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Abstract—Graph analytics has emerged as one of the funda-
mental techniques to support modern Internet applications. As
real-world graph data is generated and stored globally, the scale
of the graph that needs to be processed keeps growing. It is crit-
ical to efficiently process graphs across multiple geographically
distributed datacenters, running wide-area graph analytics.

Existing graph analytics frameworks are not designed to run
across multiple datacenters well, as they implement a Bulk
Synchronous Parallel model that requires excessive wide-area
data transfers. In this paper, we present a new Hierarchical
Synchronous Parallel model designed and implemented for syn-
chronization across datacenters with a much improved efficiency
in inter-datacenter communication. Our new model requires no
modifications to graph analytics applications, yet guarantees their
convergence and correctness. Our prototype implementation on
Apache Spark can achieve up to 32% lower WAN bandwidth
usage, 49% faster convergence, and 30% less total cost for
benchmark graph algorithms, with input data stored across five
geographically distributed datacenters.

I. INTRODUCTION

Graph analytics serves as the foundation of many popular
Internet services, including PageRank Web search [4] and
social networking [5]. These services are typically deployed at
a global scale, with user-related data naturally generated and
stored in geographically distributed, commodity datacenters
[8], [19], [20], [25]. In fact, popular cloud providers, such as
Amazon, Microsoft, and Google, all operate tens of datacenters
around the world [11], offering convenient access to both
storage and computing resources.

In Internet-scale graph analytics, the production graphs are
typically as large as billions of vertices and trillions of edges
[14], [23], taking terabytes of storage. For example, it is
reported that Web search engines operate on an indexable Web
graph consisting of ever-growing 50 billions of websites and
one trillion hyperlinks between them [14]. Such large scales
with rapid rates of change [11], coupled with high costs of
Wide-Area Network (WAN) data transfers [19] and possible
regulatory constraints [26], make it expensive, inefficient, or
simply infeasible to centralize the entire dataset to a central
location, even though this is a commonly-used approach [1],
[15] for analytics.

Therefore, it is critical to design efficient mechanisms to
run graph analytics applications in a geographically distributed
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manner across multiple datacenters in a paradigm called wide-
area graph analytics. In particular, the fundamental challenge
is to process the graph with raw input data stored and com-
puting resources distributed in globally operated datacenters,
which are inter-connected by wide-area networks (WANs).

Unfortunately, existing distributed graph analytics frame-
works are not sufficiently competent to address such a chal-
lenge. Representative works in the literature, e.g., Pregel [17],
PowerGraph [6] and GraphX [7], are solely designed and opti-
mized for processing graphs within a single datacenter. Gemini
[33], one of the state-of-the-art solutions, even assume a high-
performance cluster with 100 Gbps of bandwidth capacity
between worker nodes. Unfortunately, this assumption is far
beyond the reality in inter-datacenter WANs, whose available
capacity is typically hundreds of Mbps [11].

In this paper, we argue that the inefficiency of wide-area
graph analytics stems from the Bulk Synchronous Parallel
(BSP) model [24], which is the dominating synchronization
model implemented by most of the popular graph analytics
engines [28]. The primary reason for its popularity is that
BSP works seamlessly with the vertex-centric programming
abstraction [17], which eases the development of graph ana-
lytics applications. Many graph algorithms and optimizations,
namely vertex programs, are exclusively designed with such
an abstraction with BSP [21], [29] in mind.

In a vertex program under BSP, the application runs in
a sequence of “supersteps,” or iterations, which apply up-
dates on vertices and edges iteratively. Message passing and
synchronization is made between two consecutive supersteps,
while performing local computation within each superstep.
Since each superstep typically allows communication between
neighboring vertices only, it takes at least k supersteps until
the algorithm converges on a graph whose diameter is k [29].
Thus, k message passing phases will happen in serial, which
incurs excessive — and not always necessary [31] — inter-
datacenter traffic in wide-area graph analytics.

One possible solution is to loosen the BSP model, by
allowing asynchronous updates on different graph partitions.
This way, new iterations of computation are able to proceed
with partially staled vertex/edge properties, relaxing the hard
requirement on inter-datacenter communication to a best-effort
model. Existing systems implementing such an asynchronous
parallel model include GraphUC [9] and Maiter [31]. However,
neither system can guarantee the convergence or the correct-



ness of graph applications [28].
Our objective is to design a new synchronization model

for wide-area graph analytics, which satisfies three important
requirements:

1) WAN efficiency. The new model should require fewer
rounds of inter-datacenter communication and generate
less inter-datacenter traffic.

2) Correctness. The new model should ensure the appli-
cation can return the same result as if it was executed
under BSP.

3) Transparency. The new model should require absolutely
no change to the existing applications, by retaining the
same set of vertex-centric abstraction APIs.

