
Pushing the Envelope: Extreme Network Coding on the GPU

Hassan Shojania, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract

While it is well known that network coding achieves
optimal flow rates in multicast sessions, its potential for
practical use has remained to be a question, due to its high
computational complexity. With GPU computing gaining mo-
mentum as a result of increased hardware capabilities and
improved programmability, we show in this paper how the
GPU can be used to improve network coding performance
dramatically. Our previous work presented the first attempt
in the literature to maximize the performance of network
coding by taking advantage of not only multi-core CPUs, but
also hundreds of computing cores in commodity off-the-shelf
Graphics Processing Units (GPU). This paper represents
another step forward, and presents a new array of GPU-
based algorithms that improve network encoding by a factor
of 2.2, and network decoding by a factor of 2.7 to 27.6
across a range of practical configurations. With just a single
NVIDIA GTX 280 GPU, our implementation of GPU-based
network encoding outperforms an 8-core Intel Xeon server
by a margin of at least 4.3 to 1 in all practical test cases,
and over 3000 peers can be served at high-quality video
rates if network coding is used in a streaming server. With
128 blocks, for example, coding rates up to 294 MB/second
can be achieved with a variety of block sizes1.

1. Introduction
First introduced by Ahlswede et al. [1] in information

theory, network coding has received significant research
attention in the networking community. The fundamental
advantage of network coding hinges upon the coding capa-
bilities of intermediate nodes, in addition to forwarding and
replicating incoming messages. In theory, network coding
helps to alleviate competition among flows at the bottleneck,
thus improving session throughput in general. Wu et al. [2]
and Gkantsidis et al. [3] have both proposed to apply random
network coding, first proposed in [4], in practical content dis-
tribution systems. Extensive simulation studies have shown
that network coding delivers close to theoretically optimal
performance levels.

Unfortunately, to date, there has been no commercial real-
world applications or protocols reported in the literature that

1. The completion of this research was made possible thanks to the
NSERC Strategic Grant STPGP 321948-05 and a research grant from the
Bell Canada University Laboratories R&D Program.

take advantage of the power of network coding. We believe
that the main cause of this observation — and the main
disadvantage of network coding — is the high computational
complexity of randomized network coding with random
linear codes, especially as the number of blocks to be
coded scales up. We believe that it is critically important
to optimize the implementation of random linear codes
such that its real-world coding performance is maximized
on modern off-the-shelf hardware platforms, such as media
streaming servers.

Towards this objective, our previous work [5] has shown
an accelerated multi-threaded implementation of network
coding, that takes advantage of both multiple CPU cores
with aggressive multi-threading, and SSE2 and AltiVec
SIMD vector instructions on x86 and PowerPC processors as
well. Further, our previous work on Nuclei, the first network
coding implementation on Graphics Processing Units (GPU)
in the literature [6], achieved encoding rates of up to 114
MB/second by combining 8-core Intel Xeon CPUs and a
mainstream NVIDIA GeForce 8800 GT GPU.

This paper represents another substantial step forward,
and presents a new array of optimization techniques and
algorithms to further improve the performance of GPU-
based network coding by a significant margin beyond our
previous work. With our new algorithms, A single NVIDIA
GeForce GTX 280 performing network coding at 128 blocks
achieves encoding rates up to 294 MB/s and decoding rates
up to 254 MB/s, far beyond the computation bandwidth
required to saturate a Gigabit Ethernet interface on streaming
servers. At such high rates, we argue that GPU alone is
sufficient to deploy network coding on streaming servers
setting the CPU cores free for other CPU-intensive tasks.

We have made the following new observations. First,
the NVIDIA GeForce GTX 280, featuring 240 cores, far
outperforms our CPU-based implementation on a Dual
Quad-core 2.8 GHz Intel Xeon server (8-core Mac Pro).
Second, unlike the CPU, the GPU can benefit from a novel
and highly optimized table-based encoding technique that
outperforms the loop-based encoding technique employed
in [6] by a factor of 2.2. Third, by parallel decoding of
multiple segments, the performance of GPU-based network
decoding can be improved by a factor of 2.7 to 27.6, across
a range of practical configurations.

The remainder of this paper is organized as follows. Sec. 2
discusses related work. Sec. 3 provides an overview of both
random network coding and GPU computing. Sec. 4 presents



the basis of parallel coding on GPUs along with network
coding performance results for the GTX 280. Sec. 5 presents
and evaluates a variety of novel techniques to maximize the
real-world network coding performance with GPUs. Finally,
Sec. 6 concludes the paper.

2. Related Work
Ho et al. [4] has been the first to propose the concept

of randomized network coding using random linear codes,
in which an intermediate node transmits on each outgoing
link a linear combination of incoming messages, specified
by independently and randomly chosen code coefficients
over some finite field. Wu et al. [2] have concluded that
randomized network coding can be designed to be “robust
to random packet loss, delay, as well as any changes in
network topology and capacity.” Ghantsidis et al. [3] has
further proposed that randomized network coding can be
used for bulk content distribution, and has demonstrated the
feasibility of network coding [7]. The work has concluded
that “network coding incurs little overhead, both in terms of
CPU and I/O, and it results in smooth and fast downloads.”
However, a small number of blocks per segment has been
used, limiting the benefits of network coding as it is only
performed within each segment.

Theoretically, the computational complexity of random
linear codes has been well known: it has been a driving
force towards the development of more efficient codes in
content distribution applications, including traditional Reed-
solomon (RS) codes, fountain codes [8], and more recently,
chunked codes [9], however, all of them come with their
own drawbacks.

While there is no doubt that more efficient codes exist,
they may not be suitable for randomized network coding
in a practical setting. In contrast, random linear codes are
simple, effective, and can be recoded without affecting the
guarantee to decode. We believe that our work on a high-
performance implementation of random linear codes may
help academics and practitioners to realize the full potential
of randomized network coding in a real-world setting. Our
previous work [5] has evaluated the performance of our real-
world implementation of network coding, taking advantage
of multi-core CPUs and modern SIMD vector instruction
sets, such as Intel SSE2. Our recent work [6] has provided
the first network coding implementation on GPUs, where
we provided a highly optimized Galois Field multiplication
technique for GPUs, and achieved satisfactorily high encod-
ing rates, especially when a NVIDIA GeForce 8800 GT
GPU was employed in parallel with an 8-core Intel Xeon
server. However, the decoding performance of the GPU was
not satisfactory.

