TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 01/10 pp221-232
Volume 20, Number 3, June 2015

On Scaling Software-Defined Networking
in Wide-Area Networks

Shuhao Liu and Baochun Li*

Abstract: Software-Defined Networking (SDN) has emerged as a promising direction for next-generation network

design. Due to its clean-slate and highly flexible design, it is believed to be the foundational principle for designing

network architectures and improving their flexibility, resilience, reliability, and security. As the technology matures,

research in both industry and academia has designed a considerable number of tools to scale software-defined

networks, in preparation for the wide deployment in wide-area networks. In this paper, we survey the mechanisms

that can be used to address the scalability issues in software-defined wide-area networks.

Starting from a

successful distributed system, the Domain Name System, we discuss the essential elements to make a large

scale network infrastructure scalable. Then, the existing technologies proposed in the literature are reviewed in

three categories: scaling out/up the data plane and scaling the control plane. We conclude with possible research

directions towards scaling software-defined wide-area networks.

Key words: software-defined networking; scalability; OpenFlow

1 Introduction

Software-Defined Networking (SDN), especially
OpenFlow!!!-based SDN, is believed to have the
potential to revolutionize the Internet architecture
towards the next generation?. The SDN paradigm
decouples the control plane from the data plane
completely, pushing all the intelligence up to the
software in a logically centralized controller. Starting
from the scale of a campus network!!l, its deployment
in Wide-Area Networks (WAN) is a promising direction
in practice: Google has already deployed software-
defined networking to manage their inter-datacenter
networks!®.

The main advantages of SDN—the possibility

e Shuhao Liu and Baochun Li are with the Department
of Electrical and Computer Engineering, University of
Toronto, Toronto M5S 3G4, Canada. {shuhao,
bli} @ece.toronto.edu.

* To whom correspondence should be addressed.

Manuscript received: 2015-05-05; accepted: 2015-05-11

E-mail:

of an unprecedented degree of flexibility and
programmability—are crystal clear, which make
monitoring and operating a network as easy as
developing a software application. SDN is like the
ultimate toolkit for network operators, bringing
network management to a brand new era with fine-
grained, dynamic, and complete control over network
flows via software!*!. Specifically, there are three
primary benefits brought forth by software-defined
networking: (1) traffic is flexible and easy to control at
the per-flow or even per-packet granularity; (2) policy
changes can be completed within several milliseconds,
instead of taking several minute to react®!; and
(3) control applications are easy to update when
abnormal events occur in the network.

However, combining the granularity, flexibility,
and performance requirements together, deploying a
software-defined WAN suffers from scalability issues.
For example, the TCAM space limitation problem is
among the most severe ones in the data plane. State-of-
the-art hardware cannot support a sufficient number of
TCAM rules to enable fine-grained flow identification

222

as the packet header diversity grows in WANs!®!. In
the control plane, the controller can easily become
the bottleneck of the network without proper physical
distribution or offloading mechanisms!”.

To tackle these issues that significantly limit the scale
of a software-defined WAN, both industry and academia
have proposed their solutions. On one hand, existing
techniques in large scale systems are still valid, but
they need to address the new challenges. On the other
hand, brand new, specialized designs should be adopted.
The representative efforts made in the literature are
surveyed in this paper, including new architectures
and tricky mechanisms. Note that since the data plane
and the control plane are network components of
distinct domains in SDN, we examine the related works
respectively.

First, we revisit the design of a distributed system that
has been proved successful, the Domain Name System
(DNS), trying to uncover the inherit design principles
of an Internet scale infrastructure. By analysing both
the similarities and the differences between a software-
defined WAN and the DNS, we do not consider some
designs that are no longer applicable, and instead
emphasize some essential ideas that are useful.

Then, we review existing designs of scalable control
planes, which have always been a heated research topic
since the dawn of SDN. Essentially, the control plane is
similar to any distributed system®!, hence its scalability
is not fundamentally bottlenecked®. Existing works
are proposed to scale the controller capacity not only
horizontally but also vertically.

The data plane in an ideal SDN framework is
described as a dumb packet-switching network with
little intelligence, because the capability of making
decisions has been entirely moved to the control
plane!'%!. Surprisingly, old-school technologies (e.g.,
MPLS!!'-121 and commodity IP network routing) can
be extended to help us out. Also, there exist some
hybrid SDN solutions that are proposed to return the
intelligence back to the data plane.

The rest of this paper is organized as follows.
In Section 2, we provide a thorough review of the
scalability challenges to scale SDN in a WAN, stating
the motivation of our study. Section 4 presents our
taxonomy of existing technologies. By comparing with
DNS in Section 3, we summarize some important
principles of a distributed system design. Then, the
representative works in the literature will be discussed
in detail in Sections 5-7. Our analysis and insights, as

Tsinghua Science and Technology, June 2015, 20(3): 221-232

well as future research topics from our perspective, will
be presented in Section 8. Finally, Section 9 concludes
the paper.

2 Scalability Issues in SDN
2.1 Software-defined WANs: Requirements

To gain the same benefits as small scale software-
defined networks, software-defined WANSs cannot work
properly by just extending a small scale SDN. There
are a number of requirements for software-defined
networks to scale up to a wide-area environment:

e Global knowledge. Configuring decisions are
usually made to achieve a globally optimized state,
which requires global knowledge of the network
trafficl®!.

