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ABSTRACT
In this paper, we examine the problem of large-volume data dis-
semination via overlay networks. A natural way to maximize the
throughput of an overlay multicast session is to split the traffic and
feed them into multiple trees. While in single-tree solutions, band-
width of leaf nodes may remain largely under-utilized, multi-tree
solutions increase the chances for a node to contribute its band-
width by being a relaying node in at least one of the trees. We
study the following problems: (1) What is the maximum capacity
multi-tree solutions can exploit from overlay networks? (2) When
multiple sessions compete within the same network, what is the re-
lationship of two contradictory goals: achieving fairness and max-
imizing overall throughput? (3) What is the impact of IP routing in
achieving at constraining the optimal performance of overlay mul-
ticast?

We extend the multicommodity flow model to the case of overlay
data dissemination, where each commodity is associated with an
overlay session, rather than the traditional source-destination pair.
We first prove that the problem is solvable in polynomial time, then
propose an ε-approximation algorithm, assuming that each com-
modity can be split in arbitrary ways. The solution to this problem
establishes the theoretical upper bound of overall throughput that
any multi-tree solution could reach. We then study the same prob-
lem with the restriction that each commodity can only be split and
fed into a limited number of trees. A randomized rounding algo-
rithm and an online tree-construction algorithm are presented. All
these algorithms are evaluated by extensive simulations.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; D.4.8 [Per-
formance]: Simulation; G.1.6 [Optimization]: Linear Program-
ming, Integer Programming; G.2.2 [Graph Theory]: Trees

General Terms
Algorithms, Measurement, Performance, Theory
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1. INTRODUCTION
High-bandwidth data dissemination at the application layer has

recently emerged as an important research topic [1, 2, 3], in or-
der to realize the tremendous potential of application-layer overlay
networks. In general, the prevailing trend in recent research is to re-
alize data dissemination from one data source to multiple receivers
via the construction of a multicast tree at the application layer, as a
replacement of traditional IP multicast, which is not widely avail-
able in the IP backbone. The general approach common to all ex-
isting proposals is to organize end systems into a logical overlay
network, and to transfer data along the edges of such an overlay
network using unicast transport services. As one of the key bene-
fits, the application layer offers unprecedented flexibility and free-
dom to design algorithms that incorporate a variety of Quality-of-
Service considerations, and bandwidth is one of the most important
metrics to be considered.

In order to achieve better utilization of underutilized network ca-
pacities when disseminating data via overlay multicast, it is natural
to resort to the construction of multiple concurrent multicast trees.
In this approach, data is split to multiple slices (e.g., using source
erasure codes), and each slice is transmitted along one of the mul-
ticast trees [2, 3, 4]. The intuition is that, while in single-tree solu-
tions, bandwidth of leaf nodes may remain largely under-utilized,
the multi-tree approach increases the chances for a node to con-
tribute its bandwidth by being a non-leaf node in at least one of the
trees [2]. Though this intuition shows promise, it is nevertheless
unclear with respect to the number of trees that needs to be con-
structed in order to maximize capacity utilization and end-to-end
throughput, and what is the optimal way to construct these trees.
These open problems are exacerbated when multiple dissemination
sessions may co-exist in the network, each consisting of a differ-
ent data source, as well as multiple trees to a different group of
receivers. In the case of multiple sessions, the issue of inter-session
fairness needs to be considered when maximizing capacity utiliza-
tion.

In this paper, we seek to analytically and experimentally inves-
tigate the complete spectrum of such a multi-tree design philoso-
phy, especially when multiple data dissemination sessions co-exist.
Our objective is simple: we prefer to design algorithms that may
maximize the end-to-end throughput for all co-existing sessions in
an overlay network, and maximally exploit the capacity an overlay
network has to offer. It may be shown that this problem is far from
trivial. As examples, the following questions may naturally arise.
First, for a given multicast session, what is the maximum capac-
ity it can exploit from the overlay network, and how many multi-



cast trees are needed to achieve such maximum? Second, when we
seek to optimize the utilization of overlay network capacities, will
there be an inherent incompatibility between capacity utilization
and inter-session fairness? Third, can we design an efficient and
online algorithm to approximate the theoretical upper bound with
a very limited number of trees in each session? Finally, what is
the impact of IP routing when we seek answers to all the previous
questions? Do different IP routing strategies adversely affect the
achievable end-to-end throughput of overlay multicast?

We provide analytical and experimental insights towards address-
ing these important questions, and propose an extensive array of
approximation algorithms to achieve the best possible capacity uti-
lization, with multiple trees in each dissemination session. Our
proposed algorithms are progressively more realistic as they are
unveiled, and the effectiveness of our proposed algorithms is ver-
ified using extensive simulations, some of which are interleaved
with our theoretical discussions.

The remainder of this paper is organized as follows. Sec. 2
presents our theoretical foundation based on multicommodity flows.
Sec. 3 presents an array of combinatorial approximation algorithms
to the problems of maximizing capacity utilization in overlay net-
works. Sec. 4 brings further reality into consideration, and pro-
poses online algorithms to address the unsplittable flow problem,
where data flows can only be split into a specified number of sub-
flows of fixed rates. Sec. 5 quantitatively evaluates the impact of
IP routing strategies with respect to limiting the optimal capacity
utilization of overlay multicast. Sec. 6 and 7 discuss related work
and conclude the paper.

2. MODEL
The problem of achieving maximum capacity utilization among

competing overlay sessions can be understood as a multicommod-
ity flow problem. The data to be disseminated within an overlay
session can be considered as its commodity. Each session expects
to maximize the throughput of its own commodity.