In this paper, we introduce Hierarchical Synchronous Par-
allel (HSP), a novel synchronization model designed for
efficiency in wide-area graph analytics. In contrast to BSP,
which requires complete, global synchronizations among all
worker nodes in all datacenters, HSP allows partial, local
synchronizations within each datacenter as additional updates.
Specifically, HSP automatically switches between two modes
of execution, global and local, like a two-level hierarchical
organization. The global mode is the same as BSP, where
all datacenters respond to central coordination. The local
mode, on the other hand, allows each datacenter to work au-
tonomously without coordinating with others. Our theoretical
analysis shows that, if the mode switch happens strategically,
HSP can guarantee the convergence and correctness of all
vertex programs. In addition, if the implementation of the
vertex program is considered practical [29], HSP can ensure
a much higher rate of convergence, as compared to BSP with
the same amount of inter-datacenter traffic generated.

We have implemented the HSP model on GraphX [7], an
open-source general graph analytics framework built on top of
Apache Spark [30]. The original implementation of GraphX
supports the BSP vertex-centric programming abstraction. In
our prototype implementation, we have extended the frame-
work with HSP, by allowing synchronization to be bounded
within a single datacenter, and by implementing the feature
that automatically switches the mode of execution on a central
coordinator. With our implementation, we have performed
an extensive evaluation of HSP in five real geographically
distributed datacenters on Google Cloud. Three empirical
benchmark workloads on two large-scale real-world graph
datasets have been experimented on. The results show that
HSP is efficient in running wide-area graph analytics. It
requires significantly fewer cross-datacenter synchronizations
until a guaranteed algorithm convergence, and reduces WAN
bandwidth usage by 22.4% to 32.2%. The monetary cost of
running graph applications can be reduced by up to 30.4%.

II. BACKGROUND AND MOTIVATION

Graphs in production are typically too large to be efficiently
processed by a single machine [17]. Distributed graph analyt-
ics frameworks are thus developed to run graph analytics in
parallel on multiple worker nodes. Before running the actual
analytics, the input graph is divided into several partitions,
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(a) Supersteps under BSP. (b) Allow additional local synchronization.
Fig. 1: A Connected-Component algorithm executed under different syn-
chronization models. White circles indicate active vertices, and the arrows
represent message passing.

each of which is held and processed by a worker. The
frameworks will then handle the synchronization and neces-
sary message passing among workers automatically, allowing
developers to work solely on the analytic logic itself.

Most of the state-of-the-art solutions [6], [7], [33] provide a
vertex-centric abstraction for developers to work on — similar
to Google’s Pregel — and implement the Bulk Synchronous
Parallel (BSP) model for inter-node synchronization [28]. Such
an integration of programming abstraction and synchronization
model allows developers to “think like a vertex,” making the
development of graph analytics applications intuitive and easy
to debug.

Even though it is well-known that the BSP model requires
excessive communication, the bandwidth capacity among
workers is seldom considered a system bottleneck [33]. When
deployed within a high-performance cluster where bandwidth
is readily abundant, BSP performs well with a large number
of system optimization techniques, such as advanced graph
partitioning strategies and load balancing. Unfortunately, this
is no longer true in wide-area data analytics, where inter-
datacenter data transfers can incur a much higher cost, in terms
of both time and monetary expenses.

Fig. 1a illustrates a sample execution of the Connected-
Component (CC) algorithm under BSP. The algorithm runs
on a six-vertex graph, which is cut into two partitions. Within
a superstep, each vertex tries to update itself with the smallest
vertex ID seen so far at all its neighbors. A vertex becomes
inactive as soon as it cannot get further updates. The algorithm
converges until no vertex is active, and we can then compute
the number of connected components by counting the remain-
ing vertex IDs. Fig. 1a shows that CC converges in a total of
6 supersteps, while the first three supersteps require message
passing from DC A to DC B.

However, it is easy to observe that the first two inter-
datacenter messages are unnecessary in this example. These
two messages are in fact transferring values that will be
immediately overridden in the next superstep. The insight
behind it is that we can sometimes hold inter-datacenter syn-
chronization until multiple cycles of synchronization within a
single datacenter have been performed, for the sole purpose of
minimizing cross-datacenter traffic. For example, one possible



optimization is illustrated in Fig. 1b. It allows updates of
vertex IDs to happen within a datacenter, without updating
the vertex that is owned by both datacenters. Inter-datacenter
communication happens once at the fourth step, when both
partitions has already converged locally. This new principle
of synchronization reaches the same result of the CC algo-
rithm, yet generating only 1/3 of the inter-datacenter traffic as
compared to BSP.

The example shown in Fig. 1 inspires us to explore such
a new principle, for the sake of minimizing inter-datacenter
traffic. To achieve this objective, we wish to carefully design
a new synchronization model, called the Hierarchical Syn-
chronous Parallel (HSP) model. As an alternative to BSP, it
needs to guarantee that the correctness of any vertex program
should be retained, which may be way more complex than the
Connected-Component algorithm.

III. HIERARCHICAL SYNCHRONOUS PARALLEL MODEL

In this section, we introduce the Hierarchical Synchronous
Parallel (HSP) model. We will first explain the high-level
principle of its design and the general idea behind its correct-
ness guarantee. We will then formulate HSP model theoreti-
cally and explain it in greater detail. With our formulation,
we present a formal proof of its correctness and rate of
convergence in wide-area graph analytics. Finally, we use a
simple PageRank application as an example to illustrate the
effectiveness of HSP.

