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Wide Area Analytics for Geographically Distributed Datacenters

Siqi Ji and Baochun Li�

Abstract: Big data analytics, the process of organizing and analyzing data to get useful information, is one of

the primary uses of cloud services today. Traditionally, collections of data are stored and processed in a single

datacenter. As the volume of data grows at a tremendous rate, it is less efficient for only one datacenter to

handle such large volumes of data from a performance point of view. Large cloud service providers are deploying

datacenters geographically around the world for better performance and availability. A widely used approach

for analytics of geo-distributed data is the centralized approach, which aggregates all the raw data from local

datacenters to a central datacenter. However, it has been observed that this approach consumes a significant

amount of bandwidth, leading to worse performance. A number of mechanisms have been proposed to achieve

optimal performance when data analytics are performed over geo-distributed datacenters. In this paper, we present

a survey on the representative mechanisms proposed in the literature for wide area analytics. We discuss basic

ideas, present proposed architectures and mechanisms, and discuss several examples to illustrate existing work.

We point out the limitations of these mechanisms, give comparisons, and conclude with our thoughts on future

research directions.
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1 Introduction

Processing large volumes of data, often called big data
analytics, has been one of the most important tasks
that most corporations need, established enterprises and
start-up companies alike. As examples, corporations
need to analyze logs from customer activities, make
recommendations based on histories of user browsing
or purchases, and deliver advertisements to those that
may be most interested in them. In the era of big
data analytics, the volume of data to be processed
grows exponentially, and the need for processing such
volumes of data becomes more pressing.

Modern datacenters are deployed around the world,
in a geographically distributed fashion, to process
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large volumes of data in a distributed manner using
data parallel frameworks, such as Apache Hadoop and
Spark. Traditionally, these data parallel frameworks are
designed to process data within the same datacenter,
where jobs typically run within the same cluster, and
the data to be processed is locally stored in the Hadoop
Distributed File System (HDFS).

However, as the volume of data grows, storing such
data within the same datacenter is no longer feasible,
and they naturally need to be distributed across multiple
datacenters. This is further motivated by the fact that
the data to be processed, such as user activity logs,
are generated in a geographically distributed fashion.
It is more efficient to store the data where they are
generated, perhaps in Apache Hive, a data warehouse
infrastructure designed to query and analyze data in
distributed storage. Since data to be processed are
increasingly stored across multiple datacenters around
the world, existing data parallel frameworks that are
designed to work well in a local cluster, such as Apache
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Hadoop and Spark, no longer meet the pressing need
for big data analytics across multiple datacenters. In
the literature, the problem of processing data across
multiple datacenters is often referred to as wide-area
data analytics.

The naive solution to process data across multiple
datacenters is to first migrate all the data to one
datacenter, and then process them locally, as illustrated
in Fig. 1. Naturally, the volume of data to be processed,
in the order or terabytes, makes it costly and inefficient
to perform such wide-area network transfers. First,
such an approach consumes a significant amount of
network bandwidth[1], which incurs a high monetary
cost. Even if the corporation has no budgetary concerns,
the capacity of the inter-datacenter wide-area network is
not increasing at the same rate as the volume of data to
be analyzed[2], and such a solution is not going to be
sustainable over the long run. Finally, migrating all the
data to one datacenter takes time, and the longer it takes,
the worse the performance.

The problem of wide-area data analytics has been
widely acknowledged in the recent literature, and a
number of solutions have been proposed. In this paper,
we will focus on several representative solutions in
the literature towards this research direction. Due to
the pressing need of processing large volumes of
data across multiple geo-distributed datacenters, these
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Fig. 1 Migrating all the data to one datacenter: A naive
solution for wide-area data analytics across geo-distributed
datacenters.

proposed solutions are exciting and highly relevant,
and may soon be utilized in real-world data analytic
applications. We begin with a brief introduction of
the background of batch and streaming processing
frameworks. With several examples, we will then
proceed to present the basic ideas at a high level of these
proposed solutions, and compare them when the need
arises. We will also analyze these solutions, and point
out their limitations and disadvantages, and provide our
insights towards future work.

2 Background

In this section, we would like to briefly introduce
the background of batch and stream processing
frameworks.

