
Maximizing Container-based Network Isolation in
Parallel Computing Clusters

Shiyao Ma∗, Jingjie Jiang∗, Bo Li∗, and Baochun Li†
∗Department of Computer Science and Engineering, Hong Kong University of Science and Technology

†Department of Electrical and Computer Engineering, University of Toronto

Abstract—Data-parallel applications, especially those associ-
ated with user-facing web services, have struggled to enhance
their worst case performance. It is therefore important to improve
the minimum amount of resources guaranteed for applications
in a cluster. Existing cluster management frameworks, however,
provide isolation for computation resources (such as CPU)
only, and are oblivious to network isolation guarantees. In this
paper, we design, implement and evaluate Libra, a new cluster
management framework that helps to maximize the isolation
guarantee for the bandwidth requirements from applications.
We start with a theoretical analysis of the network sharing
problem, which contains two key steps: container placement
and bandwidth allocation. By collecting the status of access
links and the bandwidth demand of applications, we coordinate
the placement of containers to minimize the system bottleneck
such that the bandwidth guarantee for applications can be
optimized. We further embrace host-based rate limiting to ensure
such maximized bandwidth guarantee can be reached without
hurting network utilization. Both our testbed-based experiments
and large-scale simulations demonstrate that Libra significantly
improves the network isolation guarantee: in comparison with ex-
isting cluster managers and network schedulers, the performance
gain is more than 105.59%. Meanwhile, it improves application
performance by 57.71% and maintains high network utilization.

I. INTRODUCTION

Currently, cluster managers from both the academia and
industry are following the trend of resource isolation. Mesos
[1] and the cluster management schemes used in production
clouds [2] [3] support isolating computation resources (i.e.,
CPU and memory) and storage resources (i.e., disk I/O) via
lightweight containers [4]. Applications can independently
schedule their tasks onto the containers allocated by the cluster
manager. Such containerized deployment guarantees that tasks
from different applications are securely isolated from each
other. To provide consistent and predictable performance,
the cluster manager guarantees the amount of aggregated
computation resources that tasks in a container can access.

On the other hand, while network resources are crucial
for application performance, they are not well orchestrated
or isolated. The cluster manager can only set a maximum
limit to the amount of bandwidth and the number of ports
each container can use. Such a restriction only prevents
containers from exhausting network ports or consuming too
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(a) The isolation guarantees achieved are 0.417, 0.5 and 0.5.
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Fig. 1. A motivating example: an application A1 requests for c11 and c12,
while A2 desires c21 and c22. Placement of containers in (a) and (b) lead
to different isolation guarantee and utilization of downlinks (DLs) with the
same set of bandwidth allocation schemes.

much bandwidth [1]. Rather than maximum bandwidth, it is
commonly acknowledged [5], [6], [7] that applications expect
guaranteed minimum bandwidth, i.e., an isolation guarantee.
If it is not provided, applications are not able to estimate the
worst-time completion time of the tasks involving network
transfers [8]. Such a lack of predictability negatively affects
scheduling efficiency and application performance since the
actually achieved bandwidth can be arbitrarily small.

As illustrated in a recent work on bandwidth allocation
schemes (i.e., HUG [5]), optimal shuffle schedules, long-
running services and real-time streaming applications exhibit
correlated demands on network resources of their constituent
containers. The isolation guarantee to an application is thus de-
fined as the minimum demand-normalized rate allocation over
all of its containers. For instance, in Fig. 1, an application A1

needs two containers c11 and c12 with demands for downlink
bandwidth equal to 1.2 and 0.2 Gbps respectively, while A2

needs c21 and c22 with 0.8 and 0.4 Gbps downlink bandwidth.



Both machines have 1 Gbps downlink. As shown in Fig. 1(a),
the isolation guarantee that A1 achieves under DRF (dominant
resource fairness) [9] or HUG is min( 0.61.2 ,

0.1
0.2 ) = 0.5.

However, the schemes mentioned in the example as well as
other solutions [6], [7] only restricted themselves to bandwidth
allocation after containers are launched for applications. In
essence, how to place the containers for concurrent applica-
tions determines the best isolation guarantee that any band-
width allocation scheme can achieve. As shown in Fig. 1(b),
by changing the placement of c21 and c22, the isolation of A1

and A2 under HUG [5] and DRF [9] both increase to 0.75
1.2

or 0.5
0.8 = 0.625. Besides, even without allocating the spared

bandwidth, DRF can achieve better link utilization as well.

In this paper, we propose to maximize the minimum
bandwidth guarantee that applications can achieve through
isolation-aware container placement and bandwidth alloca-
tion under a unifying framework. In a multi-tenancy cluster,
it is non-trivial to handle the possibly conflicted demands
from concurrent applications. On one hand, inter-application
fairness is obligatory for cluster management [9]. On the
other hand, cluster operators strive for high utilization of
resources. Admission control mechanisms [33] that sacrifice
network efficiency for isolation guarantee are thus undesirable.
Finally, the cluster manager must promptly react to dynamic
application demands and fluctuating network conditions to
ensure applications can always achieve desirable performance.

Network sharing consists of two inter-dependent steps. The
containers first have to be launched onto machines based on
their computation and network demands. The flows of the
containers then need to be rate limited, such that isolation guar-
antees both between and within applications can be achieved.
Through theoretical analyses within both steps, we propose
a container placement algorithm that finds the local optimal
solution and a rate limiting algorithm that reaches the isolation
guarantee derived in the first stage.