A. Overview

Generally speaking, HSP is an extension to the BSP model
in wide-area graph analytics, by performing synchronization
in a two-level hierarchy. In addition to BSP, HSP allows local
synchronization among worker nodes located in a single data-
center, completely avoiding inter-datacenter communication.
To achieve this, HSP introduces two modes of execution,
global and local, and switches between them strategically
and frequently.

In the global mode, HSP has exactly the same behavior
as BSP, where each synchronization is a global, all-to-all
communication among all worker nodes, regardless of which
datacenter they are located in. We call one iteration of the
execution in HSP a “global update,” which is equivalent
to a superstep in BSP. Global updates are essential to the
correctness of graph analytics, because it is necessary to spread
the information outside of individual datacenters.

In the local mode, the worker nodes are organized in
different autonomous datacenters. Workers housed in the same
datacenter work synchronously. In particular, they still run in
iterations, or “local updates,” as if they are running the vertex
program under BSP. The difference is that, if a vertex has
mirrors in multiple datacenters, called a “global vertex,” we
mark it inactive and do not update it until switching back to
the global mode. Since synchronizing the property of these
global vertices is the only source of inter-datacenter traffic,
we completely eliminate the need for inter-datacenter com-
munication in the local mode. In addition, it is worth noting

that without the need for global synchronization, execution at
different datacenters can be asynchronous.

Without running in the local mode, HSP is equivalent to
BSP. Thus, it still guarantees correctness. However, running in
the local mode takes advantage of low-cost synchronization
within a datacenter, allowing more updates in the same amount
of time. It is an interesting question when to make the
switching between these two modes.

Our mode-switching strategy is designed based on our
theoretical analysis in the next subsection for the sake of
the algorithm convergence guarantee. Here we introduce its
general principle. On the one hand, local updates should allow
at least one information exchange between any pair of vertices.
Thus, the number of local updates should be higher than the
diameter of the local partition. On the other hand, we should
not leave any worker idle before reaching global convergence.
As a result, HSP will switch away from the local mode
as soon as all datacenters execute more local updates than
its partition diameter or the local update in any datacenter
converges. Then, while HSP running in the global mode,
it will switch back to local immediately as soon as the
algorithm is considered “more converged,” whose metric will
be introduced later.

The intuition behind HSP is that, in general, graph algo-
rithms need to spread the information on a vertex to all vertices
of the entire graph. In other words, every vertex has to “get its
voice heard.” In wide-area data analytics, communicating with
neighbors does not always come at similar prices. Therefore,
instead of requiring every vertex to talk to its neighbors in
every iteration, HSP organizes communication hierarchically.
It allows information to spread well within a closed neighbor-
hood, before inter-neighborhood communication. This way, the
entire graph can still converge, but at a much lower cost.

B. Model Formulation and Description

Before formulating the HSP model, we first give a formal
definition of a vertex program. Given a graph G = (V,E)
with initial properties on all vertices xxx(0) ∈ R|V |, a vertex
programming application defines the function to update each
vertex in a superstep. Specifically, a combiner function g(·)
is defined to combine the received message to each vertex,
and a compute function f(·) is defined to compute the
updated property on a vertex using the old property and the
combined incoming message. Without loss of generality, let
fi : R|V | → R denote the update function defined on vertex
i ∈ {1, 2, . . . , |V |}, such that, in BSP, we have

x
(k+1)
i = f

(
x
(k)
i , gi(xxx

(k))
)

:= fi(xxx
(k)). (1)

Or equivalently, define FFF : R|V | → R|V | such that

xxx(k+1) = FFF (xxx(k)).

The objective of the vertex programming application is to
compute xxx∗ ∈ R|V | which satisfies xxx∗ = FFF (xxx∗), by iteratively
applying the update defined in Eq. (1) until convergence under
BSP. By definition, xxx∗ is a fixed point under operator FFF .
In practice, the application is considered converged and an



Procedure 1 Execution of a vertex programming application
under the Hierarchical Synchronous Parallel (HSP) model.

1: Set execution mode to global, global update counter k ← 0,
current error δ0 ←∞;

2: while δk > δ do
3: if Execution mode is global then
4: Perform a global update: xxx(k+1) ← FFF (xxx(k));
5: δk+1 ← D(xxx(k+1),xxx(k));
6: if δk+1 < δk then
7: Switch execution mode to local;
8: else
9: δk+1 ← δk;

10: k ← k + 1;
11: else
12: Apply local updates in each datacenter concurrently

(as in Procedure 2), until any datacenter calls
forceModeSwitch() or all datacenters call
voteModeSwitch().

