
1

Parallelized Progressive Network Coding
With Hardware Acceleration

Hassan Shojania, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{hassan, bli}@eecg.toronto.edu

Abstract— The fundamental insight of network coding is that
information to be transmitted from the source in a session can
be inferred, or decoded, by the intended receivers, and does
not have to be transmitted verbatim. It is a well known result
that network coding may achieve better network throughput in
certain multicast topologies; however, the practicality of network
coding has been questioned, due to its high computational
complexity. This paper represents the first attempt towards a
high performance implementation of network coding. We first
propose to implement progressive decoding with Gauss-Jordan
elimination, such that blocks can be decoded as they are received.
We then employ hardware acceleration with SSE2 and AltiVec
SIMD vector instructions on x86 and PowerPC processors,
respectively. We then use a careful threading design to take
advantage of symmetric multiprocessor (SMP) systems and multi-
core processors. The objective of this work is to explore the
computational limits of network coding in off-the-shelf modern
processors, and to provide a solid reference implementation to
facilitate commercial deployment of network coding. Our high-
performance implementation is packaged as a C++ class library,
and runs in Linux, Mac OS X and Windows, in Intel, AMD and
IBM PowerPC processor families. On a Dual dual-core PowerPC
G5 2.5 GHz server, the coding bandwidth of our implementation
is able to reach 43 MB/second with 64 blocks of 32 KB each,
achieving speedup of 21 over the baseline implementation.

Index Terms— Network coding, parallelization, random linear
codes, hardware acceleration, SSE2, AltiVec.

I. INTRODUCTION

First introduced by Ahlswede et al. [1] in information
theory, network coding has received significant research at-
tention in the networking community. The essence of network
coding is to allow coding at intermediate nodes throughout
the network topology between the source and the receivers,
in multiple unicast or multicast sessions. The fundamental
insight of network coding is that information to be transmitted
from the source in a session can be inferred, or decoded, by
the intended receivers, and does not have to be transmitted
verbatim. It has also focused on the coding capabilities of
intermediate nodes, in addition to forwarding and replicating
incoming messages.

The pioneering work by Ahlswede et al. [1] and Koetter et
al. [2] proves that, in a directed network with network coding
support, a multicast rate is feasible if and only if it is feasible
for a unicast from the sender to each receiver. Li et al. [3]
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has further proved that linear coding suffices in achieving the
maximum rate. These results are significant in the sense that,
with network coding, the cut-set capacity bounds of unicast
flows from the source to each of the receivers can be achieved
in a multicast session. In other words, network coding helps
to alleviate competition among flows at the bottleneck, thus
improving session throughput in general.

Recent work on network coding has gradually shifted its
focus from a more theoretical point of view to a more practical
setting. Intuitively, it may help to improve downloading times
in large-scale peer-to-peer (P2P) content distribution. The cur-
rent state-of-the-art of such P2P content distribution protocols
is represented by BitTorrent, in which peers exchange blocks
of data to serve missing blocks to each other. While existing
work (such as the Avalanche project [4], [5]) has shown the
effectiveness of network coding in P2P content distribution
protocols, pessimistic results [6] also cast doubts on how much
network coding may improve BitTorrent, citing its excessive
computational overhead. For example, a dedicated server with
dual 3.6 GHz Xeon processors can only achieve coding rates
of around 270 KB/second for 256 blocks [6]. This is appar-
ently not sufficient to saturate the upload bandwidth of high-
bandwidth peers, such as those with dedicated connections of
more than 100 Mbps.

On paper, it has been repeatedly shown that network coding
can lead to more robust protocols with less overhead [7],
and better utilization of the available bandwidth at any time.
Further, network coding is capable of providing better quality
of service (QoS) since improved session throughput, whether
in unicast or multicast scenarios, and resilience against peer
failures are both important QoS parameters. Unfortunately, to
date, there has been no commercial applications or protocols
that take advantage of the power of network coding. We
believe that the main cause of this observation — and the main
disadvantage of network coding — is the high computational
complexity of random linear codes [3], especially as the
number of blocks to code scales up. Since random linear
codes are universally adopted in all practical network coding
proposals, we believe that it is crucially important to design
and implement random linear codes such that its real-world
coding performance is maximized, on modern off-the-shelf
processors. In addition, a high performance implementation
of network coding is critical to determine whether network
coding can offer any advantages over BitTorrent-like P2P
protocols, given its high computational complexity.
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To our knowledge, this paper represents the first attempt
towards a high performance implementation of network cod-
ing. We first propose to implement progressive decoding with
Gauss-Jordan elimination, such that blocks can be decoded
progressively as they are received. We then employ hardware
acceleration with SSE2 and AltiVec SIMD vector instructions
on x86 and PowerPC processors, respectively. We finally use
a careful threading design to take advantage of symmetric
multiprocessor (SMP) systems and multi-core processors. The
objective of this work is to explore the computational limits
of network coding in off-the-shelf modern processors, and to
provide a solid reference implementation to facilitate com-
mercial deployment of network coding. Our high-performance
implementation is packaged as a C++ class library, and runs
in Linux, Mac OS X and Windows, in Intel, AMD and IBM
PowerPC processor families. On a Dual dual-core PowerPC
G5 2.5 GHz server, the coding bandwidth of our implementa-
tion is able to reach 43 MB/s with 64 blocks of 32 KB each.