Our major contributions lie in the fact that we reinforce
existing cluster management systems by integrating isolation-
aware container placement, and improve the optimal net-
work isolation that any bandwidth allocation mechanisms
can achieve. By formulating the container placement into
a bottleneck generalized assignment problem [10], we have
found that the key to optimal isolation guarantee is to min-
imize the normalized system bottleneck. Through combining
isolation-aware container placement and bandwidth allocation,
we effectively maximize the isolation guarantee of applications
and obtain inter-application fairness without sacrificing link
utilization. Our extensive experimental results demonstrate
the effectiveness of Libra: compared to the state-of-the-art
bandwidth allocation scheme (i.e., HUG [5]) on top of a
network-unaware cluster manager (i.e., YARN [2]), Libra
improves network isolation guarantee by 17.88% - 139.80%,
and improves application performance by up to 68.05%. Libra
can be automatically deployed using our customized plugins,
ready to be used in production clusters.

II. BACKGROUND AND MOTIVATION

A. Network Sharing in the Cloud

According to the statistics collected in production data cen-
ters [7], core networks seldom experience severe or persistent
congestion, whereas network edges are often fully occupied.
Given such observations, we suppose congestions only occur
at network edges for simplicity. The network resources that
we care about are thus restricted to the bandwidth of access
links [5], [7]. Specific network topologies (e.g., [11], [12]) or
routing protocols [13], [14] have no influence on the network
sharing problem.

Container-based resource sharing can perform either in an
offer-oriented [1], [3] or a request-based manner [2]. Although
the former is simple and flexible, the cluster manager might
be frequently rejected by applications due to offering the
undesired containers. On the other hand, request-driven clus-
ter managers are more efficient by allowing applications to
specify the preferred locations, relative priorities and resource
requirements of their containers. Our proposal is based on
the request-driven resource sharing model by further enabling
applications to express their demands for network bandwidth
on access links.

As a datacenter network involves uplinks and downlink on
multiple machines, the bandwidth demands of an application
are often correlated and elastic [5], [15] across these links.

Specifically, an application Ai requests multiple containers
cij , each of which is associated with a demand vector vij =
(cij , rij , dij , uij), representing the demand for CPU, RAM,
downlink bandwidth and uplink bandwidth. For a machine
Mk with ck CPU cores, rk memory space, dk downlink
bandwidth and uk uplink bandwidth, it is able to launch cij
if its available computation resources are sufficient. However,
the bandwidth demands are elastic in that the containers can
be launched onto a machine even if its available bandwidth
is less than the demand. On the other hand, if there is still
bandwidth left idle after allocation, the containers can use
more bandwidth than its original demand. Apart from such
elasticity, the bandwidth demands of containers within an
application are also correlated: for every dij bits cij sends,
another container cij′ of Ai should at least send dij′ bits.

To handle the heterogeneous capacities of machines, we
further define a machine-specific demand vector vk

ij for each
container. The element of vk

ij is normalized through dividing
the corresponding element in vij by the relevant capacity of
Mk. The network isolation guarantee of an application can
then be formally defined by the minimum demand-normalized
share of its constituent containers:

Gi = min
cij∈Ai

min(
αk
ij

ukij
,
βk
ij

dkij
) (1)

where αk
ij and βk

ij are the bandwidth share allocated to
cij on the uplink and downlink bandwidth of machine Mk.
Intuitively, the isolation guarantee of an application captures
its progress and predicts its performance. Table I summarizes
our notations and definitions.



TABLE I
SUMMARY OF NOTATIONS AND DEFINITIONS.

Notation Definition

B the aggregated demands of the system bottleneck
Ai = {cij} an application consisting of multiple containers

Gi the network isolation guarantee that Ai achieves
ωi the weight assigned to Ai based on its category

Mk a physical machine with different amount of resources
(ck, rk, dk, uk)

Uk, Dk the aggregated demands for uplink and downlink band-
width of Mk

vij ,v
k
ij cij ’s absolute and machine-normalized demand vectors

uij , u
k
ij

the absolute and machine-normalized demand for uplink
bandwidth of cij

dij , d
k
ij

the absolute and machine-normalized demand for down-
link bandwidth of cij

xkij
a 0-1 variable indicating whether cij is placed onto
machine Mk

αk
ij , β

k
ij

the machine-normalized allocation for cij on machine
Mk (corresponding to uplink and downlink)

γkij the actual consumption of bandwidth by flows of cij

B. Placement of Containers Matters

To optimize the minimum isolation guarantee, we need to
consider two indispensable procedures of network sharing.
Firstly, the cluster manager needs to decide where to place the
containers required by each application. Secondly, the cluster
manager should restrict the bandwidth used by each container
to achieve the optimal isolation guarantee under the given
container placement.

Although some efforts have been made [5], [6], [7] to
improve the second phase, the isolation-aware container place-
ment is not well investigated. In essence, container placement
determines the optimal network isolation that any bandwidth
allocation strategy [5], [6], [7] can achieve. To better under-
stand why this is the case, let’s give a comprehensive analysis
on the example in Fig. 1.

