problem is solved by Spotlight in the framework of Markov
decision processes, with a focus on analyzing the perfor-
mance of our solution.
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3.1. Expected Performance

In our device placement MDP, starting from the root state,
operations in a network are placed one by one, each cor-
responding to a state transition in the MDP. The tran-
sition of a state is determined by an assignment proba-
bility, which characterizes the probabilities of selecting
each possible placement. We call the entire set of tran-
sition probabilities a placement policy, defined as π =
{q(a0|s0), ..., q(ai|si), ..., q(aN−1|sN−1)}, where ai is a
set of all the possible assignments, si is the current state,
and N is the total number of stages.

The performance of a complete placement is evaluated by
the resulted training time of the neural network, denoted by
a random variable R. Mapped into the MDP framework, the
training time performance determines the reward obtained
in the final state. We use r(sn) to denote the reward function
for state sn in an MDP and define r(sn) as follows,

r(sn) =

{
0, n < N

R−R, n = N,
(1)

whereR denotes the average training time of all the previous
trials. It serves as a baseline for evaluating the quality of a
complete placement. Intuitively, a complete placement with
lower training time is associated with a higher reward.

Given a placement policy π, each final state has a particular
probability to be reached. Hence, the performance of the
policy, denoted as η(π), is best represented as the expected
value of its final state reward:

η(π) = E{a0,a1,...,aN−1}∼π[r(sN )]. (2)

The expectation is defined as,

η(π) =
∑
ai

[

N−1∏
i=0

q(ai|si)r(sN )], (3)

where
∏N−1
i=0 q(ai|si) represents the probability of travers-

ing a particular trajectory {a0, a1, ..., aN−1} along the MDP
state tree to the final stage N . The sum in Eq. (3) is taken
over all possible trajectories.

3.2. Equivalent Expressions of Performance

For performance analysis, we introduce the state-action
value function of a placement policy π as follows:

Qπ(sn, an) = E{an+1,...,aN−1}∼π[r(sN )], (4)

which represents the expected reward value obtained at the
final state sN , starting from a particular state sn and assign-
ment an, following the set of assignments {an+1, ..., aN−1}
generated from π. Similarly, the state-action value function

is defined as,

Qπ(sn, an) =
∑
ai

[

N−1∏
i=n+1

q(ai|si)r(sN )]. (5)

The performance of π can be naturally represented with
such state-action values, which we refer to as Q-values for
convenience. The expression of performance in Eq. (3) can
be written as,

η(π) =
∑
aj

n∏
j=0

q(aj |sj)
∑
ai

[

N−1∏
i=n+1

q(ai|si)r(sN )]. (6)

Plugging Eq. (5) into Eq. (6), we find that the performance
and the Q-values are connected by the following equation,

η(π) =
∑
aj

[

n∏
j=0

q(aj |sj)Qπ(sn, an)]. (7)

When a reward is obtained, the current policy π can be up-
dated, resulting in a new policy π′, which is a set of new dis-
tributions {q′(a0|s0), q′(a1|s1), ..., q′(aN−1|sN−1)}. Fol-
lowing Eq. (7), the expected performance of the new policy
can be expressed as:

η(π′) = E{a0,...,an−1}∼π′ [
∑
an

q′(an|sn)Qπ′(sn, an)].

(8)
Compared with Eq. (7), the summation of the joint proba-
bilities are expressed as an expectation in Eq. (8).

According to this relation, the expected performance can be
expressed with the expected Q-value at any stage n, which
allows us to analyze the performance, to be elaborated in
the next subsection.

3.3. Approximations of Performance

In device placement, our objective is to minimize the train-
ing time of the neural network to be placed, which corre-
sponds to maximizing the expected performance (Eq. (8))
in the MDP. However, it is challenging to maximize Eq. (8)
directly, since it is expressed with the new policy π′, which
is the decision to be made for an update.