2.1 Batch processing frameworks

When a short response time is not strictly required,
batch processing is a widely used way to process
considerable volumes of data without any user
intervention. For batch processing, input data is
collected beforehand, and then processed in batches.

Hadoop is a batch processing framework and data
to be processed are stored in the HDFS[3], a powerful
tool designed to manage large datasets with high
fault-tolerance. MapReduce[4], the heart of Hadoop,
is a programming model that allows processing a
substantial amount of data in parallel. Figure 2 shows
an example of the MapReduce model. It has three
major processing phases: Map, Shuffle, and Reduce.
Traditional relational database organizes data into rows
and columns and stores the data in tables. MapReduce
uses a different way, it uses key/value pairs. The
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Fig. 2 Process of MapReduce: Map, Shuffle, and Reduce.
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Map function performs sorting and filtering by keys,
and then shuffles the intermediate results to the
downstream operators which perform reduce tasks. The
Reduce function applies summary operations on the
intermediate data generated by Map.

Shuffle is one of the dependencies between the
operators and their parents. Generally speaking, there
are three kinds of dependencies: One-to-one, Shuffle,
and Join[1]. One-to-one is the case when the node has
only one parent and conversely the output of the node is
consumed by at most one downstream operator. Shuffle
has been shown in Fig. 2, which is the case when each
node gives its output to all downstream nodes. When
a node has either one-to-one dependency or shuffle
dependency with each of its parent nodes, it is called
Join.

Spark[5] has been a prevailing framework for batch
processing since proposed in 2010. When it runs
programs in memory, it achieves up to 100� faster
than Hadoop. The upshot for Spark is it introduces
an immutable, fault tolerant and parallel data structure
called Resilient Distributed Dataset (RDD)[5].

The biggest problem for batch processing is high
latency (for minutes), which is the delay between inputs
and outputs. Furthermore, since batch processing deals
with large volumes of data at one time, as long as there
are any changes of the data, reprocessing of the batch
job is required. Computations for batch processing
could be complex due to the large data size.

2.2 Stream processing frameworks

The natural question that arises is: can we find a faster
way to process data? Stream processing processes one
data element or a small size of data in the stream
at a time and the data are processed immediately
upon arrival. For stream processing, computations are
relatively simple and independent and it benefits from
lower latency, typically seconds.

In order to support stream processing, Spark
Streaming is proposed[6]. It divides the stream of data
into batches of very small time intervals, which are
defined as Discretized Streams. Spark Streaming is built
on Spark and these Discretized Streams are treated

as RDDs to perform computations. Strictly speaking,
Spark Streaming can not do real stream processing but
does micro-batching jobs. Micro-Batching is a special
case of batch processing and it processes data with
a very small batch size, which can be seen as a
mix between batch processing and stream processing.
Figure 3 shows the relations among batch processing,
stream processing, and micro-batching. How to select a
proper way to process data? It depends on the data size
and requirements of the response time. Table 1 shows a
comparison of these data processing approaches.

Apache Storm is a stream processing framework,
it operates continuous stream of data. Apache Storm
uses tuples, named lists of values, as its data model,
and defines a stream as an unbounded sequence of
tuples. Unlike Hadoop runs MapReduce jobs, Storm
runs “topologies”. A topology is a Directed Acyclic
Graph (DAG) that users submit to Apache Storm for
computations. Like Spark, Apache Storm is a fast,
scalable, and high fault-tolerant parallel framework.

These frameworks are designed for the data
processing within the same datacenter since they do
not consider complicated situations of communication
and scheduling in the wide-area data analytics. For
example, in Spark, bandwidths across different sites
are assumed to be uniformly distributed. Consequently,
many representative works designed novel mechanisms
for the wide area analytics based on these frameworks.

3 Optimization Issues

In order to achieve better performance, there are a lot
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Fig. 3 Relations among batch processing, stream
processing, and micro-batching.

Table 1 A comparison of data processing approaches.

Data size Latency Computation Examples
Batch processing Large High Complex Hadoop, Spark, Billing systems
Stream processing Small Low Relatively simple Apache Storm

Micro-batching Small batch size Low Not so complex Spark streaming
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of optimization issues we need to consider in the wide-
area data analytics.

