Tenor: Making Coding Practical
from Servers to Smartphones

Hassan Shojania, Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT

Ithas been theoretically shown that performing coding in networked
systems, including Reed-Solomon codes, fountain codes, and ran-
dom network coding, has a clear advantage with respect to sim-
plifying the design of protocols. These coding techniques can be
deployed on a wide range of networked nodes, from servers in the
“cloud” to smartphone devices. However, large-scale real-world de-
ployment of systems using coding is still rare, mainly due to the
computational complexity of coding algorithms. This is especially
a concern on both extremes: in high-bandwidth servers where cod-
ing may not be able to saturate the uplink bandwidth, and in smart-
phone devices where hardware limitations prevail.

In this paper, we present Tenor, a comprehensive toolkit to make
coding practical across a wide range of networked nodes, from servers
to smartphones. We strive to push the performance of our cross-
platform coding toolkit to the limits allowed by off-the-shelf hard-
ware. To show the practicality of the Tenor toolkit in real-world
network applications, it has been used to build coded on-demand
media streaming systems from a GPU-based server to up to 3000
emulated nodes, and to iPhone devices with actual playback.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-Communication

Networks— Distributed Systems
General Terms

Algorithms, Performance, Experimentation.

1. INTRODUCTION

It has been well recognized that innovative coding techniques,
such as fountain codes [8] and network coding [1], has the theoret-
ical potential to improve network performance. As examples, By-
ers et al. [2] have clearly illustrated the benefits of fountain codes
in bulk content distribution systems. Ho et al. [5] proposed ran-
dom network coding with random linear codes, in which a node
in a network topology transmits a linear combination of incoming
packets to its outgoing links. The coding coefficients in such a lin-
ear combination is chosen randomly over a finite field. Wu et al. 3]
and Ghantsidis et al. [4] have further shown that random network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’ 10, October 25-29, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

coding is beneficial in bulk content distribution systems. In gen-
eral, when coding is applied, the system benefits from its superior
resilience to node departures and packet losses. With network cod-
ing and fountain codes, multiple servers can simultaneously serve a
single receiver with a substantially simplified design of block recon-
ciliation protocols.

However, large-scale real-world deployment of systems and ap-
plications using any of the coding techniques is still rarely seen. We
believe that the main hurdle consists of the computational complex-
ity of the encoding and decoding processes, a price that has to be
paid to gain access to coding advantages. Theoretically, the high
computational complexity of random linear codes is well known,
and is used to motivate the application of more efficient codes, such
as traditional Reed-Solomon (RS) codes and, more recently, foun-
tain codes. While fountain codes are much less computationally in-
tensive as compared to random linear codes, they suffer from a num-
ber of drawbacks: (1) coded blocks cannot be recoded without com-
plete decoding, which defeats the original intent of network coding;
(2) depending on the code used, there exists an overhead (about 5%
with 10,000 blocks, and over 40% with 100 blocks), which decreases
the efficiency of using bandwidth; and (3) the decoding process can-
not be progressively performed while receiving coded blocks, which
may lead to bursty CPU usage when the final blocks are decoded.
Alternatively, while Reed-Solomon (RS) codes may also be used to
reduce coding complexity, its smaller coded message space makes
it difficult for multiple independent encoders to code a shared data
source, to be sent to a single receiver.

From the perspective of computational capabilities of off-the-shelf
hardware, we have recently witnessed a slew of state-of-the-art hard-
ware advances. Graphics Processing Units (GPUs) have evolved
to programmable general-purpose throughput computers. One
NVIDIA GTX 280, for example, attains a peak performance of 1080
GFLOPS. On the extreme of mobile smartphone devices, the ARM
Cortex-A8 core, being used in the iPhone 4, includes a full Single-
Instruction, Multiple-Data (SIMD) implementation called NEON.
Moore’s Law dictates that these examples will only become more ca-
pable in computational performance.

Have we reached an era when coding techniques can be performed
in networked systems and applications without serious concerns of
their computational complexities? To answer this question, we be-
lieve that the development of new systems and protocols with coding
should be motivated and promoted by a foolkit with coding imple-
mentations that take full advantage of a complete range of off-the-
shelf computing hardware. Components of this toolkit should not
be just reference implementations: instead, they should attain the
highest possible performance with hand-tuned assembly level opti-
mization, tailored to specific hardware platforms, such as GPUs and
smartphone devices.

In this paper, we describe Tenor, a comprehensive toolkit to make
coding practical across a wide range of hardware platforms. Tenor
supports random linear coding, fountain codes (LT codes), and Reed-
Solomon codes in CPUs (single-core and multi-core), GPUs (sin-
gle and multiple), and recent ARM-based mobile devices. Tenor is
cross-platform with support on Linux, Windows, Mac OS X, and
iPhone OS, and supports both 32-bit and 64-bit implementations.
Tenor can be readily used as a black box without any knowledge of
its implementation details.

In order to validate the effectiveness of the Tenor toolkit, we have
built a coding-based on-demand media streaming system with a
GPU-based 8-core Intel server, thousands of emulated clients, and a
small number of actual iPhone family devices. Our experiences with
this system, presented in this paper, offer an excellent illustration of
Tenor components in action, and their benefits in rapid system de-
velopment. With Tenor, it is trivial to switch from one coding tech-
nique to another, scale up to thousands of clients, and deliver actual
video to be played back even on the latest iPhone 3GS.

Throughout this project, which completes our efforts in a 3-year
period, we are convinced with our experiences that, with optimized
implementations in Tenor, off-the-shelf hardware is sufficiently so-
phisticated to bear the computational load of coding tasks. On high-
bandwidth servers, with the help of GPUs, we are able to saturate
two Gigabit Ethernet interfaces with coding performed in real time.
On mobile devices, the latest ARMvy architecture is sufficient to
support random linear coding with a realistic range of settings.

2. HARDWARE SUPPORT FOR CODING

In Tenor, we exploit the existing parallelism in each of the coding
techniques to take full advantage of different hardware platforms.
We first present a brief overview of the hardware features available
on each platform.

Modern off-the-shelf CPUs: In our target coding applications,
blocks of data from a few hundred bytes to several kilobytes of length
are combined together in tight loops. Naturally, processing longer
chunks of data at once, beyond the native width of the processor’s
Arithmetic Logic Units (ALU), can speed up the operation. SIMD
instruction sets offer substantial assistance in Tenor, as they allow
parallel operations to be performed on multiple data. As commod-
ity processors have migrated to multi-core architectures, our other
parallelization venue is to utilize multiple processing cores.

Graphics Processing Units: Modern GPUs have gradually evolved
from specialized engines operating on fixed pixels and vertex data
types, into programmable parallel processors with enormous com-
puting power [7]. NVIDIA’s Tesla is the most popular GPU archi-
tecture that enables high-performance parallel computing through
the CUDA programming model and development tools. The GPU
dedicates its die area to a higher number, albeit simpler, processing
cores. Hundreds of such cores result in a level of parallel comput-
ing power exceeding multi-core CPU-based systems. Further, with
wider and faster memory interfaces, the GPU has a much higher
memory bandwidth at its disposal than the CPU.

Mobile devices: ARM processors are the most widely deployed
processors for mobile devices. Among them, the ARMv6 archi-
tecture is used in a wide variety of mobile devices, including the
iPhone 3G, but only features a plain 32-bit ALU. Recently, however,
the ARMvy architecture, found in Cortex-A8 cores employed in de-
vices such as the iPhone 3GS or iPhone 4, have featured full SIMD
support and opened up new opportunities.