To address this challenge, the proximal policy optimization
method (Shulman et al., 2015; Shulman, 2016) is designed
to optimize the performance by maximizing its lower bound
expressed by its approximation, with a desirable perfor-
mance improvement guarantee. Following this pattern, we
derive such an approximation for device placement. We
replace Qπ′(sn, an) in Eq. (8) with Qπ(sn, an) and replace
the new policy π′ in the expectation with the old policy,
which yields

Fπ(π
′) = E{a0,...,an−1}∼π[

∑
an

q′(an|sn)Qπ(sn, an)].

(9)
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Such an approximation of performance in Eq. (9) can be
directly optimized. A natural question is: what is the “dis-
tance” between the approximated performance in Eq. (9)
and the true performance in Eq. (8)? We will answer this
question in the next subsection by deriving the performance
lower bound.

3.4. Performance Lower Bounds

We first introduce the notations that are necessary or con-
venient for analyzing the performance bound. Let a[0:n−1]
denote a partial trajectory {a0, ..., an−1}. Qπ,π

′
(n) is short

for the term
∑
an
q′(an|sn)Qπ(sn, an) in Eq. (9). Sim-

ilarly, Qπ
′,π′(n) is short for

∑
an
q′(an|sn)Qπ′(sn, an).

We use Q[π′−π](sn, an) to represent Qπ
′,π′(n)−Qπ,π′(n).

Let ε1 = maxsn,an |Q[π′−π](sn, an)| and ε2 =

maxsn |Qπ,π
′
(n)|. We further denote Dmax

KL (π||π′) as the
maximal divergence between the old policy and the new
policy over all the states, which is expressed as:

Dmax
KL (π||π′) = max

sn
DKL(q(an|sn)||q′(an|sn)). (10)

In Eq. (10), DKL(q(an|sn)||q′(an|sn)) is the Kullback-
Leibler (KL) divergence (Bishop, 2011) between the two
probability distributions. Intuitively, Dmax

KL (π||π′) repre-
sents the distance between the two policies.

Given the notations above, we have the following theorem
on a performance lower bound, the proof of which is pre-
sented in Appendix A.

Theorem 1. The expected performance of a new policy is
bounded from below as follows:

η(π′) ≥ Fπ(π′)− ε1 − 2ε2nD
max
KL (π||π′). (11)

3.5. Theorem on Performance Improvement
Guarantees

As aforementioned, directly maximizing the performance
η(π′) when updating a policy is challenging. With Theorem
1, we can address this issue by maximizing the lower bound
of the performance instead, which results in the following
optimization problem:

max
π′

Fπ(π
′)− ε1 − 2ε2nD

max
KL (π||π′). (12)

In Eq. (12), π and π′ represent the policies before and after
the update. For convenience, we use Gπ(π′) to denote the
objective function in Eq. (12). If we iteratively maximize
Gπ(π

′) in each policy update, the performance achieved
with the updated policy is guaranteed to improve. Such
a guarantee on performance improvements is rigorously
presented in the following theorem, with its proof presented
in Appendix B.

Theorem 2. For the sequence of policies
π0, π1, . . . , πi, πi+1 generated by iteratively maximiz-
ing the performance lower bound Gπj (πj+1), 0 ≤ j ≤ i,
the following performance improvement guarantee holds:

η(π0) ≤ η(π1) ≤ η(π2) ≤ ... ≤ η(πi) ≤ η(πi+1).

The general idea of its proof follows two steps. First, we
prove that the performance lower bound Gπj

(πj+1) is a
minorization function (Hunter & Lange, 2004) of the true
performance η(πj+1). Then, we show that according to
the Minorization-Maximization (MM) theory, iteratively
maximizing the performance lower bound results in non-
decreasing improvements of the true performance.

4. Spotlight: Iterative Performance
Improvement

Guided by the theorems we have derived so far, we now
present the main step in Spotlight: maximizing the perfor-
mance lower bound in each update on the placement policy.
To be specific, given the current policy π, we select the new
policy π′ that maximizes the objective function Gπ(π′).

To obtain Fπ(π′) in the objective, we conduct a series of
equivalent transformations on its expression as follows:

Fπ(π
′) = Ea[0:n−1]∼π[

∑
an

q(an|sn){
q′(an|sn)
q(an|sn)

Qπ(sn, an)}]

= Ea[0:n]∼π[
q′(an|sn)
q(an|sn)

Qπ(sn, an)].