Latency: In general, latency can be defined as a
delay between receiving the request and generating the
response. We build datacenters geographically with the
purpose of achieving low latencies for local users[7].
Nevertheless, as data volumes keep increasing at a
tremendous rate, it is still time consuming to transfer
such substantial amount of data across datacenters[8].
Many cloud services have very stringent requirements
for latency, even a delay of one second can make a
great difference[9]. A large body of academic works
have focused on optimizing latency.

Bandwidth: Bandwidth is the data transferred
at one time. As bandwidth is scarce and expensive
in the Wide Area Network (WAN)[10], optimizing
bandwidth becomes another important issue in the
analytics of geo-distributed data. Low latency may
lead to the use of additional bandwidth, thus there is a
tradeoff between bandwidth and latency. In this paper,
bandwidth within the same datacenter is called intra-
datacenter bandwidth, while bandwidth among different
datacenters is called inter-datacenter bandwidth.

Fault-tolerance: High fault-tolerance is a big
challenge when performing large scale data processing
across datacenters. Fault-tolerance is the way that a
system responses to a variety of network failures. A
high fault-tolerant data processing system can continue
operating when some components of the system fail[11],
which can reduce costs and time for the reprocessing
when failures happen.

Overhead: In order to achieve the optimal
performance, sometimes we need to do extra work
that can cause overhead. Overhead can be any excess
resource like bandwidth, memory or computation time.

4 Mechanisms for Wide Area Analytics

Since the volume of data grows exponentially, the
traditional centralized approach presents a number of
limitations. In the wide area data analytics, data is
generated in a geo-distributed fashion and some new
constraints need to be considered, such as privacy
concern.

Distributed execution is a strategy widely used
in the wide area analytics. This strategy is to
push computations down to local datacenters and
then aggregate the intermediate results to do further
processing. We use a motivation example to show

the high-level idea of this strategy. A social network
provider wants to get hot search words for every ten
minutes. Click logs and search logs are two
kinds of input data sources. Click logs store web
server logs of user activities and search logs are the
records of user requests for information. Base data is
born distributed across datacenters, what we want to do
is to give our execution strategy to minimize data traffic
across different datacenters. If we use a centralized
execution in Fig. 4, then we will observe that data traffic
across datacenters is 600 GB per day. However, if we
use a distributed execution strategy depicted in Fig. 5,
then data size will be much smaller after preprocessing
in the local datacenters, data traffic across datacenters
is only 5 GB per day. Moreover, lower latency can be
achieved by using the distributed execution.

Table 2 shows the summary of the wide area
analytics. Many mechanisms are proposed for this
problem. In this section, we will discuss high-level
ideas of these representative mechanisms with some
examples and give our thoughts about the proposed
solutions.

4.1 Pixida

When a job is submitted for execution, we can get
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Fig. 4 A motivation example: Centralized approach.
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Fig. 5 Distributed execution of the motivation example:
Preprocess in the local datacenters, then apply join
algorithms to the intermediate results and do final
aggregation to get the report.
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Table 2 Summary of the wide area analytics.

Input data
Data is distributed across multiple
datacenters.

Computational model DAGs of tasks

Constraints
Privacy concern, data sovereignty
and fault tolerance

Optimization issues
Latency, inter-datacenter bandwidth,
overhead and cost

the job’s task-level graph and locations of input data
partitions from distributed storage systems like HDFS.
Thus the data traffic minimization problem can be
translated into the graph partitioning problem, where
the job’s task-level graph is split into partitions, each
partition contains the tasks in the same datacenter.
Intra-datacenter bandwidth is cheaper than inter-
datacenter bandwidth, thus the objective is to minimize
data traffic across different datacenters.

Pixida[1] is a scheduler designed to minimize
data traffic across geo-distributed datacenters. This
scheduler models the scheduling goal by using the
graph partitioning method. It uses a new topology
abstraction called “SILO”, which is a group of nodes
that belong to the same location. Pixida transforms the
task-level graph into the SILO-level graph, which can
reduce the size of the graph. Tasks for the same operator
that run in the same location are merged into a single
node. After getting the job’s SILO-level graph, Pixida
will assign tasks to different SILOs. Here, SILOs can
also be regarded as datacenters.

It is obvious that the job’s task-level graph and the
locations of input data partitions can be known as soon
as the job is submitted for execution, yet how to know
the output data size of each task in the graph? Pixida
designs the Tracer to solve this problem. In the Tracer
phase, Pixida selects a sample of the input partitions
like 20% to run the job, and then the Tracer extrapolates
the output data size of each task.

