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Abstract—This paper investigates low-latency streaming codes
for a three-node relay network. The source transmits a sequence
of messages (streaming messages) to the destination through the
relay between them, where the first-hop channel from the source
to the relay and the second-hop channel from the relay to the
destination are subject to packet erasures. Every source message
generated at a time slot must be recovered perfectly at the
destination within the subsequent T time slots. In any sliding
window of T + 1 time slots, we assume no more than N1 and
N2 erasures are introduced by the first-hop channel and second-
hop channel respectively. We fully characterize the maximum
achievable rate in terms of T , N1 and N2. The achievability is
proved by using a symbol-wise decode-forward strategy where
the source symbols within the same message are decoded by the
relay with different delays. The converse is proved by analyzing
the maximum achievable rate for each channel when the erasures
in the other channel are consecutive (bursty). In addition, we
show that traditional message-wise decode-forward strategies,
which require the source symbols within the same message to
be decoded by the relay with the same delay, are sub-optimal in
general.

Index Terms—Forward error correction, maximum achievable
rate, message-wise decode-forward, packet erasures, streaming,
symbol-wise decode-forward, three-node relay network.

I. INTRODUCTION

REAL-time video streaming is an essential component
for many ultra-reliable and low-latency applications

over the Internet including high-definition video conferenc-
ing, augmented/virtual reality, and online gaming. Service
providers for real-time video streaming are typically hosted in
a public cloud, with multiple server instances running within
geographically distributed data centers. Providers of public
cloud content delivery service include Google Cloud, Amazon
CloudFront and Microsoft Azure, who have their own cloud
content delivery networks (CDNs) to support high-throughput
and low-latency communications. It was recently forecasted
by Cisco [1] that 77 percent of all Internet video traffic will
cross CDNs by 2021, up from 67 percent in 2016.
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We consider the network model as illustrated in Figure 1.
Typically, the data centers belonging to the same cloud are
distributed across the continents, and there may not exist
a direct link between two data centers which are far away
from each other. For example, there is no direct link between
Europe and Australia due to the absence of a direct optical
fiber connection. Consider a simple relaying scenario within a
cloud where a data center transmits streaming messages to
another data center through an intermediate data center or
other network node [2]. The simple relaying scenario can
be modeled as a source transmitting streaming messages to
a destination over a three-node relay network with no direct
link between the source node and the destination node, which
is illustrated in Figure 1. In this paper, we focus on the three-
node relay network model and investigate the performance of
streaming codes over the three-node network.

There are two main approaches for implementing error
control over the Internet at the data link layer and the transport
layer: Automatic repeat request (ARQ) and forward error cor-
rection (FEC). Both ARQ and FEC can alleviate the damages
of packet losses that may be caused by unreliable wireless
links or congestion at network bottlenecks. However, ARQ
schemes implemented at the transport layer are not suitable for
real-time streaming applications that involve arbitrary global
users because each retransmission may incur an extra round-
trip delay which may be intolerable. Specifically, correcting an
erasure using ARQ results in a 3-way delay (forward + back-
ward + forward), and this aggregate (3-way) delay including
transmission, propagation and processing delays is required
to be lower than 150 ms for interactive applications such
as voice and video according to the International Telecom-
munication Union [3,4]. Furthermore, other applications such
as interactive gaming (and multi-user interactive scenarios)
require even lower latencies. As an example, this aggregate
delay makes ARQ impractical for communication between two
distant global users with aggregate delay larger than 150 ms
(even if the signals travel at the speed of light, the minimum
possible aggregate delay between two diametrically opposite
points on the earth’s circumference is at least 200 ms [5]).

On the contrary, FEC schemes are amenable to low-latency
communications among global users because no retransmis-
sion is required. Instead of using retransmissions to achieve
high reliability, FEC schemes increase the correlation among
the transmitted symbols by adding redundant information.
Then, any erased packet may be reconstructed by the re-
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Fig. 1: A three-node relay network.
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Fig. 2: Symbols generated by a streaming code at time i.

dundant information in the subsequent surviving packets.
Therefore, we investigate only FEC schemes for the three-
node relay network in quest of the highest coding rate.