The remainder of this paper is organized as follows. Sec. II
discusses related work. Sec. III presents our design of using
Gauss-Jordan elimination to achieve progressive decoding.
Sec. IV presents our work on maximizing the coding perfor-
mance of random linear codes, on modern off-the-shelf proces-
sors. Sec. V evaluates our high-performance implementation.
Sec. VI concludes the paper with our final words.

II. RELATED WORK

To practically implement the paradigm of network coding,
one needs to address the challenges of computing coding
coefficients to be used by each of the intermediate nodes in
the session, so that the coded messages at the receivers are
guaranteed to be decoded. This process is usually referred to
as code assignment. Although deterministic code assignment
algorithms have been proposed and shown to be polynomial
time algorithms (e.g., [8]), they require extensive exchanges
of control messages, which may not be feasible in dynamic
peer-to-peer networks. As an alternative, Ho et al. [9] has
been the first to propose the concept of randomized network
coding. With randomized network coding using random linear
codes, an intermediate node transmits on each outgoing link
a linear combination of incoming messages, specified by
independently and randomly chosen code coefficients over
some finite field.

Since the landmark paper on randomized network coding
by Ho et al., there has been a gradual shift in research focus
in the area of network coding, from purely theoretical studies
to more practical studies on applying network coding in a
practical setting. Such a shift of focus has been marked by
Wu et al. [10], in which the authors have concluded that
randomized network coding can be designed to be “robust
to random packet loss, delay, as well as any changes in
network topology and capacity.” The highly visible Avalanche
project by Microsoft Research [4] has further proposed that
randomized network coding can be used for bulk content
distribution, in competition with BitTorrent, one of the most
practical P2P content distribution protocols. The follow-up
work in Avalanche has sought to demonstrate the feasibility of
network coding with a real-world implementation in C# [5],

[11]. The work has concluded that “network coding incurs
little overhead, both in terms of CPU and I/O, and it results
in smooth and fast downloads.”

In Wang et al. [6], the computational complexity of random
linear codes has received dedicated attention. Unfortunately,
the conclusion was pessimistic, in that network coding may not
improve downloading times as compared to protocols without
coding, due to its high computational overhead. Theoretically,
the computational complexity of random linear codes has
been well known: it has been a driving force towards the
development of more efficient codes in content distribution
applications, including traditional Reed-solomon (RS) codes,
fountain codes [12], and more recently, chunked codes [13].

While fountain codes are much less computationally inten-
sive as compared to random linear codes, they suffer from their
own drawbacks: (1) Coded blocks cannot be recoded without
complete decoding, which defeats the original nature of net-
work coding; (2) there exists some bandwidth overhead (about
5% with 10,000 blocks, and over 50% with 100 blocks); and
(3) the decoding process cannot be progressively performed
while receiving coded blocks, which leads to very bursty CPU
usage when the final blocks are decoded. Alternatively, while
Reed-Solomon (RS) codes may be also be used to reduce
coding complexity, it also suffers from the lack of progressive
decoding, and its significantly smaller coded message space
makes it difficult for multiple independent encoders to code a
shared data source, to be sent to a single receiver.

To summarize, while there is no doubt that more efficient
codes exist, they may not be suitable for randomized network
coding in a practical setting. In contrast, random linear codes
are simple, effective, and can be recoded without affecting the
guarantee to decode. We believe that our work on a high-
performance parallelized implementation of random linear
codes may help academics and practitioners to realize the full
potential of randomized network coding in a real-world setting.