2.1 Multicommodity Flow Problem: a Review
We first review the typical multicommodity flow problem in the

setting of source-destination pairs. Let G = (V, E) be an undi-
rected graph, with capacity ce on each edge e ∈ E. We are given k
commodities, K1, K2, . . . , Kk . Each commodity is a tuple Ki =
((si, di), dem(i)). Here, si is the source, and di is the destination
of Ki. dem(i) is the demand of Ki, which is the desired flow value
for Ki from si to di. In addition, a set of paths exist between si

and di, denoted as Pi = {pi
j}. Each commodity can be arbitrarily

split and sent along several paths in parallel. We use fi
j to denote

the flow of commodity Ki sent along the path pi
j . We further in-

troduce a 0 − 1 variable ne(p
i
j). ne(p

i
j) = 1 if e appears in the

path pi
j . Otherwise, ne(p

i
j) = 0. The objective is to maximize

the overall flows of all commodities, subject to the flow conserva-
tion and capacity constraints. Using the linear programming (LP)
formulation, we have

P1 : maximize
kX

i=1

|Pi|X
j=1

f i
j (1)

subject to
kX

i=1

|Pi|X
j=1

ne(p
i
j) · f i

j ≤ ce,∀e ∈ E

f i
j ≥ 0,∀i,∀j

We refer to P1 as the maximum flow problem. However, P1

does not consider the issue of fairness. In the following alternative
problem formulation, the objective is to maximize f , referred to as
throughput, such that for each commodity Ki, at least f · dem(i)
units of commodity flow can be routed simultaneously, subject to
the flow conservation and capacity constraints.

P2 : maximize f (2)

subject to
|Pi|X
j=1

f i
j ≥ f · dem(i), i = 1, . . . , k

kX
i=1

|Pi|X
j=1

ne(p
i
j) · f i

j ≤ ce,∀e ∈ E

f ≥ 0, f i
j ≥ 0,∀i,∀j

We refer to P2 as the maximum concurrent flow problem. P2
enforces fairness by requiring that the comparative ratio of traffic
routed for different commodities satisfies the comparative ratio of
their demands. Thus, the absolute value of dem(i) is meaning-
less, as we can easily tune the value of f by scaling up/down all
demands, while f · dem(i) stays unchanged.

2.2 Problem Formulation
Now consider the overlay multicast version of P1 and P2. Here,

each commodity is redefined as Ki = (Si, dem(i)), i = 1, . . . , k,
where Si is an overlay multicast session consisting of a set of ver-
tices. We define Ti = {ti

j} as the set of all overlay trees, each
of which covers all vertices in Si. We here reuse f i

j to denote the
flow of commodity Ki sent along the tree tij . We also use ne(t

i
j)

to represent the appearance of e in tij . In this case, ne(t
i
j) could be

an integer greater than one, since a physical edge e may appear in
ti
j more than once. Therefore, ne(t

i
j) denotes the number of times

e appears in tij . In this context, the counterpart of P1 is

M1 : maximize
kX

i=1

|Ti|X
j=1

|Si| − 1

|Smax| − 1
· f i

j (3)

subject to
kX

i=1

|Ti|X
j=1

ne(t
i
j) · f i

j ≤ ce,∀e ∈ E

f i
j ≥ 0,∀i,∀j

Since for each session Si, there are |Si|−1 receivers, (|Si|−1) ·
f i

j is the aggregate flow of the entire session. Smax is the session
with the most number of receivers. Thus, P1 can be understood
as a special case of M1, where each session consists of only one
receiver, i.e., |Si| − 1 = 1.

The counterpart of P2 is

M2 : maximize f (4)

subject to
|Ti|X
j=1

f i
j ≥ f · dem(i), i = 1, . . . , k

kX
i=1

|Ti|X
j=1

ne(t
i
j) · f i

j ≤ ce, ∀e ∈ E

f ≥ 0, f i
j ≥ 0, ∀i,∀j

The problems M1 and M2 can not be directly addressed, since
there exists an exponential number of constraints. For each session



Si, the number of possible overlay trees is exponential, i.e., |Ti| =

|Si||Si|−2, by Cayley’s theorem [5]. However, M1 and M2 are
still solvable if we can find a separation oracle [6] — a polynomial
algorithm — to verify whether a given solution to M1 or M2 is
feasible. Before introducing such an algorithm, we first discuss the
following problem.

2.3 Packing Spanning Trees
Suppose a session Si has vertices {vi

1, . . . , v
i
|Si|}. Let p(vi

m, vi
n)

be the unicast route1 between vi
m and vi

n, f(vi
m, vi

n) the total amount
of traffic between vi

m and vi
n within session Si. We construct a

complete graph Gi = (Si, Ei), in which the weight of an edge
(vi

m, vi
n) ∈ Ei is f(vi

m, vi
n). We are interested with the problem

of how to decompose Gi into a set of spanning trees, such that their
aggregate rates maximally saturate the capacity of Gi. Consider an
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Figure 1: Packing Spanning Trees

example in Fig. 1. The overlay session has 4 nodes. Node 0 is
the source. The weight of each edge is the total amount of traffic
between its two nodes. In this example, the session can be decom-
posed into 3 overlay trees, whose aggregate rate is 5. This problem
is formalized as

S : maximize
|Ti|X
j=1

f i
j (5)

subject to
X

(vi
m,vi

n)∈ti
j

f i
j ≤ f(vi

m, vi
n),∀(vi

m, vi
n) ∈ Ei

f i
j ≥ 0,∀i,∀j

This problem is known as “packing spanning trees”. A min-max
relation for S has been given by Tutte [7] and Nash-Williams [8],
as follows. Let δ(Gi) be a partition of Gi. |δ(Gi)| is the number
of separate components it results to. f(δ(Gi)) is the weight sum of
all edges across δ(Gi), formally defined as

f(δ(Gi)) =
X

vi
m and vi

n belong to different components of δ(Gi)

f(vi
m, vi

n).

The maximum of S is the minimum of

f(δ(Gi))

|δ(Gi)| − 1
(6)

over all partitions of Gi. Cunningham [9] gave a polynomial algo-
rithm for finding the minimum of (6), and the set of trees to achieve
this minimum, by reducing it to |Si||Ei| maximum flow problems.
Barahona [10] showed that the same problem can be reduced to
1This route is determined by IP-level routing.

|Si|2 maximum flow problems. Both algorithms can be employed
as the separation oracle to the following reformulation of M1 and
M2.