The placement in Fig. 1(a) launches two containers c11
and c21 on M1, and launches containers c12 and c22 on
M2. Since the bandwidth on each link can be viewed as
a type of resources, DL1 is the dominant resource for both
A1 and A2. To achieve dominant resource fairness [9], c11
and c21 proportionally share the bandwidth of DL1 based
on their demands. As a result, c11 and c21 get allocated
0.6/1.2 (0.4/0.8) = 0.5 of their demands. The containers
using DL2 should also be allocated with 0.5 of their demands
as restricted by DRF. Even if the bandwidth allocation strategy
in HUG [5] can improve link utilization through re-allocating
the unallocated bandwidth on DL2, the isolation guarantee is
still restricted by the share c11 and c21 can get. In contrast,
if we launch c11 and c22 on the first machine, and launch
c21 and c12 on the second machine, every container can get
allocated 0.75/1.2 = 0.625 of its demand. Meanwhile, the
link utilizations achieved by strategy-proof strategies [5], [9]
are also improved before applying additional backfilling.

From this example we have three important observations.
Firstly, the optimal isolation guarantee that an bandwidth

allocation strategy can achieve is determined by the placement
of containers for concurrent applications. Secondly, although
inter-application fairness is beneficial, it is unnecessary to
force every container within a single application gets allo-
cated with an equal portion of its demand. A strategy is
thus needed to allocate the spare bandwidth to improve link
utilization. Most importantly, this example implies that the key
to maximum isolation guarantee is to minimizing the system
bottleneck link, whose aggregated bandwidth demand is the
maximum across the network. We next theoretically analyze
the network sharing problem in Sec. III.

III. EFFICIENT NETWORK ISOLATION

In this section, we mathematically formulate the two-stage
network sharing problem as two optimization problems. We
then propose efficient algorithms to place containers and
allocate bandwidth separately.

A. Problem Formulation

As stated in Sec. II, the network sharing consist of two
inter-dependent phases: placement of containers and allocation
of link bandwidth. On one hand, the placement of containers
determines the best guarantee that the subsequent bandwidth
allocation strategy can achieve. On the other hand, the actual
guarantee achieved helps to evaluate the placement strategy.

We define two set of variables Uk and Dk, which represent
the aggregated demands for uplink and downlink bandwidth
of each machine:

Uk =
∑
i

∑
j

ωiu
k
ijx

k
ij , Dk =

∑
i

∑
j

ωid
k
ijx

k
ij (2)

where xkij is a 0-1 variable to indicate whether a container cij
is launched on Mk. ωi ∈ [0, 1] is the weight assigned to Ai

to differentiate among various types of applications. Based
on such definitions, we revisit the example in Fig. 1, and
calculate the demands for downlinks of the two machines.
As shown in Fig. 2, different placements of containers lead
to different machine-specific demands. Combined with the
isolation guarantee achieved with two placement plans, we
find that a more balanced distribution (on the right) of network
demands lead to better network isolation for both applications
(0.625 as opposed to 0.5).
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Fig. 2. Different placements of containers may lead to different network status
(ω1 = ω2 = 1): the distribution of machine-specific demands is crucial.



Indeed, if we redeem the bandwidth of each link as a type
of resources, each application should satisfy the following
constraint to achieve dominant resource fairness [5], [9]:

Gi =
ωi

max
k

max(Uk, Dk)
(3)

To maximize such isolation guarantee, we need to minimize
the load of the bottleneck link k∗ = argmaxk(max(Uk, Dk)).
This coincides with our previous observation from the exam-
ple. However, the seemingly simple objective turns out hard to
achieve given the heterogeneous capacities of machines in the
cluster. We formulate the container placement problem with
the objective of minimizing the system bottleneck as below:

minimize B (4)

Subject to:

∑
i,j

ukijx
k
ij ≤ B,

∑
i,j

dkijx
k
ij ≤ B, ∀k (4a)∑

i,j

rkijx
k
ij ≤ 1,

∑
i,j

ckijx
k
ij ≤ 1, ∀k (4b)∑

k
xkij = 1 ∀i, j (4c)

xkij ∈ {0, 1} (4d)

However, maximizing the upper bound of isolation guar-
antee is incomplete, without per-host rate limiting, all the
flows go through the same link will still share the available
bandwidth equally. We need to further embrace an allocation
strategy to determine the bandwidth that each container can
use. The objective is to achieve the best isolation guarantee
we derived from the container placement problem, while try to
improve link utilization as much as possible. The bandwidth
allocation problem is stated below

maximize
∑
i,j,k

γkij (5)

Subject to:∑
i,j

αk
ij ≤ 1,

∑
i,j

βk
ij ≤ 1,

∑
i,j

γkij ≤ 1, ∀k (5a)

Gi =
ωi

B∗
αk
ij , β

k
ij , γ

k
ij ∈ (0, 1] (5b)

γkij represents the actual consumption of bandwidth by flows
from the container cij . We next illustrate our solution to the
two-stage network sharing problem.

B. Network Sharing Strategies

It is easy to see the container placement problem stated in
Eq. (4) is intractable due to the binary variables xkij . Indeed,
if we regard each machine as an agent and each container as a
task, the bandwidth demand of a container can then be viewed
as the processing time an agent needs to process the task. The
problem in Eq. (4) is essentially a multi-resource bottleneck
generalized assignment problem [10], [16]. Although a branch-
and-bound algorithm exists to find the optimal solution [16], it

calls for exponential computation time even if we try to reach
an α-approximate solution (α infinitely approaches 1).