(13)

As Eq. (13) consists of an expectation, maximizing Gπ(π′)
becomes an unconstrained stochastic optimization problem
(Spall, 2003), which is generally solved by finding an esti-
mate of the expectation. Accordingly, we can solve problem
(12) by maximizing the following estimated performance
objective:

max
π′

1

N

N−1∑
n=0
an∼π

[
q′(an|sn)
q(an|sn)

(R−R)−ε1−2ε2nDmax
KL (π||π′)],

(14)
where the term R − R is an estimate of Qπ(sn, an) in
Eq. (13) and an average is taken over all stages.

The constants ε1 and ε2 in this objective are impossible
to obtain in practice because they take the maximum of
Q-values over the whole state space. Fortunately, as the
objective penalizes the KL-divergence between π and π′,
they are close to each other. Accordingly, ε1 is close to zero
following its definition, and thus we can omit ε1 in Eq. (14).
The constant 2ε2n in Eq. (14) is treated as a hyperparameter
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β of the algorithm, with its value typically selected from 1 to
10 (Shulman et al., 2017). Finally, we derive the following
practical objective,

max
π′

1

N

N−1∑
n=0
an∼π

[
q′(an|sn)
q(an|sn)

(R−R)− βDKL(q||q′)], (15)

where the term of maximal divergence in Eq. (14) can be
replaced by the divergence between the two distributions
DKL(q(an|sn)||q′(an|sn)) in Eq. (15) without impacting
the final performance (Shulman et al., 2015).

We are now ready to present Spotlight in Algorithm 1, which
iteratively maximizes the performance lower bound to im-
prove performance. The policy π is initialized with uni-
formly random distributions, and the hyperparameter β is
set as the typical value of 1 (Shulman et al., 2017). In each
iteration, Spotlight first performs a downward pass from
stage 0 to stage N − 1. At each stage n, Spotlight samples
the device assignment distribution q(an|sn) and obtains a
device assignment for operation n. It collects the device
assignment obtained at each stage into a vector a until a com-
plete trajectory of device assignments is obtained. Then,
Spotlight places the DNN with the newly obtained device
assignments and trains the DNN to obtain its training time.
If the training time is smaller than the current minimal train-
ing time of all the placements tried before, the current best
placement a∗ is updated as the newly obtained placement,
with the current minimal training time refreshed.

Next, Spotlight performs an upward propagation along the
same trajectory as in the downward pass. At each stage n,
Spotlight uses the collected information about the training
time and the average training time to build the performance
objective in Eq. (15), denoted by Gn. Traversing upwards,
it sums up the performance objective at each stage, until
the root state is reached when the performance objectives
in all N stages are averaged to construct the performance
objective, G/N . To maximize the performance objective,
Spotlight performs ten stochastic gradient ascent (SGA)
steps on this objective, with π′ as optimization variables.
The resulted new policy π′ is used to update π for the next
iteration. After K iterations of such performance maximiza-
tion, the best placement a∗ during the learning process will
be our final solution to place the DNN.

5. Implementation and Evaluation
5.1. Implementation and Setup

Devices. We have conducted our experiments with 10 ma-
chines on the Google Cloud platform. The machines are
equipped with one Intel Broadwell 8-core CPU and either
two or four NVIDIA Tesla K80 GPUs each.

Benchmark. We have implemented Spotlight in the CIFAR-

Algorithm 1 Spotlight algorithm
1: Input: The set of available devices: {d1, d2, ..., dM}
2: Output: A near-optimal device placement: a∗

3: Initialize π as uniform distributions; β = 1; min =∞
4: for iteration = 1, 2, . . ., K do
5: a = []; G = 0
6: for n = 0, 1, . . ., N − 1 do
7: Sample q(an|sn) to get an ∈ {d1, d2, ..., dM}
8: a.append(an)
9: end for

10: Reconfigure the device placement of the DNN in
TensorFlow as a = [a0, a1, ..., aN−1]

11: Train the DNN for ten steps
12: Record the training time R
13: if R < min then
14: a∗ = a
15: min = R
16: end if
17: for n = N − 1, N − 2, . . ., 0 do
18: Gn = q′(an|sn)

q(an|sn) (R−R)− βDKL(q||q′)
19: G = G + Gn
20: end for
21: Maximize G

N w.r.t. π′ with SGA for ten steps
22: π = π′

23: end for

10 image classification benchmark (CNN). The architecture
of CIFAR-10 is a convolutional neural network (CNN) with
three blocks, including two convolutional blocks and one
fully connected block. Each convolutional block consists
of a convolutional layer, a pool layer and a norm layer. The
fully connected block consists of two fully connected layers.