Though in [6] we have achieved a level of performance
that has not been previously reported, this paper takes
another step forward to improve the coding performance
by significant margins, particularly decoding. With our new

results, we argue that a single GPU can achieve a sufficiently
high level of performance to satisfy the needs of most ap-
plication scenarios. Further, for network coding applications,
the price/performance ratio of GPUs is far superior to multi-
core servers. For the exceptionally demanding applications,
multiple GPUs can be employed in parallel. By setting free
the CPUs from computation-intensive network coding, a far
more reliable system with a better performance guarantee
can be deployed, which is especially beneficial to media
streaming servers.

3. Background
Modern GPUs have gradually evolved from specialized

engines operating on fixed pixels and vertex data types, into
programmable parallel processors with enormous computing
power [10]. NVIDIA’s Tesla GPU architecture, introduced
in November 2006 and now employed in a wide range of
professional and consumer GPU products, is the first such
GPU architecture that enables high-performance parallel
computing applications, written in the C language using
the Compute Unified Device Architecture (CUDA) program-
ming model and development tools, and is now considered
to be the “most ubiquitous” supercomputing platform.

The NVIDIA GeForce GTX 280 GPU, though retails at
mainstream GPU pricing, is supported by the CUDA pro-
gramming platform. Our performance evaluation of GPU-
based network coding in this paper is based on the GTX
280 GPU, with 240 computing cores. Our design and
implementation, however, can be used on any existing and
future GPU that supports the CUDA programming platform.
To facilitate our subsequent discussions in this paper, we
refer the reader to [11] and also our previous work [6] for
an overview of the Tesla GPU architecture and CUDA.

We now briefly introduce the basics of random network
coding. With random linear codes, data to be disseminated
is divided into n blocks [b1, b2, . . . , bn]T , where each block
bi has a fixed number of bytes k (referred to as the block
size). To code a new coded block xj in network coding, a
network node first independently and randomly chooses a set
of coding coefficients [cj1, cj2, · · · , cjn] in GF(28) Galois
field, one for each received block (or each original block on
the data source). It then produces one coded block xj of k
bytes:

xj =
n∑

i=1

cji · bi (1)

A peer decodes as soon as it has received n linearly
independent coded blocks x = [x1, x2, . . . , xn]T . It first
forms a n × n matrix C, using the coefficients of each
block bi. Each row in C corresponds to the coefficients
of one coded block. It then recovers the original blocks
b = [b1, b2, . . . , bn]T as:

b = C−1x (2)



In this equation, it first needs to compute the inverse of C,
using Gaussian elimination. It then needs to multiply C−1

and x, which takes n2 · k multiplications of two bytes in
GF(28). The inversion of C is only possible when its rows
are linearly independent, i.e., C is full rank.

GF(28) operations are routinely used in random lin-
ear codes within tight loops. Since addition in GF(28) is
simply an XOR operation, it is important to optimize the
implementation of multiplication on GF(28). Our baseline
implementation takes advantage of the widely-used fast
GF multiplication through logarithm and exponential tables
similar to the traditional multiplication of large numbers.
Fig. 1 shows a C function to multiply using three table
references where log and exp reflect GF(28) logarithmic and
exponential tables. Such a baseline implementation requires
three memory reads and one addition for each multiplication.

byte baseline_gf_multiply(byte x, byte y)
{

if (x == 0 || y == 0)
return 0;

return exp[log[x] + log[y]];
}

Figure 1. Table-based multiplication in GF(28).

We use Gauss-Jordan elimination to implement the de-
coding process, rather than the more traditional Gaussian
elimination. Gauss-Jordan elimination transforms a matrix
to its reduced row-echelon form (RREF), in which each row
contains only zeros until the first nonzero element, which
must be 1. The benefit of the reduced row-echelon form
is that, once the matrix is reduced to an identity matrix,
the result vector on the right of the equation constitutes
the solution, without any additional needs of decoding. In
addition, if a received coded block is linearly dependent
with existing blocks, the Gauss-Jordan elimination process
will lead to a row of all zeros, in which case this coded
block can be immediately discarded, and there are no explicit
linear dependence checks required. The reader is referred to
[5] and [6] for more detailed discussions of the decoding
process.

4. Network Coding with the GTX 280
In this section, we present the basis of parallel network

coding on GPUs, its challenges, and our solutions. Then
we evaluate GPU-based network coding on the GTX 280,
and compare the results against the best performing results
reported in our previous work [6].

4.1. Performance Bottlenecks in Network Coding
Random network coding suffers from two major per-

formance bottlenecks. First, a table-based multiplication in
GF(28) is a costly operation. Second, the multiplication and
addition operations are performed in tight loops over rows
of coefficients and coded blocks, each of n and k bytes,
respectively. Each row operation is performed through a

series of byte-length GF(28) operations, since table-based
GF(28) multiplication is not easily scalable to a higher
granularity than the byte level.

To address such a performance bottleneck, we first pro-
posed in [5] to revisit the basics by performing the multipli-
cation on-the-fly using a loop-based approach in Rijndael’s
finite field, rather than using traditional log / exp tables.
Although the basic loop-based multiplication takes longer to
perform (up to 8 iterations), it lends itself better to a parallel
implementation that takes advantage of vector instructions
in order to operate on wider chunks of elements from a
matrix row at the same time. The loop-based equivalent of
the table-based multiplication in Fig. 1 resembles a regular
hand multiplication (see Fig. 3 of [6]) by looking into the
lower bit of x and adding y at each iteration (addition is
equivalent to XOR in GF(28)).