2.4 Problem Reformulation

M1′ : maximize
kX

i=1

|Si| − 1

|Smax| − 1
· min

„
f(δ(Gi))

|δ(Gi)| − 1

«
(7)

subject to
kX

i=1

X
e∈p(vi

m,vi
n)

f(vi
m, vi

n) ≤ ce,∀e ∈ E

f(vi
m, vi

n) ≥ 0,∀i,∀(vi
m, vi

n) ∈ Gi

M2′ : maximize f (8)

subject to min

„
f(δ(Gi))

|δ(Gi)| − 1

«
≥ f · dem(i), i = 1, . . . , k

kX
i=1

X
e∈p(vi

m,vi
n)

f(vi
m, vi

n) ≤ ce,∀e ∈ E

f ≥ 0, f(vi
m, vi

n) ≥ 0 ∀i,∀(vi
m, vi

n) ∈ Gi

With M1′ and M2′, we reduce the number of constraints for
each session Si from exponential to O(|Si|2). M1′ and M2′

can be solved by standard LP solving techniques such as ellipsoid
method [6].

3. DERIVING OPTIMAL CAPACITY UTI-
LIZATION IN OVERLAY NETWORKS

Although M1 and M2 are proved solvable, finding their exact
solutions by ellipsoid method can be slow and expensive. Instead,
we are interested to find a fully polynomial time approximation
scheme (FPTAS) to these problems. A FPTAS is a family of algo-
rithms that finds an ε-approximate solution, which returns a result
at least (1 − ε) times the maximum value, for any error parameter
ε > 0. Its running time is polynomial in the size of the network
(|V | and |E|), the number of commodities (k), and 1/ε. In this
section, we propose a FPTAS to M1 and M2 based on the scheme
proposed by Garg and Konemann [11], which was later improved
by Fleischer [12]. The proofs of all lemmas and theorems in this
section can be found in our technical report[13].

3.1 Algorithm for the Maximum Flow Prob-
lem

Before presenting our algorithm for M1, we first formulate its
dual as follows.

D1 : minimize
X
e∈E

ce · de (9)

subject to
X
e∈E

ne(t
i
j) · de ≥ |Si| − 1

|Smax| − 1
, ti

j ∈ Ti, i = 1, . . . , k

de ≥ 0, ∀e ∈ E

D1 corresponds to the problem of assigning length de to each
edge e ∈ E, such that the length of any spanning tree in Ti(i =

1, . . . , k) is at least |Si|−1
|Smax−1| . By LP duality theory [6], the min-

imum of D1 is the maximum of M1. Here, de represents the
marginal cost of using an additional unit of capacity of e.



MaxFlow
1 ∀e ∈ E, de ← β
2 f i

j ← 0, ti
j ∈ Ti, i = 1, . . . , k

3 loop
4 for i = 1 to k do
5 ti ← minimum overlay spanning tree in Ti using de

6 minlen ← mink
i=1

P
e∈E ne(t

i) · de
|Smax|−1
|Si|−1

7 t ← arg mink
i=1

P
e∈E ne(t

i) · de
|Smax|−1
|Si|−1

8 if minlen ≥ 1
9 return
10 c ← mine∈t

ce
ne(t)

11 f(t) ← f(t) + c

12 ∀e ∈ t, de ← de(1 + εne(t)c
ce

)

13 end loop

Table 1: Algorithm for the Maximum Flow Problem

The algorithm for the maximum flow problem, henceforth re-
ferred to as MaxFlow, is shown in Table 1. Initially, we set de = β
for each edge e ∈ E, and fi

j = 0 for each tree ti
j in each ses-

sion Si. In each iteration, a “minimum overlay spanning tree” ti

is computed for each session Si as follows. We first construct an
overlay graph for Si, a complete graph Gi = (Si, Ei). Each edge
(vi

m, vi
n) ∈ Ei corresponds to the unicast route between vi

m and
vi

n, p(vi
m, vi

n). Straightforwardly, the length of (vi
m, vi

n) is the
sum of lengths of all edges along p(vi

m, vi
n). Then we can ob-

tain ti by running the minimum spanning tree algorithm on Gi.
We proceed to choose t among all ti, whose normalized lengthP

e∈E ne(t
i
j) · de

|Smax|−1
|Si|−1

is the minimum. We check if its cost
is no less than 1. If so, it means that the lengths of all spanning
trees are no less than 1, then we stop the algorithm. Otherwise, we
send c units of traffic along t, which is the bottleneck capacity of t.
Since at most ce

ne(t)
units of traffic of t can be sent through e, c is

mine∈t
ce

ne(t)
. Finally, for each edge e going through t, de is aug-

mented by the factor 1 + εne(t)c
ce

. Following the same way as Garg
and Konemann [11], we prove the following sequence of lemmas.

Lemma 1: MaxFlow terminates after at most |E| log1+ε
1+ε
β

it-
erations, Smax being the session of the maximum size.

Lemma 2: Scaling the final flow by log1+ε
1+ε
β

yields a feasible
primal solution.

Lemma 3: When β = (1+ε)1−1/ε

[(|Smax|−1)U]1/ε , the final flow scaled by

log1+ε
1+ε
β

has a value at least (1− 2ε) times the optimal value of
M1. U is the length of the longest unicast route.

Each iteration of the algorithm involves k minimum overlay span-
ning tree operations. Regarding the running time, we have the fol-
lowing theorem.

Theorem 1: When β = (1+ε)1−1/ε

[U(|Smax|−1)]1/ε , the running time is

O( k|E|
ε2

[log U + log(|Smax| − 1)]) · Tmst. U is the length of the
longest unicast route and Tmst is the running time of the minimum
overlay spanning tree construction algorithm.

Now we calculate Tmst. The running time of Prim’s algorithm
is m + n log n, n being the number of vertices and m the number
of edges. Since the overlay graph Gi is a complete graph, Tmst =
|Si|(|Si|−1)

2
+ |Si| log |Si|, which is O(|Smax|2), Smax being the

session of the maximum size.

3.2 An Experiment (Part One)
We conduct a simple experiment to illustrate how our algorithm

works. Using the Boston BRITE topology generator, we create a
100-node router-level topology by the Waxman model. All edges
have capacities of 100. Two multicast sessions are randomly cre-
ated over this topology. Session 1 has 7 nodes, session 2 has 5
nodes. They have the same demand as 100. The unicast path be-
tween any pair of nodes with each session is determined by shortest-
path routing.