3. TENOR: MAKING CODING PRACTICAL

Tenor includes high-performance implementations of a number

of coding techniques: random linear codes (RLC), fountain (LT) codes,
and Reed-Solomon (RS) codes in CPUs (single and multi core(s) for
both x86 and IBM POWER families), GPUs (single and multiple),
and mobile/embedded devices based on ARMv6 and ARMvy archi-
tectures. Tenor is cross-platform with support on Linux, Windows,
Mac OS X, and iPhone OS, and supports both 32-bit and 64-bit plat-
forms, where applicable. The toolkit includes 23K lines of C++ code.

Tenor can be readily used as a black box without any knowledge
of its implementation details. By exposing simple interfaces, Tenor
allows seamless use of coding techniques in applications. An algo-
rithm just needs to be set up with coding parameters before it pro-
ceeds with encoding or decoding processes. The rest of the cod-
ing process is handled transparently by Tenor. This allows applica-
tions to experiment with different coding techniques with minimal
changes. In addition to our heavy use of hardware acceleration and
optimization of individual coding schemes, extra system-level mea-
sures have been taken in Tenor to improve performance.

In Tenor, we assume that the source content to be disseminated,
e.g., a video file, is divided to a series of segments. Each segment
b is divided into n source blocks b = [b,,b,,...,b,] T where each
block b; has k bytes, the block size. To encode a new coded block x;
of k bytes, a code C; = [cjl, Cizs**s cjn], consisting of # coefficients,
is chosen and employed to combine the source blocks “somehow”
into x;. The decoding process processes the coded blocks as they are
received from the network. The original source segment can be fully
rebuilt when a sufficient number of coded blocks, depending on the
actual coding technique, are successfully decoded. The process is
then repeated for later segments.

The number of blocks per segment n and the block size k are cod-
ing parameters that depend on the application, the properties of the
coding technique, the computing power of hardware, and network
resources. Most practical coding settings are supported by Tenor.
In particular, we target applications that require high coding rates
such as content distribution and multimedia streaming. For each
technique, a baseline reference implementation without accelera-
tion, and various high-performance versions are provided in Tenor.

Fig. 1 shows the common interface of all three coding techniques
in its most simplified form. The segment size 1, block size k, and
additional parameters specific to the coding technique are passed
to Tenor to configure the codec object. Additional parameters in-
clude the initial seed for the pseudo-random number generator, pa-
rameters of the Robust Soliton degree distribution for LT codes,
and number of threads to be used. The encode method accepts a
pointer to the original segment, a pointer to the destination of the
new coded block, and returns an identifier for the particular code C;
chosen for this coded block. The identifier can be a random seed for
RLC and LT, or a row identifier of the generator matrix for RS cod-
ing. Similarly, the decode method accepts a code identifier, along
with the coded block itself. It returns success when the whole seg-
ment is successfully decoded after receiving enough contributing
blocks. The reset method resets the internal states of the codec
to prepare it for coding a new segment. To facilitate various deploy-
ment scenarios, other variations of some methods exist as well.

We now present our detailed design for each coding technique.

3.1 Random Linear Network Coding

With random linear codes, a code C; is a set of randomly chosen
coding coefficients, each of one-byte length, in GF(2*) Galois Field.
For generating a coded block x;, C;j is employed through a linear
combination shown in Eq. 1. A node that receives # linearly inde-
pendent coded blocks x = [x,, x5, .., Xx] T can decode the original
segment successfully. It first forms a n x n coeflicient matrix C with
each row corresponding to the coefficients of one coded block. It

// configures the codec in Tenor

void configure (int n, int k, [other parameters]);
// generates a coded block

int encode (byte *source_seg, byte xcoded_blk);
// decodes a coded block

bool decode (int code_id, byte *coded_blk);

// resets the codec in Tenor

void reset ();

Figure 1: Tenor: the Application Programming Interface.

then recovers the original blocks b through Eq. 2. A random seed is
often used to identify each coefficient row. Through Gauss-Jordan
elimination, the decoding process can occur progressively as coded
blocks arrive.

xj:ZCji'bi (1)
b=C'x (2)

Similar to the traditional multiplication of large numbers, logarithm
and exponential tables have been widely used for fast GF multipli-
cation. Such table-based multiplication, however, requires multiple
accesses to the lookup tables, and constitutes the main performance
bottleneck in random network coding. To accelerate this costly op-
eration, In our previous work [9], the use of a loop-based approach
in Rijndael’s finite field has been explored. Although the basic loop-
based multiplication takes longer to perform, it lends itself better
to a parallel implementation by taking advantage of SIMD vector
instructions. On multi-core systems, multithreading further im-
proved the performance, up to linear speedup, by partitioning the
coding workload. In addition, our previous work [10] explored net-
work coding implementations based on a single GPU, with both
loop-based and table-based schemes. By taking advantage of hun-
dreds of GPU cores, coding rates up to 279 MB/s can be achieved at
a typical n = 128 setting, far beyond the computation bandwidth re-
quired to saturate a Gigabit Ethernet interface on streaming servers.

In Tenor, we first bring all implementations of random linear net-
work coding under the same roof through a common interface, and
then proceed to include the following new features in our repository
of RLC implementations.

3.1.1 Recoding

Recoding is a unique feature of RLC that differentiates it from
LT and RS codes. With recoding, a receiving node can generate a
new coded block from its received blocks even before the segment
is fully decoded. A recoded block is formed by linear combina-
tions of both the coefficient rows and data payloads of the received
blocks, even when they are partially decoded. A recoded block,
however, requires its full coefficient row be sent along with the data
payload, since a random seed can no longer represent the new code
C; of the recoded block. Our implementation of RLC now fully sup-
ports the recoding process. Further, the decoding process can now
decode any combination of incoming blocks in both forms: seed-
embedded messages directly received through the source node(s),
or coefficient-embedded messages received from the neighboring
peers. In Sec. 4.4, we will show how recoding helps a P2P live stream-
ing system to serve peers with coded content faster, such that they
can meet their playback deadlines.

3.1.2 GPU-based network coding on streaming servers

Thus far in the literature, experimental results on GPU-based net-
work coding have only reflected the raw asymptotic coding rates by
generating thousands of coded blocks at once, in scenarios that cod-
ing dominates the system overhead, such as the process of transfer-
ring data to and from the GPUs. In Tenor, we have gone the “extra

GeForce CPU

GTX 280

encoding streaming network

y 4 4
74)7

S——

System memory

/
/
Source /
(2) 1" |segment ,/

PCTe @, 1)
/

8 GB/s

-Iog(Segi)
ource video
segments

(in log domain)

ga
coded block seed coded block payload

Figure 2: Steps of VoD GPU-based encoding.

mile” to address unique challenges in practical live and Video-on-
Demand (VoD) streaming systems.

VoD streaming systems: In live video streaming systems with GPU-
based network coding, each source video segment is coded for many
clients, such that thousands of coded blocks can be generated si-
multaneously. In contrast, VoD streaming systems pose additional
challenges, due to the fact that clients request a diversely different
distribution of video streams in general. Although a VoD system
can employ network coding through offline encoding to generate
the coded blocks and store them on non-volatile storage, on-the-fly
encoding has a number of benefits. First, it provides “virtually un-
limited” number of coded blocks while a pre-stored network coded
content only stores a limited number of coded blocks for each source
segment. Second, an off-line system requires the extra pre-coding
step whenever new content is added to the VoD system. Third, the
pre-coding has to be performed separately for individual servers in
the system because replicating a single set of coded content to mul-
tiple servers will lead to linearly dependent, i.e., redundant, content.
Finally, limited disk access bandwidth in an off-line system can be a
major bottleneck.