13: Switch execution mode to global;
14: return xxx(k).

approximation xxx(N) is obtained after N supersteps, if the
following condition is satisfied:

D(xxx(N−1),xxx(N)) ≤ δ (2)

where D : (R|V |,R|V |) → Q≥0 is a distance metric (i.e.,
(R|V |, D) is a metric space), and δ ∈ Q≥0 is a pre-defined
error bound. For example, Chebyshev norm is commonly used
as the metric, i.e.,

D(xxx,yyy) = max{|x1 − y1|, |x2 − y2|, . . . , |x|V | − y|V ||},

because it does not require global knowledge to compute.
To process the graph in d geographically distributed data-

centers, it is partitioned into d large subgraphs. We define each
vertex either a local vertex or a global vertex. Specifically,
vertex i is a local vertex of datacenter j if datacenter j stores
its original copy and its property xi is not required to update
any vertex stored in a different datacenter. In other words,
xi should never be delivered outside of datacenter j when
running the application under BSP. Let Ij denote the index
set of all local vertices of datacenter j. Otherwise, if xi is
required to update vertices stored in multiple datacenters, we
define vertex i a global vertex. Let IG denote the index set of
all global vertices. Apparently, the defined d + 1 index sets
I1, I2, . . . , Id, IG are mutually exclusive and their union is
{1, 2, . . . , |V |}.

With a globally partitioned graph, we define FFF j(·), the local
update function in datacenter j, as follows:

[
FFF j(xxx)

]
i

=

{
fi(xxx) i ∈ Ij
xi otherwise

. (3)

Using the notations introduced above, we present our de-
tailed description of the HSP model in Procedure 1. The
procedure for local updates in a single datacenter is listed
separately. Since the local updates in different datacenters are
asynchronous, it requires a mechanism of central coordination
that decides mode switch to global. This is achieved by
two methods, voteModeSwitch() and forceModeSwitch().

Procedure 2 Local updates in datacenter j.
1: Set local iteration counter nj ← 0, local error δ0 ← ∞; d

denotes the diameter of the local partition;
2: repeat
3: nj ← nj + 1;
4: Perform an in-place local update: xxx(k,nj) ← FFF j

(
xxx(k,nj−1)

)
;

5: δnj ← D(xxx(k,nj),xxx(k,nj−1));
6: if δnj < δ then
7: forceModeSwitch();
8: if nj == d then
9: voteModeSwitch();

10: until Mode switch is forced by any or voted by all datacenters;
11: Execution mode switched to global.

The prior is called once the number of local updates reaches
the subgraph diameter, while the latter is called upon local
convergence. The central coordinator receives the signals
triggered by these two methods, and enforces mode switch
when appropriate (line 12 of Prcedure 1).

C. Proof of Convergence and Correctness

To prove the convergence and correctness guarantee of the
proposed HSP model, the only requirement for the vertex
programming application is that the iterative computation is
correctly implemented; that is, the application can converge
within a finite number of iterations under BSP. Formally, we
have the following assumption:

Assumption 1 (Convergence under BSP): Given any arbi-
trary initial value of xxx(0) and a distance metric D(·, ·), the
sequence of successive approximations {xxx(k)} approaches xxx∗,
a fixed point under operator FFF , as more iterations of global
updates Eq. (1) are applied. That is,

lim
k→∞

D
(
xxx(k),xxx∗

)
= 0,where xxx∗ ∈ FixFFF . (4)

Theorem 1 (Convergence and correctness guarantee of
HSP): If a vertex programming application satisfies Assump-
tion 1, it will also return a valid approximation of xxx∗ in finite
time under Procedure 1.

Proof: Since δk is overridden at line 9 using the previous
value in the sequence, it is valid to consider their original value
before being overridden.

δk+1 = D
(
xxx(k+1),xxx(k)

)
≤
[
D
(
xxx(k+1),xxx∗

)
+D

(
xxx(k),xxx∗

)]
(triangle inequality),

which approaches 0 as k →∞ given Eq. (4). Equivalently,

∀δk > 0 and ∀xxx(k),∃n ∈ N s.t. δn+k < δk.

Considering the global mode in Procedure 1, a mode
switch to local (line 7) will happen after a finite number of
global updates. This process will result in a non-increasing
sequence {δk}, which strictly decreases after each mode
switch to local.

In a real-world implementation where precision of any num-
ber is bounded, the sequence {δk} will eventually approach to
0, i.e., ∃k∗ <∞, s.t. δk∗ < δ, and Procedure 1 will return an
estimation xxx(k

∗).
xxx(k

∗) satisfies Eq. (2), making it a valid estimation of xxx∗.



As is shown in the proof, the convergence guarantee of
HSP relies heavily upon its global updates. As long as the
application can converge, applying local updates in the middle
does not affect the result of the vertex programming algorithm.

D. Rate of Convergence

Even with the convergence and the correctness guarantee,
one may still be skeptical about the effectiveness of HSP. How
could the additional local updates help with the application
execution? Is it a guarantee that it will generate less inter-
datacenter traffic?

It is difficult to answer these questions without any prior
knowledge about the actual application itself, since the vertex
programming model provides developers with a substantial
amount of flexibility. Generally speaking, developers are able
to code whatever they desire, making it difficult to reach any
useful conclusion about such applications.

However, to ensure the scalability while processing very
large datasets, vertex programming applications can share
some characteristics in practice. Yan et al. [29], in particu-
lar, investigated some well-implemented vertex programming
algorithms, namely practical Pregel algorithms. Common
characteristics of a practical vertex programming application
were summarized under BSP. These applications require linear
space usage, linear computing complexity and linear com-
munication cost per superstep. In addition, practical Pregel
algorithms require at most a logarithmic number of supersteps
till their convergence, i.e., at least a linear rate of convergence.