Architecture. The policy π in Spotlight is represented by a
two-layer sequence-to-sequence recurrent neural network
(RNN) (Mirhoseini et al., 2017) with long short term mem-
ory (LSTM) cells (Hochreiter & Schmidhuber, 1997) and
a content-based attentional mechanism (Chan et al., 2015).
As shown in Fig. 3, the set of operations in a deep neural net-
work (e.g., a convolutional neural network) is first compiled
into a vocabulary, which consists of the names of operations.
The set of names are fed into the sequence-to-sequence
RNN, which generates a set of probability distributions, rep-
resenting the policy π = {q(a0|s0), ..., q(aN |sN )}. Start-
ing with uniformly random distributions, the RNN is trained
by Spotlight to generate distributions towards better place-
ments that are theoretically guaranteed.

Co-location group. With a total of 926 operations in the
CNN of CIFAR-10, it is difficult to use an RNN to read such
a large amount of operations due to vanishing and exploding
gradient issues (Mirhoseini et al., 2017). Current practice
(Mirhoseini et al., 2017) relies on the default co-location
group in TensorFlow to collocate operations, which easily re-
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Vocabulary

Name 1: conv1/bias
Name 2: conv2/add
Name 3: pool/mul
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Figure 3. Using a sequence-to-sequence recurrent neural network
to represent the placement policy.

sults in unrelated operations placed together, negatively im-
pacting the balance of computation loads. We choose to per-
form a better co-location based on the observation that the
name associated with each operation in TensorFlow, such as
“conv1/biases/add,” “conv1/biases/mul,” or
“conv2/weight/exp,” describes the detailed function
of the operation. As such, we group all the operations that
share the same two-level prefix into a super operation, so
that these operations are reasonably collocated, due to their
close locations and similar functions. In our implementa-
tion, 926 operations in the CNN are grouped into 86 super
operations.

Distributed training. Spotlight is trained on five GPU-
CPU machines, with a controller holding the RNN and
other workers (including the controller) holding the DNN.
In each iteration of training, the RNN generates five sampled
placements, each to be evaluated on a worker by training the
DNN for ten steps with the placement. The training times
obtained at all the workers are then sent to the controller, to
be averaged to get a more accurate estimate of the training
time resulting from the placement policy. Then, Spotlight
updates the RNN and starts the next iteration.

5.2. Baselines

We compare Spotlight with the following baselines:

Single GPU. As the default placement of CIFAR-10 bench-
mark (CNN), this placement executes the whole CNN on
a single GPU, except for the input operations, which are
executed on a CPU.

Metis. To obtain this placement baseline, we generate a
cost model of operations in the CNN, which records the
input/output size, the duration and the mutual dependencies
of operations. Then, we feed the cost model into the Metis
graph partitioner (Karypis & Kumar, 1998) to partition the
graph into three parts (2 GPU + CPU case) or five parts (4
GPU + CPU case), with each part assigned to one device.

Synchronous/Asynchronous towers. Synchronous towers
(Mirhoseini et al., 2017) place an individual CNN model
replica on each GPU, which independently performs a for-

(a) 4 GPUs and 1 CPU

(b) 2 GPUs and 1 CPU

Figure 4. Performance in Spotlight training.

ward pass and a backward propagation to compute the gra-
dients of its CNN replica. All the gradients computed by
each GPU are transferred to the CPU to be averaged. Then,
the CPU updates the parameters of the CNN and transfers
them to each GPU for the next iteration. In asynchronous
towers, each GPU does not need to wait for the gradients
computed by other GPUs before performing an update.