A. Related Work

This paper investigates transport-layer FEC schemes for
interactive low-latency communication. Low-density parity-
check (LDPC) and digital fountain codes [6,7] are two tradi-
tional FEC schemes that are currently used in the DVB-S2 [8]
and DVB-IPTV [9] standards for non-interactive streaming
applications. These codes operate over long block lengths,
typically a few thousand symbols, and are thus suitable for
applications in which the delay constraints are not stringent.
However, implementing LDPC and fountain codes at the trans-
port layer is not suitable for interactive streaming applications
where short block lengths (e.g., a few hundred symbols) are
required due to the stringent delay constraints.

On the other hand, low-latency FEC schemes which operate
over short block lengths are used in existing consumer video
chat applications (e.g., Skype), which typically use maximum-
distance separable (MDS) codes to transmit an extra parity-
check packet per every two to five packets [10]. Indeed, the
use of low-latency FEC schemes for protecting voice streams
against packet erasures is largely attributed to the success of
Skype [11]. Recently, several systematic studies have been
carried out to investigate the fundamental limits of low-latency
FEC schemes for a point-to-point packet erasure channel [12]–
[18]. Motivated by the simple relaying scenario as described
at the beginning of this paper, we perform the first systematic
study which analyzes the fundamental limits of low-latency
FEC schemes implemented at the transport layer of the three-
node relay network.

B. Network Model

A formal description will appear later in Section II. The
three-node relay network consists of a source, a destination
and a relay between them, which are denoted by s, d and
r respectively. The channel between node s and node r is
denoted by (s, r), and the channel between node r and node d
is denoted by (r,d). All symbols generated in the network
are taken from a common finite field F. Suppose node s
sends a sequence of messages to node d in a streaming
manner where each message consists of k ≥ 0 symbols.
In each time slot, node s encodes the k symbols into a
collection of n ≥ 1 symbols followed by transmitting the n

symbols through (s, r). The n transmitted symbols may depend
on the current and all previous collections of k symbols.
Therefore, the encoder has infinite memory. The collection
of n symbols transmitted in a time slot are either received
perfectly by node r or erased (lost). In the same time slot,
node r transmits a collection of m ≥ 1 symbols through
(r,d), where the m symbols may depend on the current and all
previous collections of n received symbols. Therefore, node r
has infinite storage capacity. While our converse result will
be established under the assumption of an infinite-memory
encoder and an infinite-storage relay, our achievability scheme
requires only finite memory and storage. The collection of m
symbols transmitted in a time slot are either received perfectly
by node d or erased. The fraction k

max{n,m} specifies the
overall coding rate, which can be interpreted as the reciprocal
of the amount of time needed to simultaneously transfer one
unit of information over (s, r) and (r,d). We call the k symbols
chosen by node s, the n symbols transmitted by node s, the n
symbols received by node r, the m symbols transmitted by
node r and the m symbols received by node d the message, the
source packet, the relay received packet, the relay transmitted
packet and the destination packet respectively. Since every
low-latency application is subject to a tight delay constraint,
we assume that every message generated in a time slot must
be decoded by node d with delay T , i.e., within the future T
time slots.

C. Random Erasures

Consider the scenario where the channels (s, r) and (r,d)
are subject to independent and identically distributed (i.i.d.)
erasures. Let α and β denote the erasure probabilities as-
sociated with (s, r) and (r,d) respectively. Given an aver-
age tolerable probability of decoding error denoted by ε
where the average is taken over the streaming messages,
we are interested in characterizing the maximum coding rate
denoted by Cε(T, α, β). The main difficulty in characteriz-
ing Cε(T, α, β) is due to the delay constraint T . If T = ∞
(i.e., no delay constraint), then the problem can be reduced
to a classical information theory problem where a simple
decode-forward strategy is known to be optimal [19, Ch.
16.4]. However, when one considers finite delays the analysis
of Cε(T, α, β) becomes intractable. Therefore, we adopt the
following deterministic approach that has been used for many
similar problems [5,12,13,18]: We first find streaming codes
that work well for correcting deterministic erasures, and then
run simulations to investigate their performance in the original
statistical model with random erasures. The deterministic
erasure model is described as follows.