With such a loop-based approach, we took advantage
of SSE2 and AltiVec SIMD (single-instruction, multiple
data) vector instruction sets on Intel and IBM PowerPC
processor families to perform GF(28) multiplication on 16
byte-long units of each row, rather than single-byte units
[5]. In [6], we followed the same principle for GPUs but
faced two major challenges. First, unlike modern CPU cores
with 128-bit registers and execution units, current CUDA-
enabled GPUs have plain 32-bit registers and arithmetic
units. As a result, we can only go as far as single byte
by 4-byte word GF-multiplication. Second, GPU cores lack
the sophisticated SIMD instructions that allow test and
manipulation of individual bytes of a word. This leads to
longer and less efficient code.

Our previous work [6] showed that it is possible to use the
GPU and still achieve accelerated GF-multiplication using
a loop-based approach, despite the lack of CPU-like vector
instructions. A number of optimization techniques, including
hand-optimization of the PTX assembly code, were used
for efficiently employing the 112 cores of 8800 GT. It
was reaffirmed that the GPU’s advantage over CPUs is
their ability to schedule thousands of lightweight threads
with almost zero overhead in hardware, to hide stalls in
the processing cores due to data dependency and memory
access.

4.2. Task Partitioning on the GTX 280
Although current CUDA-enabled GPUs lack the wide

registers and arithmetic-logic units (ALUs) of the modern
CPUs, they have many processing cores (e.g., 240 for
the GTX 280), which run in parallel and can achieve the
same functionality as wide execution units. In the following
sections, we briefly overview our parallelization scheme of
network encoding and decoding. These partitioning schemes
are essentially the same as the ones used for 8800 GT in
[6] but with some extra fine-tuning for the GTX 280. A
good understanding of these schemes is necessary when we
present our new techniques in Sec. 5.



66.9 MB/s

k = 4 KB

256 threads

c = 10

Coded blocks 
matrix

n × kc × nc × k

bCx =
Source blocks 

matrix

Figure 2. 10,000 GPU threads performing parallel
network encoding for 10 coded blocks of each 4 KB.

4.2.1. Partitioning parallel network encoding. The process
of random network encoding essentially consists of a matrix
multiplication in the GF domain, as described in Sec. 3, with
single-byte coefficients multiplied in each row of source
blocks, and the results XOR-ed together to form a coded
block. A parallel implementation of network encoding falls
in the category of what is known as embarrassingly parallel
problems, where a parallel implementation is possible with
little communication and synchronization among parallel
threads. Ignoring memory access to source blocks and co-
efficients, the performance of loop-based network encoding
is only limited by the computational power of the hardware,
since the encoding process of multiple coded blocks — and
even different section of a coded block — can proceed in
parallel by employing a large number of threads.

Fig. 2 shows how generation of 10 coded blocks, each of
k = 4 KB, is assigned to GPU threads. Each element of the
grid reflects a thread block consisting of 256 threads. Each
thread of a thread block generates a 4-byte word of the coded
block by performing the encoding operation according to
Eq. (1) on n words from the source blocks using loop-based
GF-multiplication. Effectively, each thread block generates
1 KB worth of coded data, i.e., 10, 000 threads are used to
generate 10 coded blocks.

With careful assignments of words to threads of each
thread warp, we take advantage of (1) the memory broadcast
feature [11] of the GTX 280 for coefficients load, (2) the
memory coalescing [11] for loading source and storing
coded blocks. Since most memory accesses of a thread
warp, except coefficient reads, fall next to each other, such
partitioning significantly reduces the number of accesses to
the GPU memory.

4.2.2. Partitioning parallel network decoding. The decod-
ing process has a higher computational complexity than
encoding, as Gauss-Jordan elimination involves n2 row
operations on coefficient rows of length n and coded blocks
of length k. However, the more critical issue is the smaller
degree of parallelization inherent in the decoding process.
Gauss-Jordan elimination requires the decoding of each
coded block to start only after the decoding of the previous
coded blocks is finished. This implies that the decoding

SM
0

C|x0

SM
1

C|x1

SM
9

C|x9

SM
10

C|x11

SM
11

C|x11

SM
19

C|x19

SM
20

C|x20

SM
21

C|x21

SM
29

C|x29

(b)

Coefficients 
matrix

Coded blocks 
matrix

C x0 | x1 | x2 | ....... | x28 | x29  

c × n c × k

c × n+k/30

c × n+k/30

c × n+k/30c × n+k/30c × n+k/30

Figure 3. Parallel network decoding on 30 SMs (Stream
Multiprocessors [11]) of GTX 280 with duplicate coeffi-
cient matrix and partitioned coded blocks matrix.

process, unlike encoding, lends itself to parallelization only
“within” the decoding of the current coded block, and not
“across” the decoding of a number of coded blocks.

Such a lower degree of parallelism limits the performance
gain of GPU-based decoding much more than the CPU-
based implementation, since the GPU needs to run “thou-
sands of threads” to be able to achieve its peak performance.
In addition, threaded decoding of each coded block requires
a synchronization point, for searching the first non-zero
coefficient, which makes the decoding process a coarse-
grained parallel program [6].

This synchronization point is a major obstacle in deep par-
allelization of decoding. CUDA’s synchronization construct
only works “within” threads of a thread block and does not
support global synchronization among all GPU threads. To
work around the required global synchronization, we divide
the data portion of the coded block among all thread blocks,
but give each thread block its own “private copy” of the
coefficient row. We now can use CUDA’s per thread block
synchronization to perform the search for the first non-zero
coefficient in each thread block. However, we do not wish to
consume too much of our computing power on processing
redundant coefficients, so we define a thread block to be as
large as possible, employing only one thread block per each
of the 30 SMs of the GTX 280. This effectively leads to
decoding n + k/30 bytes of aggregate data by each thread
block implying (n + k

30 )/4 GPU threads, each working on
a 4-byte column.