® Real-time monitoring, decision making, and policy
updating. Beyond the large volume of information,
the control plane requires dynamic monitoring of
the network. Whether proactively or reactively, the
effective configurations should be based on real-
time updated information of the network traffic.
Moreover, the new policy should be computed and
updated to the proper switches in real time!!>141,

o Fine-grained control. An ideal SDN system should
be capable of managing the traffic at the per-flow
or even per-packet level due to the rich diversity of
QoS requirements. To maximize user experience,
fine-grained control over flows (or packets) should
be an important objective in an SDN-based WAN.

e Make the right decision, perform the right change.
It is another great challenge for the control plane
to update network policies in a consistent manner,
that is, to guarantee the atomicity of changes.

To meet these requirements, such a network

architecture would face great challenges at large scales,
both in the control plane and in the data plane.

2.2 Control plane scalability

The first two requirements summarized in Section
2.1 are crucial for control plane designs in the SDN
paradigm.

The demand of global knowledge is much harder to
satisfy. As the network scales out, the minimum size of
monitoring messages will grow rapidly (O(N?), where
N is the diameter of the network). Also, the number
of message sources will become larger, making it much
harder to incorporate with.

Unfortunately, the demand for real-time information
update makes things worse. The challenge here is

Shuhao Liu et al.: On Scaling Software-Defined Networking in Wide-Area Networks 223

two-fold. First, aggregating and disseminating large
quantities of information in real time may easily congest
the controller. Second, optimizing the configuration
decisions usually involves solving linear problems!> %!,
which is quite demanding in computation power.

Since a single node has both limited computation and
storage capacities, it is impossible to accomplish the
aforementioned objectives by solely using a higher-end
controller. Therefore, scaling out as well as scaling up
mechanisms should be designed properly. Scaling out
technologies are similar to those in a typical distributed
system.

2.3 Data plane scalability

The last two requirements presented in Section 2.1 are
translated into scalability challenges in the data plane.

In practice, it is difficult to treat a large number of
flows differently by setting their own unique policies;
therefore, network operators usually compromise to
support only a limited number of service classes
(e.g., SWANUS! supports three classes, i.e., interactive,
elastic, and background). Fine-grained management
is hard to achieve because the TCAM space in an
OpenFlow switch fails to scale up. Undoubtedly, the
ideal fine-grained flow differentiation will lead to
the generation of many more TCAM rules. However,
TCAM is prohibitively expensive: only a few thousands
of TCAM rules are supported by even the next-
generation OpenFlow switches!!®!. Moreover, the large
network scale further aggravates the situation. The
number of concurrent flows passing through a switch
(especially a core switch) will grow as the number
of end hosts increases, which will typically make the
TCAM space more scarce.

As for atomic network upgrading, according to
Refs. [17, 18], massive packet losses and stochastic
states of the network will occur without proper
mechanisms to ensure the per-packet consistency
during policy updates. In addition to incorrect
routing, the overhead of update messages may increase
linearly as the network scales!!”!. This degree of
uncertainty is undesirable in software-defined wide-
area networks.

3 DNS: A Comparison Study

As one of the most common and the most successful
distributed systems that are widely deployed in the
Internet, the DNS is a useful analogue of the control
plane in software-defined WANSs to tackle scalability

issues. Indeed, it is reasonable to borrow some
ideas from the DNS design to power a distributed
control plane. However, though sharing some basic
characteristics as a system that is both geographically
and functionally distributed, differences of inner
functioning mechanisms do make them distinct in
practice. In this section, we try to go through the
similarities and differences between them, summarizing
what experience we can learn from the past practice.

3.1 DNS

The DNS provides name service to the Internet, that
is, translating a domain name, which is a unique
variable-length string identifying a network resource,
to its corresponding IP address(es)?”). The use of
domain names decouples network resources from
their IP addresses, providing more flexibility towards
address updates and simplifying user-side addressing.
Since DNS should be highly available, be quick to
respond and update in time to serve all network
users dynamically across the Internet, its scalability
was a major challenge as the Internet grew at an
unprecedented speed.

Thanks to the highly hierarchical assignment
of domain names, DNS can be easily organized
into a corresponding hierarchical manner’?!!, both
in the context of geographical and functionality
management. For example, a typical domain name is
XXx.yyy.zzz. zzz is the top-level domain (e.g.,
prominent domains such as com, net, and edu,
country code top-level domains such as ca, cn).
Below the top-level domains, the second and third-level
domains are available for users’ reservation, enabling
their local area networks to be accessible from a name
that is easy to remember. More importantly, these
domain names are usually under full supervision of
domain name registrars.

The design of domain names makes the DNS
horizontally scalable in nature, because a distributed
database that serves hierarchical reference queries
only??l. Moreover, usage of cache in each level of
DNS greatly degrades the necessary communications
in one single resolving transaction. An example of
a typical DNS query chain is depicted in Fig. 1,
which illustrates the caching and recursive searching
mechanisms that are key technologies in the DNS. Note
that with the query transaction shown in the figure,
the resolving results formiami.csl.toronto.edu
will be available in all three caches in the figure for a

Tsinghua Science and Technology, June 2015, 20(3): 221-232

2 ISP DNS resolver

Local cache

224
Client programs 1 | DNS resolver
7 Local cache
Localhost OS

I Recursive DNS search

csl.toronto.edu
Nameserver

.toronto.edu
Nameserver

Nameserver

|
|
|
Root & .edu :
|
|
|

Fig.1 An example of multiple-tier caching and recursive DNS search for a name query miami.csl.toronto.edu. If client
programs cannot find the requested name in its mini-cache or (1) in the local host DNS resolver cache, it will (2) resort to the ISP
DNS resolver. If it is not resolved either, recursive DNS search will be executed, according to the query domain name structure.
First, (3) ISP asks root (which serves edu namespace) for a toronto.edu server. Then, (4) ISP asks toronto.edu about
csl.toronto.edu. Finally, (5) csl.toronto.edu is found and the query is resolved, whose result IP address will then be

(6,7) returned to the client.

time period.