Table 2 shows the result of MaxFlow with different approxima-
tion ratios. The overall throughput is the aggregate receiving rate of
all session members, i.e., (Rate of Session 1)·6+(Rate of Session 2)·
4. From the data, we have the following observations. First, the cal-
culated optimal throughput slightly increases as we tighten the ap-
proximation ratio. Second, the number of trees needed to achieve
it also increases with a trend of accelerated speed, although not
always increasing. We notice that session 1 has more trees than
session 2 does. However, considering the exponential growth of
the solution space (|Si||Si|−2 possible trees for session Si), this
number is only a small portion (397 out of 75 = 16807, 2.36%),
compared to the same value for session 2 (44 out of 53 = 125,
35.2%). Third, the running time of the algorithm grows quadrat-
ically as the approximation ratio increases (recall the 1

ε2
factor in

the running time analysis, shown in Theorem 1). Finally, the rate of
session 1 is much greater than session 2. This is because the nature
of MaxFlow (maximizing overall throughput) makes it to prefer
the session of a larger size, since increasing the rate of session 1
by a certain amount brings more benefits than doing the same to
session 2. This naturally leads to the algorithm for maximum con-
current flow problem in the next subsection, which considers the
issue of fairness.
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Figure 2: Overlay Tree Rate Distribution (MaxFlow)

Another interesting observation may be drawn from Fig. 2, which
plots the accumulative rate distribution among all overlay trees for
session 1 and 2. In both figures, 90% of the throughput is concen-
trated in less than 10% of the trees. We refer to this phenomenon
as asymmetric rate distribution. We will discuss more on this issue
towards the end of this section.

3.3 Algorithm for the Maximum Concurrent
Flow Problem



Approximation Ratio 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
Rate of Session 1 163.00 163.53 163.81 164.34 164.60 164.95 165.27 165.62 165.97 166.32
Rate of Session 2 93.16 93.04 93.14 93.18 93.20 93.25 93.26 93.28 93.31 93.32
Overall Throughput 1350.63 1353.38 1355.44 1358.75 1360.45 1362.69 1364.64 1366.83 1369.07 1371.22
Number of Trees in 210 220 252 273 271 291 319 323 363 397
Session 1
Number of Trees in 28 33 31 34 35 32 37 40 42 44
Session 2
Running Time (number 2940 3606 4552 5916 8008 11482 17856 31620 70926 282266
of MST operations)

Table 2: Experiment Result of MaxFlow

Again, we first formulate the dual of M2 as follows.

D2 : minimize
X
e∈E

ce · de (10)

subject to
X
e∈E

ne(t
i
j) · de ≥ li, t

i
j ∈ Ti, i = 1, . . . , k

kX
i=1

li · dem(i) ≥ 1

de ≥ 0,∀e ∈ E, li ≥ 0, i = 1, . . . , k

D2 corresponds to the problem of assigning length de to each
edge e ∈ E and weight li to each session Si, such that for Si, the
length of any spanning tree in Ti is at least li, and the weighted
sum of li by dem(i) over all sessions is at least 1. By LP duality
theory [6], the minimum of D2 is the maximum of M2. Here, de

represents the marginal cost of using an additional unit of capacity
of e, and li represents the marginal cost of not satisfying another
unit of demand of Si.

MaxConcurrentFlow
1 ∀e ∈ E, de ← β/ce

2 f i
j ← 0, ti

j ∈ Ti, i = 1, . . . , k
3 while

P
e∈E ce · de < 1

4 for i = 1 to k do
5 dem′(i) ← dem(i)
6 while

P
e∈E ce · de < 1 and dem′(i) > 0

7 t ← minimum overlay spanning tree in Ti using de

8 c ← min{dem′(i), mine∈t
ce

ne(t)
}

9 dem′(i) ← dem′(i) − c
10 f(t) ← f(t) + c

11 ∀e ∈ t, de ← de(1 + εne(t)c
ce

)

12 end while
13 end while

Table 3: Algorithm for Maximum Concurrent Flow Problem

The algorithm for the maximum concurrent flow problem, hence-
forth referred to as MaxConcurrentFlow, is shown in Table 3. Ini-
tially, we set de = β/ce for each edge e ∈ E, and fi

j = 0 for each
tree ti

j in each session Si. The algorithm proceeds in phases. In
each phase, there are k iterations. In iteration i, the objective is to
route dem(i) units of flow inside Si. This is done in steps. In one
step, an “minimum overlay spanning tree” t is computed the same
way as in MaxFlow. We then send along t the amount of traffic
equal to its bottleneck capacity. If the bottleneck capacity already
exceeds the remaining demand dem′(i), we only send dem′(i)
along t. Finally, for each edge e going through t, de is augmented
the same way as in MaxFlow. The entire procedure stops when the

objective function value of D2 is at least one:
P

e∈E ce · de ≥ 1.
Following the same way as Garg and Konemann [11], we prove the
following sequence of lemmas. Here, f∗ is the result returned by
the algorithm. OPT is the optimal value of D2 as well as M2.

Lemma 4: If OPT ≥ 1, scaling the final flow by log1+ε 1/β

yields a feasible primal solution of value f∗ = t−1
log1+ε 1/β

, t being

the number of phases the algorithm takes to stop.

Lemma 5: If OPT ≥ 1, then the final flow scaled by log1+ε 1/β
has a value at least (1 − 3ε) times OPT , when β = (|E|/(1 −
ε))−1/ε.

Lemma 6: If OPT ≥ 1 and β = (|E|/(1− ε))−1/ε, MaxCon-
currentFlow terminates after at most t = 1 + OPT

ε
log1+ε

|E|
1−ε

phases.