This partitioning scheme is shown in Fig. 3, where SPi

of the GTX 280 performs the decoding on the aggregate
[C|xi] matrix where xi is the i-th partition of the coded
block matrix x. As we shall show in the next section,
such parallelized decoding is still not able to fully take
advantage of the GTX 280’s computation power. We will
revisit parallelized decoding in Sec. 5 with a new approach.

4.3. Evaluating the GTX 280
Now we evaluate the GTX 280 running our loop-based

implementation of network coding on the GPU. GTX 280



0

15

30

45

60

75

90

105

120

135

128 256 512 1024 2048 4096 8192 16384 32768
block size, k (bytes) block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

GTX280 (n=128)
GTX280 (n=256)
GTX280 (n=512)
8800GT (n=128)
8800GT (n=256)
8800GT (n=512)

0

20

40

60

80

100

128 256 512 1024 2048 4096 8192 16384 32768

133 MB/s

33.6 MB/s

16.8 MB/s

GTX280 (n=128)
GTX280 (n=256)
GTX280 (n=512)
Mac Pro (n=128)
Mac Pro (n=256)
Mac Pro (n=512)

66 MB/s

8800GT (n=256)
GTX280 (n=512){

93 MB/s

57 MB/s

(b)(a)

Figure 4. Coding bandwidth of GPU-based and CPU-based (8-threaded with SIMD acceleration) for network (a)
encoding; and (b) decoding processes.
boasts 240 processing cores compared to 112 in the GeForce
8800 GT, but it runs at a slightly lower core frequency
of 1458 MHz against 1500 MHz. With almost twice the
amount of computing power of the 8800 GT, we can expect
better coding performance over the 8800 GT. However, the
main questions are that whether the coding bandwidth can
scale up linearly, and whether computation and memory
can interleave efficiently so that memory latency can be
hidden. We use fully dense coding matrices as [6] with non-
zero coefficients in all of our evaluations in this paper. The
performance will be even higher with sparser matrices.

To evaluate the GTX 280, we use the testbeds in [6]
as our benchmarks, namely a 8800 GT GPU and a 8-core
Intel Xeon 2.8 GHz Mac Pro server (SIMD accelerated with
8 threads, one thread per CPU core). To have a readable
graph, however, we only use the 8800 GT as the encoding
benchmark and the Mac Pro as the decoding benchmark.
Although the 8800 GT and the Mac Pro essentially achieve
similar coding rates at k = 16 KB, 8800 GT consistently
achieves better encoding performance, especially at smaller
block sizes [6]. For decoding, the case is reversed and CPU-
based decoding on the Mac Pro system defeats 8800 GT
hands down (refer to [6] for a full performance comparison
between the two).

We have tested a range of network coding configurations
with 128 bytes to 32 KB per block, with 128, 256 and 512
blocks. The coding bandwidth of the GTX 280, in terms of
MB per second, is shown in Fig. 4. Note that the encoding
(decoding) bandwidth should be read as the total bytes of
generated coded blocks (decoded source blocks) within one
second with a network coding setup of (n, k).

Fig. 4(a) shows that encoding in GTX 280 achieves a rate
almost twice of 8800 GT, a linear speedup, across all coding
settings. This is not surprising as the encoding process is an
embarrassingly parallel operation, and the fact that GTX
280’s memory bandwidth is more than double of 8800 GT’s
(155 GB/s vs. 57.6 GB/s). As a result, the computation
power of GPU still remains the performance bottleneck of
our loop-based encoding scheme.

At a 133 MB/s encoding rate for the n = 128 setting,

4463 million GF-multiplications are executed every second.
At an average 7 iterations per GF-multiplication in a random
test benchmark as in [6] and each iteration taking an
average of 10.5 instructions, the instruction rate will be
329 GIPS (Giga instructions per second). Our GTX 280’s
theoretical limit of 1080 GFLOPS translates to 360 GIPS.
As a result, GF-multiplications alone (not considering the
overhead associated with loop traversal, GPU kernel launch,
etc.) effectively achieves 91% of the advertised computing
power of GTX 280. This confirms that our encoding task
partitioning scheme managed to hide memory latency very
well. Similar calculations put the memory access rate at
20.9 GB/s (each word of the generated coded data requires
5 × n + 4 bytes of read and write), which is substantially
lower than the theoretical memory limit of 155 GB/s.

With respect to decoding, as discussed in Sec. 4.2.2 and
observed in Fig. 4(b), the decoding performance is generally
lower for both GPU and CPU-based schemes because coded
blocks are decoded serially. The GTX 280 performs better
than 8800 GT in [6], by defeating the Mac Pro for blocks
of 8 KB and larger. However, the CPU still performs better
than the GTX 280 at smaller block sizes, because the GPU
does not have sufficient data (small k/30) to launch a
sufficient number of threads accordingly. In contrast, CPU’s
more efficient microarchitecture performs a better job even
at small block sizes. As k increases, the performance of
both GPU and CPU increases partially due to a lower
overhead associated with the decoding of the coefficient
matrix, proportional to the n/k ratio. The lack of parallelism
in the decoding process prevents the GTX 280 to fulfill its
almost twice computing advantage over the 8800 GT. For
example, at n = 128, the decoding rate of GTX 280 achieves
virtually the same performance as the 8800 GT (in a graph
not shown here) up to a block size of 1024 bytes. From
blocks of 2 KB to 16 KB length, the GTX 280 achieves a
modest 5% to 38% gain over 8800 GT.

5. Pushing the Envelope of Network Coding
We now propose a number of new schemes leading to

significant performance improvements in GPU-accelerated



network coding. A number of our proposed schemes also
improves CPU-based coding.

5.1. Table-based Parallel Encoding
So far, we focused only on loop-based GF-multiplication.

Would the table-based approach perform better with the
GPU? We already know from [5] that this is not the case
for CPU-based coding.

We now migrate the table-based GF-multiplication of
Sec. 3 to the GPU. Exponential and logarithm tables are
created on the CPU side once and then transferred to
the GPU memory. Our experiment here follows the same
partitioning scheme of Sec. 4.2.1. However, at each byte-
by-word GF-multiplication, a similar table-lookup scheme
as Fig. 1 will be invoked four times in a row.