A workaround is to solve the Linear Programming (LP)
counterpart of the container placement problem by relaxing
the integral constraints in Eq. (4d). Base on this fractional
solution, we can further apply rounding and Tabu search [17]
to find feasible solutions within several percent of the optimal
solution [16]. Suppose n is the total number of containers
desired by applications and m is the number of machines in
the cluster. The LP relaxation problem has n+4m constraints
and nm variables. The complexity of solving the LP relaxation
problem is O(n3.5n+nm3.5). In a large cluster, solving such
a global problem can still be very time-consuming.

The good news is that n is small enough in practice,
given that applications do not come at the same time but one
after another. Unfortunately, there are still too many machines
to choose from. To reduce the overhead needed to place
containers, we select a subset of machines with the most
remaining bandwidth as the candidate machines for the in-
coming application. We can then solve the container placement
problem in this reduced scope. The size of the candidate set
is determined by the number of containers needed by the
incoming application. We evaluate the influence of the size
of candidate sets in Sec. V-A, and show that the performance
degradation is very small since the LP solver can find the local
optimal solution to our mixed-integer programming problem
in a very short time.

After the containers are launched for applications, we can
easily calculate the system bottleneck and determine the
minimum allocation of each application based on Eq. 3. The
basic allocation for each container is thus Gid

k
ij (or Giu

k
ij).

To maximize link utilization, we further allocate the remaining
bandwidth on each link to relevant containers and ensure
such backfilled bandwidth is still proportional to the weighted
demands. The detailed container placement and allocation
algorithms are described in Sec. IV.

IV. DESIGN

In this section, we first present Libra’s architecture and its
design choices, and illustrate how Libra functions in a cluster
with dynamic arrivals of applications and elastic demands
(Alg. 1). We then discuss the details involved in container
placement to minimize the network bottleneck across the
cluster (Alg. 2), such that the optimal isolation guarantee
achieved through rate limiting (Alg. 3) is maximized.

A. Architectural Overview

Libra fits into request-based cluster management frame-
works [2] by further integrating network demands in the
resource requests. We only provide interfaces to specify band-
width demands, while leave the estimation to applications
themselves. Since existing techniques in traffic engineering
provide good accuracy in predicting demand matrices, appli-
cations can know their long-term network profiles [5], [18] or
calculate the demands on the fly [15].
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Fig. 3. The overview of Libra’s architecture.

Once received all the resource demands from concurrent ap-
plications, Libra’s resource demand handler first goes through
an admission control procedure to validate security credentials
of the applications and determine whether currently available
resources can satisfy their computation demands. For admitted
applications, the manager first runs the container placement
module to determine which machine each container should be
assigned to, and then runs the bandwidth allocator to compute
the amount of bandwidth each container can use. After the
containers are launched, the rate limiter on each machine
manages the actual bandwidth consumption of each container.
The conceptual architecture is shown in Fig. 3. Libra does not
intervene task scheduling of applications. Each application can
adopt its own task scheduler to decide how to use the allocated
containers and resources.
Admission Control: Apart from security verification, the
admission control also evaluates whether the hard constraints
(such as the number of CPU cores and the amount of memory
space) of the incoming applications can be satisfied. If not,
only a subset of the incoming applications will be admitted
based on the priorities and feasibility. The unqualified appli-
cations are withheld until more resources become available.
Fault tolerance: Libra circumvents the deficiency of a single
manager leveraging ZooKeeper [19] as in existing central-
ized cluster management systems [1], [2], [3]. In case Libra
completely fails, the default cluster manager will offer idle
resources to applications in a max-min manner, and rely on
the scheduler of each application to choose the right containers
that satisfy their demands.
Scability: Libra recalculates applications’ shares and redis-
tribute bandwidth whenever any application arrives or de-
partures. Fortunately, the time needed for recomputing and
communicating the new allocations is largely offset by the
consequent performance gains as demonstrated in large-scale
simulations and testbed-based experiments in Sec. V-B1.

B. Handling Dynamics

The network sharing algorithms proposed in Sec. III can
successfully improve isolation guarantee without sacrificing

network utilization in offline cases. However, applications may
come and leave dynamically in production clusters. We present
how Libra deals with such situations in Alg. 1.

When an existing application departs, its containers will be
terminated and the corresponding resources will be released.
Since it is possible that the system bottleneck with all the
active applications changes consequently, we detect the new
bottleneck and re-calculate the isolation guarantee for each
application accordingly (line 15-17). We involve a dynamic
filling step in Libra to enable containers of active applications
consume the idle local bandwidth if necessary.

When a new application registers with the cluster manager,
Libra tries to satisfy its resource demands without migrating
existing containers. We first restrict the bandwidth usages of
running containers to their minimum guaranteed bandwidth.
We then use the spared bandwidth as resource constraints to
place the containers of the incoming application (line 11-14
of Alg. 1).