Generally speaking, it is the caching and structured
domain names that simplify the DNS. Quite a few
queries should be made to effectively refine the large
global domain namespace.

3.2 Similarities

As distributed systems with a logically centralized
“brain”, both the DNS and software-defined WANs
have some common design objectives as the repository
for information. The DNS is fundamentally a large
database, where responses are database look-up queries,
whereas the control plane is a bit more complex.

Transaction patterns. Both systems function in a
query-response pattern. Each transaction in the system
is triggered by a query that can be regarded as an
independent event. In the DNS, such a query is an
URL or host name to resolve. In SDN, it is a sample
packet that needs to be dealt with by a switch, according
to specific policies or rules. The transactions do not
have strong connections with each other—queries are
not assumed to be dependent—so that transactions can
be programmed or analysed in a per-query basis.

Need for availability and reliability. Both the DNS
server and the controller in a software-defined WAN
should be an infrastructure that is highly available and
reliable at any time. Failure on these infrastructures
is catastrophic because it destroys either reachability
or connectivity among network nodes. Therefore,
these two systems should take measures on ensuring
robustness.

Need for consistency and atomicity. There may
exist updates in the network at any time. For example,

once a web server has migrated from one IP address
to another, its corresponding information should be
updated in time among all relevant DNS servers, or
the service provided on the host will be unavailable
for some users. On the other hand, in SDN, policy
changes for a single flow should be consistently applied
to all affected switches in a short enough time period,
otherwise packets will be lost during network updates.

Stringent requirements on response time and
correctness. The latency and imperfect responses in
both systems directly translate into degradation on user
experience. For example, delays of a DNS server or a
controller will induce the same amount of delays at the
user-level, resulting in similar retrying mechanisms that
may be a further burden to the system.

3.3 Differences

Despite the similarities above, it is the distinctions
between two systems make traditional technologies
in the DNS less useful in the context of software-
defined WANSs. A scalable design of the control plane in
software-defined WAN is much more complicated when
the following aspects are considered.

Much higher degree of dynamics. In the DNS,
the matches between host names and IP addresses
are basically static, because the address bindings are
unchanged for most of the time. However, it is common
that the routing or QoS policies vary on a per-flow basis
in SDN. In extreme cases, packets in a single flow may
be applied several different rules during its lifetime.
For this reason, the caching mechanism, which greatly
degrade the DNS complexity, is much less effective
in SDN. Though we still regard TCAM rules in the

Shuhao Liu et al.: On Scaling Software-Defined Networking in Wide-Area Networks 225

OpenFlow switches as local caches, it is quite likely that
switches still need to consult the centralized controller
for each new flow.

Less structural queries. As was discussed above,
DNS queries are highly structural—the host names
or URLs are all originally hierarchical—so that the
namespaces are easy to be partitioned as well as to be
distributed. Unfortunately, the control plane in SDN
process packets based on the packet headers, which
contain service, protocol, address, and even connection
identifiers. The field space of packet headers seems not
organized at all. The diversity for packets in WAN is
too high to be properly partitioned by a common set of
rules; therefore, it is not as easy as the DNS to apply
divide-and-conquer strategies.

Demand for global knowledge. In addition to per-
flow rule management, another challenge for software-
defined WAN is that the decisions are made based
on global knowledge. In contrast, the DNS is just a
look-up process that is free from decision-making and
background information. All a DNS server needs to
know is the address of a host name item, such that any
DNS server with a single match stored in its database is
able to respond correctly. However, global knowledge
is required by a considerable number of network flows
in a wide-area network to ensure global optimality.
Moreover, the control plane in SDN requires bi-
directional information update, that is, the centralized
controller is always retrieving status information (e.g.,
link failures and abnormal packet corruptions) from the
data plane to make adaptive decisions. The demand for
global knowledge makes it nearly impossible to exploit
partitioning.

3.4 Experience learnt from DNS

The success of the DNS benefits significantly from the
use of caching and hierarchical structuring of names?*!.
Unfortunately, according to our preceding analysis, the
direct use of these two mechanisms is far less beneficial
in a software-defined wide-area network. Nevertheless,
the brilliance in the design of the DNS may still
motivate new designs for software-defined networking
to scale up to the wide area.

Exploiting locality. Although caching is less
efficient in SDN, locality is still the most important tool
to improve scalability. Exploiting locality at scale is the
key to low latency and high availability.

Artificial hierarchy. Indeed, the diversity of packet
headers and the lack of relevance information makes

the problem space unlikely to be partitioned. But the
encapsulation techniques and the flexibility to modify
packets are still optional. With artificial identifiers in
the packet header, intelligence can be taken to rebuild
the hierarchical architecture of the flow configuration
and administration.