Accessing log / exp tables from GPU memory results in
very poor performance. In an improved version, we load up
the tables from the graphics memory into the on-chip shared
memory of each GPU’s SM at the start of the encoding
process. Because all threads of a thread block can access
the shared memory seamlessly, we effectively use the shared
memory as a “managed L1 cache” shared among the active
threads of a thread block with far less access latency than
a memory fetch from the graphics memory. However, each
SM has only 16 KB of such on-chip memory so the thread
blocks have to be sized carefully to let many threads share
the same log / exp tables.

To improve the initial caching of the log / exp tables, each
thread of a thread block loads a 4-byte portion of the table
in an optimized fashion, ensuring memory coalescing in
threads of each thread warp. After the tables are loaded, all
threads proceed as a regular encoding thread we employed in
Sec. 4.2.1. This method has led to a substantial improvement
over our first table-based scheme. Unfortunately, in an
experiment at n = 128, such a fine-tuned table-based scheme
still performs 26% worse than our loop-based approach.

5.1.1. Table-based GF-multiplication for streaming
servers. Before completely deserting table-based GF-
multiplication, we have performed a more in-depth
investigation into how network coding can be employed in
a streaming server. As our performance results from Fig. 4
indicate, the encoding performance is so high that it can
be deployed in high-performance live or VoD streaming
servers to serve hundreds of downstream peers or clients.
As an example, consider the scenario of using a media
segment size of 512 KB, with 128 blocks of 4 KB each.
With a streaming rate of 768 Kbps that is typical for high
quality video streams, each segment contains content that
lasts 5.33 seconds, which is an acceptable buffering delay
on the client side.

Operating at this setting, the coding bandwidth of 133
MB/s is sufficiently high to saturate a Gigabit Ethernet in-
terface and serve up to 1385 downstream peers. In addition,
when a media segment is ready to be encoded and served,

it can be transferred and stored in the graphics memory on
the GPU. 1024 MB memory on the GTX 280 is able to
easily accommodate hundreds of such segments. Then, per
request from the downstream peers, many coded blocks will
be generated from a GPU-resident segment. For example,
serving so many peers in a live video stream requires
generating at least 177, 333 coded blocks from every video
segment.

Revisiting our baseline table-based GF-multiplication of
Fig. 1 and taking into account the fact that thousands of
coded blocks are generated from the source blocks of each
video segment, we can come up with a more efficient use of
table-based GF-multiplication as suggested by the following
algorithm: (1) As soon as a new video segment becomes
available and transferred to the graphics memory, it will be
transformed to the GF logarithmic domain by transforming
every byte of its content. (2) Similarly, as soon as a new
coefficient matrix, filled with random numbers, is generated
by the GPU, it too will be transformed to the log domain.
(3) In the actual encoding process, we execute a simpler
GF-multiplication operation based on Fig. 5. Multiplication
by 0 is now detected by checking the inputs against 0xff
since log(0) is equal to 0xff in Galois field.

byte preprocessed_gf_multiply(byte log_x, log_y)
{

if (log_x == 0xff || log_y == 0xff)
return 0;

return exp[log_x + log_y];
}

Figure 5. New table-based multiplication in GF(28) with
inputs already in logarithmic domain.

Note that beside the improvement achieved through pre-
processing the source blocks, i.e., the video segment, the
same preprocessing of the coefficient matrix is also a sig-
nificant help. This is because every coded word generated
by a thread of the encoding scheme of Fig. 1 fetches and
multiplies a full coefficient row of n bytes, so a one-time
preprocessing reduces the redundant transforms to the log
domain in the original table-based approach by k/4 times.

5.1.2. Evaluating table-based parallel encoding. We now
employ the optimized table-based scheme we presented in
Sec. 5.1.1. We design a new partitioning scheme for all
preprocessing and encoding stages and assign only a single
thread block per each SM. This is intended to reduce the
number of loads of log / exp tables because each thread
block requires a full table at every kernel execution. Unlike
CPU caches, CUDA’s shared memory is “not persistent”
across GPU kernel calls. The performance results are shown
in Fig. 6, comparing the optimized table-based scheme
against the loop-based scheme both on GTX 280. As it
is evident from the graph, the encoding performance has
improved by at least 30% across all settings.

Although a rough estimate of executed instructions for this
optimized table-based scheme (including the preprocessing



0

25

50

75

100

125

150

175

128 256 512 1024 2048 4096 8192 16384 32768

block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

TB GTX280 (n=128)
TB GTX280 (n=256)
TB GTX280 (n=512)
LB GTX280 (n=128)
LB GTX280 (n=256)
LB GTX280 (n=512)

172 MB/s

33 MB/s

43 MB/s

133 MB/s

67 MB/s

86 MB/s

LB: Loop Based
TB: Table Based

Figure 6. Parallel network encoding using the optimized
table-based vs. loop-based scheme on GTX 280.

overhead) amounts to around half of the loop-based GF-
multiplication, the observed performance improvement is
not proportional to the reduction in instruction count. This
is mainly attributed to two factors. First, the bandwidth of
shared memory is one access (up to 32-bit) per bank in every
two cycles [11]. Second, hosting the log / exp tables in the
shared memory leads to many concurrent byte-length and
random accesses to different sections of the tables. These
accesses can not be coalesced. Further, bank conflicts will
be an issue too. As a result, a 30% performance increase
is still a significant gain. At such high encoding bandwidth,
now more than 1844 downstream peers can be supported in
the streaming server scenario presented in Sec. 5.1.1.

Further, our table-based improvement is not limited to
the streaming server applications that generate many coded
blocks for every source segment. In an experiment, we
produced only n coded blocks for each segment of an array
of segments, e.g., a VoD scenario where each client requests
a different video segment. The performance degraded only
by 0.6% compared to the single-segment case, due to the
extra preprocessing. This suggests that our algorithm in
Sec. 5.1.1 can be applied to multiple source segments at
once.