D. A Deterministic Erasure Model

On the discrete timeline, the channels (s, r) and (r,d)
introduce N1 and N2 erasures respectively. Under the erasure
channel model described above, we are interested in charac-
terizing the maximum achievable rate — the maximum coding
rate k

max{n,m} for sending information over the relay network
such that every message can be perfectly recovered by node d
with delay T .
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If N2 = 0, then the three-node relay network with erasures
reduces to a point-to-point packet erasure channel. It was pre-
viously known (cf. [13, Sec. IV]) that the maximum achievable
rate of the point-to-point packet erasure channel with N1 = N
and N2 = 0 denoted by CT,N satisfies

CT,N =

{
T−N+1
T+1 if T ≥ N ,

0 otherwise.
(1)

Although the deterministic erasure model is formulated in
such a way that (s, r) and (r,d) introduce only a finite number
of erasures over the discrete timeline, the maximum coding
rate remains unchanged for the following sliding window
model that can introduce infinite erasures: Every message must
be perfectly recovered with delay T as long as the numbers
of erasures introduced by (s, r) and (r,d) in every sliding
window of size T + 1 do not exceed N1 and N2 respectively.
In this paper, we will first derive the maximum coding rate
for the deterministic model, and then extend the analysis for
the sliding window model.

E. Time-Division DF: Message-Wise vs. Symbol-Wise

A traditional relaying scheme for the three-node relay net-
work is time-division decode-forward [19, Ch. 16.4] where the
relay decodes every message with delay T1 before forwarding
it to the destination with an additional delay T2. We call
the traditional relaying scheme described above message-wise
DF where DF stands for decode-forward. For message-wise
DF, all the symbols in the same source message are decoded
by the relay subject to the same delay constraint T1, and
similarly all the symbols re-encoded by the relay are decoded
by the destination subject to the same delay constraint T2.
A more flexible relaying scheme is to let the relay decode
the symbols in the same source message subject to possibly
different delay constraints, and similarly let the destination
decode the symbols re-encoded by the relay subject to possibly
different delay constraints. We call this flexible scheme the
symbol-wise DF. By definition, every message-wise DF can be
viewed as a symbol-wise DF. The following example illustrates
that symbol-wise DF can outperform message-wise DF.

Example 1: Consider the simple case where N1 = N2 = 1
and every message must be decoded by node d with delay
T = 3. Suppose we would like to employ the message-wise
DF strategy at node r. To this end, we must employ two point-
to-point codes with respective delays T1 and T2 for channels
(s, r) and (r,d) respectively where T1 +T2 = T = 3. For any
fixed T1 and T2 satisfying T1 + T2 = 3, since the maximum
achievable rates of channels (s, r) and (r,d) are CT1,1 = T1

T1+1

and CT2,1 = T2

T2+1 respectively by (1), it follows that the
maximum achievable rate for message-wise DF is

max
T1+T2≤3

min

{
T1

T1 + 1
,

T2

T2 + 1

}
= min

{
1

2
,

2

3

}
=

1

2
. (2)

The following symbol-wise DF strategy illustrated in Table I
exploits the delay information of each symbol received by
node r to outperform message-wise DF. Suppose node s
transmits two bits ai and bi at each discrete time i ≥ 0
to node d with delay 3. For each time i, node s transmits

the three-symbol packet [ai bi ai−2 + bi−1] according to
Table Ia where aj = bj = 0 for any j < 0 by convention,
and the symbols highlighted diagonally in the same color
are generated by the same block code. Since channel (s, r)
introduces at most N1 = 1 erasure, each ai and each bi
can be perfectly recovered by node r by time i + 2 and
time i + 1 respectively. Therefore at each time i, node r
should have recovered ai−2 and bi−1 perfectly with delays 2
and 1 respectively, and it will re-encode them into another
three-symbol packet [bi−1 ai−2 bi−3 + ai−3] according to
Table Ib, where the symbols highlighted diagonally in the same
color are generated by the same block code. Since bi−3, ai−3

and bi−3 + ai−3 are transmitted by node r at time i − 2,
i − 1 and i respectively, it follows from the fact N2 = 1
that node d can recover ai−3 and bi−3 by time i for each
i ≥ 3. Consequently, this symbol-wise DF strategy achieves
a rate of 2/3, which outperforms all traditional message-wise
DF strategies (cf. (2)).