These lemmas require that OPT ≥ 1. The running time of
the algorithm also depends on OPT . Thus we need to ensure that
OPT is at least one and not too large. Let ζi be the maximum
flow value of commodity Ki when all other commodities have zero
flow. Let ζ = mini

ζi
dem(i)

. Since at best all single commodity
maximum flows can be routed simultaneously, ζ is an upper bound
on f∗. On the other hand, routing 1/k fraction of each commodity
flow of value ζi is a feasible solution, which implies that ζ/k is a
lower bound on OPT . To ensure that OPT ≥ 1, we can scale the
original demands so that ζ/k is at least one. However, by doing so,
OPT might be made as large as k, which is also undesirable.

To reduce the dependence on the number of phases on OPT , we
follow the same technique adopted in [11] and [12]. If the algo-
rithm does not stop after T = 2

ε
log1+ε

|E|
1−ε

phases, it means that
OPT > 2. We then double demands of all commodities, so that
OPT is halved and still at least 1. We then continue the algorithm,
and double demands again if it does not stop after T phases.

Lemma 7: Given ζi for each commodity Ki, the running time
of MaxConcurrentFlow is O( log |E|

ε2
(2k log k + |E|)) · Tmst.

Theorem 2: The total running time of MaxConcurrentFlow is
O( 1

ε2
[log |E|(2k log k+ |E|)+k|E|(log(|Smax|−1)+log U)]) ·

Tmst.

3.4 An Experiment (Part Two)
We conduct a simple experiment to illustrate how our algorithm

works, based on the same setting as introduced in Sec. 3.2.
Table 4 shows the results of MaxConcurrentFlow with differ-

ent approximation ratios. Here, we present the running time as the
summary of two parts. The first part is the running time of the al-



Approximation Ratio 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
Rate of Session 1 131.77 131.85 132.07 132.27 132.46 132.58 132.78 132.89 133.05 133.20
Rate of Session 2 98.07 98.16 98.44 98.65 98.87 99.05 99.28 99.43 99.64 99.82
Overall Throughput 1182.89 1183.77 1186.17 1188.25 1190.25 1191.72 1193.80 1195.10 1196.87 1198.48
Number of Trees in 120 122 130 132 134 140 149 148 162 181
Session 1
Number of Trees in 30 31 31 28 29 31 31 30 31 32
Session 2
Running Time (number 1833+ 2303+ 2901+ 3721+ 5004+ 7205+ 11038+ 19903+ 44464+ 176727+
of MST operations) 1376 1703 2135 2794 3767 5389 8393 14935 33292 132672

Table 4: Experiment Results of MaxConcurrentFlow

gorithm shown in Table 3. As just discussed in the last subsection,
the correctness and running time of MaxConcurrentFlow depends
on some a priori knowledge of f∗. To acquire such knowledge,
we first run MaxFlow algorithm for each session separately to ob-
tain their maximum flow rates, then scale their demands such that
f∗ ≥ 1 and is not too large. The overhead of this extra step is
reflected in the second part.

From the data in Table 4, we have the same observation as from
Table 2, except that the rate of session 2 is increased, at the price
of dragging down the rate of session 1. The overall throughput
also drops for the same reason. Note that although session 1 and 2
have the same demand, they are not necessarily required to have the
same rate. The objective of MaxConcurrentFlow is to maximize
the lower bound of any session’s rate, i.e., f∗. In other words,
further lowering the rate of session 1 does not help increasing the
rate of session 2. At this point, it is evident both analytically and
experimentally that, the MaxConcurrentFlow algorithm achieves
weighted max-min fairness, while the weights are identical to the
demands of commodities dem(i).

3.5 Discussions
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Figure 3: Overlay Tree Rate Distribution (MaxConcurrent-
Flow)

Fig. 3 plots the rate distribution among overlay trees returned by
MaxConcurrentFlow. Here, we observe the same asymmetric rate
distribution as in Fig. 2. This implies the possibility of more prac-
tical solutions, in which each session routes its commodity using a
limited number of trees, but still approximates the optimal capacity
utilization at a certain acceptable level. In the upcoming section,
we will discuss the design and performance bounds of this type of
algorithms.

In our experiment, all unicast paths of both overlay sessions
cover 52 physical links. Fig. 4 plots the distribution of link utiliza-
tion. It clearly shows that MaxFlow has stronger ability to utilize
the link capacity than MaxConcurrentFlow. Also in both pictures,
we observe a “stair case” phenomenon, i.e., the edges are grouped
into different sets of distinct congestion levels. Our technical re-
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Figure 4: Link Utilization

port[13] reports our further study on this issue.
Finally, we note that the algorithms presented in this section are

clearly not practical. First, they require that the commodity of each
session can be arbitrarily split, which is not the case in practice.
Second, too many overlay trees are required to support the derived
session rate, even for small-sized sessions. However, with accept-
able running time, they are able to infinitely approximate the theo-
retical optimal point of overlay capacity utilization, against which
the performance of any practical solutions can be quantified. There-
fore, we consider their major role as evaluation and benchmarking
tools, which help us investigate the performance, applicability, and
limitation of multi-tree overlay multicast solutions with fine granu-
larity.

4. APPROXIMATING OPTIMAL CAPACITY
UTILIZATION IN PRACTICAL SETTINGS

In this section, we consider the same problem in more practical
settings. We first remove the assumption that each commodity can
be split in arbitrary ways. Instead, it can only be decomposed into
a finite number of sub-commodities, each with a specified demand.
Second, each session only allows a limited number of trees in par-
allel, for the purpose of controlling management overhead.

4.1 Problem Formulation
In this paper, we focus on the maximum concurrent flow prob-

lem M2, for the purpose of achieving weighted max-min fairness.
We add an integer variable xi

j to formulate this problem. If each
commodity Ki is unsplittable, i.e., it has to be routed along only



one overlay tree, then M2 becomes

M2I : maximize f (11)

subject to
|Ti|X
j=1

f i
j · xi

j ≥ f · dem(i), i = 1, . . . , k

kX
i=1

|Ti|X
j=1

ne(t
i
j) · f i

j · xi
j ≤ ce,∀e ∈ E

|Ti|X
j=1

xi
j = 1, i = 1, . . . , k

f ≥ 0, f i
j ≥ 0, xi

j ∈ {0, 1}, ∀i,∀j

M2I is a 0−1 integer programming problem known as the min-
imum congestion unsplittable flow problem. It can be easily ex-
tended to the case when Ki has to be split into at most M trees.
We can view Ki as M independent commodities which happen to
have the same set of vertices. The sum of demands of these M
commodities equals to dem(i). Plus, each of them can only have
one overlay tree.