In order to best describe on-the-fly GPU-based RLC encoding in
a VoD streaming server, we consider a (n = 128, k = 4096) configu-
ration, where ¢ = 128 coded blocks are to be generated for each client
at the GPU side and then delivered to the system memory. When
a client node requests ¢ coded blocks of a video segment from the
VoD server, the following steps, shown in Fig. 2, ensue: (1) loading
the source video segment from disk to the main memory; (2) trans-
ferring the entire segment, n x k bytes, to the GPU memory over
the PCle bus; (3) preprocessing the segment by transforming it to
the 1og domain [10]; (4) generating ¢ rows of random coeflicients;
(5) encoding the blocks to generate ¢ coded blocks; (6) retrieving the
coded blocks, with a total of ¢ x k bytes, from the GPU memory to
the system memory; (7) packetizing the coded blocks and streaming
them out to the client. If steps (2) through (6) are performed serially,
the overall encoding process slows down by 27% to 209 MB/s.

In Tenor, we have used a more recent feature of CUDA devices
that allows PCle bus transactions proceed in parallel, in both di-
rections, with GPU kernel executions. This effectively implies that
better performance can be gained by breaking each encoding task
to three stages and executing each in a “pipelined fashion” working
on three successive tasks in parallel. We use CUDA’s stream con-
struct to manage such concurrency, by assigning the pipeline stages
to streams, according to the following: Stream o performs step (2)
and (3) for the new task. Stream 1 performs steps (4) and (5) to gener-
ate coded blocks for a task that already has its source segment moved
into the GPU memory in the previous time slot. Stream 2 performs
step (6) to retrieve the coded blocks generated in the previous slot.

With such pipelined processing, the overall encoding rate is sub-
stantially improved to 262 MB/s, only 1% below the raw encoding

»
2
3

262 MB/s

B

)
w
3

@
I}
S 200 ¥ n=128
£ 1o O n=25
b} 133.9 MB/s % n=512
2 120 B3 —O— —- -0 n=1024
3
= P ~ 67.7 MBJs,
I v v
g 40 33.8 MB/s

0 block size, k (bytes)

1024 2048 4096 8192

Figure 3: GPU-based encoding performance with pipelined pro-
cessing in VoD streaming servers.

rate of 265 MB/s with ¢ = 128. Fig. 3 shows the encoding per-
formance for the VoD system of Fig. 2 across practical block sizes.
Pipelined processing manages to mask most overhead of a practical
VoD server deployment.

Live streaming systems: In a live video streaming setup, the num-
ber of generated coded blocks ¢ for a video segment is much higher
than the VoD case, since there are many more clients sharing a video
channel. The overhead of transferring source segments to the GPU
memory, as well as retrieving coded blocks back to the system mem-
ory, can be efficiently masked by using the same pipelined process-
ing in VoD systems. This implies that the effective encoding per-
formance will be still as high as raw encoding results with GPUs
[10]. As an example, serving 5 clients by encoding only ¢ = 600
blocks is sufficient to attain an effective coding rate of 278 MB/s at
the (n =128, k = 4096) setting.

3.1.3 Network coding with multiple GPUs

Because the encoding process in random network coding is a highly
parallel problem, in Tenor, we have included a custom-tailored im-
plementation to exploit extra GPU power from multiple GPUs con-
currently, in order to achieve even higher performance. Fig. 4 shows
the raw encoding performance for a system running a GTX 280 and
a GTX 260 in parallel. Since CUDA requires each GPU be managed
by separate CPU threads, we use separate threads for each GPU,
each managing a portion of the workload. As our GTX 260 GPU
achieves only 0.66 of the performance of GTX 280 encoding, due
to its lower number of GPU cores and lower frequency, this perfor-
mance difference is taken into account when the workload is parti-
tioned. The performance results effectively reflect the performance
of individual GPUs added together. Now even at difficult settings
such as n = 1024, an encoding rate of 58 MB/s can be achieved.

3.1.4 Network coding on the iPhone 3GS

With the absence of SIMD in the ARMv6 architecture in previous-
generation smartphone devices, we had to resort to a number of
fine-grained hand-tuning optimizations to achieve acceptable RLC
coding rates in our previous work [11]. In comparison, the iPhone
3GS and Palm Pre smartphones, released recently, have both used
a 600 MHz ARM Cortex-A8 as the application processor. These
ARMvy-based architectures have implemented the NEON SIMD
instruction set, which is similar to SSE2 and AltiVec with full sup-
port for 128-bit registers and 16 parallel byte operations.

With our first RLC implementation on the iPhone 3GS, we have
observed a coding performance improvement of around 3 to 3.9
times over the iPod Touch, utilizing the ARMv6 core without NEON
support. While it is encouraging, an inspection of the machine code
reveals that the compiler does not generate the most efficient code.
By hand-tuning portions of GF-multiplication through inline as-
sembly, our new implementation improves the performance by an-
other 46%, up to 5.7 times advantage over the iPod Touch, as shown
in Fig. 5. The coding rate drops when the working set increases be-
yond the 256 KB L2 cache. As the iPhone 3GS is running at 600

480 464 MB/s

\4 v v v
00 V/VM__-V_’T

0 ¥ n=128
o n=25

mMes o,

n= 1024

=
3

16 MB/s
<
58 MB/s

bandwidth (MB/s)
<@
©
o

o

block size, k (bytes)
128 256 512 1024 2048 4096 8192 16384 32768

Figure 4: Multi-GPU encoding with GTX 280 and GTX 260.

MHz, only 13% faster than the iPod Touch’s 533 MHz, such a per-
formance improvement is directly due to the addition of NEON in-
structions and the new L2 cache. Comparing the accelerated loop-
based coding to the legacy table-based implementation reveals a 3.5
to 6 advantage, consistent with our results on desktop CPUs [9].

We are pleasantly surprised by the performance of the ARM
Cortex-A8 architecture: with a single SIMD unit at 600 MHz, it
achieves nearly 1 MB/s at n = 128, while an Intel Xeon with three
SIMD units at 2.8 GHz, achieves 9.4 MB/s. Such high coding rates
open up new opportunities for coding-based streaming applications
on smartphone devices. Decoding a high quality video stream at 768
kbps will increase the CPU usage by no more than 5% and 10% for
n = 64 and n = 128, respectively.

3.2 LT Codes

To code a new coded block x;, the LT encoder randomly chooses
a degree d; from a degree distribution p(d). Then, d; blocks are
chosen from the n source blocks and combined together by xor-ing
them [8]. In practice, the overhead is around 5% of the original n
blocks when # is in the order of 10000. However, the overhead in-
creases as n decreases. As a result, LT codes are usually configured
with a higher » than RLC.

Fountain codes are rateless in the sense that the number of coded
blocks that can be generated from the source segment is potentially
unlimited, in sharp contrast to RS codes. The main advantage of LT
codes is their low complexity. Even with 7 as high as thousands of
blocks, only a few tens of blocks are xor-ed together, on average, for
each coded block, e.g., 17 at # = 10240 and 12 at n = 1024. In con-
trast, RLC requires # linear combinations in GF(2*). A robust soli-
ton degree distribution guarantees a sufficient number of degree-one
coded blocks, coded blocks with x; = b;, to “kickstart” the decoding
process.

3.2.1 LT codes on the CPU

Implementing the LT encoder is quite straightforward. A random
seed can be used to convey the selected code, which identifies the
code degree and the subsequent selected blocks. The decoder, how-
ever, is much more complex as the decoding process is performed
through maintaining a sparse graph.