F. Delay Profile

In this paper, we propose a symbol-wise DF scheme
to achieve the maximum achievable rate over the three-
node relay network with deterministic erasures. The pro-
posed symbol-wise DF scheme has the following feature:
Let si[0], si[1], . . . , si[k − 1] be the k source symbols trans-
mitted by node s at each discrete time i ≥ 0 where sj [0] =
sj [1] = . . . = sj [k−1] = 0 for any j < 0 by convention. Then,
there exists a tuple ((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1)) such
that node r and node d must produce estimates of the symbols
in
{
si[`] | i ∈ {0, 1, . . .}

}
for each ` ∈ {0, 1, . . . , k − 1}

with respective delays t` and t` + τ`. We call the tuple a
delay profile. To simplify notation, we let ŝ(r)

i [`] and ŝ
(d)
i [`]

denote the estimates of si[`] produced by node r and node d
respectively, which have to be decoded at time i + t` and
time i+ t` + τ` respectively.

Given a symbol-wise DF scheme with delay profile
((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1)), we define the first-hop
delay spectrum and the second-hop delay spectrum to be
(t0, t1, . . . , tk−1) and (τ0, τ1, . . . , τk−1) respectively. The first-
hop and second-hop delay spectrums can be interpreted as the
channel-level delay profiles attained by the symbol-wise DF
scheme for (s, r) and (r,d) respectively.

Example 2: Consider a symbol-wise DF strategy with delay
profile ((2, 1), (1, 2)) which is illustrated in Table II. The
first-hop delay spectrum is (2, 1), which agrees with the
facts that the duration between the arrival of si[0] and the
construction of ŝ(r)

i [0] equals 2 and that the duration between
the arrival of si[1] and the construction of ŝ(r)

i [1] equals 1
for each i. Similarly, the second-hop delay spectrum is (1, 2),
which agrees with the facts that the duration between the
construction of ŝ(r)

i [0] and the construction of ŝ(d)
i [0] equals 1

and that the duration between the construction of ŝ(r)
i [1] and

the construction of ŝ(d)
i [1] equals 2 for each i. In other words,

for each i, the decoding delays over channels (s, r) and (r,d)
for si[0] are 2 and 1 respectively, and the decoding delays over
channels (s, r) and (r,d) for si[1] are 1 and 2 respectively.
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Time i 0 1 2 3 4
ai a0 a1 a2 a3 a4

bi b0 b1 b2 b3 b4

ai−2 + bi−1 0 b0 a0 + b1 a1 + b2 a2 + b3

(a) Symbols transmitted by node s from time 0 to 4.
Time i 0 1 2 3 4 5

bi−1 0 b0 b1 b2 b3 b4

ai−2 0 0 a0 a1 a2 a3

ai−3 + bi−3 0 0 0 a0 + b0 a1 + b1 a2 + b2

(b) Symbols transmitted by node r from time 0 to 5.

Time i 0 1 2 3 4 5

ai−3 0 0 0 a0 a1 a2

bi−3 0 0 0 b0 b1 b2

(c) Symbols recovered by node d from time 0 to 5.

TABLE I: A symbol-wise DF strategy for the three-node relay network with N1 = N2 = 1 and T = 3.

Time i 0 1 2 3 4

si[0] s0[0] s1[0] s2[0] s3[0] s4[0]

si[1] s0[1] s1[1] s2[1] s3[1] s4[1]

si−2[0] + si−1[1] 0 s0[1] s0[0] + s1[1] s1[0] + s2[1] s2[0] + s3[1]

(a) Symbols transmitted by node s from time 0 to 4.
Time i 0 1 2 3 4 5

ŝ
(r)
i−1[1] 0 ŝ

(r)
0 [1] ŝ

(r)
1 [1] ŝ

(r)
2 [1] ŝ

(r)
3 [1] ŝ

(r)
4 [1]

ŝ
(r)
i−2[0] 0 0 ŝ

(r)
0 [0] ŝ

(r)
1 [0] ŝ

(r)
2 [0] ŝ

(r)
3 [0]

ŝ
(r)
i−3[0] + ŝ

(r)
i−3[1] 0 0 0 ŝ

(r)
0 [0] + ŝ

(r)
0 [1] ŝ

(r)
1 [0] + ŝ

(r)
1 [1] ŝ

(r)
2 [0] + ŝ

(r)
2 [1]

(b) Symbols transmitted by node r from time 0 to 5.