Figure 6 gives an example of a job’s SILO-level
graph. In1, In2, and In3 represent input data partitions
in three datacenters. Different graph partitions result
in different inter-datacenter traffic. We use cost
to represent the data transfer size across different
datacenters. Traditionally, we could generate the graph
partitioning problem as a min k-cut problem: “Given a
weighted graph G.V; E; W /, and a set of k terminals,
find a minimum weight set of edges E 0 such that
removing E 0 from G separates all terminals”[1]. Here
k represents k SILOs (datacenters). We can solve this

In1 In2 In3
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R1 R2
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20 16 18
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5 6

Fig. 6 A job’s SILO-level graph, with the output data size
of each task based on the statistics of the Tracer phase.

traditional min-k cut problem by using the Edmonds-
Karp algorithm, and get the partitions with a cost of
7C 8C 5C 6 D 26 in the left side of Fig. 7.

However, we can make it “cheaper”. Here we did
not consider the case of “Dataflow Forking”, when
an operator forwards its output to more than one
downstream operator. Pixida formulates a generalized
min k-cut problem and presents a novel flow-based
approximation algorithm (follows the structure of
Edmonds-Karp algorithm) to solve this problem. The
basic idea of solving the case of “Dataflow Forking” is
to add an extra vertex Ve between M2 and its children
in the graph. Figure 8 shows this idea. Edge .M2; Ve/

represents a single cross-SILO transfer of the same data.
Thus we could get the optimal graph partitioning in the
right-side of Fig. 7, it has a cost of 7C9C8 D 24, which
is better than the left-side partitioning. As R1 and R2

are in the same SILO S4, one cross-SILO transfer from
M2 in SILO S3 to R1 or R2 is enough.

Pixida is appropriate for batch processing. After
integrated with Spark, it achieves up to 9� bandwidth
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Fig. 7 Partitions of the job’s SILO-level graph. The left-side
partitioning has a cost of 26, which does not consider the case
of “Dataflow Forking”. The right-side partitioning is optimal
with a cost of 24.
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Fig. 8 An extra vertex is added between M2 and its children.

reduction compared with Spark. However, there are
also some constraints about the graph partitioning
method. First, it assumes that cross-SILO transfers are
considered of equal cost. When we consider a complex
pattern, the partitioning problem will become more
complicated. Besides, it can not be used for real-
time processing where data is processed upon arrival,
since the input data partitions are static. Moreover,
the Tracer phase used in Pixida adds computational
and time overhead. Finally, Pixida only considers data
transfers across datacenters, it does not tackle with the
issue of latency.

4.2 WANalytics

WANalytics[12] is a Hadoop-based system, it also targets
in minimizing inter-datacenter traffic. It is an extended
version of Pixida.

Caching: WANalytics uses the idea of “caching” to
cache all intermediate results to reduce data transfers.
Figure 9 shows the basic idea of caching. At start, DC2
asks DC1 for the result of running query q0, then DC1
runs the query and sends the result of q0 to DC2. In the
meantime, DC1 also caches the copy of q0’s result. If
DC1 asks DC2 for the result of a new query q1, then
DC2 runs the query but only sends the difference of
q0’s result and q1’s result. By this way, data transfers
across datacenters are greatly decreased when there are
repetitive queries.

New result

Old result

DC1

Old result
New query

Diff (New 
result, Old 

result)

DC2

Fig. 9 Data transfer optimization: Caching.

This caching method actually worsens CPU and
storage use, it solely reduces data transfers across
different datacenters. Distributed queries are always
seen as DAGs, when multiple DAGs share common
subqueries, this method greatly helps to reduce data
transfers as a result of sending the difference between
new results and old results.

Optimizing execution: Given a set of recurrent
DAGs of tasks, with constraints of sovereignty,
WANalytics uses a greedy heuristic for the optimizing
execution. It processes all DAGs in parallel. In each
DAG, it goes over tasks in the topological order, and
greedily chooses the lowest-cost available strategy for
each task. There are two things the optimizing execution
decides: (1) Strategy for each task, e.g., hash join or
semi-join; (2) Which task goes to which datacenter, like
the task graph partitioning problem.