Algorithm 1 The Libra Framework
1: procedure DEMANDHANDLER({Ai})
2: Initiate the demand vector {vkij} for each pending

application Ai

3: Monitor the available resources of each machine Mk

4: Sort machines based on their remaining bandwidth
5: The top κ machines form the candidate set {Mcandidate}
6: {xkij}=MINIMUMBOTTLENECK({Ai}, {Mcandidate})

. Determine where to place each container
7: MAXIMUMISOLATION({xkij})

. Determine the bandwidth limit of each container
8: procedure MAIN
9: Initiate the pending applications in the cluster as A

10: DEMANDHANDLER(A)
11: if an application An arrives then
12: Restrict the bandwidth limits to
13: αk

ij = ukij/B, βk
ij = dkij/B

14: DEMANDHANDLER(An)
15: if an application Ao leaves then
16: set xkoj = 0 for all its containers
17: MAXIMUMISOLATION({xkij})
18: if an application Ai changes demands then
19: MAXIMUMISOLATION({xkij})

When an active application changes its network demands,
we re-apply Alg. 3 to compute the new isolation guarantee
and bandwidth restrictions. If an active application tries to
terminate some of its containers, the corresponding resources
will be released and re-allocated as in line 15-17. If an
active application applies for new containers, this set of
requests will be viewed as a new application and treated as
in line 11-14. It may further reduce system bottleneck and
thus improve isolation guarantee if we allow live container
migration whenever application arrives in or leaves the system.
However, live migrations will incur extra network traffic due
to the footprint of active flows and the update of forwarding



rules [20] [21]. Since we wish to minimize the influence on
running applications, we do not enable container migration
for now, and allow the applications themselves to periodically
migrate their containers using existing schemes [22], [23].

C. Network Sharing Algorithms

Given the demands of applications and the available re-
sources of machines in the cluster, we first select a subset of
candidate machines based on their remaining bandwidth. We
are then ready to solve the generalized bottleneck problem
stated in Eq. (4) using an LP solver. After retrieving the
fractional values for xkij , we use the rounding technique to
set xk0

ij = 1 where k0 = argmaxxkij (line 4-7 of Alg. 2).
A container cij is then placed onto the machine Mk where
xkij = 1.

Algorithm 2 Minimizing the System Bottleneck
1: Procedure MinimumBottleneck({Ai},{Mk})
2: Initiate: (dkij , ukij , rkij , ckij) for each container

. the machine-normalized demand vectors
3: Solve Problem (4) with the demands and machine states
4: for all container cij in application Ai do
5: Initialize xkij = 0 for all k
6: k∗ ← argmaxk x

k
ij

7: xk
∗

ij = 1

8: Adopt Tabu search and update {xkij}
9: Deploy a container cij on the machine Mk where xkij = 1

Once we determined where to place each container of the
pending applications, we can compute the demand for network
bandwidth on each physical link and thus locate the system
bottleneck whose normalized demand is the largest (line 3-5
of Alg. 3).

Libra handles the demand conflicts on the bottleneck link
based on dominant resource fairness [9]. For other network
links, Libra first allocates bandwidth in a way that containers
of the same application achieve the same isolation guarantee.
Libra then applies a backfilling step to allow containers on the
same machine share the unallocated bandwidth in proportion
to their demands. We further allow a container to temporarily
reclaim the idle bandwidth allocated to other containers and
immediately gives up such extra allocation once the original
container calls for more bandwidth, or new requests from
incoming applications arrive. The allocation results of Fig. 1(b)
under different strategies are shown in Fig. 4.

We can see that Libra not only results in a better placement
situation where all the allocation strategies can achieve bet-
ter isolation, but also increases the link utilization through
backfilling. But as analyzed in HUG [5], such higher link
utilization comes at the expense of losing strategy-proofness.
We only apply our backfilling strategy in private clouds where
applications do not lie about their demands on purpose, and
leverage HUG’s backfilling restrictions to impose strategy-
proofness in public clouds.
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Algorithm 3 Maximizing the Isolation Guarantee
1: Procedure MaximumIsolation({xkij})
2: Initialize the bottleneck demand B∗ = 0
3: for all Mk do
4: if Uk > B∗ then B∗ = Uk

5: if Dk > B∗ then B∗ = Dk

. Find the value of the system bottleneck
6: for all xkij = 1 do . proportionally allocate bandwidth
7: if Uk > 0 then αk

ij = B∗ukij
8: if Dk > 0 then βk

ij = B∗dkij
9: for all machine Mk do

10: Backfill the unallocated bandwidth to containers

V. EXPERIMENTAL EVALUATION

We evaluated Libra through our testbed deployment on the
Linode cloud hosting platform [24] as well as via large-scale
simulations.

Schemes to compare: We compare the following schemes
with Libra.
• Baseline: all the containers are placed onto machines

in a round-robin fashion without considering network
demands as in YARN [2], and all the flows follow per-
flow fairness without any proactive rate limiting.

• Isolation-oriented (DRF): round-robin container place-
ment with flows following dominant resource fairness [9]
to ensure application isolation.

• Isolation with high utilization (HUG): round-robin con-
tainer placement with flows rate-controlled based on the
policy proposed by HUG [5].

Through comparisons with the related schemes, we can inspect
the benefits brought by the two ingredients of Libra: isolation-
aware container placement and bandwidth allocation.

Performance Metrics: To comprehensively compare Libra
with existing schemes, we examine three performance metrics,
isolation guarantee, application performance and link utiliza-
tion. We define the performance gain of scheme 1 to scheme 2

as
|metric1 −metric2|

metric2
, where metric1 and metric2 are the

metric value derived by scheme 1 and scheme 2, respectively.
Summary of the main results is as follows:
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Fig. 5. Testbed experiments: a) in comparison with per-flow fairness, DRF and HUG on top of YARN, Libra improves isolation guarantee by 327.89%,
132.18% and 105.59% respectively; b) Libra speeds up applications by 77.18%, 63.94% and 57.71% respectively; c) with Libra, the utilizations of about
65.9% links are higher than 60% (links that were never used during the experiments are excluded).