First, the code associated with the received coded block is re-
trieved through the random seed, i.e., retrieving the degree and block
indices, and kept in a list associated with the coded block x;. If an
original block contributing to this coded block is already decoded
fully, we partially decode x; by removing its dependency on that
original block. Another category of lists tracks each original block
b; to quickly figure out which coded blocks it has contributed to.
Second, whenever an existing coded block is fully decoded, its as-
sociated original block is applied to all other coded blocks that de-
pend on it, so that their decoding can further progress. The lists
are heavily accessed to maintain and reduce the decoding graph. At
(n = 10240, k = 1024) as our benchmark, encoding and decoding
rates are 32.9 MB/s and 6.4 MB/s, respectively, with such baseline
implementation. Noting that block operations involved in both en-

2105 KB/s

2111 KB/s

1% " (2) Encoding o iPhone 3GS (n=64) >'® (b) Decoding
1,800 iPodTouch (n=64) 1,800
o iPhone 3GS (n=128)

1,500 iPodTouch (n=128) 1,500
@ 1,200 < iPhone 3GS (n=256) _ .,
o 1008 KB/s — iPodTouch (n=256) & 985 KB/s
< 900 < 900
: n/n/“/nq\n—n—n—n :
§ 600 - 475 KBls R . N . E 600 R—

W

0 block size, k (bytes) o

128 256 512 1024 2048 4096 8192 16384 32768

300 W

128 256 512 1024 2048 4096 8192 16384 32768

Figure 5: Random linear coding performance of the new iPhone 3GS versus the 2nd generation iPod Touch.

coding and decoding are equal, the performance difference is di-
rectly related to the maintenance of the decoding graph.

Our first step of acceleration uses SIMD instructions for block
operations, along with other code optimizations. This improves the
encoding and decoding rates to 165.5 MB/s and 9.3 MB/s, respec-
tively, which represents a substantial improvement over our base-
line encoding, but still a slow decoding process. In the second step,
suspecting that dynamic lists associated with the sparse graph slow
down the decoding process, we have resorted to coarsely allocated
tables to manage the graph through bit masks and arrays. These
tables have roughly 19 MB of memory footprint for the same n =
10240 setup and involve the search of a sequence of bits, accelerated
with specialized instructions. The performance improvement is dra-
matic, and results in a decoding rate of 144.1 MB/s, much closer to
the encoding performance.

Tailored to high performance coding servers, we implement a
multi-threaded encoding process by launching one thread per core.
Partitioning each coded block, however, brings little benefit, espe-
cially at smaller block sizes. The encoding rate of an 8-threaded im-
plementation increases only by 13% to 186.7 MB/s. Alternatively, the
performance can be improved further by fully coding each block in
one of the threads, increasing the rate to 447 MB/s, a speedup of 2.7.

In Fig. 6-(a), CPU-accel and CPU-th8 graphs respectively present
the accelerated and 8-threaded accelerated encoding rates across a
range of block sizes. As the block size k increases, the encoding rate
increases initially but then drops across the board. This decrease
occurs when the working set becomes too large to fit the 6 MB L2
cache available for each pair of cores in our system. The working set
is dominated by the segment size, n x k. In Fig. 6-(b), CPU-accel and
CPU-opt respectively present the accelerated and graph-optimized
decoding rates. The advantage of better graph maintenance is obvi-
ous, in particular, at smaller blocks.

3.2.2 LT codes on the GPU

An efficient port of LT codes to the GPU turns out to be challeng-
ing. GPU threads perform well when all threads of each thread block
follow exactly the same execution path. The randomness of the de-
gree distribution, however, causes the encoding of different blocks
to take highly variable times, degrading the overall performance.

For encoding, we have first designed a joint CPU-GPU scheme
that uses the CPU to generate the codes. In other words, CPU uses
the GPU as an accelerator for performing the block operations. How-
ever, this only achieves an encoding rate of 172.8 MB/s at our bench-
mark, a minor improvement over the CPU-based rate of 165.5 MB/s.
Roughly half of the coded blocks end up with a code degree of 2 but
some reach degrees as high as 9335. This leads to a huge imbalance
between the workload of the GPU cores, especially when a coded
block of a higher degree is processed towards the end of the encod-
ing task, leaving many other GPU cores idle. This imbalance can be
mitigated by “sorting,” such that GPU threads start with the more

time-consuming coded blocks, i.e., of higher degrees. This leads to
a significant speedup and increases the encoding rate to 590 MB/s.

In the next phase, we also migrate the code generation process
to the GPU. This involves non-intrusive modifications to make it
suitable for GPU-based coding. Multiple GPU kernels are called
sequentially to perform different stages of encoding. We omit a de-
tailed discussion for the sake of brevity. Among them, code gener-
ation is the most time-consuming part, taking 58% of the execution
time. The block operations and the sorting stages take 39% and 2%
of the execution time. Our fully GPU-based encoding now achieves
1697 MB/s at our (n = 10240,k = 1024) benchmark. Fig. 6-(a)
shows the encoding results with rates up to several GB/s.

For decoding, we implement a joint CPU-GPU scheme. The CPU
first decodes the code graph and generates a command stream to
instruct the GPU about how the received coded blocks should be
decoded. At small block sizes, the performance results are not too
interesting due to a lack of sufficient parallelism in block operations.
For k > 4096, as the parallelism increases, GPU-based decoding
starts to defeat the CPU as shown in the upper chart of Fig. 6-(b).

One particular benefit of GPU-based decoding can be observed
in content delivery over high-capacity links with large segment sizes.
With LT, almost all of the decoding computation load occurs to-
wards the very last leg, causing long period of full CPU usage, e.g.,
171 ms for a segment of 40 MB coded at (n=10240, k=4098). This,
if not properly addressed, can lead to undesirable side effects, e.g.,
the loss of incoming data over a lossy channel. Alternatively, GPU-
based decoding has a 29 ms CPU footprint, a 83% reduction.

3.2.3 LT codes on the iPhone 3GS

In the final phase of our optimized LT coding implementation in
Tenor, we implement LT-based encoding and decoding on the ARM
Cortex-A8 core, taking advantage of its NEON SIMD instructions
for block xor operations. The achieved results are shown in Fig. 6.
At n = 10240, we are not able to evaluate coding rates for k > 8192,
due to the limited 256 MB memory on the iPhone 3GS.

The low computation overhead of LT codes can be clearly ob-
served in this example. At a fixed segment size of 2 MB, one could
choose RLC at (n = 64,k = 32 KB) or LT codes at (n = 1024,k =
2 KB). At these settings, iPhone 3GS achieves a RLC decoding rate
of 1.8 MB/s, while LT achieves 31 MB/s, a 17 times advantage. Of
course, a 10% network overhead of LT codes at n = 1024, as well as
its lack of the recoding capability, can be prohibitive factors in some
setups.

3.3 Reed-Solomon Codes

Unlike the typical use of RS codes for error correction, our im-
plementations of RS codes are mainly aimed for the same stream-
ing and content distribution applications as RLC and LT codes. RS
codes, similar to RLC, generate coded blocks by linearly combin-
ing the source blocks in Galois Field. In RLC, the coefficient codes

7,000 (a) Encoding 7243 MB/s

5,600
—o—-GPU (n=1024)

4200 JUPEE “0-===0__GPU (n=10240)

2,800 2694 MB/s

1,400
Q
Q o
=
= 128 256 512 1024 2048 4096 8192 16384 32768
£5%0 531 MB/s -0 CPU-accel (n=1024)
'-g 440 -4~ CPU-accel (n=10240)
2 — iPhone 3GS (n=1024)
8330 iPhone 3GS (n=10240)

0 '212 I\ﬂB/s

..o “~0---g---o---0---0---0
1o B~

35 MB/s
25 MB/s

128 256 512 1024 2048 4096 8192 16384 32768

—— CPU-th8 (n=1024)
CPU-th8 (n=10240)

block size, k (bytes) 0

1676 MB/s

1700 (b) Decoding

1,360
—o— GPU (n=10240)
1020 . 5_GPU (n=1024)
—4— CPU-opt (n=10240)
CPU-opt (n=1024)