To be fair to the CPU-based scheme, we also deploy the
same optimized table-based approach with preprocessing of
the source blocks and coefficients matrix to the logarithmic
domain. Not only CPU-based encoding fails to achieve any
gain, its bandwidth drops up to 43% from the loop-based
SIMD accelerated solution. Obviously, for a CPU-based
solution, even the optimized form of the table-based scheme
is still not a contender for the loop-based scheme.

This result certainly does not imply that the loop-based
encoding on the GPU should be written off altogether. The
next generations of CUDA GPUs will likely increase their
integer arithmetic units to 64 bits, which potentially can
double the performance of loop-based GF-multiplication.
Further, our optimized loop-based approach can be applied
to similar processor cores as GPU SPs, especially with 32-
bit execution units and little or no SIMD support, i.e., the
mainstream ARM v6 family used in smartphones.

block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

100

140

180

220

260

300

128 256 512 1024 2048 4096 8192 16384 32768

106 MB/s

133 MB/s

172 MB/s

193 MB/s

26%

30%

70%

208 MB/s

120%

56%

239 MB/s

294 MB/s

23%

(n=128) for all

Table-based-5
Table-based-4
Table-based-3
Table-based-2
Table-based-1
Loop-based 
Table-based-0

Figure 7. Encoding performance of various schemes
for n=128 on GTX 280.

5.1.3. Pushing the Envelope: Further optimizations. Fur-
ther improvement of coding performance is possible through
a number of optimization schemes. First, for each byte by
word multiplication, we combine four tests of log_x ==
0xff in Fig. 5 into one because a single coefficient is mul-
tiplied into the 4-byte word. Second, the tests against 0xff
for individual bytes of each word can be converted to tests
against 0x00 by using a new log table such that a zero input
is mapped to 0x00 instead of the original 0xff. This leads
to significant performance increase because the tests against
zero can be automatically performed during a register load
without the need for extra compare instructions. As a result,
branching no longer happens as the compiler will use predi-
cated instructions leading to even lower instruction count. Of
course, the exp table also has to be adjusted to compensate
for the new log table. The results of these two schemes
are shown as Table-based-2 and Table-based-3
respectively in Fig. 7. Table-based-1 reflects our new
table-based scheme in Sec. 5.1.2, while Table-based-0
shows the original results before any optimization.

For our third optimization effort, we evaluate the per-
formance of texture memory for storing the exp table. We
basically run the same algorithm except that we access the
exp table resident in the texture memory (texture memory
accesses are cached). According to the Table-based-4
graph in Fig. 7, this leads to another 15% performance
improvement. Unfortunately there is very little public in-
formation on the structure of the texture cache (e.g., cache
line size and latency) and how concurrent accesses to texture
caches are resolved. This improvement is mainly due to the
locality of accesses to the exp table and also the smaller
number of instructions needed for address calculation in
texture memory accesses compared to shared memory’s
address calculation. Also, we suspect that the texture cache
controller can combine multiple pending requests to a cache
line even if initiated from different SMs (in GTX 280, every
three SMs use a shared texture cache).

In table-based GF-multiplication, each thread of a thread
warp accesses a different byte from the exp table, in general.
Except our last scheme, which used the texture memory,



block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c) n = 128
n = 256
n = 512
n = 1024 

0

60

120

180

240

300

128 256 512 1024 2048 4096 8192 16384 32768

36.6 MB/s

73.5 MB/s

146.9 MB/s

293.7 MB/s

Figure 8. Highly optimized encoding on GTX 280.

we store the exp table in the shared memory. The shared
memory has 16 banks, each with a 4-byte width, to serve
16 concurrent requests issued from threads of a half-warp
every two cycles. Because these accesses are to random
locations in the exp table, albeit with some locality, stalls
due to bank conflicts are common. In average, around 3
conflicts happen within each 16 parallel requests, which
need to be resolved through serially issued accesses. Our
fourth and final optimization effort attempts to eliminate
the bank conflicts by employing multiple copies of the
exp table, so each thread accesses its private copy of the
table. Ideally, we need 16 such exp tables which should
easily fit in the shared memory of 16 KB size. However,
banks are interleaved within the address space of the shared
memory, so mapping each thread’s access to its private exp
table requires a number of extra instructions for address
calculation. It turns out that this extra overhead defeats any
gain achieved by conflict-free access.

To alleviate address mapping for referencing the table, we
store each element as a word rather than a byte. However,
with word-length elements, we can only fit 8 copies of exp
tables in the share memory (each table has 512 elements).
Although this scheme can not fully eliminate bank conflicts,
it reduces the conflict probability significantly. Fitting eight
tables does not turn out to be easy as the shared memory is
also used for other essential tasks, e.g., passing parameters
to the GPU kernel. Also, we optimize address calculation to
minimize the number of instructions. The result, shown in
the Table-based-5 graph, improves our previous scheme
by another 23% up to 293.7 MB/s, which is is 2.2 times of
our loop-based scheme. Such an encoding rate can serve
more than 3050 peers, way up from 1385 peers, at the
streaming setting we discussed in Sec. 5.1.1. Our estimates
show that the encoding performance would be around 330
to 340 MB/s for a fully conflict-free deployment if the share
memory size was at least 32 KB.

Fig. 8 summarizes our best encoding performances across
various coding settings. Now even encoding at n = 1024
achieves rates in order of a few tens of MB/s. As a final
note, memory accesses of the encoding process are almost

perfectly hidden within the computations. A benchmark that
generates dummy input data (source blocks and coefficients)
on the fly, instead of accessing the graphics memory, per-
forms better by only 0.5%. This confirms that access to
the graphics memory has almost no negative effects in the
performance of our encoding algorithm.