Replication, synchronization, and fault tolerance.
As the performance of a single node cannot scale
vertically free from bound, the usage of multiple
replications in the network is one of the essential ideas
to build a reliable, scalable system. Not surprisingly,
such technologies are mature enough and already
available in the SDN controllers, including answers to
fault tolerance, replication, and synchronization among
nodes.

4 Overview of the Available Technologies

In the past several years, a large number of research
papers have been published to push SDN technologies
towards the goal of wide deployment in the Internet.
Scalability is among the most interesting topics, since
it was intuitively recognized as an inherent problem of
the SDN architecture.

To emphasize the idea of existing works, the TCAM
spaces are conceptually taken as the caches in the
data plane. To scale out the control plane in SDN to
meet the operator requirements, fundamental principles
are successfully borrowed from distributed system
designs, including hierarchical solutions!”! and partition
solutions>l. On the other hand, sticking to the one
centralized controller architecture, cluster operating
systems!®! for OpenFlow controllers are developed to
increase the single controller capacity by several orders
of magnitude.

In the data plane, there are basically two categories
of proposals®. First, we may leverage label switching
(e.g., MPLSI'L:121) to offload the network core. In
Ref. [25], Casado et al. argued that it is reasonable
for future software-defined WAN to have an intelligent
edge and a label-switched (typically MPLS-based) core.
We think this argument is valid because it is a simple but
scalable architecture. The other line of work manages to
propose a hybrid solution. Synthesizing SDN control

* Note that proposals on TCAM space optimization and multiple
flow tables in hardware, in a sense, do scale up the single
switch capacity, but the methodology is indirect. These works
are beyond the scope of this paper, which focus solely on
the technologies that can be employed to directly leverage TE
scalability.

226

with the traditional distributed network protocols, such
as BGP, OSPF, and IS-IS, is a practical architecture
to scale. An intelligent integration makes the scheme
capable of gaining flexibility from SDN, while still
benefiting from the distributed architecture to ensure
scalability[?0,

5 Scaling Out the Control Plane

In this section, we examine the techniques in the
literature to scale the control plane horizontally. In
this line of works, making a large system hierarchical
and/or partitioning the workload among several workers
remain to be the essential ingredients to be more
scalable. As has been discussed in Section 3.4, locality
should also be used in software-defined wide-area
networks. In the early stages of software-defined
networking, the proposals we will now show have
explored solutions that inherit from the heritage of the
Domain Name System.

5.1 DIFANE

DIFANE!®! is mainly a partitioning scheme to offload
the TCAM space pressure in the data plane. The
usage of authority switches is the key in the DIFANE
architecture. As shown in Fig. 2, the network is
partitioned into several pieces depending on the scale,
with each piece managed by one authority switch. The
controller will proactively interact with the authority
switches, hoping that the rules can be installed before
they become active. At the same time, the logically
centralized controller should manage network partition
information besides generating flow configuration rules
as traditional controllers. It continuously updates the
network/traffic partitioning information to the switches
on the data path as well as the authority switches. In
this way, the administration pressure from un-hit flows
in the data path is able to be partitioned and balanced
effectively among authority switches, thus scaling the
control plane across the network.

I
H ! Proactive !
1 | Authority rule installation |
|
|

;
v v v |2 .
/ \
/ C Authority switch) C Authority switch) 4

1 |

! 1
||‘ /‘\Cache misses i /‘\Cache misses i ,"
\]
\ /
\ Ingress Cache hits Egress Ingress Cache hits Egress ;’

switch [direct forwarding) | switch switch |(direct forwarding)| switch

Fig.2 DIFANE!! architecture.

Tsinghua Science and Technology, June 2015, 20(3): 221-232

The authority switches provide an additional level
of flow rule caches, making the conceptual caching
Moreover, DIFANE[®]
suggests that though the controllers should generate
the configured rules, the real-time handling of packets

mechanism more efficient.

should not be their responsibility.

DIFANE is literally an abbreviation for “DIstributed
Flow Architecture for Networked Enterprises”. Though
the name suggests that the original design is for the
scale of an enterprise network, the architectural design
has the potential of facing several higher orders of
magnitudes of load in wide-area networks. However, we
think the assumption of rules can be computed before
the arrival of actual sample packets is too strong to be
held in wide-area networks. The demand for proactive
rule installation (and thus caching) is not applicable for
many reactive applications, such as streaming media
traffic engineering where flows should be reactively
configured without resource reservation beforehand.

5.2 HyperFlow

HyperFlow?*! improves the scalability of software-
defined networks by partitioning the network to
several physically distributed controllers. A relatively
large scale network, say an autonomous system,
is basically a collection of interconnected sub-
networks. Each sub-network is then able to be
controlled by a controller, and we assume that
the connections among sub-networks have bandwidth
reserved for control messages. HyperFlow is proposed
to actively synchronize the global view among
the controllers disseminated
Therefore, each controller will be able to make
decisions without reactively consulting others to
retrieve relevant information.

Moreover, a trick to make this idea possible is that
the synchronization process among controllers is event-

in all sub-networks.

based, with information published selectively through
a publish/subscribe system. Based on the observations
that network-wide changes (in the form of emitted
events) which need to be broadcasted are relatively
rare, and that network applications only require minimal
updates from these events, HyperFlow scales well with
one constraint—the delays between the farthest pair of
controllers in the network—that directly affects the state
consistency.