680
. 378 MBJs

R iy

w
X
=)

Q)

Q o

= 128 256 512 1024 2048 4096 8192 16384 32768

£270 3 CPU-accel (n=1024)

-g 26 -4+ CPU-accel (n=10240)

e —— iPhone 3GS (n=1024)

S iPhone 3GS (n=10240)
108 95 ME/S
. 16.4 MB/s ﬂ'

_.u---"'u 23.3 MB/s

128 256 512 1024 2048 4096 8192 16384 32768

Figure 6: Coding bandwidth of accelerated fountain (LT) codes on different platforms.

are randomly generated, but in RS codes, each C; is pre-determined
based on a structured generator matrix. With a source segment di-
vided into #n blocks, an RS code with a (m, n) setting can generate
up to m unique coded blocks. Our interface naturally includes a
set_generator method to pass a generator matrix to the codec.
The encode method returns a row index of the generator. At de-
coding, the index identifies Cj so the code matrix C is rebuilt after
receiving n coded blocks. After calculating C™*, the source segment
is recovered.

Any m x n matrix can be a valid generator matrix provided that
any n rows of it can form a full rank n x n matrix. There are well-
known generators that support a wide range of (m, n) settings. To
accommodate a general setup, our implementation in Tenor does
not make assumptions about any specific generator matrix, i.e., any
valid generator is supported. A drawback is that we can not take ad-
vantage of the structure to come up with more efficient calculations
of the inverse of the sub-generator matrix. For example, a direct
inverse of the Vandermonde matrix in [6] takes 4.51> operations
compared to #n* with Gaussian elimination. On the other hand, fast
computation of C™* does not improve performance much, because
it comprises a small fraction of the decoding process in our typical
settings, e.g., only 3.1% with (n = 128, k = 4096).

High performance implementations of RS coding in GF(2*) re-
quire only minor changes from our RLC implementation, also oper-
atingin GF(2%). Compared to RLC, the main advantage of RS codes
is the guaranteed decode-ability as all coded blocks are guaranteed
to be linearly independent. However, the structure constraints the
space of coded blocks, as compared to the very large code space in
RLC. For our target applications, especially when error resilience is
a concern (e.g., with lossy transmissions over UDP), a larger set of
codes are normally needed beyond the maximum 255 codes pro-
vided by GF(2*)-based RS codes. As a result, our main focus here
is to implement high performance RS coding in GF(2'®), which al-
lows the code space m to grow to as large as 2'® — 1. We use the
Vandermonde matrix as the generator in our benchmarks. Sparser
generators will result in higher performance.

3.3.1 RS codes on the CPU

Similar to RLC, GF multiplication is the bottleneck of the cod-
ing process in GF(2'°). A traditional table-based multiplication
in GF(2") requires a 1og table of 2'° and a exp table of 277 en-
tries, each taking two bytes. Unlike GF(2*) 1og/exp tables, these
tables are so large that easily overflows the L1 cache. With table-
based GF-multiplication in GF(2'®) doing even worse than GF(2*),
our accelerated implementation follows the same loop-based prin-

ciple of our RLC implementation, by performing a coefficient by
16-byte GF-multiplication in GF(2'®), where each coefficient is two
bytes. Our SIMD implementation now treats each 16-byte sequence
of data loaded in its 128-bit registers as 8 short integers. We ob-
serve a speedup of between 1.5 to 4 over our baseline implementa-
tion, which is more modest than the speedup of 3 to 6 observed in
the case of RLC [9]. This is obviously due to the fact that loops now
have up to 16 iterations instead of 8. A threaded implementation is
also provided.

The accelerated and threaded coding results are shown as CPU-
accel and CPU-th8 graphs in Fig. 7.

3.3.2 RS codes on the GPU

Because of the large size of 1og/exp tables, they can not fit in
the 16 KB shared memory available per Streaming Multiprocessor of
the GPU. As a result, an optimized table-based scheme as in [10]
is no longer possible. Instead, we follow the loop-based approach
but operate in GF(2'®). Since each GPU core has a 32-bit ALU, we
encode a word-length portion of a coded block by each GPU thread.
Each word is treated as two short integers in GF(2'°).

The encoding performance is shown in Fig. 7-(a). The GPU graphs
reflect consistent encoding performance across block sizes. It can
be observed that the GTX 280 defeats CPU based RS encoding by
a substantial margin. At small block sizes, however, the GPU-based
decoding performance, shown in Fig. 7-(b), is worse than the
threaded CPU-based implementation. This is due to the lack of par-
allelism as each coded block is decoded one by one, restricting the
number of parallel threads to be launched. Once the block size in-
creases, more threads can work in parallel, and the GPU starts to
outperform threaded CPU-based decoding.

3.3.3 RS codes on the iPhone 3GS

Our RS coding implementation in Tenor and its accelerated GF-
multiplication in GF(2'®) are similar to our CPU-based RS imple-
mentation, and employ NEON SIMD instructions instead. The en-
coding and decoding graphs are shown in the bottom charts of Fig. 7.
Without much surprise, the coding results reflect approximately half
of what have been achieved in random network coding with the
same number of blocks.

4. PERFORMANCE EVALUATION

Having Tenor and its high performance implementations of cod-
ing techniques at our disposal, we have developed coding-based VoD
and P2P applications in real-life setups that deliver and playback real
video. Our applications are deployed in a LAN with realistic setups,

70 (a) Encoding
67 MB/s

60

a
=)

—o- GPU (n=128)
--0- GPU (n=256)
50 —o— CPU-th8 (n=128)
CPU-th8 (n=256)

60 —(b) Decoding

48

36

3 34 MB/s —#— CPU-accel (n=128)
@ ;) 0--=0-"-0-"-0=""0-"-0=""0"""0""""0 CPU-accel (n=256) @ 27 MBls
% 28.7 MB/s % 24
5 o 14.4 MB/s 5 13 MB/s
H 10 % 12
©
g e TN R AKX " /\ 0y 3'8_5MB/S 5 4 MB/s
< 9 — <
128 256 512 1024 2048 4096 8192 16384 32768 128 256 512 1024 2048 4096 8192 16384 32768
1.1 1.1
1080 KB/s —~iPhone 3GS (n=64)
B - T R -l dal-Sv s Y PR - DEEE - JEEE - EEE -g-iPhone 3GS (n=128) 05 el eDe DR ees
G e p---o - T yfeyAT - ®--a---n

0

128 256 512 1024 2048 4096 8192 16384 32768

block size, k (bytes)

oB=="
1286 25 512 1024 2048 409 8192 16384 32768

Figure 7: Coding bandwidth of accelerated RS codes in GF(2'°) on different platforms.

and are pushed to their performance limits. Our goal is not to build
the most sophisticated protocols. For example, we use TCP-based
delivery in our LAN deployments rather than UDP. Instead, our fo-
cus is on the performance aspects of the system with the use of cod-
ing techniques.

4.1 An Emulation Framework That Scales

To push the performance of our GPU-based VoD server to its lim-
its, we wish to conduct a large-scale experiment with thousands of
clients emulated on a cluster of Linux-based compute nodes. To fa-
cilitate deployment of such large experiments, we have implemented
an emulation framework that is designed to scale to thousands of
clients in the server cluster. With our emulation framework, we are
able to emulate hundreds of clients on each physical compute node.
Our scalable emulation framework is designed to support multiple
connections with independent message queues, to run a large num-
ber of emulated clients at different ports of a physical node, to start
and stop clients at arbitrary times, and to maintain P2P network
topologies among clients. Separate threads are used for emulated
clients, so that they can run in parallel and behave independently.