GRL. The reinforcement learning (RL) approach proposed
by Google (Mirhoseini et al., 2017) is referred to as GRL for
short. With the policy gradient algorithm, Google also trains
a sequence-to-sequence RNN to find the device placements.
The policy gradient algorithm in GRL uses the following
update rule:

θ′ = θ +
1

N

∑
an∼π

5θ log q(an|sn) · (R−R),

where θ is the parameter of the RNN.

5.3. Performance of Spotlight Training

Fig. 4(a) shows the ten-step training time of the CNN as
a function of the training time used to find device place-
ments either with Spotlight or GRL. Over the course of
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(a) 2 GPUs and 1 CPU (b) 4 GPUs and 1 CPU

Figure 5. Performance in CIFAR-10 training.

reinforcement learning, 20000 sampled placements were
evaluated over five distributed machines, within a period
of 500 minutes. As shown in Fig. 4(a), the average ten-
step training time of Spotlight decreases monotonously and
rapidly throughout the training. The placement skills of
Spotlight improve significantly faster than GRL. Accord-
ing to the learning curve, GRL suffers from occasional
oscillations and slow progress. In contrast, Spotlight keeps
improving the performance, as guaranteed by our theorem.

We also track the minimum training time among placements
sampled by Spotlight and GRL, respectively, during the
training. As obviously observed, Spotlight outperforms
the baseline of single GPU placement after only 100 min-
utes. In contrast, GRL does not find any placement that
outperforms the single GPU baseline throughout the train-
ing. Fig. 4(b) shows the learning curves of Spotlight and
GRL for the environment with 2 GPUs and 1 CPU. In a sim-
ilar vein, Spotlight smoothly decreases the average training
time, outperforming GRL by a large margin. The highlight
is that Spotlight outperforms the single GPU baseline after
20 minutes.

5.4. Performance of CIFAR-10 Training

After the RNN training, the best placement found by Spot-
light or GRL is used to train the CIFAR-10 CNN for 100K
steps until the model achieves an 87% accuracy. Fig. 5(a)
shows the training curves under different placements for
the environment with 2 GPUs and 1 CPU. As observed,
the placement found by Spotlight reduces the training time
compared with both of the baselines. Specifically, with the
placement given by Spotlight, it takes 70 minutes for the
CNN to converge, which is 70% of the time with the single
GPU placement and 60.9% of the time with GRL.

For the environment with 4 GPUs and 1 CPU, the train-
ing of CNN placed by Spotlight is faster than that with
data-parallel placements, as shown in the training curves in

Fig. 5(b). To be specific, the training completes within 95
minutes with synchronous towers, while Spotlight results
in a training time of 58 minutes, which is ∼ 40% better
than synchronous towers. Asynchronous towers result in a
shorter training completion time but a slower convergence
than synchronous towers. In comparison, Spotlight leads to
a shorter training time without compromising the speed of
convergence.

5.5. Tricks Learned by Spotlight

To understand the rationale of the placements found by Spot-
light, we compare the performance profiles of Spotlight with
placements given by other heuristics. All these placements
put the input pipeline on CPU, following the rule of thumb.

Fig. 6(a) shows the placements given by the single GPU
baseline, where one of the GPUs is busy with executing all
the operations while the other GPU is left idle. Fig. 6(b)
presents the placement found by GRL, with the norm and
pool layers assigned to GPU1, reducing the computation
load on GPU0. However, the inter-connections between
layers introduce communications between GPUs, which
slows down the training compared with the single GPU
placement. Different from GRL, Spotlight significantly
reduces inter-CPU communications with the insight that
the inter-connected layers in CNNs are partially connected
so that they can be split into two parts, each on a GPU,
without introducing communication overhead. The opera-
tions on the inter-connected layers should be split so that
the inter-connected parts are placed on one GPU and those
unconnected parts are distributed to two GPUs, as shown
in Fig. 6(c). Learning from scratch, Spotlight discovers
such an optimal way to place CNNs, which significantly
outperforms other placements.