• Libra improves the optimal isolation guarantee through
isolation-aware container placement: the optimal isolation
is 3.27× more than the baseline (per-flow fairness on top
of YARN) and about 1.32× and 1.05× more than DRF
and HUG in testbed experiments (Sec. V-A). Its benefits
are relatively stable under different network scenarios
(Sec. V-B2 and V-B3).

• Due to improved isolation, Libra improves link utilization
and application performance as well: the performance
gain in terms of application durations is about 75.51%,
70% and 68.05% than the baseline, DRF and HUG
(Sec. V-B).

• Libra isolates multiple concurrent applications across the
entire network, and it can scale up to 30,000 machines
with less than 1 second overhead. (Sec. V-B1).

A. Implementation and Testbed Experiments

We first microbenchmark Libra on a 30-node Linode cluster
to evaluate its benefits. Each node is equipped with 6 CPU
cores, 8 GB memory, 192 GB SSD storage, 1 Gbps uplink and
40 Gbps limit downlink, as predefined and fixed by Linode.

To encourage the public adoption of our cluster manager
and to make the deployment of Libra smooth, we developed a
set of plugins around the popular DevOps tool, Ansible [25],
to automatically configure and launch up all the nodes.

1) Implementation Details: The cluster manager runs on
top of the master node, which accepts requests from applica-
tion clients, and manages all resources of the slave nodes. An
application first registers with the cluster manager to apply for
the containers they desire. The manager then runs its place-
ment and allocation strategies to determine on which machine
that container should be placed and how many resources it
should be allocated. To solve the problem in Eq. 4, we embed
the API provided by CPLEX 12.6.3 [26] into our codebase.
The communication among the master, slaves and application
clients are all done in the format of Protobuf [27]. Slaves
periodically reports their network and computation states to
the master. Whenever necessary, multiple messages heading
to the same machine are packed together. The delimitation of
the messages are achieved by using the simple Netstring

protocol [28]. These together ensures fast message exchange.

We heavily use the actor model in our codebase to dispatch
messages, such that we achieve high concurrent performance
without worrying about race conditions.

The Linux kernel version of each node is 4.5.0, with all
cgroup capabilities enabled to tag outgoing packets from
different containers. We define tc filters based upon the
net_cls tag of each container. The outgoing packets are then
put into different htb classes of varying rate limits. Since the
net_cls tag is only useful for shaping the outgoing packets,
we police the incoming packets based upon the port range
of the destinations. It turns out that the bottleneck mostly
resides in the uplinks not the downlinks, as indicated by our
supplementary tests on other popular cloud hosting platforms,
e.g., DigitalOcean and Vultr.

2) Characteristics: To better under the behavior of different
schemes, we first take a scrutiny on one run of the schemes
over the same arrivals of applications.

Applications arrive in the cluster with their intervals fol-
lowing an exponential distribution (average = 5s) [29]. 10
applications with their network demands in accordance with
the characteristics observed in production clusters [5], [6] are
submitted to the system. Each container requires for 1 CPU
and 1 GB memory. Six applications have all-to-all communi-
cation pattern, while the other four applications have pairwise
one-to-one communication. Without loss of generality, we
assume all applications have the same weight.

From Fig. 5(a) we can see that with our isolation-aware
container placement, the demands of eight applications are
completely satisfied. In contrast, with per-flow fairness and
DRF on top of YARN, the isolation guarantees for most appli-
cations are less than 0.5. HUG presents better results despite it
directly adopts the dominant resource fairness for maximizing
isolation guarantee. The reason for such improvement stems
from the better link utilization obtained by HUG as shown in
Fig. 5(c). With better network utilization, the applications are
able to finish faster, and thus there are more idle bandwidth
for active applications to share. However, the improvements
are relatively limited since HUG restricts backfilling to ensure
strategy-proofness. Libra is able to significantly improves link
utilization through work-conserving backfilling. Such benefit
also comes from the more balanced distribution of network
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Fig. 6. Impact of inter-application arrival intervals: larger arrival intervals lead to less intense network competition. As a result, the isolation guarantee
increases, while the application duration and link utilization decreases.
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Fig. 7. Impact of application demands: with each application requiring more containers, the aggregated demand for network becomes more. The isolation
guarantee thus decreases, while the application duration and link utilization increase at the same time.

demands that our container placement achieves. With better
isolation guarantee and link utilization, Libra reduces the
average application duration (Fig. 5(b)) with respect to per-
flow fairness, DRF and HUG by 8.872−2.024

8.872 = 77.18%,
5.614−2.024

5.614 = 63.94% and 4.787−2.024
4.787 = 57.71% .

B. Large Scale Performance Analysis

Simulation Methodology: Similar to [5], [9], we devel-
oped our own event-driven simulator to imitate applications
running in a data-parallel computing cluster. The simulator
only accounts for the application arrival and departure events
to reduce the simulation complexity. It updates the rate and
remaining volume of each flow of an application when an
event occurs.

In the simulations, we suppose applications have pairwise
many-to-many communication pattern [5] and assume the
application arrivals follow a Poisson distribution [29]. We first
evaluate Libra’s overheads by inspecting the time consumed
in computing the placements and allocations in Table. II.