To implement our emulation framework so that it is scalable to
thousands of clients in a cluster of only 20 compute nodes, we take
full advantage of the epo11 interface in Linux, specifically intended
for scalable networking with asynchronous I/O. As expected, epo11
turns out to be much more efficient than traditional synchronous
networking with the select system call. In addition, we have de-
veloped our emulation framework so that it is cross-platform, with
support for the kqueue interface in Mac OS X and iPhone OS as
well, which allows us to detect the status of sockets in a similar fash-
ion as epoll in Linux. As a result, our emulation framework in-
volves over 17 thousand lines of C++ code, and runs on Linux, Mac
0OS X, as well as iPhone OS.

4.2 Large-Scale VoD Streaming with Coding

Our setup for alarge-scale Video-On-Demand (VoD) client-server
experiment, which incorporates coding as a part of its streaming
protocol, is shown in Fig. 8. The server node is a Mac Pro (running
Linux on two Quad-core 2.8 GHz Xeon processors, 8 GB of mem-
ory, two Gigabit Ethernet interfaces, and a GTX 280 GPU with 1 GB
of graphics memory), connected to a 20-node server cluster — each
running Linux on a Quad-core 3.0 GHz Xeon processor — through
a Gigabit Ethernet switch.

In the server, we employ our highly efficient GPU-based cod-
ing schemes, which were specifically designed for streaming servers,
such that coding rates very close to the raw rates that can be achieved
despite thousands of unique clients served in a VoD application. On
clients, we employ accelerated CPU-based coding implementations

in the decoding process, using our emulation framework to emulate
up to hundreds of clients on each physical compute node.

This VoD setup resembles a YouTube streaming server with clients
requesting different video contents and the server providing them
over TCP. However, the content is transmitted in coded form, i.e.,
coded blocks generated from video segments of each content. The
clients rebuild each segment of the content by decoding the received
coded blocks. When a segment is fully decoded, it will be sent to the
higher layer video decoder (e.g., H.264) for presentation. The pre-
sentation step is skipped for our emulated clients.

An important benefit of coding is that multiple servers can simul-
taneously serve a receiver with simplified reconciliation protocols.
To put the coding capability to good use, we use two servers, em-
ulated as two server applications on our physical server, that seam-
lessly serve each client. As our GPU-based encoding schemes can
generate coded content far beyond the capacity of a Gigabit network
interface, we use both Gigabit network interfaces that are available
on our server.

We use a single disk with a simple setup. Because optimizing disk
read access is not our primary objective, we do not wish the disk-to-
memory load when serving video content to affect the performance
of our experiments. As a result, we cap the number of unique videos
in our experiments to 200. Each client, up to 3000 in our experi-
ments, selects one of the 200 videos at random. At a streaming rate
of 96 KB/s, this leads to a disk-to-memory transfer rate of about 20
MB/s with the rest of the reads served from the disk cache (SATA
disks typically have a raw I/O rate of 30 to 70 MB/s).

4.2.1 The streaming protocol

When a client starts, it requests a video from both servers. We
use two server applications, both running on our physical server,
and each listening to a different port of the bonded interface, i.e.,
the logical aggregate of both interfaces. This effectively emulates a
YouTube-like scenario, with one server emulating multiple servers.
In an Internet deployment, each server can be placed at a different
geographic location. As a server’s link bandwidth varies over time,
e.g., due to an increased load or a network bottleneck, other servers

Fermdon [DEDE
i DEDE
[— - p—
Server — _“
Gigabit * 20 nodes cluster
switch : (Linux-based)

Figure 8: Large-scale Video-on-Demand (VoD) experiments
with a server cluster.

i i I r [
 Server app i Cluster node, | Clusternode,
: A emulated clienty || emulated clientg_, |
' streaming file ! fwhite () =l i e () =
! algorithm serveerSeg 1 /Y| progess X; H /1 progess X; 1
] :
! 1 117/] if decoded 13 |} if decoded]
| {»c\ient req. 1 sgnd ack. o send ack.| |
i A -seg. ack. i — L]
) |/ 1 i [i
i coded |1 em'élated clienty.; 1! !
A block < ! = !
i 1 i il white () nor) | |
1 1 11| progess x;]
e = ' 1)l decoded |
(\[Emylation framework ¥ 1 WL dend dek !
! nétwork thread epoll thread b . —]
i . 1 1 I i
i AN lwhite () 1 1 " i
H while () AN track socket events |1/ | ')ie |
! handle network 1/0 ! b ¥ !
]

i 1 o i

I U I

Figure 9: A coded VoD streaming server with its emulated clients.

can make up for it. In contrast, with coding, the need of reconcil-
ing missing blocks becomes unnecessary, simplifying the design of
the streaming protocol on servers. As coding removes the unique-
ness of individual blocks, any coded block, regardless of its origin,
contributes equally to the decoding process. Receiving a sufficient
number of coded blocks suffices to recover an original segment.

After an initial handshake between a client and the servers, the
servers push the coded blocks, generated from each video segment,
to the client. The server applications manage their clients through
various thread queues. After the initial request from a client for the
first segment of a video, it is queued to a dedicated thread, file server.
After the segment is loaded to the main memory, the thread will
be delegated to Tenor’s encoding server, which performs GPU-based
encoding of the loaded segment. The encoding process is executed
in several stages in a pipeline fashion described in Sec. 3.1.2.

After coded blocks are retrieved from the GPU, they are buffered
in the system memory and gradually pushed to the client accord-
ing to our streaming protocol. As the streaming process for a client
reaches a certain threshold in the active segment, the server gener-
ates a new request for loading from the disk, and subsequently per-
forms GPU-based encoding on the following video segment. To en-
sure smooth transition to the next segment, coded blocks are double-
buffered in the system memory: one buffer for the current segment
which is currently being streamed, and another buffer for receiving
coded blocks in the future segment from the GPU. The streaming al-
gorithm, both on the server and client sides, relies on our emulation
framework for its messaging subsystem and the low-level network
operations. Fig. 9 depicts a very high-level view of the components
of a server application connecting to a few cluster nodes, each em-
ulating a few clients.

Each coded block is sent within a message that also carries a small
header, of 16 bytes, to identify the segment, the server, and the code,
i.e., a random seed, associated with the coded block. At the clients,
coded blocks are decoded progressively as they arrive. After each
segment is successfully decoded by the client, an acknowledgment
message is sent to both servers so that they can move on to the fol-
lowing segment. We use segments of 512 KB in length, which corre-
sponds to 5.33 seconds of media at a streaming rate of 96 KB/s. The
segment size implies that the initial buffering delay is 5.33 seconds
(one segment in length).

We use two different coding techniques in our experiments, so
that their performance may be compared.

First, we use random linear network coding with a setting of (n =
128, k = 4096). At such a setting, a single GTX 280 GPU is able to
serve at 261 MB/s in an actual VoD setup, sufficient for over 2600
clients, each at a 96 KB/s streaming rate. In the GPU encoder, we
generate a slightly higher number of coded blocks for each segment
— 130 rather than 128 blocks — to accommodate the rare case thata
client needs additional blocks after encountering a linear dependent

20 22 segments 1.8 Gbls 1.9 Gb/s
7

n

% Link rate (Gb/s)
— Avg.segments - network coding
— Avg. segments - fountain codes

Server link rate (Gb/s)
>

°
o
Avg. received segments

Experiment size
0

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Figure 10: Aggregate link rates from two Gigabit interfaces, and
the average number of delivered segments to each client.

block. Aslongas a total of 128 linearly independent coded blocks are
received from both servers combined, a segment can be successfully
decoded. Each client uses the SSE2-accelerated RLC codec provided
by Tenor. On each physical compute node, the computational load
of the decoding process is manageable for a few hundred of clients.