Time i 0 1 2 3 4 5

ŝ
(d)
i−3[0] 0 0 0 ŝ

(d)
0 [0] ŝ

(d)
1 [0] ŝ

(d)
2 [0]

ŝ
(d)
i−3[1] 0 0 0 ŝ

(d)
0 [1] ŝ

(d)
1 [1] ŝ

(d)
2 [1]

(c) Estimates constructed by node d from time 0 to 5.

TABLE II: A symbol-wise DF strategy with delay profile ((2, 1), (1, 2)) which can correct one erasure for each channel.

A symbol-wise DF strategy with delay profile
((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1)) is also called a
message-wise DF strategy if t0 = t1 = . . . = tk−1 and
τ0 = τ1 = . . . = τk−1, where the decoding delays for all
message symbols attained by the message-wise DF strategy
for channels (s, r) and (r,d) are t0 and τ0 respectively.

Example 3: Consider a message-wise DF strategy with delay
profile ((1, 2), (1, 2)) which is illustrated in Table III. The
symbols highlighted diagonally in the same color are generated
by the same block code. The first-hop delay spectrum equals
(1, 1) and the second-hop delay spectrum equals (2, 2), which
agrees with the facts that the duration between the arrival
of si[`] and the construction of ŝ(r)

i [`] equals 1 and that the du-
ration between the construction of ŝ(r)

i [`] and the construction
of ŝ(d)

i [`] equals 2 for each ` ∈ {0, 1} and each i ∈ {0, 1, . . .}.
In other words, for each i and each ` ∈ {0, 1}, the decoding
delays for channels (s, r) and (r,d) for si[`] are 1 and 2
respectively.

Motivated by the definition of a delay profile for a

symbol-wise DF strategy defined for the three-node relay
network, we say (∆0,∆1, . . . ,∆k−1) is a delay spectrum
for a point-to-point packet erasure code if the following
holds: Let si[0], si[1], . . . , si[k − 1] be the k source symbols
transmitted by the source at each discrete time i ≥ 0. Then, the
estimate of symbol si[`] denoted by ŝi[`] must be constructed
by the destination by time i+∆` for each ` ∈ {0, 1, . . . , k−1}
and each i ∈ Z+.

Example 4: Consider a point-to-point code with delay
spectrum (2, 1) which is illustrated in Table IV. The symbols
highlighted diagonally in the same color are generated by
the same block code. For the point-to-point code, every
symbol si[0] must be estimated by the destination by time i+2,
and every symbol si[1] must be estimated by the destination
by time i+ 1. In other words, the decoding delay constraints
imposed for si[0] and si[1] are 2 and 1 respectively.
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Time i 0 1 2 3 4

si[0] s0[0] s1[0] s2[0] s3[0] s4[0]

si[1] s0[1] s1[1] s2[1] s3[1] s4[1]

si−1[0] 0 s0[0] s1[0] s2[0] s3[0]

si−1[1] 0 s0[1] s1[1] s2[1] s3[1]

(a) Symbols transmitted by node s from time 0 to 4.
Time i 0 1 2 3 4 5

ŝ
(r)
i−1[0] 0 ŝ

(r)
0 [0] ŝ

(r)
1 [0] ŝ

(r)
2 [0] ŝ

(r)
3 [0] ŝ

(r)
4 [0]

ŝ
(r)
i−1[1] 0 ŝ

(r)
0 [1] ŝ

(r)
1 [1] ŝ

(r)
2 [1] ŝ

(r)
3 [1] ŝ

(r)
4 [1]

ŝ
(r)
i−3[0] 0 0 0 ŝ

(r)
0 [0] ŝ

(r)
1 [0] ŝ

(r)
2 [0]

ŝ
(r)
i−3[1] 0 0 0 ŝ

(r)
0 [1] ŝ

(r)
1 [1] ŝ

(r)
2 [1]

(b) Symbols transmitted by node r from time 0 to 5.

Time i 0 1 2 3 4 5

ŝ
(d)
i−3[0] 0 0 0 ŝ

(d)
0 [0] ŝ

(d)
1 [0] ŝ

(d)
2 [0]

ŝ
(d)
i−3[1] 0 0 0 ŝ

(d)
0 [1] ŝ

(d)
1 [1] ŝ

(d)
2 [1]

(c) Estimates constructed by node d from time 0 to 5.

TABLE III: A message-wise DF strategy with delay profile ((1, 2), (1, 2)) which can correct one erasure for each channel.