It is highly likely that the assumptions made in
this work will hold in wide-area networks. Indeed,
HyperFlow is effective with a proper partition of the

Shuhao Liu et al.: On Scaling Software-Defined Networking in Wide-Area Networks 227

network, which does not seem a complex task even in
a generic WAN environment. There are two possible
concerns beyond these assumptions.

One is that, despite the relatively low rate of event
occurrences that should be published, the number
of events still grows linearly as the number of
network nodes and links increases. For this reason,
the bandwidth reserved for controller synchronization
and the network scale is still limited by the achievable
performance of a single controller.

The other concern is about the network consistency,
because the worse-case delay in the network increases
as the network scales. The consequences of these
inevitable delays should be further investigated.

5.3 DevoFlow

DevoFlow!?"), on the contrary, tries to tackle scalability
issues theoretically by discussing the understanding of
the SDN principle. Is it enough to have partially
decoupled control plane? To make the SDN design
available at a larger scale or survivable with the
need for high performance networking, DevoFlow tries
every means to keep flows in the data plan. After
analysing the network application in SDN, one of the
key conclusions is that flows which are not “significant”
can impact little when the control plane is making
decisions. Based on this observation, DevoFlow enables
less-important flows to be processed directly in the
data plane. Therefore, the accessible information and
visibility of the control plane is reduced with little cost
in decision making. Furthermore, such level of vague
processing in the data plane will lead to radical use of
wildcard rules, so fewer TCAM rules are needed and
handware cost will be reduced. Above all, most flows
are pushed back to the data plane to be processed, and
the statistic collected from the controller is reasonably
limited.

Obviously, DevoFlow is scalable in nature: it
tackles the fundamental issues of scalability. However,
questions arise on the flexibility of the design. Filtering
less-useful information at the data plane has the risk
of losing visibility and flexibility of the centralized
control, because it is hard to decide whether a
specific set of information should be filtered. The
answer is likely to depend on the running network
applications. However, at this stage of SDN, it is quite
difficult to predict the characteristics of future network
applications.

5.4 Kandoo

Kandoo!”! proposes a highly configurable control plane

architecture with a two-tier (see Fig. 3) or even more
tiers hierarchy structure. The insight of this work is to
categorize switches into several tiers, so as to authorize
their level of “local” events. For local applications that
require only local information and network updates,
it can be handled at the lower-tier switches; on the
contrary, the message will be processed and delivered
to its ancestor switch. Specifically, in order to fully
exploit locality, the switches at the bottom tier, namely
the local switches, are placed as close to the data plane
as possible. For example, an extreme implementation
would be a hardware component attached to switch
chips.

Conceptually speaking, lower-tier controllers are
employed as “intelligent” caches to shield a reasonable
amount of work load from the upper-tier controllers,
except that the caches can make its own decisions
based on its authorized information. For example, an
OpenFlow application that can detect large flows in
the network does not need any global information.
Even the information from a single switch is enough.
Then, some applications, such as the ones making
routing decisions, can retrieve the result of these
local applications without details, thus to off-load the
root controllers. The proposed evaluation suggests that
Kandoo be able to improve the control plane capacity
by over one order of magnitude.

Kandoo!”! represents the attempts to exploit locality
in SDN. We should be aware of that Kandoo is
evaluated under the assumption that there exist two sets
of applications in the network: one is local and the
other is global applications, so that authority can be
partitioned smoothly between layers of controllers. In
reality, a software-defined WAN architecture must be
capable of holding a large number of sets of network
applications rather than a carefully defined set. For
example, it is highly likely that most applications
in the network requires either global information or

(Root controller)))

Global
flow mods

A4

Local controller (Local controller (Local controller)

Local Local Local
flow mod flow mod flow mod

Switch Switch Switch Switch Switch Switch

Fig. 3 An example of the two-tier Kandoo!”! architecture.

228

global configuration. In these cases, Kandoo will fail
to provide scalability, which may introduce control
plane overhead as the packets should be processed by
a sequence of controllers in multiple tiers until having
the access to enough information.

The inspiration from Kandoo is that, given the
supported application characteristics in WAN, we can
design dedicated architectures to scale it out. It is not a
good assumption to hold, because such an infrastructure
architecture design may reversely limit the development
of network applications, which is a violation of the SDN
principle.

5.5 Discussions

In this section, four scalable designs are reviewed:
DIFANE®!, HyperFlow”, DevoFlow!?”), and
Kandoo!”!. Generally speaking, they are representative
works from different aspects. HyperFlow tries to
reasonably partition the network to perform divide-and-
conquer. DevoFlow is proposed to filter information
before it is transmitted up to the controller, thus
to offload the bottleneck. DIFANE and Kandoo
are similar hierarchical solutions with conceptual
distinctions. DIFANE pays more attention to create
multiple levels of rule caches, while the latter one
exploits locality of certain network applications.

It is easy to see that all these attempts still follow
the design principles of typical distributed systems
(Section 3.4), especially in exploiting locality. However,
as a clean-slate networking technology, few people
can be confident enough to predict the future trend of
network applications. To be honest, we think that our
community is still far from the goal of designing a
generic architecture for software-defined WAN without
assumptions on application behaviours.

To that end, a promising research and industry
direction lies in traffic monitoring and measurement
results in a production software-defined networks.