Second, we use LT codes in our servers to serve VoD clients. Even
though LT codes enjoy lower computational complexity as com-
pared to RLC, it incurs additional network overhead, which amounts
to 17% at n = 1024. One needs to use a larger number of blocks in
each segment to decrease such overhead, e.g., n = 4096 lowers the
overhead to 9%, and n = 10240 to 5%. However, a larger n is not
suitable for a 512 KB segment: at (n = 1024, k = 512), a block size
of 512 bytes will incur a 56-byte header, including both message and
TCP/IP headers. This is why LT codes are more suitable for distri-
bution of large files, rather than streaming video with much smaller
segments. On the other hand, a large LT codes space is not needed
for our experiment because we do not have loss of coded blocks, and
we have limited number of servers. In our experimental scenario, we
have managed to incur a reasonable amount of overhead of 11.7% by
going with fixed LT codes in the (n = 128,k = 4096) setting, the
same as RLC so that fair comparisons can be made.

4.2.2 Experimental results

We have performed a number of VoD streaming experiments with
both RLC and LT codes. In our experiments, we vary the number
of clients in the system from 200 to 3000, i.e., emulating 10 to 150
clients on each of the 20 compute nodes in our server cluster, and
evaluate the streaming performance. In each experiment, all clients
start their streaming sessions within a 5-second interval. Each ses-
sion lasts 120 seconds.

We first wish to investigate the aggregate link rate from both servers
serving emulated clients over the bonded network interface, across
different experiment sizes. Since both coding techniques operate
at the same setting, their link rates are very close, and only one is
shown in Fig. 10. However, the average number of fully decoded
segments varies between the coding techniques as shown in Fig. 10.
With RLC, each client’s 96 KB/s streaming rate is fully utilized and
all clients receive 120/5.33 = 22.5 worth of segments streamed to
them, and manage to fully decode 22 segments. Of course, this is
the case as long as the link capacity from the server is not satu-
rated. When the experiment size grows beyond 2200 clients, the
total number of coded blocks sent from the server can not increase
beyond the 2 Gb/s link capacity of two Gigabit Ethernet interfaces
combined. As the number of clients increases, the total number of
delivered segments stays around the same (around 51200 for RLC),
and the average number per client decreases. At a peak aggregate
link rate of nearly 1.9 Gbps, we are quite close to the 2 Gbps link
capacity. Because both servers share the same link, each provides
approximately half of each client’s streaming rate. The GPU never

reaches its encoding limits as the link capacity is saturated by stream-
ing to over 2200 clients.

In contrast, when LT codes are used in the servers, the average
number of fully decoded segments is only 20 at best, rather than
22.5. This reduction is a direct consequence of the network over-
head, as 11.7% more coded blocks than the ideal n = 128 are required
to decode each segment. As a result, the streaming rate of 96 KB/s
effectively delivers no more than 85.7 KB/s worth of video streams
with LT codes. With RLC, however, the entire 96 KB/s streaming
rate is almost perfectly utilized. To be exact, linear dependent blocks
only scarcely occur in RLC, leading to very little overhead: no more
than 0.0033% of the received coded blocks are linearly dependent.

Fig. 11-(a) shows the main advantage of LT codes compared to
random network coding, with respect to the average CPU usage in
compute nodes that emulate the clients. As the number of emulated
clients increases with larger experiments, the CPU usage (domi-
nated by the decoding load) increases almost linearly. This contin-
ues till it saturates beyond the 2200-client experiment, as the ag-
gregate link rate from the servers has become the bottleneck. LT
codes have shown a 6-times advantage compared to random linear
codes. Such a clear advantage could be a critical factor when coding
techniques are being chosen, especially in embedded systems with
low-end processors used.

Fig. 11-(b) reflect the percentage of redundant blocks received by
the clients. Redundant blocks involve the on-the-fly coded blocks
that belong to the previous segment, yet received after the segment
is successful decoded. They essentially waste network bandwidth,
so we wish to keep them low. The number of redundant blocks in-
creases from the 2200-client experiment, as the saturation of line
capacity leads to delayed delivery of acknowledgments from clients
to servers. In normal experiments without saturating server capaci-
ties, however, the number of redundant blocks is virtually zero. This
is due to two factors. First, Tenor supports a “fast decoding mode” in
its decoding implementations, such that an acknowledgment can be
sent to servers before the payload of the last block is decoded. Sec-
ond, the very low link delay between our server and compute nodes
— typically only a few milliseconds — has contributed to timely
acknowledgments in normal circumstances when server capacities
have not yet been reached.

4.3 On-Demand Streaming to Smartphones

In our next set of experiments, we use an iPhone 3GS smartphone
in a similar setup as Sec. 4.2.1. In the same VoD setup as Fig. 8, we
add a wireless router to the LAN. Now our iPhone 3GS, like other
clients, initiates a streaming session with both server applications,
but through a WiFi connection. The streaming session runs for 120
seconds at 96 KB/s. We proceed with experiments using both ran-
dom linear codes and LT codes. Our focus is on the performance of
using Tenor to perform coding on the iPhone 3GS smartphone.

VoD streaming to the iPhone 3GS using RLC. We use random
linear codes in the (n = 128, k = 4096) setting as before, and have
observed that 21 segments have been successfully decoded by the
iPhone 3GS device, rather than 22 segments received by other clients,
running on compute nodes in the server cluster. With the iPhone
3GS, the average inter-segment arrival is 5.53 sec compared to the
ideal 5.33 sec. Further investigations have shown that this pheno-
menon is due to longer latencies for acknowledgments to travel over
a wireless link from the iPhone 3GS device, as compared to over the
Gigabit Ethernet from typical emulated clients in the server cluster.
Delayed acknowledgments have delayed the servers when they need
to move on to the next segment. When an acknowledgment is being
transmitted back to the servers, a few extra coded blocks will be sent
by servers and discarded later.

— Network coding
== LT codes

Redundant

blocks (%)

o = =N
>

60 = Network coding sel%

LT codes

&
&

@

Cluster node
CPU usage (%)
8

15

Experiment

Size
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

o

Figure 11: CPU usage and redundant blocks.

One way to overcome longer wireless latencies in our setup is
to assume implicit acknowledgments, instead of explicit ones, when
a server has sent its share of coded blocks. The client now sends
negative acknowledgments (NACKSs) to the server when it discov-
ers a linearly dependent block, or when it observes that a server is
falling behind its expected share of the streaming rate, e.g., due to
the saturation of server link capacities. Not surprisingly, the NACK-
based scheme compensates for longer wireless latencies and all 22
segments are successfully received at the iPhone 3GS.

The overall CPU usage in the iPhone 3GS is around 16%. About
10% of this is due to network coding, owing to our optimized imple-
mentation of RLC in Tenor, and the remainder is due to our stream-
ing protocol.

VoD streaming to the iPhone 3GS using LT codes. As we observed
in our previous experiments in Sec. 4.2.2 using LT codes to stream
videos to emulated clients in the server cluster, our fixed LT codes
incur a network overhead of around 11.7% for n = 128. This results in
the delivery of only 19 segments to the iPhone 3GS. The LT overhead
can be compensated by increasing the streaming rate to 108 KB/s so
the full 22 segments are received, i.e., a network streaming rate of
108 KB/s effectively delivers 96 KB/s worth of video content with LT
codes.

On the more positive side, the advantage of LT codes becomes
obvious when we monitor its CPU usage on the iPhone 3GS: it is
only 7%, and is significantly lower than the 16% usage with random
linear codes. Less than 1% of this CPU usage is due to LT decoding,
and the remainder due to our protocol.