With the latter characteristic as an assumption, HSP can
ensure effectiveness by allowing additional local updates in
different datacenters.

Assumption 2 (Practical implementation): The vertex pro-
gramming application converges at a linear or a superlinear
rate under BSP, i.e.,

∃µ ∈ [0, 1), s.t. lim
k→∞

D(xxx(k+1),xxx∗)

D(xxx(k),xxx∗)
≤ µ. (5)

To study the rate of convergence, we consider each cycle of
synchronization in HSP. A cycle of synchronization is defined
as the interval between two consecutive mode switches from
local to global. In other words, a cycle includes several
consecutive global updates and the subsequent local updates,
until a switch back to the global mode.

In particular, during the local mode within each synchro-
nization cycle, several iterations of local updates are applied
in each individual datacenter at the same time. For the con-
venience of our subsequent proof, we collectively formulate
these local updates as a function

F̄FF
(n1,n2,...,nd)(xxx) :=

( d∏
j=1

FFF
nj

j

)
(xxx),

where nj denotes the number of iterations of local updates
applied in datacenter j.

Lemma 1: xxx∗ is a fixed point under operator F̄FF :=

F̄FF
(n1,n2,...,nd) for any n1, n2, . . . , nd.

Proof: Given j ∈ {1, 2, . . . , d} and i ∈ Ij , according
to Eq. (3), we have

[
FFF j(xxx

∗)
]
i

= fi(xxx
∗) = xxx∗i . Also, given

i /∈ IG,
[
FFF j(xxx

∗)
]
i

= xxx∗i by definition. Thus, xxx∗ is a fixed
point under FFF j .

Since no global update is applied, the properties of global
vertices remain the same after F̄FF (·) is applied, i.e.,[

F̄FF (xxx)
]
i

= xi,∀i ∈ IG.
Further, FFF j(·) depends on the local vertices of datacenter j
only. Thus, the individual functions FFF j(j = 1, 2, . . . , d) are
commutative and associative in Eq. (3). Therefore,

F̄FF
(n1,n2,...,nd)(xxx∗) = F̄FF

(n1,...,nj−1,...,nd)(FjFjFj(xxx
∗)
)

= F̄FF
(n1,...,nj−1,...,nd)(xxx∗) = · · · = F̄FF

(0,...,0)
(xxx∗) = xxx∗

Lemma 2: F̄FF : R|V | → R|V | is a contraction mapping, i.e.,

D(F̄FF (xxx), F̄FF (yyy)) < D(xxx,yyy),∀xxx,yyy ∈ R|V |.

Proof: According to the Banach fixed-point theorem [2],
an equivalent condition of Eq. (5) is that FFF : R|V | → R|V |
is a contraction mapping. Given ∀xxx,yyy ∈ R|V |, we have
D(FFF (xxx),FFF (yyy)) ≤ µD(xxx,yyy).

Construct ŷyy ∈ R|V | by letting ŷi =

{
yi i ∈ Ij
xi i /∈ Ij

. Thus,

D(FFF j(xxx),FFF j(yyy)) = D(FFF j(xxx),FFF j(ŷyy)) = D(FFF (xxx),FFF (ŷyy))

≤ µD(xxx, ŷyy) ≤ µD(xxx,yyy).

Therefore,

D(F̄FF (xxx), F̄FF (yyy)) ≤ µ
∑d

j=1 njD(xxx,yyy).

Theorem 2 (Rate of convergence of HSP): If a vertex
programming application satisfies Assumption 1 and 2, HSP
will converge to xxx∗ at a higher rate than BSP, given the same
amount of inter-datacenter traffic generated.

Proof: Consider a HSP synchronization cycle that in-
cludes n global updates and a set of local updates denoted
by F̄FF . After the synchronization cycle, the original estimation
xxx(k) is updated to x̄xx(k+n) = (F̄FF ·FFFn)(xxx(k)).

As a valid comparison, with the same amount of inter-
datacenter traffic generated (i.e., same number of global syn-
chronization), BSP will get xxx(k+n) = FFFn(xxx(k)).

The average rate of convergence of HSP µHSP satisfies

µn
HSP = lim

k→∞

D(x̄xx(k+n),xxx∗)

D(xxx(k),xxx∗)
= lim

k→∞

D(F̄FF (xxx(k+n)),xxx∗)

D(xxx(k),xxx∗)

= lim
k→∞

D(F̄FF (xxx(k+n)), F̄FF (xxx∗))

D(xxx(k),xxx∗)
(Lemma 1)

≤ µ
∑d

j=1 nj · lim
k→∞

D(xxx(k+n),xxx∗)

D(xxx(k),xxx∗)
(Lemma 2)

= µ
∑d

j=1 nj · µn
BSP < µn

BSP

Therefore, HSP provides a much higher average rate of
convergence as compared to BSP.
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(a) The example direct graph. The numbers on the vertices represent the
final ranks that we used as xxx∗.
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Fig. 2: A PageRank example with damping factor set to 0.15 [4]. All values
used in computation are rounded to the sixth decimal place; therefore, norm
lower than 10−6 makes little sense and is ignored in the figure.