Time i 0 1 2 3 4

si[0] s0[0] s1[0] s2[0] s3[0] s4[0]

si[1] s0[1] s1[1] s2[1] s3[1] s4[1]

si−2[0] + si−1[1] 0 s0[1] s0[0] + s1[1] s1[0] + s2[1] s2[0] + s3[1]

(a) Symbols transmitted by the source from time 0 to 4.

Time i 0 1 2 3 4 5

ŝi−2[0] 0 0 ŝ0[0] ŝ1[0] ŝ2[0] ŝ3[0]

ŝi−1[1] 0 ŝ0[1] ŝ1[1] ŝ2[1] ŝ3[1] ŝ4[1]

(b) Estimates constructed by the destination from time 0 to 5.

TABLE IV: A point-to-point code with delay spectrum (2, 1) which can correct one erasure.

G. Main Contribution
This paper investigates the three-node relay network subject

to arbitrary erasures and characterizes the maximum achiev-
able rate denoted by CT,N1,N2

as

CT,N1,N2
= min

{
CT−N2,N1 , CT−N1,N2

}
=

{
T−N1−N2+1

T−min{N1,N2}+1 if T ≥ N1 +N2,

0 otherwise,
(3)

where CT,N is the point-to-point channel capacity that satis-
fies (1).

The converse proof applies to any streaming strategy con-
forming to the formulation in Section I-B, not restricted to the
time-division strategies presented in Section I-E. The converse
is proved by analyzing the maximum achievable rate for
each point-to-point channel when the erasures in the other
channel are consecutive (bursty). The proof is similar to the
classical cut-set bound [20] in the following sense: It is the
minimum of two point-to-point channel capacities CT−N2,N1

and CT−N1,N2 where T −N2 and T −N1 are the maximum
tolerable decoding delays of the source messages for the first
and second hops respectively. The maximum tolerable decod-
ing delays T − N2 and T − N1 can be intuitively explained

as follows: If the relay needs to wait more than T −N2 time
slots during the first hop to decode a source message, then the
source message would not reach the destination by time T if
the second channel is subject to some length-N2 burst erasure.
Similarly, if the relay needs to use more than T − N1 time
slots to deliver a decoded source message to the destination,
then the destination would not receive the delivered message
by time T if the first channel is subject to some length-N1

burst erasure.

The achievability is proved by constructing a symbol-wise
DF scheme with delay profile ((T − N2, N1), (T − N2 −
1, N1 + 1), . . . , (N1, T − N2)) (as illustrated in Example 2).
In particular, the first-hop and second-hop delay spectrums are
(T −N2, T −N2− 1, . . . , N1) and (N2, N2 + 1, . . . , T −N1)
respectively. The symbol-wise DF scheme is constructed by
using a point-to-point code with delay spectrum (T −N2, T −
N2 − 1, . . . , N1) for the first hop and using another point-to-
point code with delay spectrum (T −N1, T −N1−1, . . . , N2)
for the second hop.

Combining the achievability and the converse results, we
conclude that symbol-wise DF schemes are optimal in the
sense that they attain the maximum achievable rate of the
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three-node relay network. In addition, we show that the
maximum achievable rate for message-wise DF (as illustrated
in Example 3) is

Rmessage
T,N1,N2

= max
(T1,T2):T1+T2≤T

min
{
CT1,N1

, CT2,N2

}
,

which together with (3) implies that message-wise DF is sub-
optimal if and only if T > N1 +N2.

Finally, under the random erasure model described in Sec-
tion I-C, we show that symbol-wise DF achieves an average
loss probability decaying exponentially in min{N1+1, N2+1}
and provide numerical results that demonstrate the advantage
of using symbol-wise DF over traditional message-wise DF.

H. Paper Outline

This paper is organized as follows. The notation in this
paper is explained in the next subsection. Section II presents
the formulation of streaming codes for the three-node relay
network and states the main result. Section III presents the
converse proof of the main result. Section IV presents the
preliminary results that are useful for the achievability proof
of the main result, which include the definitions of the delay
profile of a symbol-wise DF scheme and the delay spectrum
of a point-to-point code. Section V contains the achievability
proof of the main result, i.e., the existence of an optimal
symbol-wise DF scheme for the three-node relay network for
all parameters (T,N1, N2). Section VI investigates message-
wise DF and shows that it is sub-optimal in general. Sec-
tion VII shows that symbol-wise DF achieves an average loss
probability decaying exponentially fast in min{N1+1, N2+1}
for the random erasure model. Section VIII presents numerical
results that demonstrate the advantage of using symbol-wise
DF over message-wise DF when the channels are subject
to i.i.d. erasures. Section IX extends the main result to a
sliding window model that can introduce an infinite number
of erasures. Section X concludes this paper.