5.2. Parallel Multi-Segment Decoding

As pointed out in Sec. 4.3, due to the lack of parallelism
in our decoding scenario, our GPU-based network decoding
had difficulty to scale up well and to fully take advantage of
the available GPU computing power. Coded blocks have to
be decoded one by one till a segment is fully decoded. Only
then the decoding of the next segment starts. However, this
is not the only application scenario to use network decoding.
Avalanche [3], which uses network coding in bulk content
distribution, gathers a large number of coded blocks over a
period of time and performs decoding offline. Even in peer-
to-peer VoD applications where the downstream bandwidth
varies significantly over time, a peer might receive multiple
video segments at the same time to take advantage of the
available bandwidth at the moment.

The degree of parallelism in the decoding process in-
creases linearly with the number of available segments, since
coded blocks from different segments can be processed in
parallel. Then we will have more coded blocks to work on,
i.e., more GPU threads to launch, leading to better masking
of memory latency and data dependency in GPU cores.

Let us revisit our task partitioning scheme in Fig. 3,
and assume that there exist coded blocks from 30 different
segments. Then an ideal solution will decode each segment
fully by a dedicated SM so there will be no longer the need
to duplicate the coefficient matrix C at every SM. Each
SM works on a full coded block matrix x. However, a new
problem arises as the original thread assignment scheme will
no longer work. We assigned one thread for the decoding of
every 4-byte column of the aggregate [C|x]. For example,
at (n = 128, k = 4096), 1056 thread was required, far
beyond the limits of a single thread block. Using multiple
thread blocks for a segment is not an option either, as
it will cause synchronization problems we discussed in
Sec. 4.2.2. Further, each thread would have to work on
multiple columns, leading to less efficient code and many
load and stores to memory.

As a solution, we propose to calculate C−1 first by doing
Gauss-Jordan elimination for the aggregate matrix [C|I].
Then a regular multiplication in Galois field, similar to the
encoding process of Eq. 1, will restore the original segment.
Although the GPU will not be fully used in the first stage of
such a decoding process (due to the small coefficients matrix
and the serial nature of row operations for matrix inversion),
it will be fully utilized in the multiplication stage because
of its high degree of parallelism.



block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

0

45

90

135

180

225

270

128 256 512 1024 2048 4096 8192 16384 32768

47%

GTX280-60Seg (n=128)
GTX280 (n=128)
GTX280 (n=256)
GTX280 (n=512)
Mac Pro (n=128)
Mac Pro (n=256)
Mac Pro (n=512)

32%

122 MB/s

46 MB/s

254 MB/s

First stage (C-1) 
portion of the 
decoding task

64%

48%

78%

65%

10%

6%

31%

19%

87%

19%

11%

78%

Figure 9. Parallel multi-segment decoding on GTX 280
and Mac Pro.

After implementing the new scheme in CUDA, we have
also developed a parallel segment decoding scheme for the
CPU. For our 8-core Mac Pro system, we operate on 8
segments in parallel at a time, with each segment being
processed by a CPU thread. The performance comparison
is given in Fig. 9. As it is clear from the graph, GTX
280 outperforms the Mac Pro for all configurations with
block sizes more than 256 bytes by a ratio between 1.3
and 5.3. By comparing Fig. 9 against Fig. 4, we notice
that GPU-based multi-segment decoding achieves far better
gains than the CPU-based multi-segment decoding when
they are compared against their single-segment results. At
(n = 128, k = 16384), for example, the GTX 280 gains by
a factor of 3.6, while the Mac Pro only gains by a factor
of 1.3. As a result, multi-segment decoding should be the
preferred scheme whenever the application scenario allows.

Another disadvantage of CPU-based decoding can be
observed when the block size increases. The Mac Pro’s
decoding bandwidth starts dropping at block sizes of 8 KB
for n = 512, at 16 KB for n = 256, and at 32 KB for
n = 128. This is due to the fact that the data set increases
substantially in the multi-segment scheme. The overall coded
blocks being decoded become so large (4 MB per segment
and 32 MB for the 8 active segments) that data accesses
become memory-bound (the total Level 2 cache of all 8
cores is 24 MB).

Finally, our GPU-based multi-segment decoding can ben-
efit from issuing more than one segment to each SM, i.e.,
operating on 60 segments instead of 30 in parallel. This is
due to the increased GPU utilization in the first stage of
decoding, i.e., calculation of C−1. By assigning two matrix
inversions from separate segments to each SM, now two
matrix inversions can proceed in parallel, improving the
GPU utilization in the first stage (utilization in the second
stage does not change much as forward multiplication is
already a highly parallel task). The result is shown by the
GTX280-60Seg-n128 graph in Fig. 9 for n = 128, which
clearly defeats the decoding performance of 30 segments,
by up to a factor of 1.4. The graph is annotated by the
first stage’s workload share in the overall decoding task.

It is obviously reduced compared to the 30-segment case,
reflecting better utilization (for example from 64% to 48%
at k = 1024). As the block size increases, the workload ratio
of the first stage decreases and the overall decoding rate gets
closer to its encoding counterpart.

At this point, GPU-based decoding defeats the Mac Pro’s
decoding bandwidth across the board by a factor of 1.3 to
4.2. The advantage over single-segment GPU-based decod-
ing in Fig. 6 is between a factor of 2.7 and 48.8. Higher
gains are achieved at smaller block sizes, where single-
segment GPU decoding did not perform very well. In more
practical block sizes, 1024 bytes and more, the decoding
gain is between 2.7 and 27.6.

5.3. Revisiting CPU-based Encoding
For generating encoded blocks on a multi-core system, our

CPU-based scheme in [5] and [6] partitioned the encoding
task of “each coded block” among different threads, one
thread per core, running in parallel. This ensured that a new
encoded block is generated as fast as possible to achieve
a maximum degree of parallelism at the coded block level.
However, in a streaming server that generates a large number
of encoded blocks for its downstream nodes (as in the GPU-
based encoding scheme described in Sec. 5.1.1), the goal is
to generate many coded blocks fast, buffer them and serve
the downstream from the buffer over a longer period. In
this case, each CPU’s thread can encode fully coded blocks
rather than partial blocks.