6 Scaling Up the Control Plane

To improve scalability further, it is also important to
“scale up” the performance of a single controller within
the control plane. We are now ready to discuss a number
of proposals towards this direction, which is orthogonal
as compared to the previous section.

Onix!® is an operating system designed to support
a cluster of controllers. Onix itself supports state
synchronizing and distributed computing schemes
among the controller nodes in the same cluster. Being

Tsinghua Science and Technology, June 2015, 20(3): 221-232

physically co-located, the cluster of controllers can
maintain a network-wide view with scalability and
reliability. Instead of depending on a single controller
instance, a cluster of controllers provides both capacity
and robustness, while its internal design is transparent
to the data plane, i.e., an Onix works like a single
controller from the switches’ perspectives. The typical
architecture of an Onix cluster is depicted in Fig. 4.

Inside an Onix cluster, the workload on a single
controller instance is reduced because all queries from
the data plane are partitioned to the administration
of multiple homogeneous nodes by the underlying
switch management components. All these nodes
are sharing the global network information in a
distributed database. Each node exposes a subset
of its administrating information, while replication
and restoration mechanisms are employed just as a
traditional distributed database system. The network
within the cluster is highly available and dedicated to
the updating and synchronizing traffic among nodes,
such that network information that is stored on another
node can be accessed with small enough overheads.

In this design, the computation and storage capacity
of a single controller is multiplied as the number of
nodes in the cluster increases, which is ideal for a
component controller for a large scale software-defined
network. Furthermore, clusters of Onix can still be
organized in an architecture listed in Section 5, and the
scalability can be further improved.

Provided that the network statistics/state information
in a WAN-scale SDN is extremely large in size, a cluster
as a single controller will be the only resort.

Onix cluster

Onix node
(Network application 1)"’ """"""""" }_
(Onix API J - - -~ ~
. Distributed network
Control logic [information database \

o))| g
opology W =<
// ﬁ - — *

|
I
I
I
I
I
I
I
I
I
I
I
: @ \ (logically centralized) /
I
I
I
I
I
I
I
I
|
|
|
I
|
I

cache
Onix node Onix node
C Switch management)
| Switch | «++ [Switch | | Switch | - | Switch |

Fig. 4 A typical architecture of an Onix'® cluster.

Shuhao Liu et al.: On Scaling Software-Defined Networking in Wide-Area Networks 229

7 Scaling the Data Plane

The data plane should be fundamentally “dumb” in the
SDN architecture, which performs packet forwarding
based on controller instructions solely. The instruction
is either queried from the controller or cached in the
TCAM. The former action will suffer from the query
delay, so the possibility of hitting the cache in TCAM
is critical for network performance, especially in the
network core at scale.

7.1 Label-switching to offload the core

Label switching schemes are one of the valuable
heritages from traffic ~ engineering
technologies*. It moves the intelligence and
complexity to the network edges, offloading the
network core.

As depicted in Fig. 5, label switching effectively
decouples the network edges from the core. The
edge switches in the network, will fully handle its
corresponding network flows, making routing decisions
and packet scheduling. On the contrary, the operator
manages to achieve a “dumb” network core. This model
is both valid and practical because it relieves the system
bottleneck. In a large-scale network, say the Internet,
the core switches have to handle a much greater orders
of magnitude of flows, which is typically translated into
a great number of TCAM rules. As the TCAM spaces
fail to scale up, the core becomes the bottleneck. With
label switching, the network core is able to get rid of
the complex and expensive TCAM. Instead, some fixed-
length, exact match labels that are better available in
commodity hardware are used to perform switching!?®!.
The label switching rules are capable of being pre-
installed. Also, the network edge, which is naturally
less demanding in TCAM because of the small set of

o 9(Controller)j

/
'Ilngress switch

tradition

&

Origin Origin
packet packet
Label-switched v
E] core Ej
Sender Receiver

Fig. 5 The concept of lable switching in SDN.

passing flows, still exploits the flexibility of the SDN
paradigm.

At the same time, label switching happens to bypass
the consistency issues of network update in a large
scale software-defined WAN. Since the edge switch
is the single node involved in the update, per-packet
consistency is guaranteed. Therefore, we believe label
switching could be the right solution to tackle the data
plane scalability issues in one action.

7.1.1 MPLS-based label switching in SDN

Fabric!®! is a representative work that introduces
MPLS-based label switching in the software-defined
WAN. Since the support for MPLS standard is readily
available in commodity switches, implementing MPLS-
based labelling is an effort with little cost overhead.
The Fabric architecture is a bit different from the one
depicted in Fig. 5. A “Fabric controller” is employed to
control the MPLS-based core to offer more flexibility
and dynamics. In order to match the edge context
to the edge, which is essentially a simple namespace
translation, the encapsulation technology is used.

Casado et al.”>! argued that this architecture, with
separation of forwarding and control provided by the
SDN principle and the simplicity provided by MPLS,
can benefit from both technologies.

7.1.2 Other label switching in SDN

Shadow MACs!'”! is a recent proposal that utilizes
a virtual MAC address to perform label switching in
SDN. Rather than choosing a dedicated label (e.g.,
MPLS), Agarwal et al.!'! successfully found a means to
implement this concept with commodity SDN hardware
that has already been deployed. In fact, one of the
interesting highlights of this work is that it can be
implemented in two ways: one is letting the edge
switches perform virtual MAC rewriting (reverting)
guided by OpenFlow instructions; the other is to exploit
ARP spoofing technology to making the sender to use
the virtual destination MAC address automatically.
Shadow MACs requires no change in hardware, not
even support for OpenFlow. For this reason, it is highly
practical for the sake of deployment. However, due to
the process of rewriting hardware addresses, the hybrid
use of shadow MACs and real MAC addresses is not
safe. Hardware address conflicts are not easy to avoid.