We further compare the placements given by synchronous
towers and Spotlight in the environment with 4 GPUs and
1 CPU. Due to parameter updates in synchronous towers,
frequent communications are incurred between CPU and
GPUs, leading to a communication bottleneck on the CPU
which significantly delays the training, as illustrated in
Fig. 6(d). In contrast, Spotlight incurs minimal commu-
nication overheads, as shown in Fig. 6(e) (GPU1 and GPU3

are left idle as the deep CNN of CIFAR-10 benchmark only
allows two-part splits.). Obviously, Spotlight manages to
utilize the characteristic of partial connectivity of the CNN
to balance computations on GPUs with negligible commu-
nication overheads.

5.6. Performance in Other Benchmarks

To demonstrate the generality of performance improve-
ment achieved by Spotlight, we have evaluated it with two
more datasets: the TensorFlow Neural Machine Transla-
tion (NMT) (Wu et al., 2016; NMT) and the TensorFlow
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Figure 6. Single-step training time profiles: Spotlight discovers optimal placements by utilizing the partial connectivity of the CNN.

RNN language model (RNNLM) (Jozefowicz et al., 2016;
RNN). NMT is an 8-layer sequence-to-sequence network,
and RNNLM is a 4-layer LSTM network.

Table 1. Per-step training time (in seconds) of placements given
by the baselines for the environment with 4 GPUs. Experts place
each LSTM layer on one GPU.

Models Experts Metis GRL Spotlight
RNNLM 3.86 6.12 3.15 2.27

NMT 5.54 10.50 4.74 3.62

We compare the best placements discovered by Spotlight
and GRL after about 12 hours of training on the Google
Cloud, by evaluating both their single-step and end-to-end
training times. As shown in Table 1, the single-step training
time reduction of Spotlight over GRL is 27.9% for RNNLM
and 23.6% for NMT, respectively. We further evaluate the
end-to-end training time by training the NMT for 12000
iterations given the placement found by either Spotlight or
GRL. With Spotlight, it takes 12.5 hours to finish, achieving
a reduction of 21.9% compared with 16 hours given by GRL.
Due to the per-step training time reduction, the performance
improvement of Spotlight over GRL persists over a longer
period of training.

6. Related Work
The first work that tackles the device placement problem for
training deep neural networks is the reinforcement learning
approach based on the policy gradient algorithm (Mirho-
seini et al., 2017). However, the inefficiency of the policy
gradient algorithm incurs a prohibitively high cost to find
a placement that outperforms the existing heuristics. More-
over, Mirhoseini et al. did not model the device placement
problem as an MDP. In contrast, we derived the important
performance improvement theorem and develop the Spot-
light algorithm for the device placement MDP. With its the-

oretically guaranteed performance improvement, Spotlight
is able to significantly improve the learning efficiency.

More recently, (Mirhoseini et al., 2018) proposed a hierar-
chical architecture that adds a feedforward neural network
to automatically classify operations into groups. It improves
the learning efficiency. However, it still relies on the policy
gradient algorithm to train the architecture. Orthogonal to
this work, Spotlight has improved the efficiency with the
design of a more advanced algorithm.

Several existing works in the literature applied the pol-
icy gradient algorithm in other problems, such as cluster
scheduling (Mao et al., 2016), video streaming (Mao et al.,
2017), and neural architecture design (Pham et al., 2018).
Spotlight, with a customized proximal policy optimization
theory, provides a better choice for the settings of these
problems.

7. Conclusions
In this paper, we have proposed Spotlight based on the de-
velopment of a customized proximal policy optimization
theory, designed to find optimal device placements for train-
ing deep neural networks (DNN). The device placement
problem is modeled as a Markov decision process (MDP),
which is the first MDP model for this problem. We have
derived a new performance lower bound and prove a new
performance improvement theorem for device placement.
Based on this theorem, we have designed the Spotlight de-
vice placement algorithm, and implemented it across the
CIFAR-10, RNNLM and NMT benchmarks. Extensive
experiments on the Google cloud platform have demon-
strated that Spotlight discovered optimal placement tricks
that outperform the best heuristics by a large margin. With
a significantly lower training time, the placement found by
Spotlight outperforms the state-of-the-art device placement
algorithm based on policy gradient method.
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