III. RANDOM LINEAR CODES:
A PROGRESSIVE IMPLEMENTATION

With random linear codes, data to be disseminated is divided
into n blocks [b1, b2, . . . , bn], where each block bi has a fixed
number of bytes k (referred to as the block size). To code
a new coded block xj in network coding, a network node
first independently and randomly chooses a set of coding
coefficients [cj1, cj2, · · · , cjn] in GF(28) Galois field [14], one
for each received block (or each original block on the data
source). It then produces one coded block xj of k bytes:

xj =
n∑

i=1

cji · bi (1)

Since each coded block is a linear combination of the
original blocks, it can be uniquely identified by the set of
coefficients that appeared in the linear combination.

A peer decodes as soon as it has received n linearly
independent coded blocks x = [x1, x2, . . . , xn]. It first forms
a n×n matrix C, using the coefficients of each block bi. Each
row in C corresponds to the coefficients of one coded block.
It then recovers the original blocks b = [b1, b2, . . . , bn] as:

b = C−1xT (2)
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In this equation, it first needs to compute the inverse of C,
using Gaussian elimination. It then needs to multiply C−1 and
xT , which takes n2 ·k multiplications of two bytes in GF(28).
The inversion of C is only possible when its rows are linearly
independent, i.e., C is full rank.

We are now ready to show a baseline implementation of
random linear codes, which includes the implementation of
GF(28) operations, as well as progressive decoding using
Gauss-Jordan elimination.

GF(28) operations are routinely used in random linear codes
within tight loops. Since addition in GF(28) is simply an XOR
operation [14], it is important to optimize the implementation
of multiplication on GF(28). Our baseline implementation
takes advantage of the widely-used fast GF multiplication
through logarithm and exponential tables similar to the tradi-
tional multiplication of large numbers [15]. Fig. 1 shows a C++
function to multiply using three table references where log and
exp reflect GF(28) logarithmic and exponential tables, each
having 256 entries. Such a baseline implementation requires
three memory reads and one addition for each multiplication.

byte gf256::baseline gf multiply(byte x, byte y)
{

if (x == 0 || y == 0)
return 0;

return exp[log[x] + log[y]];
}

Fig. 1. Table-based multiplication in GF(28): our baseline implementation.

We note that a network node does not have to wait for all n
linearly independent coded blocks before decoding a segment.
In fact, it can start to decode as soon as the first coded block
is received, and then progressively decodes each of the new
coded blocks, as they are received over the network. In this
process, the decoding time overlaps with the time required to
receive the original block, and thus hidden from the tally of
overhead caused by encoding and decoding times. This is an
attractive feature that is uniquely available with random linear
codes using dense code matrices. Although progressive decod-
ing of later messages becomes increasingly more complex, the
decoding complexity is much better balanced than fountain
codes, where the bulk of the decoding process is performed
after receiving the final coded blocks [12].

We use Gauss-Jordan elimination [16] to implement such a
progressive decoding process, rather than the more traditional
Gaussian elimination. Gauss-Jordan elimination is a variant of
Gaussian elimination, that transforms a matrix to its reduced
row-echelon form (RREF), in which each row contains only
zeros until the first nonzero element, which must be 1. The
benefit of the reduced row-echelon form is that, once the
matrix is reduced to an identity matrix, the result vector on
the right of the equation constitutes the solution, without any
additional needs of decoding. Since we operate in GF(28),
the usual numerical instability caused by Gauss-Jordan elimi-
nation does not affect our decoding process.

As each new coded block xj is received, its coefficients
(carried within xj) are added to the coefficient matrix C.
A pass of Gauss-Jordan elimination is performed on this
matrix, with identical operations performed on the coded

×
   1  0   c`13     0 ....    c`1n 

   0      1   c`23    0  ....  c`2n
 0  0  0   1   ....  c`3n 
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Fig. 2. State of Gauss-Jordan elimination in progressive decoding.

blocks, such that they become partially decoded blocks x′j .
After all n coded blocks are received, these partially decoded
blocks become the original blocks. In addition, if a network
node receives a coded block that is linearly dependent with
existing blocks that have been received already, the Gauss-
Jordan elimination process will lead to a row of all zeros, in
which case this coded block can be immediately discarded,
and there are no explicit linear dependence checks required.

Our implementation of the progressive decoding process is
shown in Fig. 2, at the moment that the third coded message
has been progressively decoded. The first three rows have
already gone through iterations of Gauss-Jordan elimination
and are now in RREF.

Our baseline implementation of progressive decoding is
summarized in Fig. 3, marked by the percentage of execution
times in each stage for a typical (n = 256, k = 1024)
experiment over 100 runs. The stages of A and E are the most
time-consuming portions of Gauss-Jordan elimination, as they
loop through all existing matrix rows involving up to n−1 row
operations each. Stage D takes at most one full row operation.
The overall decoding complexity is n2 row operations.