We then evaluate three aspects that may affect the per-
formance of Libra and other schemes: the inter-application
arrival intervals, the width of applications (i.e., the number
of containers an application requires), and the scope of the
optimization procedure. For reasonable simulation time, we
simulate 512 machines, each of which is connected to the
network using 1 Gbps bisection bandwidth. In the simulations,
each of our results is an average of 30 tries. The corresponding
simulation results are shown in Fig. 6 and 7 and Table III.

1) Scalability and Overhead: The key challenge in scaling
Libra is its centralized LP solver, which must recalculate appli-
cation shares and redistribute the bandwidth across the entire
cluster whenever any application arrives. The following table
shows the computation time needed for different application
widths and different percentage of machines as candidates.

TABLE II
LP COMPUTATION OVERHEAD (MILLISECONDS)

Percentage Width=32 Width=64 Width=128

5.86% 3.08 5.06 5.64
10% 3.56 5.19 8.22
15% 6.43 9.57 16.83

We found that the time to calculate new placements using
Libra is less than 3 microseconds in our 30 machine cluster.
Furthermore, a re-computation due to an application’s arrival
or departure would take about 8.22 milliseconds on average
for the 512 machine cluster. Even with larger clusters, the
computation time will not grow exponentially since the size
of our candidate set is determined by demand widths, not
the cluster size. Communicating the placement and allocation
decisions takes less than 5 milliseconds to 30 machines and
around 0.5 second for 30, 000 emulated machines.

2) Impact of application dynamics: We vary the value
of the average inter-application arrival time to examine the
influence of dynamic incoming applications. In each round of
simulations, 100 application with the same demand arrives in
the network: each application requires for 128 containers, and
each container tries to use up the available bandwidth (i.e.,



1Gbps). Note the larger arrival interval indicates the smaller
arrival intensity. From the results in Fig. 6, we make the
following observations.

Firstly, as shown in Fig. 6(a), the isolation guarantee
increases with the increase of the average inter-application
arrival interval. The reason for this is that a larger interval
indicates less concurrent applications in the network. The
contention for network resources is thus not that intense.
Furthermore, we find that Libra is less sensitive to the variation
of arrival intervals. Even with 10 applications arrive every
second, it is able to ensure over 90% of their demands can
be satisfied. Compared to per-flow fairness, DRF and HUG,
the performance gains are as large as 0.952−0.231

0.231 = 312.12%,
0.952−0.361

0.361 = 163.71% and 0.952−0.397
0.397 = 139.80% (when

arrival interval is 0.1s).
Secondly, with higher isolation guarantees, applications get

allocated more bandwidth to transfer their data. Therefore,
Libra is able to significantly reduce application durations as
shown in Fig. 6(a). Compared to the other schemes, the perfor-
mance gains are as large as 7.84−1.92

7.84 = 75.51%, 6.40−1.92
6.40 =

70% and 6.01−1.92
6.01 = 68.05%. With larger arrival intervals,

DRF and HUG catch up with Libra gradually. Finally, the
average link utilization decreases with the increase of inter-
application arrival intervals since less applications usually
imply less demand for link bandwidth. The performance gain
of Libra ranges between 105.9% (interval=0.1s) to 1031.1%
(interval=10s).

3) Impact of application demands: To evaluate how the
performance is influenced by the application demands in the
network, we fix the arrival intervals to 0.1 second. As the
amount of link bandwidth each container requires is the same,
the only degree of freedom is the number of containers each
application requires (denoted as the width of its demand).
We vary the average demand width between 32 to 256 in
our experiments since the statistics reported in the production
trace [5] indicates that about 68% of applications require less
than 50 containers. From the results in Fig. 7, we make the
following observations.

The trend of the curves in Fig. 7(a) shows that the iso-
lation guarantee achieved by all the schemes decrease with
the increase of demand widths. This is obvious since the
concurrent demands for bandwidth essentially increase with a
larger demand width. When each application only asks for 32
containers, the performance gain of Libra with respect to DRF
and HUG is only 1−0.848

0.848 = 17.88% and 1−0.8615
0.8615 = 16.04%.

However, Libra is able to maintain high isolation guarantee
when the average width increases to 128: the isolation guar-
antee only slightly drops from 1.0 to 0.952. Without network-
aware container placement, the isolation guarantees achieved
by DRF and HUG drop to 0.361 and 0.397 respectively. When
the demand width continues to increase, the benefit of Libra
becomes less significant with the performance gain decreasing
to 60.76% and 59.82%. As stated above, larger demand widths
lead to more bandwidth demand and more fierce network
contention. As a result, the application durations and link
utilizations achieved by all the schemes increase accordingly

(Fig. 7(b) and Fig. 7(c)).

TABLE III
NORMALIZED APPROXIMATION RATIO (ISOLATION GUARANTEE)

Percentage Width=32 Width=64 Width=128

5.86% 0.98 0.92 0.90
10% 0.99 0.95 0.92
15% 0.99 0.97 0.97

4) Impact of Optimization Scope: From the table above
we can see that although we only choose the machines with
the most available bandwidth as candidates, the performance
degradation is rather small. In our 512-node cluster, choosing
from 5.85% of nodes (namely, 30 candidates) can result in
0.9-approximate solutions, which means the resultant isolation
guarantee is within 10% of the global optimal isolation. This
demonstrates that reducing the selection scope has little side
effects given the largely improved efficiency.