Similarly, we can obtain the integer programming problem P2I

for P2 as follows.

P2I : maximize f (12)

subject to
PiX

j=1

f i
j ≥ f · dem(i), i = 1, . . . , k

kX
i=1

|Pi|X
j=1

ne(p
i
j) · f i

j · xi
j ≤ ce,∀e ∈ E

|Pi|X
j=1

xi
j = 1, i = 1, . . . , k

f ≥ 0, f i
j ≥ 0, xi

j ∈ {0, 1}, ∀i,∀j

P2I is NP-hard [14]. M2I is also NP-hard, since P2I is only
a special case of M2I, where all multicast sessions have only two
members.

4.2 A Randomized Rounding Algorithm
If we replace xi

j ∈ {0, 1} with xi
j ∈ [0, 1], M2I becomes M2,

i.e., M2 is the LP relaxation of M2I. Let f be a feasible solution
to M2, then 1/f can be understood as the maximum congestion
over all e ∈ E, if we route dem(i) units of traffic for each com-
modity Ki. Here, the congestion of e is defined as the ratio of total
traffic routed thorough e and ce. The objective of M2 becomes to
minimize the maximum congestion 1/f . If f∗ is the the optimal
objective value to M2, it is clear that the maximum congestion of
any solution to M2I is greater than 1/f∗.

A popular approach to address an integer programming problem
is randomized rounding [15]. In the case of M2I, we first solve
M2, then randomly choose an overlay tree for each commodity
Ki, from the set of trees obtained from the solution to M2. The
algorithm is listed in Table 5.

Here, le denotes the congestion of edge e. Each tree ti is asso-
ciated with an indicator limax to denote the maximum congestion
along itself. lmax is the maximum of all limax. Scaling dem(i) by
limax for each commodity Ki yields a feasible solution to M2I.
Let OPT = 1/f∗ be the optimal congestion, we have the follow-
ing theorem.

Random-MinCongestion
1 ∀e ∈ E, le ← 0
2 Solve M2 with MaxConcurrentFlow
3 for i = 1 to k do

4 Choose tij with probability
fi

j
P|Ti|

j=1 fi
j

as the overlay tree ti for commodity Ki

5 ∀e ∈ ti, le ← le + ne(ti)dem(i)
ce

6 for i = 1 to k do
7 limax ← maxe∈ti le
8 lmax ← maxk

i=1 limax

Table 5: Randomized Rounding

Theorem 3 Given 0 < ε < 1, if OPT ≥ 3 ln(|E|/ε), Random-
MinCongestion returns a solution with maximum congestion O(OPT+p

3 · OPT · ln(|E|/ε)), with probability at least 1 − ε.

Note that to obtain a small ε, OPT needs to be sufficiently large.
This can be achieved by scaling up the demands of all commodities.
However, doing so results in a worse approximation bound.

4.3 An Online Algorithm
The randomized rounding algorithm is of little practical value, as

it needs to first work on the LP relaxation of our problem, then ran-
domly select a subset of solutions and reroute all demands. We are
interested to find a fast combinatorial algorithm, which has slightly
worse approximation ratio, but routes the demand in only one iter-
ation for each multicast session. Moreover, an online algorithm is
desired, which can accept new sessions on the fly. In other words,
upon the joining of a new session, the algorithm accumulatively
adds routes for the new session, and only scales down the flow rate
of existing sessions, instead of rerouting all sessions.

We extend Garg and Konemann’s scheme [11] to the domain of
unsplittable flow problem, and propose an online algorithm with
approximation ratio log(E), the best bound known for on-line al-
gorithms so far[16]. The algorithm also works for P2I, the source-
destination unsplittable minimum congestion problem, with the same
bound. It is listed in Table 6.

Online-MinCongestion
1 ∀e ∈ E, de ← β/ce, le ← 0
2 f i

j ← 0, ti
j ∈ Ti, i = 1, . . . , k

3 for i = 1 to k do
4 ti ← minimum overlay spanning tree in Ti using de

5 f(t) ← f(t) + dem(i)

6 ∀e ∈ ti, de ← de(1 + ρ ne(ti)dem(i)
ce

),

7 le ← le + ne(ti)dem(i)
ce

8 for i = 1 to k do
9 limax ← maxe∈ti le
10 lmax ← maxk

i=1 limax

Table 6: An Online Algorithm

This algorithm continues to use the edge length assigning func-
tion introduced in Sec. 3. Here, ρ is the step size of the cost update.
During iteration i, the algorithm finds the minimum overlay span-
ning tree ti using the current edge length de, then routes dem(i)
units of traffic along ti. The algorithm associates with each com-
modity Ki an indicator limax to denote its maximum congestion
level. Finally, scaling dem(i) by limax for each commodity Ki



returns a feasible solution. Let OPT = 1/f∗ be the optimal con-
gestion, we have the following theorem.

Theorem 4 Online-MinCongestion returns a solution with max-
imum congestion O(OPT · log |E|) if OPT ≥ 1/2, and O(2 ·
OPT + log |E|) otherwise.

To ensure the approximation ratio outlined in Theorem 4 when
f∗ is unknown, we can scale down all demands to guarantee that
f∗ ≥ 2. Recall that the “no-bottleneck” assumption can be achieved

when maxk
i=1 dem(i)·|Smax|

mine∈E ce
= 1. This means that if there is only

one session, it can be routed such that f∗ ≥ 1. Since the worst case
happens when all k sessions are routed through one single link, we

can ensure that f∗ ≥ 2 by letting maxk
i=1 dem(i)·|Smax|

mine∈E ce
= 1/2k.