The overall encoding complexity is n2 row operations as
well, since each encode operation requires n row operations,
leading up to n2 for generating n coded blocks. However,
the n2 row operations of the decode process is performed
on both coefficient rows of dimension n and coded block
rows of dimension k. At encoding, the row operation are
performed only on the original blocks of dimension k. As
a result, decoding is generally more computationally complex
than encoding.

Stage A Reduce leading coefficients in the new
coefficient row to 0. [50.05%]

Stage B Find the leading non-zero coefficient in
the new coefficient row. [0.05%]

Stage C Check for linear independence
with existing coefficient rows. [0.00001%]

Stage D Reduce the leading non-zero entry of
the new row to 1, such that the result is
in REF. [0.38%]

Stage E Reduce the coefficient matrix to the
reduced row-echelon form (RREF). [49.5%]

Fig. 3. Progressive decoding: our baseline implementation.

IV. PARALLELIZED NETWORK CODING
WITH HARDWARE ACCELERATION

Random linear coding suffers from two major performance
bottlenecks. First, multiplication in GF(28) is a costly op-
eration. Second, the multiplication and addition operations
are performed in tight loops over rows of coefficients and
coded blocks, each of n and k bytes respectively. Each row
operation is performed through a series of byte-length GF(28)
operations because GF(28) multiplication is not easily scalable
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to a higher granularity than the byte level. The following
experiment reflects the importance of addressing these per-
formance bottlenecks.

A sample encode and decode using our baseline implemen-
tation of random linear coding takes 9.89 and 11.91 seconds,
respectively, for n = 256 blocks of k = 1024 bytes, on an
iMac with 1.83 GHz Intel Core Duo processor. If the table-
based multiplication in Fig. 1 is replaced with a simple x + y
addition, the execution time of encode and decode will be
reduced to 7.12 and 9.53 seconds, a significant reduction of
39% and 25%, respectively. In the second test, we assume
the same x + y addition is now performed in parallel for
every 16 neighboring elements, i.e., row operations in 16-
byte granularity. The same encode and decode operations now
execute in only 0.191 and 0.242 seconds respectively which
is an extra 37 and 39 times reduction in execution time!

Noting the above observations, we attempt to address both
bottlenecks through hardware acceleration and parallelization,
which complement each other to radically improve the coding
performance.

A. Hardware acceleration with SIMD instruction sets
One way to increase the granularity of row operations is

to perform GF(28) multiplication in wider chunks without
necessarily going to GF(216) domain. All row multiplications
of random linear coding require multiplying a single one-byte
factor into all byte elements of a row, whether a coefficients
row or a data block row. One can multiply a factor by two
bytes of a row at once by building logarithm and exponential
tables of 64K entries (to address 216 elements). Similarly,
the chunk size can be increased to three bytes by employing
tables of 16M entries and so on. Obviously the tables grow
quickly and become difficult to hold in memory. Also, the
cache misses increase quickly and offset any gain achieved
through widening the multiplication domain.

As an alternative, we propose to revisit the basics by
performing the multiplication on-the-fly using a loop-based
approach in Rijndael’s finite field [17][14], rather than using
traditional log/exp tables. Although the basic loop-based
multiplication takes longer to perform, it lends itself better
to a parallel implementation that takes advantage of vector
instructions in order to operate on wider chunks of elements
from a matrix row at the same time. The loop-based equivalent
of the table-based multiplication in Fig. 1 is shown in Fig. 4,
which resembles a regular hand multiplication by looking into
lower bit of x and adding y at each iteration. At each iteration,
y is shifted to the left to reflect moving to the next bit of
x. However, loop-based GF(28) multiplication also requires a
division by an irreducible polynomial [14] (governed by the
cyclic nature of the finite field) at the end of multiplication.
This division at the end can be emulated by subtracting the
irreducible polynomial whenever the shift of y is about to
overflow. In our implementation, the irreducible polynomial
of x8 + x4 + x3 + x2 + 1 is used. Note that subtraction and
addition are both equivalent to the xor operation. The loop
takes at most 8 iterations to complete.