Pseudo-distributed measurement: Similar as
the Tracer phase in Pixida, Pseudo-distributed
measurement is used to measure the cost of each
execution strategy for a DAG. For some settings,
measuring all options considered by the greedy
heuristics could be very slow, which is a limitation for
this measurement.

Figure 10 shows the architecture of WANalytics.
WANalytics consists of two main components: a
runtime layer and a workload analyzer. In the runtime
layer, there is a coordinator in a master datacenter that
interacts with datacenter managers at each datacenter.
In each datacenter manager, there is a caching
mechanism. Analyst submits DAGs of queries, and then
the coordinator asks the workload analyzer for the best
distributed execution plan.

After getting DAGs of queries, the workload analyzer
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Data 
center 1

Data 
center 2

Data 
center 3

End users

Measurements

Work flow executionAnalyst

DAGs of queries

Results

Distributed 

execution plan

Fig. 10 WANalytics[12] architecture.



Siqi Ji et al.: Wide Area Analytics for Geographically Distributed Datacenters 131

gives a distributed execution plan by using greedy
heuristics and pseudo-distributed measurements. The
workload analyzer uses a robust evolutionary approach.
It starts by supporting the existing centralized approach,
then uses a continuous adaptation: It firstly comes
up with some DAG execution plans of the workload,
secondly measures their costs by using pseudo-
distributed measurements, then computes a new best
plan by using the optimizing execution, finally it
deploys the new best plan.

WANalytics focuses on the optimization of data
transfers, but fault tolerance and latency are not
addressed. Besides, this system only partially supports
the requirement of data sovereignty. It considers data
storage requirements but allows arbitrarily queries on
the data.

4.3 Geode

Geode is a system built upon Hive that presented in
Ref. [2]. It is an extended version of WANalytics[12].
This system uses a relational model and supports SQL
analytics on the geo-distributed data. Figure 11 shows
its architecture, which is similar as WANalytics. The
core of Geode is the command layer. The command
layer receives SQL queries, then gets a distributed query
execution plan from the workload optimizer. After
getting the plan, the command layer runs the plan and
outputs results.

In the workload optimizer, Geode gives the query
execution plan by solving an Integer Linear Program
(ILP). The objective function of the ILP is to minimize
total data transfers in the DAG. Constraints are the
requirements of fault tolerance and data sovereignty.
WANalytics uses the greedy heuristic for determining
the query execution plan, but in some cases the heuristic
approach fails to get the optimal solution. However,
the ILP can only support up to ten datacenters in the
experiment, greedy heuristic scales much better than
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Data 
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center 3

Measurements
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Results
Suggestions

Fig. 11 Geode[2] architecture.

the ILP. Moreover, the ILP is more accurate but it runs
slower than the greedy heuristic. Geode gives a tradeoff
between the running time and the solution quality.

4.4 Iridium

Pixida, WANalytics, and Geode only consider
minimizing data transfers across datacenters but ignore
the issue of latency, which is significant for low-latency
processing applications. Iridium[13] is a system for the
low latency geo-distributed analytics. It uses the task
placement to reduce query response time. Figure 12
shows an example of simple MapReduce tasks across
datacenters. DC1 and DC2 are two datacenters. DC1

has a downlink bandwidth of 100 MB/s, but its uplink
bandwidth is low and only 10 MB/s. DC1 downloads
the data of DC2 to do the Map task, and then generates
a substantial amount of the intermediate data. There
are no reduce tasks in DC1, so it needs to upload the
intermediate data to DC2 to do reduce tasks. Because
of the very low uplink bandwidth, query response time
will be affected significantly. We call the link with
low bandwidth as the bottleneck link. Usually, query
response time is determined by the bottleneck link.
If we could put more reduce tasks in DC1, there will
be less data uploaded to DC2 via uplink, thus query
response time will be greatly reduced.

This task placement problem can be formulated as a
Linear Program (LP) with the objective of minimizing
query response time. But the LP is appropriate for tasks
of a single query. For DAGs of tasks, Iridium uses
a greedy approach to perform the task placement by
using the LP independently in each stage of the query.
However, the best task placement is still limited by data
locations. In order to better reduce query response time,
Iridium also uses the data placement.