4.4 An Experiment (Part Three)
We continue to use the same experiment setting in Sec. 3.2 and

3.4 to illustrate our algorithms. We test the performance of our al-
gorithms by setting the limit on the number of trees from n = 1 to
20. For the random algorithm, we first run MaxConcurrentFlow
with approximation ratio 95% to return a set of overlay trees that
achieves optimal capacity utilization, then randomly choose n trees
from the set, such that the probability a tree is selected is propor-
tional to its contribution to the overall session rate. We repeat this
procedure for 100 times, then report the average results. For the
online algorithm, we replicate session 1 and 2 by (n − 1) times,
so that there are a total of 2n independent sessions. All these ses-
sions have the same demand as 1. They join the network following
a random sequence. We create 100 such sequences and report the
average results.
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Figure 5: Throughput (Random and Online)

Fig. 5 shows that both algorithms greatly outperform their ap-
proximation lower bounds. In Fig. 5 (a), when n = 20, the overall
throughput of the random algorithm exceeds 1000, more than 80%
of the optimal throughput. It is even outperformed by the online
algorithm, if we set ρ ≥ 30. We also choose to show the rate
of session 2 in Fig. 5 (b), since it reflects whether the algorithm
is able to preserve fairness by minimizing the rate difference be-
tween session 1 and 2. Similar to Fig. 5 (a), when n = 20, both
algorithms approximate the optimal objective value f∗ = 99.82
derived in Sec. 3.4, by more than 80%. Also in both figures, we
observe a clear trend of diminishing return of throughput growth as
we increase the number of trees.

Fig. 6 shows the number of trees both algorithms actually return.
Note that although we set a limit to the number of trees, say n = 20,
in both algorithms, the same tree could be selected more than once.
Comparing Fig. 6 with Fig. 5, we find out that the algorithm is
able to achieve higher throughput as it diversifies its tree selection.
This experiment shows that both algorithms efficiently utilize the

asymmetric rate distribution among overlay trees, as observed in
Fig. 2 and 3, by selecting trees of higher rates.
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Figure 6: Number of Trees (Random and Online)

Finally, we discuss the role of ρ in the online algorithm. ρ con-
trols the growing speed of the length of a physical link. Clearly,
a large ρ rapidly increases a link e’s length when certain traffic is
routed along e. This increases the probability that, when a new ses-
sion joins, e will be unlikely to be included in the minimum overlay
spanning tree, along which the traffic will be routed. In this way,
other under-utilized links with smaller lengths will be selected.

In our proof to Theorem 4, in order to derive the desired approx-
imation bound, we require that ρ < f∗. However, in this experi-
ment, when we set ρ = 200, which is greater than f∗ = 99.82,
it does not hurt the performance of our algorithm, although it does
not improve it either. At the time of this writing, we are unable
to determine whether it is only a coincidence, or there exists alter-
native proofs which could remove such a condition. In fact, our
algorithm already achieves the best performance when ρ is set to
approximately equal to f∗. However, since f∗ cannot be known a
priori in practice, it is still preferable if ρ is not internally connected
with f∗.

5. THE IMPACT OF IP ROUTING IN ACHIEV-
ING OPTIMAL CAPACITY UTILIZATION

So far, we have explored several important issues concerning op-
timal capacity utilization in overlay network. The corresponding
problems, as well as their solutions, have been presented. Another
important issue we like to investigate is the role IP routing plays in
all previous problems we have studied.

In Sec. 2, we define the overlay multicast tree as a tree spanning
all members within a multicast session, where each tree link corre-
sponds to the fixed IP route between its two end nodes. Obviously,
such a routing strategy does not help to improve the capacity uti-
lization of the physical network. Those “hot” links traversed by
many IP routes can be easily saturated, while other ones selected
by only few IP routes stay underutilized. Then our question is: how
much is the impact of IP routing in deriving the achievable capacity
utilization in overlay networks?

To answer this question, we first remove our previous assump-
tion that any pair of nodes must route traffic via their pre-determined
IP route. Instead, they can dynamically choose any unicast path
between them. Then the overlay multicast tree has to be redefined
as a tree spanning all members within a multicast session, where
each tree link corresponds to an arbitrary unicast path between its
two end nodes. Consequently, the previous studied problems M1,
M2, M2I, as well as their duals, have to be reformulated to ac-
commodate such a redefinition. Note that the essence of algorithms
(Table 1, 3, 5 and 6) to all these problems is to assign length de to
each physical edge e ∈ E, such that the length of any overlay span-
ning tree, or the weighted sum of any overlay spanning tree from



each session, is at least 1. Thus, if we can find a way to calculate
the minimum overlay spanning tree according to its new definition
in polynomial time, then all previous algorithms can be applied to
this new problem. Also, all previous theoretical conclusions hold
(Lemma 1 to 7, Theorem 1 to 4), with the only change occured
to Tmst, the running time of minimum overlay spanning tree con-
struction algorithm.

We now show how this algorithm works. For a multicast ses-
sion Si, we first construct an overlay graph for Si, a complete
graph Gi = (Si, Ei). Each edge (vi

m, vi
n) ∈ Ei corresponds to

the shortest unicast route between vi
m and vi

n based on the current
length assignment to each physical edge e ∈ E. Then the length of
(vi

m, vi
n) is the sum of lengths of all physical edges along this route.

To calculate the lengths of all overlay edges in Ei, we can run the
shortest path algorithm on each of them. Alternatively, using short-
est path tree algorithm, we can get the lengths of all overlay edges
from a given node (the root of the shortest path tree) to all other
nodes. Thus, the running time of this operation is |Si|Tspt, Tspt

being the running time of the shortest path tree algorithm (The run-
ning time of Dijkstra’s algorithm is |E| log |V |). After this step,
we can obtain the minimum overlay spanning tree by running the
minimum spanning tree algorithm on Gi. Therefore, the running
time of the new algorithm exceeds the old algorithm by |Si|Tspt,
which is the overhead to calculate the length of each overlay edge
in Ei.