With such a loop-based implementation of multiplication,
we are ready to take advantage of SIMD (single-instruction,

byte gf256::loop gf multiply(byte x, byte y)
{

byte result = 0;
bool overflowing;

while (x != 0) {
if ((x & 1) != 0)

result = result ˆ y;
overflowing = y & 0x80;
y = y << 1;

// irreducible poly: xˆ8+xˆ4+xˆ3+xˆ2+1
if (overflowing == true)

y = y ˆ 0x1d;
x = x >> 1;

}
return result;

}
Fig. 4. Loop-based multiplication in GF(28).

multiple data) instruction sets, which are available on all
modern commodity processors, including Intel, AMD, and
IBM PowerPC families. These SIMD instruction sets allow
a single operation — such as floating point/integer arithmetic
and logical operations — be performed on multiple data in
a parallel fashion. IBM’s implementation of such instruction
set is known as AltiVec and supported on all POWER family
of processors. Intel’s x86 vector instruction set is called SSE
(Streaming SIMD Extensions) which has matured since its
SSE2 variant introduced in the Pentium 4 family. AMD has
also added SSE2 support since its Opteron and Athlon64
products. Both AltiVec and SSE2 employ 128-bit (16 bytes
wide) registers and allow parallel integer operations on each
register as 16 byte-long (or 8 short, 4 regular, 2 long) integers
[18], [19].

Let us now observe how SIMD instructions may improve
the performance of row operations in random linear coding.
The encoder performs a series of row operations solely on the
incoming (or original) blocks, bj . In the decoder, the bulk of
Gauss-Jordan elimination also requires series of row opera-
tions on both coefficient and coded block rows as suggested
by stages A and E in Fig. 3, which collectively consume more
than 99% of the execution time. In each row operation, a single
byte factor is multiplied by a full row and the result is xor-ed
to another row. Noting the nature of such row operations, the
loop-based multiplication in Fig. 4 opens up an opportunity
for a vector implementation of the row operation, by GF(28)-
multiplying the factor into 16 adjacent elements of a row, and
then xor-ing the 16-byte result into another row at once. As
a result, 16 elements of a row is now processed with one
execution of the loop-based multiplication1. Further SIMD-
based optimizations were also applied to the other stages in
Gauss-Jordan elimination.

A challenging implementation detail worth noting is related
to the alignment of memory allocations in the accelerated
implementation. For performance reasons, many SSE2 and
AltiVec instructions either require or prefer to have their
memory arguments 16-byte aligned. Mac OS X guarantees
the heap memory allocations to be 16-byte aligned. On Linux
and Windows, we had to use special OS-specific memory

1Applying the irreducible polynomial to individual elements of a 16-
byte chunk has to be conditioned on the value of each element. We omit
implementation details due to space constraints, but it can be handled via a
few SIMD instructions.
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allocation APIs for this purpose.
With our new accelerated implementation of random linear

coding, we repeat the same test scenario described earlier.
The accelerated implementation takes 1.78 and 2.20 seconds
for encoding and decoding processes, respectively, reflecting
speedups of 556% and 541% over the baseline table-based
GF(28)-multiplication! The speedup is less than the ideal
1600%, due to the obvious usual overhead preventing a linear
speedup. Such a speedup via the use of SIMD instruction sets
would not be possible without switching to the loop-based
multiplication. So far, our work leads to a fully accelerated and
cross-platform implementation of randomized network coding,
on Intel, AMD and PowerPC processors, and across Windows,
Linux and Mac OS X systems.

B. Parallelized network coding

Since modern commodity processors are routinely multi-
core processors, we naturally wish to further improve our
accelerated implementation by increasing the level of par-
allelization, such that all processing cores may be fully
utilized. A multi-threaded implementation would naturally
take advantage of additional processors, and its performance
may benefit significantly through workload partitioning. That
acknowledged, parallelized network coding with more than
one thread per processor may actually affect performance neg-
atively due to threading overhead, as random linear coding is
computationally intensive (CPU bound), without I/O intervals
in between.

We first recall that the encoding process generates a new
linear combination of incoming blocks, weighted according
to random coefficients. This calculation can be partitioned
among several threads, each working on a partition of all
original blocks to generate the corresponding partition of
the coded block. All threads start with the same sequence
of random coefficients [cj1cj2...cjn], either through already
prepared coefficients, or generating the coefficients on their
own from a shared seed.

Next, the decoding process can similarly divide each coded
block into partitions and assign each, of width k/cpu count,
to a different thread. Every thread retrieves the coefficient
sequence on its own and maintains the full coefficient matrix
of width n. As shown in Fig. 5 for two processors, each thread
operates on its private copy of the coefficient matrix, and

partitions the coded block without any need to communicate
with other threads. Such partitioning also improves cache
performance.