E. PageRank Example: a Numerical Verification

To verify our findings in the previous theorems, we compare
the convergence under HSP and BSP using a simple PageRank
example shown in Fig. 2. Fig. 2a shows the 5-vertex graph in
the example, while the graph is partitioned into two datacenters
by cutting the central vertex. Note that the diameter in each
partition is 1 (ignoring the global vertex); therefore, HSP runs
local updates only once in every local mode of execution. We
plot every single estimation achieved by both synchronization
models in Fig. 2b, whose y-axis shows the Euclidean norm
between estimations and xxx∗ in log scale.

Since PageRank is a practical Pregel algorithm by definition
[29], BSP shows a perfectly linear rate of convergence (the red
line in Fig. 2b). As a comparison, HSP depicted by the black
line, the lower bound of the gray area, shows a much higher
rate of convergence, given the same number of global updates
as the number of supersteps in BSP.

If we consider x-axis as algorithm run time in real systems,
the gray area indicates the possible convergence rate of HSP.
The reason is that the lower bound, shown by the black line,
assumes no cost incurred by local updates because they do
not introduce inter-datacenter traffic. The upper bound, in the
other hand, assumes that a local update takes exactly the same
amount of time as a superstep in BSP. In reality, the time
needed by a local update is in between of these two extremes,
and HSP can always converge faster.

IV. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of the HSP synchroniza-
tion model on GraphX [7], and it retains full compatibility with
existing analytics applications. Our prototype implementation
is non-trivial to complete, yet it makes a strong case that HSP
can be seamlessly integrated with existing BSP-based graph
analytics engines.

Systems design. GraphX is an open-source graph analytics
engine built on top of Apache Spark [30]. It is an ideal
platform for us to implement our prototype, due to its full
interoperability with general dataflow analytics and machine
learning applications in the popular Spark framework.
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Fig. 3: The flow chart that shows central coordination in HSP. Blocks in black
indicate the original Pregel implementation in GraphX.

In GraphX, the vertex-centric programming abstraction is
supported via a Pregel API, which allows developers to
pass in their customized vertex update and message passing
functions. The graph analytics applications are executed under
the BSP model, with all workers proceeding in supersteps. It
takes advantage of the Resilient Distributed Dataset (RDD)
programming abstraction [30]. An RDD represents a collection
of data stored on multiple workers. Parallel computation on the
data can be modeled as sequential transformations made on the
RDD, allowing developers to program as if it is running on a
single machine. In particular, Pregel models a graph using a
VertexRDD and an EdgeRDD, while a superstep is modeled as
a series of sequential transformations on them.

Our implementation retains the original Pregel API,
providing full compatibility with existing applications and
requiring no change to their code. To enable HSP in-
stead of BSP, users can simply pass an additional option,
-Dspark.graphx.hsp.enabled=true, along with the appli-
cation submission command.

Under the hood, our modifications to the original GraphX
codebase take place within the Pregel implementation and
include two separate components: the central logic to switch
between local and global execution modes, as well as the
RDD transformation sequence that actually implements the
local updates.

Mode switches. We have implemented Procedure 1 and
Procedure 2 for mode switching. It runs on the Spark “driver”
program, which centrally manages all workers acquired by the
application. The flow chart is shown in Fig. 3. We utilize two
Accumulators to help decision making. An Accumulator
can serve as a global variable, which is addable by workers
and readable by the central coordinator.

To switch from the global to the local mode, one
Accumulator is used to track the differences (i.e., dis-
tance) between consecutive updates. A mode switch will
be made once the difference decreases. On the other hand,
to switch back to global, we use the other Accumulator
to track the progress made by individual local updates.
voteModeSwitch() and forceModeSwitch() are implemented
by adding to the Accumulator. Each individual datacenter



TABLE I: Summary of the used datasets.

Dataset # Vertices # Edges Harmonic
Diameter

Edgelist
Size (MB)

enwiki-2013 4,206,785 101,355,853 5.24 1556.9
uk-2014-host 4,769,354 50,829,923 21.48 801.4

will check the value of the global variable after each local
update to decide whether to proceed, and change the value
once it converges or reaches a preset number.

Local updates. Implementing local updates in GraphX is
challenging, because the RDD transformations on a graph are
designed to hide some runtime details from the developers.
These details include data distributions across the workers,
which are essential to the concept of local updates. We need
to dig deep into the RDD internals for our implementation.

One of the major challenges is to identify global
vertices and local vertices. In Spark, the actual dataset
placement is decided at runtime depending on the worker
availabilities. Thus, the co-located graph partitions in the
same datacenters can only be identified at runtime. For-
tunately, such runtime information is accessible via the
preferredLocations feature in an RDD, which provides
insights about the actual worker where a data partition is
placed. We make full use of this feature, creating a set con-
taining all global vertices once the graph is fully loaded to the
available workers. Since graph partitioning remains unchanged
throughout the application execution, the global vertex set can
be cached in the memory without being computed again.

With knowledge about all global vertices, we create a
SubGraph out of the co-located graph partitions in each dat-
acenter. The local updates will be carried out asynchronously
on different SubGraph instances, and they will be controlled
by DC Manager Threads on the Spark driver as is depicted
in Fig. 3. All transformations made on the VertexRDD and
the EdgeRDD of a SubGraph are similar to the original BSP
transformations. However, they have been carefully rewritten
such that no global vertex is modified during local updates.