VI. RELATED WORK

Cluster management: The offer-based cluster managers,
such as Mesos [1] and Borg [3], dynamically allocates idle
resources (as the form of containers) to applications based on
different policies. Such departures from traditional static parti-
tioning of resources significantly improves cluster utilization.
The resource manager in YARN [2] acts as the central author-
ity arbitrating resources requests from competing applications
in the cluster. By allowing applications to specify their location
preferences and the properties of the desired containers, YARN
enforces rich policies for global control. However, similar to
offer-based schemes, YARN only captures computation and
storage resources, and still lacks network-awareness. Libra
further improves existing cluster managers by considering the
demand for network resources when allocating containers, and
make applications efficiently share the cluster with network
isolation guarantee.

VM placement and migration: Most existing placement
schemes either restrict themselves to computation and storage
resources or only focus on minimizing the aggregated cross-
rack traffic traversing the core network [22], [30], [31]. Ignor-
ing the demand and supply relationship on each access link,
it is possible that some links become hot spots, and harms
the isolation guarantee of relevant applications. Cohen et al.
[23] propose to maximize the aggregated available bandwidth
each VM can get. Although this scheme is bandwidth-aware,
it provides no performance guarantee and neglect application
semantics. Alicherry et al. in [32] focus on how to minimize
data access time when placing virtual machines. All the
schemes mentioned above cannot provide network isolation
guarantee either at the system or the application level.

Bandwidth allocation: Strategies [33], [14] that rely on
reservation to achieve bandwidth isolation fail to achieve high
network utilization. Depending on the level of isolation, exist-
ing work in dynamic bandwidth sharing can be divided into
flow-level [34], VM-level and network-level schemes. Both
flow-level and VM-level schemes [35] provide no performance



guarantee. DRF achieves optimal isolation guarantee and strat-
egy proofness at the cost of low utilization [9]. PS-P [6] and
EyeQ [7] try to provide bandwidth guarantee through work-
conserving rate limiting but only achieves suboptimal per-
formance guarantee. HUG [5] further optimizes the isolation
guarantee with improved link utilization. All these schemes
try to achieve bandwidth guarantee given the placement of
containers. In contrast, we perform network-aware container
placement to minimize the system bottleneck and thus improve
the optimal isolation guarantee that any bandwidth allocation
scheme can achieve.

VII. CONCLUSION

In this paper, we have proposed, Libra, a cluster man-
agement framework that improves network isolation guar-
antee without the loss of network efficiency. To the best
of our knowledge, Libra is the first work that proposes
and leverages the fact that container placement determines
the optimal network isolation that can be achieved by any
bandwidth allocation mechanism. However, the binary nature
of container placement makes the problem almost intractable.
Despite such hardness, we propose a two-stage algorithm that
effectively place containers and allocate bandwidth. First we
place containers to physical machines to minimize the system
bottleneck; then we allocate bandwidth among co-located
containers of different applications to achieve the optimal
isolation guarantee. Through both testbed experiments and
extensive simulations, we demonstrate that Libra works with
existing cluster managers and preserves remarkable perfor-
mance advantages over existing network-unaware placement
and allocation-only solutions. Libra is also easy to deploy with
our customized configuration tools, such that existing cluster
management frameworks can take advantage of Libra.
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[16] Ö. Karsu and M. Azizoğlu, “The multi-resource agent bottleneck
generalised assignment problem,” International Journal of Production
Research, vol. 50, no. 2, pp. 309–324, 2012.

[17] F. Glover, “Tabu searchpart i,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190–206, 1989.

[18] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
2014, pp. 467–478.

[19] “Apache ZooKeeper,” https://zookeeper.apache.org/.
[20] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. ACM SIGCOMM conference on
Internet measurement (IMC), 2010.

[21] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. ACM
SIGCOMM conference on Internet measurement conference (IMC),
2009, pp. 202–208.

[22] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros, “Scalable
traffic-aware virtual machine management for cloud data centers,” in
Proc. IEEE International Conference on Distributed Computing Systems
(ICDCS), 2014, pp. 238–247.

[23] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Almost optimal
virtual machine placement for traffic intense data centers,” in Proc. IEEE
INFOCOM, 2013, pp. 355–359.

[24] “Linode: SSD Cloud Hosting,” http://www.linode.com/.
[25] “Ansible is simple IT automation,” http://www.ansible.com/.
[26] “IBM ILOG CPLEX Optimization Studio V12.6.3,” http:

//www.ibm.com/support/knowledgecenter/SSSA5P 12.6.3/ilog.odms.
studio.help/Optimization Studio/topics/COS home.html.

[27] “Protocol Buffers - Google’s data interchange format,” https://
developers.google.com/protocol-buffers/.

[28] D. J. Bernstein, “Netstrings,” https://cr.yp.to/proto/netstrings.txt.
[29] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. European conference on
Computer systems (Eurosys), 2010, pp. 265–278.

[30] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in ACM SIGCOMM Computer Communication Review, vol. 44, no. 4,
2014, pp. 467–478.

[31] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
Proc. IEEE INFOCOM, 2010, pp. 1–9.

[32] M. Alicherry and T. V. Lakshman, “Optimizing data access latencies in
cloud systems by intelligent virtual machine placement,” in Proc. IEEE
INFOCOM, 2013, pp. 647–655.

[33] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 4, 2015, pp. 435–448.

[34] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),”
ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 63–74,
2011.

[35] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. USENIX NSDI, 2011.