Ideally, all threads start their new task at the same time and
finish around the same time, since they process equal amounts
of data. However, the encoding or decoding process is not
complete until all threads have completed their tasks. This
implies that one of the threads should serve as the coordinating
thread, which synchronizes the task assignment and collection
to and from other worker threads.

With only coded blocks partitioned, the achieved speedup
of the decoding process is limited to the parallel portion of
the overall task (which is equal to k/(k + n) since each row
operation is performed on both coefficient and coded block
rows). If the block size k is much larger than number of blocks
n, such a partitioning scheme performs close to perfection. But
in a typical real-world scenario of n = 256 and k = 1024, the
coefficient row operations cost 20% of the total row operations.

To further improve the speedup, we propose to extend
parallelized decoding to include the coefficient matrix. Fig. 6
shows an ideal task partitioning for two threads. There exist
a few challenges towards this goal, however. At stage A of
Gauss-Jordan elimination in Fig. 3, all threads need to have
knowledge of the full row of coefficients associated with
the last received coded block, i.e., partial knowledge is not
sufficient. Searching for the first non-zero element at stage
B is a more problematic issue, requiring each thread to pass
the result of its local search to the coordinating thread, and
wait for a response on the global result. Stage E needs to
retrieve the coefficient of all previous rows that are right above
the first non-zero element of the current row. Obviously, such
coefficients can belong to any other partition and is not locally
owned.

To solve the issues of stages A and E, each thread needs
to keep some redundant data, and to access a global list
updated by the coordinating thread. Unfortunately, stage B
requires explicit synchronization between threads. To address
this challenge and to reduce cache coherency updates, we have
carefully designed an appropriate synchronization scheme that
assigns each thread its own cache-aligned data structure. Each
thread’s local structure is set by the thread, and read only by
the coordinating thread. The coordinating thread’s response is
set through a similar structure, and read by all other threads.
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V. PERFORMANCE EVALUATION

In cross-platform C++, we have implemented and fine-tuned
our parallelized progressive network coding with hardware
acceleration. Our implementation is packaged as a library
that can be statically or dynamically linked, runs well in
Windows, Linux and Mac OS X, and on Intel, AMD and
PowerPC processors. Our original objective of implementing
a high-performance network coding engine is to explore its
computational limits in modern processors. In this section, we
evaluate the performance of our implementation with respect
to its coding bandwidth in megabytes per second, as well as the
speedup when compared to our baseline implementation. Both
implementations operate in GF(28). Most our experimental
results reflect the average of 100 runs.

We evaluate our implementation in three hardware plat-
forms: (1) a Quad CPU Intel Pentium 4 Xeon 2.8 GHz server
(16 GB RAM, 512 KB L2 cache on each CPU and 2 MB
shared L3 cache, Linux kernel 2.6.17); (2) a Dual CPU Intel
Pentium 4 Xeon 3.6 GHz server (2 GB RAM, 2 MB L2 cache
on each CPU, Linux kernel 2.6.13); and (3) a Dual dual-
core Power Mac G5 server with two PowerPC G5 2.5 GHz
dual-core processors (4 GB RAM, 1 MB L2 cache on each
CPU, Mac OS X 10.4.8). The Intel servers use SSE2 SIMD
acceleration, while the Quad Power Mac G5 uses AltiVec.

A. Hardware acceleration with SIMD instruction sets

We first evaluate our single-threaded implementation of
network coding, accelerated with SIMD instruction sets. We
evaluate 128 bytes to 32 KB per block, with 64, 128, and

256 blocks. When compared to our baseline implementation
without acceleration, the speedups of accelerated encoding and
decoding are shown in Fig. 7. The coding bandwidth, in terms
of MB per second, is shown in Fig. 8.

We have observed from Fig. 7 that the encoding process
achieves much higher speedups than the decoding process,
especially at larger block sizes. If we refer to the actual coding
bandwidth in Fig. 8, however, we may observe that though
the encoding bandwidth is up to 2 MB/s higher than decoding
with smaller block sizes, the gap becomes much closer as
the block size increases. In addition, the coding bandwidth
of both encoding and decoding eventually saturate around
similar block sizes of 2–8 KB. The decoding bandwidth graph
resembles a delayed form of the encoding graph. In what
follows, we attempt to decipher the phenomenon that we have
observed.