For the example in Fig. 12, we have already found
the bottleneck link is the downlink of DC1, then

DC1

DC2

Download 
link=100 MB/s

Upload 
link=10 MB/s

Map

Reduce

Fig. 12 An example of simple MapReduce tasks across
datacenters.
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if we could move the data out of DC1 to DC2

before the query arrives, query response time will be
greatly reduced. For example, assume the next query
will arrive in 24 s, the intermediate data in DC1 is
150 MB. Before the query arrives, we move all the
intermediate data out of DC1 to DC2. Moving time is
150=10 D 15 s, which is smaller than the query arrival
time. For the data placement, the basic intuition is
to identify the bottleneck link first, then move data
out of the bottleneck site. When the intermediate data
was generated at time t0, and the next query arrives
at time t1, t1 � t0 is called the query lag. Iridium uses
a greedy algorithm in the data placement, it seeks to
move the high-value datasets and move the dataset
that has the smallest query lag. For complex DAGs of
tasks, sometimes results are not global optimal but local
optimal. This data placement can be combined with
the task placement, after completing the data placement
before the query arrives, we could continue to use the
task placement to reduce query response time.

One problem about data placement is how to estimate
query arrivals? For repetitive queries, it is easy to
estimate the query lag based on the old query. However,
for other situations, it is hard to estimate. Iridium makes
the following simple assumption that works well: for
instance, if the dataset was generated at time t and two
queries arrived at time .t C a/ and time .t C b/, and
a 6 b. Then we will assume that the next two queries
will arrive at time .t C b/C a and time .t C b/C b.

One of the advantages of Iridium is that it supports
both stream processing as well as batch processing.
This system achieves low query response time by
optimizing data and task placement, and it also
considers the tradeoff between the bandwidth cost and
query response time.

Task and data placement are also used in other
academic works. NetStitcher[14] is a system for online
data processing. It uses data placement to stitch
unutilized bandwidth, and rescues up to five times
additional bandwidth. Gu et al.[15] minimized the
cost of servers and communication in geo-distributed
datacenters, and formulated the cost minimization
problem as a mixed-integer nonlinear programming to
answer how to apply data and task placement under
constraints of the remote data loading and quality of the
service satisfaction.

4.5 SWAG

Finishing some tasks of a job does not mean faster job

completion time. Job scheduling is another aspect that
we need to consider in the wide area analytics. Hung et
al.[16] targeted on reducing the average job completion
time by using novel job scheduling algorithms, and
achieved up to 50% improvement in the average
job completion time with low overhead. They used
two scheduling algorithms: Reordering and Workload-
Aware Greedy Scheduling (SWAG).

Now we use an example to show the idea of
these two scheduling algorithms. There are three jobs
computed in three datacenters, Table 3 presents the sub-
job sizes in each datacenter, which is the number of
tasks for jobs. There are two assumptions in Hung
et al.[16]: (1) Each datacenter has one computation
source; (2) Each datacenter serves one task per second.
Figure 13 shows the approach of First Come First
Scheduling (FCFS) approach across three datacenters.
Job order of FCFS is A ! B ! C, x axis represents
the queue length (number of tasks to be served). If we
use this FCFS scheduling, the average job completion
time will be 13.3 s. However, we find that tasks of
job A at DC2 has a higher completion time, then we
may delay job A in favor of other jobs with faster
completion time at dataceters. This is the basic idea of
Reordering. Figure 14 shows this reordering approach,
which moves some jobs later in the local queue, as
long as delaying them will not increase the average job
completion time. Reordering approach for our example
achieves average job completion time of 13 s, which

Table 3 Sub-job sizes in datacenters.

Job arrival DC1 DC2 DC3
A 2 10 3
B 8 4 1
C 6 3 7

DC1

DC2

DC3

2 8

10 4

3 1

6

3

7

Queue length

Completion time: 
Job A:               9 s 
Job B:             14 s
Job C:             17 s 
Average:       13.3 s 

Fig. 13 First Come First Serve Scheduling, with the job
order: A! B! C.
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Job A:             17 s      
Job B:               8 s
Job C:             14 s 
Average:          13 s 
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Fig. 14 Reordering Approach, with the job order: B ! C
! A.

is better than FCFS scheduling. The core idea of
reordering approach is “no harm”, which means that
this approach provides “non-decreasing performance
improvement for any scheduling algorithm[16]”.