Using the new algorithm, we are able to derive the optimal ca-
pacity utilization for a given group of overlay multicast sessions
located within a given network, assuming arbitrary unicast rout-
ing. Comparing this result to the one obtained by the old algorithm
which assumes IP unicast routing, we are able to quantify the im-
pact of IP routing at constraining the optimal capacity utilization.
If the difference between two results is significant, it means that IP
routing is a major factor limiting the optimal performance of over-
lay multicast. Otherwise, it means that the impact of IP routing is
minor, which implies that the major factors constraining the perfor-
mance are the intrinsic properties of Internet, such as its topology.

6. RELATED WORK
Due to the difficulty of deployment of IP multicast, algorithms

promoting application-layer overlay multicast have recently been
proposed as remedial solutions, focusing on the issue of construct-
ing and maintaining a multicast tree. The common objective is
to perform multicast with only unicasts between end hosts, and to
minimize the inefficiency brought forth by link stress and stretch.
Narada [1], for example, constructs trees in a two-step process: it
first constructs an efficient mesh among members, and in the sec-
ond step construct a spanning tree of the mesh. More recently, re-
searchers have focused on designing scalable overlay tree construc-
tion algorithms, using tools including Delaunay Triangulations [17]
and organizing members into hierarchies of clusters [18].

Perhaps this work is more akin to two recent research papers
that seek to utilize residual bandwidth availability by building mul-
tiple overlay multicast trees: CoopNet [19] and SplitStream [2].
CoopNet and SplitStream have proposed to utilize multiple multi-
cast trees to deliver striped data, using either multiple description
coding or source erasure codes. CoopNet proposes a centralized
algorithm to facilitate using multiple multicast trees from different
sources, and does not feature explicit built-in support of either max-
imizing capacity utilization, or achieving certain fairness. In con-
trast, SplitStream has proposed a decentralized algorithm to con-
struct a forest of multicast trees from a single source. The main
idea is to build multiple interior-node-disjoint trees, which guaran-
tee that each node serves as internal forwarding nodes in only one

of the trees. SplitStream is developed based on Scribe, a tree-based
multicast algorithm based on structured overlay networks.

This paper distinguishes from these previous work in many im-
portant aspects. Starting from problem formulations, our algo-
rithms are designed from the ground up to evaluate the feasibility
of constructing the best possible the data dissemination topologies
beyond a single tree, and to achieve the optimum within certain ap-
proximation factors. We believe that the theoretical and experimen-
tal insights offered in this paper is important and noteworthy, since
it provides guidance towards the design of realistic and distributed
algorithms to optimize the performance of the constructed topolo-
gies. Towards this goal, our paper culminates in the proposal of
an online approximation algorithm, which also meets the require-
ments of minimizing computation when new sessions are created.
In addition, we consider the case where multiple concurrent ses-
sions compete for overlay network capacities, where fairness con-
straints must be explicitly incorporated. In contrast, there are no
provisions in both CoopNet and SplitStream regarding making such
informed decisions with respect to topology construction, and ex-
isting algorithms are proposed based on intuitions rather than sound
theoretical foundations. Similarly, none of the previous work has
considered the impact of fairness on achieving optimized capacity
utilization.

Finally, Kostic et al. [3] and Byers et al. [4] have both proposed
to construct an overlay mesh of concurrent data dissemination con-
nections, each sending a (hopefully) disjoint set of data. As a node
receives data from these connections and merges incoming data,
throughput may be significantly improved due to the larger number
of concurrent connections. Byers et al. has discussed the algo-
rithmic details of merging differences from different downloading
sources, while Kostic et al. has proposed an elaborate algorithm
that allows nodes to send data to different points in the overlay, as
well as to locate and recover missing data items. Both work had
similar objectives to ours, in the sense that they all seek to improve
the bandwidth of data dissemination.

There are, at least, two significant differences comparing our
work to these approaches. First, while both [3] and [4] need to
assume large or unlimited buffers at each overlay node in order to
store elements of data to potentially serve others, we do not make
this assumption. While this assumption is certainly valid when file-
based rather than in-memory buffers are used, it unavoidably lacks
the support for delay-sensitive data dissemination, such as real-time
streaming of multimedia or stock quotes. Second, our work shares
the advantage of these approaches that the network capacity is as
saturated as possible, without the complexity of locating missing
data items from a potentially large number of possible hosts —
data may only arrive from upstream nodes in the existing trees in
the session.

7. CONCLUDING REMARKS
In this paper, we explore the entire spectrum of the multi-tree

design philosophy when it comes to constructing data dissemina-
tion topologies in overlay networks. We first presents an array of
combinatorial approximation algorithms to derive the optimal ca-
pacity utilization of overlay multicast when one or multiple com-
peting sessions are present. Then we study a more realistic version
of the same problem, where data flows can only be split into a spec-
ified number of subflows of fixed rates, and present a randomized-
rounding and an online algorithm to address this problem. Finally,
we revise all proposed algorithms to accommodate the case when
arbitrary dynamic unicast routing, instead of fixed IP routing, is
employed in the underlying physical network. By comparing re-
sults of two classes of algorithms in the same network setting, we



are able to quantify the impact of IP routing at constraining the
optimal capacity utilization of overlay multicast.

Besides the simple experiment reported in this paper, we have
conducted extensive simulations on synthetic and real Internet topolo-
gies, whose results can be found in [13]. Under our experimen-
tal settings, we have the following major findings. (1) Multi-tree
solution can only utilize the capacity of the network by a small
percentage (generally less than 50%), due to highly unbalanced
link utilization ratio (recall Fig. 4). (2) Enforcing max-min fair-
ness among competing sessions and maximizing overall through-
put can be achieved simultaneously. (3) A simple online algorithm
can largely approximate the upper bounds (more than 90%) of op-
timal throughput and optimal minimum session rate, with fairly
small number of trees (around 20 to 30). (4) When repeating the
same experiment without the restriction of IP routing, the perfor-
mance results only improve by a small percentage generally less
than 5%. This finding suggests that it might be the intrinsic prop-
erty of current Internet topology that mainly constrain the perfor-
mance of overlay multicast.

To the best of our knowledge, we are the first to discuss the im-
portant open problems of overlay fairness and capacity utilization,
which may become a particularly practical and fertile area of re-
search due to the exponentially increasing volume of active peer-
to-peer data dissemination sessions being constructed in the Inter-
net.
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