Although both encoding and decoding processes require n2

row operations, there exist some differences. The encoding
process for each coded block always requires n row opera-
tions, performed in a single loop. Its n2 row operations are
performed only on the incoming blocks of width k. In contrast,
progressive decoding on coded blocks that are received earlier
requires less row operations that on those received later, and
accesses a smaller number of rows. Overall, decoding requires
n2 row operations on the coded blocks of width k, plus
coefficient rows of width n. In general, encoding is more
“regular” than decoding.

We believe that the more impressive encoding speedup is
due to the decreasing performance of the baseline encoding
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Fig. 9. Speedup results of multi-threaded SIMD acceleration for (a) encode and (b) decode over the single-threaded accelerated scheme of Fig. 7.
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Fig. 10. Coding bandwidth performance of multi-threaded SIMD acceleration for (a) encode and (b) decode processes.

implementation, caused by the L2 cache. As the block size
increases, the caching performance of memory operations
is penalized, leading to lower coding performance. The ac-
celerated encoding, however, continues to maintain its gain
by compensating for the decreasing performance of caching.
With respect to decoding, the extra decoding workload on
the coefficient matrix becomes less significant as n/(n + k)
decreases. Further, the decreasing performance of caching is
of lesser importance for decoding, since the decoding data set
is initially small, and grows gradually as new coded blocks are
received. If the cache is not sufficiently large to store the entire
data set, such a gradual increase leads to less cache thrashing
than encoding, which traverses the entire data set right from
the very first coded block.

Not surprisingly, at a fixed block size, both encoding and
decoding achieve a higher coding bandwidth with a smaller
number of blocks, since they both require n2 row operations.
The dual-CPU Intel server consistently performs better than
the quad-CPU Intel server in this experiment, due to its
larger L2 cache and higher CPU clock speed. However, the
PowerPC G5 system attains a high performance margin over
the Intel servers, apparently due to its higher performance
SIMD implementation. It is impressive to observe that both
encoding and decoding bandwidth approach 10 MB/s on the
dual-CPU Intel server and even surpass 11.4 MB/s on the G5
system, with 64 blocks. The effect of the 512 KB L2 cache of
the Quad-CPU Intel server is clearly visible in Fig. 8-(a). The
encoding bandwidth declines when the working set overflows
the cache capacity after approximately (k = 2 KB, n = 256),

(k = 4 KB, n = 128), and (k = 8 KB, n = 64) points.
At a fixed number of blocks, we have also observed that

the coding bandwidth increases until a saturation point as
higher block sizes are used, a typical behavior often observed
in parallelized computation in response to the increase of
problem sizes. This is mainly due to hardware factors such as
better performance of the memory fetcher, instruction cache
and branch predictor units. The coding bandwidth is affected
as the working set no longer fits in the cache and becomes
memory-bound.

B. Parallelized network coding

We now repeat the same experiments to evaluate parallelized
network coding with one thread per CPU. We first start
with partitioning the decoding of coded blocks only (Fig. 5).
In Fig. 9, we present the speedup of using multi-threaded
parallelization over a single thread with SIMD acceleration.
In all test cases, the Quad-CPU Intel server outperforms
the dual-CPU Intel server, showing the obvious advantage
of multi-threading. An interesting observation is the super-
linear speedup on the Quad-CPU Intel server. This is a classic
example of how the aggregate cache of multiple processors can
improve the performance of a memory-intensive computation
task by partitioning the per-processor working data set.

Fig. 10 shows the coding bandwidth. When encoding 256
blocks, we observe from Fig. 9 that the Quad-Intel server
achieves a speedup of 6, which is almost 4 times higher than
the speedup of the Dual-Intel server. However, Fig. 10 shows
that the Quad-Intel server is only 1.5 times faster than the dual-
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Fig. 11. Decoding with full partitioning for k = 1024: (a) speedup over
decoding with partial partitioning; (b) decoding bandwidth.

Intel server in terms of the absolute coding bandwidth. This
implies that a dramatic speedup of multi-threading does not
translate to equally significant bandwidth gain. This reflects
the importance of analyzing speedup and coding bandwidth
together at all times.

The Quad-G5 server achieves impressive coding rates by
reaching near linear speedup at large block sizes. However,
the bulk of these high coding rates stems from the original
performance gain through SIMD acceleration shown in Fig. 8.
We have also observed that, the encoding bandwidth of the
Quad-Intel server at 256 blocks peaks at k = 8 KB and
decreases afterward. This is exactly the point that the overall
data set grows to 2 MB, and overflows the 4 processors’
aggregate cache (4·512 KB L2 cache). The decrease is sharper
for k = 32 KB as the encoding data set grows to 8 MB, which
surpasses even the 2 MB L3 cache. Note that decoding is
more tolerant of the increased block size, due to its gradually
increasing working sets.