Fig. 10 compares the CPU-based encoding performance
of the new full-block encode scheme against the original
scheme, showing much better performance for small block
sizes, apparently due to better performance of the memory
prefetcher loading a longer sequence of data, i.e., full
blocks. However, both schemes essentially achieve the same
encoding rate as the block size grows. Of course, the new
scheme is the preferred one for a CPU-based streaming
server, as it achieves a more consistent encoding bandwidth
across a range of block sizes.

Note that the new partitioning scheme essentially has
the same overall computational complexity as the original
one. The difference is in the usage scenario and system
deployment. The original rationale behind partitioning the
encoding process of each block in [5] was: (1) a new coded
block should be generated as soon possible on demand;
and (2) better caching performance is to be achieved by
partitioning the data set among CPU cores. However, a more
powerful server like our 8-core Mac Pro enjoys a much
larger aggregate cache. In a streaming server deployment,
the coded blocks can be generated in advance and buffered.
This replaces on-demand generation in the original scheme
with on-demand delivery.

5.4. Miscellaneous Improvements
We now briefly review a number of miscellaneous issues

we explored to further improve the coding performance.



0

10

20

30

40

50

60

70

128 256 512 1024 2048 4096 8192 16384 32768
block size, k (bytes)

ba
nd

wi
dt

h 
(M

By
te

s/
se

c)

66.9 MB/s

33.6 MB/s

16.8 MB/s

FB Mac Pro(n=128)
FB Mac Pro(n=256)
FB Mac Pro(n=512)
Mac Pro (n=128)
Mac Pro (n=256)
Mac Pro (n=512)

FB: Full Block

Figure 10. Parallel CPU-based encoding: full-block
encoding vs. partitioned-block encoding.

5.4.1. Network encoding with both GPU and CPU. Due
to the high degree of parallelism in the network encoding
process, encoding can be employed by GPU and CPU
in parallel, achieving encoding rates in proximity to the
sum of the individual bandwidths on the GPU and the
CPU. However, the GTX 280 encoding rate is around 4.3
times that of a CPU-based solution on our 8-core Mac Pro
server. This suggests an extra GTX 280 GPU, priced around
US$300 at the time of this writing, leads to not only a much
cleaner solution relieving CPU from heavy computation, but
also a much better price/performance ratio.

5.4.2. Speeding up the decoding process with special-
ized instructions. As discussed in Sec. 4.2.2, the decoding
process requires a search for the first non-zero coefficient
of the current row. However, the search has to wait till
all GPU threads working on the current coefficient row
synchronize after some initial work [5]. The search process
can be accelerated if each thread reports its leading non-
zero coefficient through an atomic minimum operation,
atomicMin. GTX 280 is the first CUDA-enabled GPU
that allows atomicMin operate on its shared memory,
where we buffer the intermediate results. This optimization
improves the decoding performance by around 0.6%.

5.4.3. Aggressive caching for decoding. Our decoding
scheme aggressively caches various data structures on the
shared memory to reduce accesses to the GPU memory. A
more aggressive caching scheme would try to cache the
entire coefficient matrix, because elements of C are the
most frequent data referenced during the decoding process.
However, having only 16 KB of on-chip shared memory
per SM limits such scheme to coding configurations with
n = 128 and less. With a number of creative techniques,
we deployed full caching of the coefficients matrix beside
caching of other essential data structures. The results show
between 0.5% to 3.4% improvement in the decoding process.
The smaller block sizes, e.g., less than 1024, enjoy the
most substantial gain, since the processing of the coefficient
matrix consumes a larger share of their execution time.

6. Concluding Remarks
This paper presents the best implementation of random

network coding using GPUs reported in the literature. We
presented a highly optimized table-based encoding scheme
for the GPU that outperforms the loop-based algorithm on
the same GPU by a factor of 2.2 across the board. The
encoding advantage over a 8-core Mac Pro server is at
least a factor of 4.3. Our multi-segment decoding scheme
outperforms its 8-core Mac Pro counterpart by a factor
between 1.3 and 4.2, significantly closing the gap with the
encoding performance especially at large block sizes.

With a encoding rate of 294 MB/s at 128 blocks, more
than 3000 downstream peers can be served at a streaming
rate of 768 Kbps. Such a computation bandwidth can easily
saturate two Gigabit Ethernet interfaces, making the GPUs
the prime choice for streaming servers. With a much bet-
ter memory performance than CPUs, a rapidly increasing
number of cores, and much better performance/price ratio,
GPUs are able to bring high-performance network coding to
real-world applications.

References

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network
Information Flow,” IEEE Trans. on Info. Theory, July 2000.

[2] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,”
in Proc. of Allerton Conference on Communication, Control,
and Computing, October 2003.

[3] C. Gkantsidis and P. Rodriguez, “Network Coding for Large
Scale Content Distribution,” in Proc. of IEEE INFOCOM
2005, March 2005.

[4] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,”
in Proc. of ISIT 2003, June-July 2003.

[5] H. Shojania and B. Li, “Parallelized Network Coding With
Hardware Acceleration,” in Proc. of the 15th IEEE Interna-
tional Workshop on Quality of Service (IWQoS), 2007.

[6] H. Shojania, B. Li, and X. Wang, “Nuclei: Graphics-
accelerated Many-core Network Coding,” in Proc. of IEEE
INFOCOM 2009, August 2009.

[7] C. Gkantsidis, J. Miller, and P. Rodriguez, “Comprehensive
View of a Live Network Coding P2P System,” in ACM
Internet Measurement Conference (IMC 2006), 2006.

[8] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman, “Efficient Erasure Correcting Codes,” IEEE Trans.
Info. Theory, vol. 47, no. 2, pp. 569–584, February 2001.

[9] P. Maymounkov, N. Harvey, and D. Lun, “Methods for
Efficient Network Coding,” in Proc. of 44th Annual Allerton
Conference on Comm., Control, and Computing, Sep. 2006.

[10] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture,” in IEEE MICRO, March-April 2008, vol. 28.

[11] NVIDIA Corporation, NVIDIA CUDA: Programming Guide,
Version 2.0, July 2008.