V. EXPERIMENTAL EVALUATION

We have evaluated the effectiveness and correctness of our
prototype implementation in real datacenters, with empirical
benchmarking workloads and real-world graph datasets. In this
section, we summarize and analyze our experimental results.

A. Methodology

Experiment platforms. We deploy a 10-worker Spark
cluster on Google Cloud. Each worker is a regular Ubuntu
16.04 LTS instance, with 2 CPU cores and 7.5GB of memory.
Our modified version of GraphX is based on Spark v2.2.0,
and the cluster is deployed in the standalone mode.

In particular, two workers are employed in each of the five
geographical regions including N. Virginia, Oregon, Tokyo,
Belgium, and Sydney. Preliminary measurements on the avail-
able bandwidth show ∼3Gbps of capacity within a datacenter.
Inter-datacenter bandwidth is more than a magnitude lower,
ranging from 50Mbps to 230Mbps. The findings are similar
to the measurements reported in [11].

TABLE II: WAN bandwidth usage comparison.

Workload
# HSP
Global
Sync.

# BSP
Super-

step

HSP
Usage
(GB)

BSP
Usage
(GB)

Reduction
(%)

enwiki-
2013

PR 46 74 18.39 27.14 32.2
CC 5 7 0.69 0.91 23.4
SP 7 10 0.59 0.84 30.6

uk-
2014-
host

PR 35 52 21.48 31.47 31.7
CC 12 20 0.71 0.95 25.4
SP 15 23 0.50 0.64 22.4

Applications. We use three benchmarking applications to
evaluate the effectiveness of HSP, including PageRank (PR),
ConnectedComponents (CC), and ShortestPaths (SP). We use
the default implementations provided by GraphX without
changing a single line of code. Also, the default graph
partitioning strategy is used, which preserves the original edge
partitioning in the HDFS input file.

PR represents random walk algorithms, an important cat-
egory of algorithms that seek to find the steady state in the
graph. CC and SP represent graph traversal algorithms. These
two categories of algorithms cover the most common vertex
programs in practice [22]. Three applications show different
degrees of network intensiveness. PR requires more time for
synchronization, while SP is more computation-intensive.

Input datasets. We use two web datasets from WebGraph
[3]. The key features of the datasets are summarized in Table I.
Both datasets have more than 4 million vertices. However,
uk-2014-host has much fewer edges, making the diameter
of the graph much higher. In other words, enwiki-2013 is
more “dense” in terms of vertex connectivity. Experimenting
on these two datasets makes a strong case that HSP can work
well on natural, real-world graphs.

B. WAN Bandwidth Usage

Apart from the correctness guarantee and the API trans-
parency, the design objective of HSP is WAN efficiency
in wide-area graph analytics. As compared to BSP, HSP is
expected to significantly reduce the required number of global
synchronizations as well as the WAN bandwidth usage. These
statistics in the experiments are calculated and summarized in
Table II, with all combinations of benchmarks and datasets.

In general, HSP has met our expectations; more than 22%
reduction in WAN bandwidth usage can be observed in all
workloads. Among the applications, PR benefits most from
running under HSP, enjoying an over 30% reduction in total
inter-datacenter traffic. CC and SP require fewer global syn-
chronizations before convergence even in BSP, allowing less
room for improvement.

HSP also works well on both datasets, despite the differ-
ences in graph diameters. Because uk-2014-host is parti-
tioned with less fragmentation in 5 datacenters due to a larger
diameter, graph traversal applications (CC and SP) can see
a higher reduction in the number of global synchronizations
under HSP. Another interesting finding is that running CC on
enwiki-2013 under HSP takes only 5 global synchroniza-
tions, which reaches the expected minimum in a 5-datacenter
setting.



1.0
Normalized Application Runtime

PR 

CC 

SP 

0.90x
0.86x

0.97x
0.93x

1.02x
1.04x

enwiki-2013 uk-2014-host

Fig. 4: Application runtime under HSP, normalized
by the runtime under BSP.

PR CC SP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
st

 o
n
 G

o
o
g
le

 C
lo

u
d
 (

U
S
 $

)

-29.79%

-15.54% -9.41%

BSP WAN Usage

HSP WAN Usage

BSP Instances

HSP Instances

(a) enwiki-2013
PR CC SP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
st

 o
n
 G

o
o
g
le

 C
lo

u
d
 (

U
S
 $

) -30.43%

-14.79% -8.21%

BSP WAN Usage

HSP WAN Usage

BSP Instances

HSP Instances

(b) uk-2014-host
Fig. 5: Estimated cost breakdown for running applications. The calculation follows the Google Cloud
pricing model as of July 2017, where 10 instances cost $0.95/h and WAN traffic is $0.08/GB.