Streaming video playback on the iPhone 3GS. As we receive and
decode video segments, it is natural to expect that the video stream
be played back on the device. We have implemented streaming video
playback on different platforms. By running a local lightweight
HTTP server within our client application, we are able to feed a
video stream from the client to a standard media player, such as
the QuickTime player, by using its HTTP progressive download and
playback feature. The Quicktime media player will read the video
stream from the local lightweight HTTP server on the same de-
vice, while the client process receives coded streams from the VoD
servers. Similar playback scheme, albeit some modifications, is also
deployed on the iPhone platform.

In our next experiment with random network coding at (n =
128,k = 4096), the VoD servers stream real video clips encoded
with H.264 at 768 kbps (96 KB/s). The CPU usage with playback is
around 34% on the iPhone 3GS. Half (17%) of the CPU usage is due
to the mediaserverd process, which handles video decoding and
playback, and the remainder to our client application.

4.4 P2P Live Streaming with Coding

Peer-to-peer (P2P) applications are able to benefit from coding
even more than client-server systems. In a P2P system, each peer
may be served by multiple peers, but peers are free to join and leave
the system. As a result, traditional block reconciliation schemes

iPhone o
6s e 1
X &
"' 5 4 "‘ iPhone
N 3G
v
. o 3ol
S
- - § stream at R/2 iPodTouch
physical connection jMac = 2nd Gen.

Figure 12: Live P2P streaming with random network coding.

among peers using explicit exchanges of availability bitmaps may
be too cumbersome to deliver media segments in a timely fashion.

We are now ready to extend our client-server experiments to a
peer-to-peer scenario, with each peer potentially serving others. To
maximize contributions from peers rather than servers, our exper-
iments are conducted with a P2P live streaming application, rather
than Video-on-Demand streaming, so that all peers consume the
same video stream. The servers send a video stream to a number of
peers, who may further relay them to their neighbors. In our up-
coming experiment, we use a few nodes in static topologies mainly
to investigate the performance of our least capable nodes, i.e., our
iPhone family devices, in a peer-to-peer scenario. The P2P scenario
is more taxing to smartphone devices, as a peer can now serve other
peers, leading to a higher computational load when coding is per-
formed.

In live streaming, all peers progress with the same pace playing
back a video stream. A peer is able to serve its neighbors even be-
fore fully decoding the segment. However, due to the mesh topology
of P2P systems, replicating the incoming coded blocks to the neigh-
bors will lead to downstream peers receiving multiple copies of the
blocks from different paths. Instead, a peer recodes its existing coded
blocks in the segment. Recoding, a unique feature of random linear
network coding, is used by our following experiments.

In our first experiment, we use the simple topology shown in the
shaded area of Fig. 12, involving two peers, an iMac and an iPhone
3GS. Two servers are deployed in a similar setup as our earlier VoD
experiments, but both servers stream the same file to emulate a live
stream. Each server streams at half of the streaming bit rate, R/2.
Each peer receives the rest of the content through the other peer,
so that it effectively decodes a full stream at rate R and recodes at a
rate of R/2. Both the iPhone 3GS and the iMac use the NEON/SSE2
accelerated recoding implementation in Tenor. In a RLC setting of
(n =128,k = 4096), a 120-second streaming experiment can suc-
cessfully deliver the expected 22 segments to each peer. The benefit
of P2P can be observed by noting that servers now only stream at
an aggregate rate of R, instead of 2R without P2P. The CPU usage
on the iPhone 3GS increases to 23% from 17% in the VoD experi-
ment, which is due to the extra recoding load of R/2. Each peer
receives coded blocks from a server and a peer. The blocks origi-
nating from servers identify their C; through a random seed, while
recoded blocks coming from the peers carry all 128 coefficients.

In our second experiment, we have added an iPod Touch and
iPhone 3G to our P2P topology, as shown in Fig. 12. As both use
the older ARM1176 processor without NEON support, they are not
powerful enough to serve other peers, in addition to decoding and
video playback. We have no choice but to deploy them as sink nodes
in the topology.

The iMac and iPhone 3GS nodes in the P2P setup of Fig. 12 now
serve three downstream peers with recoded blocks, effectively de-
coding at R and recoding at 3- R/2. Table 1 summarizes the number
of successfully decoded segments along with the CPU usage of our
client application running on each peer, excluding the usage due to

Table 1: P2P experimental results.

down- | (n =64,k =8KB) (n =128,k = 4KB)
Peer streams | CPU usage Segments | CPU usage Segments
iMac 3 2.5% 22 4% 22
iPhone 3GS 3 20% 22 32% 22
iPod Touch o 38% 22 73% 22
iPhone 3G o 47% 22 100% 20

playback which adds another 12% to 17%. (n = 128, k = 4096) is too
demanding for our least capable node, the iPhone 3G, such that it
falls behind decoding its queued coded blocks and its playback runs
into frequent pauses. As shown in the table, all devices have suffi-
cient CPU power for a RLC setting of (1 = 64, k = 8192). Obviously,
both a desktop computer, such as the iMac, and a recent handheld
device, such as the iPhone 3GS, are in a good position to serve even
more peers, while the older iPod Touch and iPhone 3G are better
used to consume video streams, without serving others. Overall,
we can conclude that with Tenor, P2P systems with coding support
can be realistically deployed even on today’s smartphone devices, al-
though the computational capability of current-generation devices
has to be considered when peer-to-peer topologies are formed.

S. CONCLUSION

This paper presents Tenor, a turn-key solution that includes highly
optimized and accelerated designs and implementations of random
network coding, Reed-Solomon codes, and LT codes, across a wide
range of hardware and operating system platforms. To evaluate Tenor,
we have implemented both client/server and peer-to-peer streaming
applications, involving two virtual servers using two Gigabit Ether-
net interfaces in one physical server node, thousands of emulated
clients in a 20-node server cluster, as well as actual smartphone de-
vices. Our experiments have offered excellent illustrations of Tenor
components in action. We are convinced that Tenor makes it fea-
sible to rapidly develop practical systems using coding techniques
that Tenor supports, in both wireless networks and the Internet.

6. REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network
Information Flow. IEEE Trans. on Info. Theory, July 2000.

[2] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost.
Informed Content Delivery Across Adaptive Overlay
Networks. In Proc. of ACM SIGCOMM, 2002.

[3] P.Chou, Y. Wu, and K. Jain. Practical Network Coding. In
Proc. of Allerton Conf. on Comm., Control, and Comp., 2003.

[4] C.Gkantsidis and P. Rodriguez. Network Coding for Large
Scale Content Distribution. In IEEE INFOCOM, 2005.

[5] T.Ho, R. Koetter, M. Medard, D. Karger, and M. Effros. The
Benefits of Coding over Routing in a Randomized Setting. In
Proc. of ISIT 2003, June-July 2003.

[6] J.Li. The Efficient Implementation of Reed-Solomon High
Rate Erasure Resilient Codes. In Proc. of IEEE ICASSP, 2005.

[7] Lindholm et al. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. In IEEE MICRO, March-April 2008.

[8] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman. Efficient Erasure Correcting Codes. IEEE Trans.
Info. Theory, 47(2):569-584, February 2001.

[9] H. Shojania and B. Li. Parallelized Network Coding With
Hardware Acceleration. In Proc. of IWQoS, 2007.

[10] H. Shojania and B. Li. Pushing the Envelope: Extreme
Network Coding on the GPU. In Proc. of IEEE ICDCS, 2009.

[11] H. Shojania and B. Li. Random Network Coding on the

iPhone: Fact or Fiction? In Proc. of ACM NOSSDAYV, 2009.