Finally, we study the advantages of full partitioning (Fig. 6),
by also partitioning the decoding of the coefficient matrix.
Although the decoding of the coefficient matrix is no longer
performed redundantly by all threads, the extra synchroniza-
tion required leads to additional overhead. Fig. 11 shows its
resulting speedup over partial partitioning along with decoding
bandwidth. Unlike previous experiments, the block size is
now fixed at k = 1024 bytes, and we increase the number
of blocks. This is designed to emphasize the advantage of
applying threading to the coefficient matrix when n/(n + k)
does not diminish quickly with increasing k. By increasing
n/(n+k), we obviously expect to see higher gains due to the
partitioning of coefficient rows with width n. At n = 2048
and k = 1024 bytes, for example, the coefficient matrix of 4
MB will become larger than the coded block matrix of 2 MB.
As a result, its partitioning improves the cache performance
besides improving the parallelism and obviously would lead
to a high speedup.

The experiment with 512 blocks is more interesting, because
the data set completely fits into the cache and the achieved
speedup is solely due to full partitioning. At (n = 512, k =
1024), each processor of the Quad-Intel server will operate
on 128-byte coefficient rows and 256-byte coded block rows.
This reduces the aggregate row size to 128 + 256 bytes from
512+256 bytes of partial partitioning, effectively reducing the
aggregate row into half. Of course, we only gain a speedup

of 1.26, rather than the ideal 2, because of the extra threading
overhead and synchronization of full partitioning.

Since a larger number of blocks dramatically affects the
coding bandwidth, it is natural to use the smallest number
of blocks possible in real-world network coding. This implies
that in most real-world applications based on network coding,
parallelized network coding with full partitioning may not
gain more than roughly 10% to 15% of coding bandwidth
over partial partitioning. Nevertheless, we have still observed
that encoding and decoding bandwidth reaches 20.3 and 19.2
MB/s at 128 blocks of 8 KB each with our Quad PowerPC
G5 server, and 43.5 and 43.3 MB/s at 64 blocks of 32 KB
each. If we use 16 blocks of 32 KB each, they are even able
to reach 155.8 and 156.2 MB/s!2 As another way to show our
results, Fig. 12 conveniently illustrates the coding bandwidth
for 128 blocks of 4 KB each across different hardware and
OS platforms. No matter how one sees them, these represent
impressive coding performance, thanks to our parallelized and
accelerated implementation of network coding.

Platform setup Coding rate (MB/s)

System OS
SIMD 
type

# of 
threads L2 Cache Encoding Decoding

Quad PowerPC 
G5 2.5 GHz Mac OS X AltiVec 4 1 MB 18.01 16.38

Quad P4 Xeon
2.8 GHz Linux SSE2 4 512 KB 10.54 9.17

Dual Opteron 
(AMD) 2.4 GHz Linux SSE2 2 1 MB 9.56 8.75

Dual P4 Xeon
3.6 GHz Linux SSE2 2 2 MB 7.21 6.50

iMac Intel Core 
Duo 1.83 GHz Mac OS X SSE2 2 2 MB 

(shared) 5.81 5.60

Intel Core Duo 
1.66 GHz Windows XP SSE2 2 2 MB 

(shared) 4.62 4.43

Fig. 12. Platform comparison of coding performance at (n = 128, k = 4 KB).

VI. CONCLUSIONS

This paper represents the first attempt towards a high-
performance implementation of randomized network coding.
The objective of this research is to explore the computational
limits of random linear coding in modern processors. We pro-
pose to use Gauss-Jordan elimination to perform progressive
decoding, such that the decoding time may overlap with the
time required for data transmission. Our implementation is
now complete with hardware acceleration with SIMD instruc-
tion sets available on modern commodity processors, as well
as multi-threading to take advantage of symmetric multipro-
cessors to parallelize computation tasks. With a wide variety
of working sets in our coding tests, significant speedup and
coding bandwidth have been achieved. We are now confident
to claim that, as long as we code fewer than 128 blocks,
the computational complexity of randomized network coding
may not become a performance bottleneck even on dedicated
servers with more than 100 Mbps connections. In peer-to-peer
applications with typical DSL bandwidth, we believe the CPU
usage is minimal. The task of coding more than 128 blocks
still remains to be an interesting challenge.

2To establish a context, I/O bandwidth of SATA disk drives is usually
between 30 and 60 MB/s.
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