1 9 17 25 33 41 49

(a) # Global Synchronizations

10−2

10−1

100

101

102

103

‖x
(k

)
−

x
(k
−

1
) ‖

2

BSP
HSP

50 100 150 200 250 300 350

(b) PageRank Execution Time (s)

10−2

10−1

100

101

102

103
‖x

(k
)
−

x
(k
−

1
) ‖

2
BSP
HSP

Fig. 6: Rate of convergence analysis for PageRank on uk-2014-host.
The delta is organized by the number of global synchronizations and the
application execution time, respectively.
C. Performance and Total Cost Analysis

WAN bandwidth usage, along with instance usage, directly
contribute to the monetary cost of running analytics in public
cloud. In most cloud pricing models, inter-datacenter traffic
is charged by GBs of usage, while instances are charged by
hours of machine time.

In our experiments, the runtime of each workload is sum-
marized in Fig. 4. It shows the normalized time for running
applications under HSP as compared to BSP. The performance
vary on different applications, due to the different degrees
of network intensiveness. PR, for example, can achieve 14%
less application runtime because it originally spent more time
transferring a huge amount of data across-datacenters. SP, on
the other hand, has a slightly degraded performance, since the
extra computation time incurred by local updates exceeds the
reduction in network transfers.

However, we argue that the possible performance degrada-
tion is acceptable in considering total cost. We illustrate the
cost breakdown of our experiments in Fig. 5.

For PR, WAN usage cost contributes a majority proportion
to the final monetary cost. Since both machine time and
inter-datacenter traffic have been reduced, HSP is about 30%
cheaper than BSP. The rest two applications are relatively less
network-intensive, but the WAN usage still constitutes a large
proportion. Even though the application runtimes are similar,
HSP can still save about 10%.

D. Rate of Convergence

To further verify the theoretical proof of a higher rate of
convergence in HSP (Sec. III-D), we study the convergence
speed of PageRank in our experiments. The results are shown
in Fig. 6. Different from Fig. 2b, we measure the ranks’ “delta”
(in the form of Euclidean norm) between two consecutive
global synchronizations instead of the distance to the real
ranks, because the real ranks are unknown.

We may observe that Fig. 6a matches the numerical analysis
in Fig. 2b. HSP converges linearly, yet at a rate that is 1.49x
of BSP with the same number of global synchronizations.

In Fig. 6b we plot the deltas by the end times of global
synchronizations. It shows a similar speed of convergence in
early stages of execution, while HSP accelerates more in later
stages. The reason is that, in the beginning, HSP takes more
time running local updates. These local updates usually double
the time interval between global synchronizations. However,
local updates take much less time later because the local
vertices are be considered “more converged,” and the progress
of HSP accelerates significantly.

VI. RELATED WORK

Wide-area data analytics. New optimization techniques for
running big data analytics across geographically distributed
datacenters have recently been proposed in the literature.
Workloads of interest include general batch jobs [10], [12],
[13], [19], [27], streaming analytics [20] and SQL queries
[25]. These works established similar background and system
settings; however, most of the proposed techniques cannot
be applied directly to graph analytics due to the unique
characteristics of graph algorithms.

In the context of machine learning applications, Gaia [11]
proposed a similar synchronization model to minimize inter-
datacenter traffic in machine learning systems by selectively
sending updates across datacenter boundaries. However, Gaia
focused on the parameter server architecture with the stochas-
tic gradient descent algorithm only, which works in a funda-
mentally different manner from graph analytics.

Towards optimizing wide-area graph analytics, Mayer et
al. [18] and Zhou et al. [32] proposed different graph partition-
ing methods that aim to reduce the generated inter-datacenter
traffic between supersteps. These works are orthogonal to our
work, which focuses on a new synchronization model, given
any partitioned graph.

Vertex-centric graph analytics. A variety of graph ana-
lytics systems, most of which implemented the BSP model,
have been proposed in the literature. Representatives include
[17], [33]. These systems focused on computing environments
within a high-performance cluster, with the abundantly avail-
able bandwidth between worker nodes. Our work proposes a
new synchronization model that can be integrated seamlessly
with these systems, serving as an alternative of BSP when
running across multiple datacenters.



Algorithm-level optimizations such as [21] can certainly re-
duce the required inter-datacenter traffic. They can be applied
to specific categories of graph algorithms, and are orthogonal
to optimizations on the system or the synchronization model.

As closely related works, asynchronous (GraphLab [16],
PowerGraph [6]) or partial asynchronous (GraphUC [9],
Maiter [31]) synchronization models can potentially reduce
the need for inter-datacenter communications, but they cannot
always guarantee algorithm convergence [28]. Such guarantees
in our work root in the strategical switches between syn-
chronous (global) and asynchronous (local) modes. The
limited extent of asynchrony achieves a sweet spot with both
minimal inter-datacenter traffic and convergence guarantees.

VII. CONCLUDING REMARKS

We introduce Hierarchical Synchronous Parallel (HSP), a
new synchronization model that is designed to run graph
analytics on geographically distributed datasets efficiently.We
have proved that, theoretically and experimentally, HSP guar-
antees the convergence and correctness of existing graph
applications without change. Our prototype implementation
and evaluation show that HSP can reduce the WAN bandwidth
usage by up to 32%, leading to a significant reduction in
monetary cost for analyzing graph data in the cloud. We
conclude that HSP is a general, efficient, and readily imple-
mentable synchronization model that can benefit wide-area
graph analytics systems.
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