7.2 Hybrid solutions

Due to the distributed nature of traditional routing

230

schemes, the WAN is scalable. The SDN paradigm
centralizes network functionalities, but 1is not
orthogonal to the traditional network management.
Some hybrid schemes accomplish to exploiting
flexibility from SDN, but keep up with the scalability
of distributed routing protocols at the same time.

Fibbing®® makes the controller to trick the
OpenFlow switches by depicting a fake topology,
thus to let the conventional OSPF perform desired
flexible routing, bypassing the network inconsistency
and TCAM space unavailability. By generating fake
messages that can be identified and used by the OSPF
components in traditional switches, the switches will
then make routing decision on their own based on the
execution results of OSPE. With this little trick, the
switches do not have to cache TCAM rules, and the
switching performance remains unaffected.

RFCP®! attempts to build a centralized routing
control platform with the help of OpenFlow, enabling
AS-wide BGP routing service while maintaining full
control over the network. This work is similar to
Ref. [26].

Since the above hybrid solutions completely rely
on the integration with traditional distributed network
protocols, only can the corresponding network
functionalities be supported. Also, it does not improve
the network programmability—there is no way to
simplify the hybrid application programming, nor to
reuse codes among different functionalities. Above all,
hybrid solutions can be regarded as trade-offs to gain
higher level of control. They should not be the final
answer to scalability issues in a software-defined WAN.

8 Discussion: Violation of the SDN

Principles

As introduced in Section 3.4, the design of a distributed
system at WAN scale should follow three essential
principles. However, all these principles are, in a
sense, violation to the SDN principle, i.e., completely
decoupling the control plane from the data plane.

We argue that it is an inevitable solution to push some
control functions downward, closer to the data plane
to exploit locality and to reduce response time. Note
that distributing some control logic closer to the data
path does not necessary imply violation of the clean
separation between them. Essentially, it is caching
control logic closer to the datapath. Controller still has
the ability to handle every related events and to make

Tsinghua Science and Technology, June 2015, 20(3): 221-232

the decision.

Caching control logic on switches is not a new idea.
In fact, the latest version of OpenFlow supports simple
logics in flow table!!!. To be more specific, conditional
rules are optional, such that the control decisions can
perform local fast failover3%-31]
link failure. Further, Ref. [32] theoretically proves that
under such a standardized control scheme, the potential
computation capacity in the dataplane is enough for
flexible control.

Therefore, caching logic instead of static rules in the
data plane seems to be a good solution to the scalability
problem.

in case of sudden

9 Conclusions

Software-defined networking suffers from
scalability issues towards deployment in larger scale
networks such as wide-area networks. The challenges

are three-fold:

severe

e A centralized control plane has to store,
process, and maintain an unbounded amount
of network state information at scale. Moreover,
an unbounded number of events emitted should be
handled in real time.

e Since a wide-area network spans a large area
geographically, the centralized control plane
should consider the propagation delays which may
significantly degrade the response time.

e The relatively high diversity of OpenFlow
matching rules is a double-edged sword. It may
result in a huge number of TCAM rules, which are
not cost-effective to be cached in the data plane.

We have examined a few early attempts in the

research community to address these scalability
problems. Generally speaking, these surveyed
proposals are learning from the experience of existing
large distributed system designs such as DNS. The
principles are shared: exploiting locality, hierarchical
structuring, replication and synchronization among the
nodes. Although solutions to software-defined wide-
area networks rely on more practical experiences, we
think more attention should be paid to thinking about
the foundational design principles of software-defined
networking.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,

Shuhao Liu et al.:

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Openflow: Enabling innovation in campus networks, ACM
SIGCOMM CCR, vol. 38, no. 2, pp. 69-74, 2008.

R. Jain and S. Paul, Network virtualization and software
defined networking for cloud computing: A survey, [EEE
Communications Magazine, vol. 51, no. 11, pp. 24-31,
2013.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.
Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.,
B4: Experience with a globally-deployed software defined
wan, in Proc. of ACM SIGCOMM, 2013.

I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, A
roadmap for traffic engineering in sdn-openflow networks,
Computer Networks, vol. 71, pp. 1-30, 2014.

S. Agarwal, M. Kodialam, and T. Lakshman, Traffic
engineering in software defined networks, in Proc. of IEEE
INFOCOM, 2013.

M. Yu, J. Rexford, M. J. Freedman, and J. Wang, Scalable
flow-based networking with difane, ACM SIGCOMM
CCR, vol. 40, no. 4, pp. 351-362, 2010.

S. Hassas Yeganeh and Y. Ganjali, Kandoo: A framework
for efficient and scalable offloading of control applications,
in Proc. of ACM SIGCOMM HotSDN, 2012.

T. Koponen, M. Casado, N. Gude, J. Stribling, L.
Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,
T. Hama, et al., Onix: A distributed control platform
for large-scale production networks, in Proc. of USENIX
0SDI, 2010.

S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali,
On scalability of software-defined networking, IEEE
Communications Magazine, vol. 51, no. 2, pp. 136-141,
2013.