In order to achieve better average job completion
time, Hung et al.[16] presented the SWAG algorithm.
The basic idea for this algorithm is to greedily serve
the job that finishes the fastest. When we schedule jobs
by their finishing time, we also need to take the local
queue size into consideration. For our example, job C
finishes the fastest, so we serve job C first, and then the
job B. Job A finishes the slowest, since it has 10 tasks
to be finished in DC2, thus we serve job A at last. This

scheduling approach by using SWAG achieves better
average job completion time of 12.7 s than reordering.
Figure 15 shows the idea of this scheduling method.

5 Discussion of Existing Mechanisms

Analytics for geo-distributed datacenters in the wide
area network have several aspects. Some mechanisms
are batch processing, some are stream processing.
Bandwidth and latency are two important optimization
issues we consider in the wide area analytics. Table 4
shows a comparison of these mechanisms we have
discussed.
� Graph Partitioning by Pixida: This graph

partitioning method is appropriate for the

DC1

DC2

DC3

Queue length

Completion time: 
Job A:              17 s      
Job B:              14 s
Job C:                7 s 
Average:        12.7 s 

6 8

3 4

7 1

2

10

3

Fig. 15 SWAG algorithm, with the job order: C! B! A.

Table 4 A comparison of representative mechanisms.

Mechanism Approach Bandwidth Latency Overhead Fault-tolerance Limitations

Pixida
Graph
partitioning

Optimizes inter-
datacenter
bandwidth

Does not
consider

Does not consider Does not
consider

For simple
communication
patterns

WANalytics

Caching; Greedy
heuristic for
optimizing
distributed
execution

Optimizes inter-
datacenter
bandwidth but add
bandwidth within
one datacenter

Does not
consider

Causes overhead
for caching and
computations within
a datacenter

Does not
consider

Data movement
constraints are not
considered; sometimes
it is slow.

Geode

Caching; Integer
Linear Program
for optimizing
distributed
execution

Optimizes inter-
datacenter
bandwidth but add
bandwidth within
one datacenter

Does not
consider

Causes overhead
for caching and
computations
within a datacenter

Considered as
a constraint

Data movement
constraints are not
considered; sometimes
it is slow.

Iridium

Task and data
placement

Considers the
tradeoff between
bandwidth and
latency

Optimizes
query response
time

Low overhead Does not
consider

The greedy approach
is not optimal for the
general DAGs.

SWAG

Greedy job
scheduling
algorithm

Does not consider Optimizes
the average
job completion
time

Low overhead Does not
consider

The assumptions hide
the complicated
situations in the real-
world data analytics.
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simple task graph since cross-SILO transfers
are considered to be equal, which does not cover
the general cases in real life.
� Distributed Query Planning: WANalytics and

Geode use a workload optimizer to find the best
distributed execution plan. However, sometimes it
may be slow for the workload optimizer to give
the best execution strategy. Moreover, arbitrary
queries are allowed on the data, which does not
consider data movement constraints.
� Task and Data Placement: Iridium first finds

the bottleneck link and then uses task and
data placement to optimize query response time.
However, it is hard to estimate the query lag, and
sometimes the estimation will not be so accurate.
Another limitation for the data placement is the
data movement constraint, for some situations we
can not move data out of a datacenter arbitrarily.
� Job scheduling: The idea is to schedule job by

finishing time with the consideration of tasks at
datacenters. It is simple but useful for optimizing
the average job completion time. SWAG uses
a greedy scheduling algorithm, yet it is not
appropriate for a general job whose DAG consists
of multiple stages. Furthermore, the assumptions
for SWAG hide the complexity of real world data
analytic jobs.

6 Conclusion

As data grows at a tremendous rate, achieving optimal
performance in the wide area analytics becomes
more and more challengeable. Compared with the
local network in a datacenter, the WAN covers a
relatively broad geographical area, which is more
complicated and unstable. Moreover, processing a
substantial amount of data within a very small time
interval is a great challenge for those low latency
cloud applications. In this paper, we present a number
of typical mechanisms in the wide area analytics,
discuss high-level ideas, and give a comparison of
these mechanisms. Although with some limitations,
more effective solutions may be inspired by these
mechanisms and applied in the real world in the near
future.
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