M. Kobayashi, G. Parulkar, G.
Appenzeller, J. Little, J. Van Reijendam, P. Weissmann,

S. Seetharaman,

and N. McKeown, Maturing of openflow and software-
defined networking through deployments,
Networks, vol. 61, pp. 151-175, 2014.

D. O. Awduche and J. Agogbua, Requirements for traffic
engineering over mpls, RFC 2702, Tech. Rep., September
1999.

D. O. Awduche, Mpls and traffic engineering in ip

Computer

networks, IEEE Communications Magazine, vol. 37, no.
12, pp. 4247, 1999.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore, Oflops: An open framework for openflow switch
evaluation, in PAM, 2012.

J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K.
Agarwal, J. Carter, and R. Fonseca, Planck: Millisecond-
scale monitoring and control for commodity networks, in
Proc. of ACM SIGCOMM, 2014.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V.
Gill, M. Nanduri, and R. Wattenhofer, Achieving high
utilization with software-driven wan, in Proc. of ACM

SIGCOMM, 2013.
B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

On Scaling Software-Defined Networking in Wide-Area Networks 231

Past: Scalable ethernet for data centers, in Proc. of
ACM CoNext, 2012.

R. Mahajan and R. Wattenhofer, On consistent updates
in software defined networks, in Proc. of ACM HotNets,
2013.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D.
Walker, Abstractions for network update, in Proc. of ACM
SIGCOMM, 2012.

K. Agarwal, C. Dixon, E. Rozner, and J. Carter, Shadow
macs: Scalable label-switching for commodity ethernet, in
Proc. of ACM SIGCOMM Workshop HotSDN, 2014.

P. Mockapetris, Rfc 882: Domain names: Concepts and
facilities, november 1, 1983, Obsoleted by RFC1034,
RFC1035 [Moc87b, Moc87c]. Updated by RFC0973
[Moc86]., 1986.

P. V. Mockapetris, Rfc1035:
implementation specification, 1987.
P. B. Danzig, K. Obraczka, and A. Kumar, An analysis

Domain names—

of wide-area name server traffic: A study of the internet
domain name system, in Proc. of ACM SIGCOMM, 1992.

P. Mockapetris and K. J. Dunlap, Development of the
domain name system, in Proc. of ACM SIGCOMM, 1988.

A. Tootoonchian and Y. Ganjali, Hyperflow: A distributed
control plane for openflow, in Proc. of USENIX INM
Conference, 2010.

M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian,
Fabric: A retrospective on evolving sdn, in Proc. of ACM
SIGCOMM Workshop HotSDN, 2012.

S. Vissicchio, L. Vanbever, and J. Rexford, Sweet little
lies: Fake topologies for flexible routing, in Proc. of ACM
SIGCOMM Workshop HotSDN, 2014.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, Devoflow: Scaling flow
management for high-performance networks, in Proc. of
ACM SIGCOMM, 2011.

B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker, Software-defined internet
architecture: Decoupling architecture from infrastructure,
in Proc. of ACM SIGCOMM Workshop HotSDN, 2012.

C. E. Rothenberg, M. R. Nascimento, M. R. Salvador,
C. N. A. Corréa, S. Cunha de Lucena, and R. Raszuk,
Revisiting routing control platforms with the eyes and
muscles of software-defined networking, in Proc. of ACM
SIGCOMM Workshop HotSDN, 2012.

M. Borokhovich, L. Schiff, and S. Schmid, Provable data
plane connectivity with local fast failover: Introducing
openflow graph algorithms, in Proc. of ACM SIGCOMM
Workshop HotSDN, 2014.

L. Schiff, M. Borokhovich, and S. Schmid, Reclaiming the
brain: Useful openflow functions in the data plane, in Proc.
of ACM HotNets, 2014.

C. Newport and W. Zhou, The (surprising) computational
power of the sdn data plane, in Proc. of IEEE INFOCOM,
2015.

232

Baochun Li received the BEng degree
from Tsinghua University, China, in
1995 and the MS and PhD degrees
from University of Illinois at Urbana-
Champaign, Urbana, in 1997 and 2000,
respectively. Since 2000, he has been with
the Department of Electrical and Computer
Engineering at the University of Toronto,
where he is currently a professor. He holds the Nortel Networks
Junior Chair in Network Architecture and Services from October
2003 to June 2005, and the Bell Canada Endowed Chair in
Computer Engineering since August 2005. His research interests
include large-scale distributed systems, cloud computing, peer-
to-peer networks, applications of network coding, and wireless
networks. Dr. Li has co-authored more than 280 research papers,
with a total of over 13000 citations. He was the recipient of

Tsinghua Science and Technology, June 2015, 20(3): 221-232

the IEEE Communications Society Leonard G. Abraham Award
in the Field of Communications Systems in 2000. In 2009, he
was a recipient of the Multimedia Communications Best Paper
Award from the IEEE Communications Society, and a recipient
of the University of Toronto McLean Award. He is a member of
ACM and a Fellow of IEEE.

Shuhao Liu received his BE degree from
Tsinghua University, Beijing, China, in
2012 and the MS degree from National
University of Defense Technology,
Changsha, Hunan, China in 2014. He is
currently a PhD student at University of
Toronto. His research interests include
software-defined networking, datacenter
networking, and network virtualization.