I. Notation

For an event E , we use 1{E} and P{E} to denote the
indicator function of E and the probability of E respectively.
The sets of natural numbers and non-negative integers are
denoted by N and Z+ respectively. All the elements of any
matrix considered in this paper are taken from a common finite
field F, where 0 and 1 denote the additive identity and the
multiplicative identity respectively. The set of k-dimensional
row vectors over F is denoted by Fk, and the set of k × n
matrices over F is denoted by Fk×n. A row vector in Fk is
denoted by a , [a0 a1 . . . ak−1] where ai denotes the (`+1)th

element of a. The k-dimensional identity matrix is denoted by
Ik. For any natural numbers L and N , a systematic maximum-
distance separable (MDS) (L + N,L)-code is characterized
by an L × N parity matrix VL×N where any L columns of
[IL VL×N ] ∈ FL×(L+N) are independent. It is well known
that a systematic MDS (L+B,L)-code always exists as long
as |F| ≥ L + B [21]. We will take all logarithms to base 2
throughout this paper.

II. STREAMING CODES FOR THE THREE-NODE RELAY
NETWORK WITH ARBITRARY ERASURES

A. Problem Formulation

Let k be a non-negative integer, and n and m be two
natural numbers. Node s wants to send a sequence of mes-
sages {si}∞i=0 to node d with the help of the middle node r.
Each si is an element in Fk where F is some finite field.
In each time slot i ∈ Z+, the source message si is encoded
into a length-n packet xi ∈ Fn to be transmitted to the relay
through the erasure channel (s, r), and the relay receives y

(r)
i ∈

Fn∪{∗} where y
(r)
i equals either xi or the erasure symbol ‘∗’.

In the same time slot, the relay transmits x
(r)
i ∈ Fm to

the destination through the erasure channel (r,d), and the
destination receives yi ∈ Fm∪{∗} where yi equals either x

(r)
i

or the erasure symbol ‘∗’. The fraction k
max{n,m} specifies the

rate of the code. Every code is subject to a delay constraint
of T time slots, meaning that the destination must produce
an estimate of si, denoted by ŝi, upon receiving yi+T . We
assume that on the discrete timeline, channels (s, r) and (r,d)
introduce N1 and N2 arbitrary erasures respectively. The
symbols generated in the three-node relay network at time i
are illustrated in Figure 2.

B. Standard Definitions and Main Result

Definition 1: An (n,m, k, T )F-streaming code consists of
the following:

1) A sequence of source messages {si}∞i=0 where si ∈ Fk.
2) An encoding function

fi : Fk × . . .× Fk︸ ︷︷ ︸
i+1 times

→ Fn

for each i ∈ Z+, where fi is used by node s at time i
to encode si according to

xi = fi(s0, s1, . . . , si).

3) A relaying function

f
(r)
i : Fn ∪ {∗} × . . .× Fn ∪ {∗}︸ ︷︷ ︸

i+1 times

→ Fm

for each i ∈ Z+, where f (r)
i is used by node r at time i

to construct

x
(r)
i = f

(r)
i (y

(r)
0 ,y

(r)
1 , . . . ,y

(r)
i ). (4)

4) A decoding function

ϕi+T : Fm ∪ {∗} × . . .× Fm ∪ {∗}︸ ︷︷ ︸
i+T+1 times

→ Fk

for each i ∈ Z+, where ϕi+T is used by node d at time
i+ T to estimate si according to

ŝi = ϕi+T (y0,y1, . . . ,yi+T ). (5)

Definition 2: An erasure sequence is a binary sequence
denoted by e∞ , {ei}∞i=0 where

ei = 1{an erasure occurs at time i}.
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An N -erasure sequence is an erasure sequence e∞ that sat-
isfies

∑∞
`=0 e` = N . In other words, an N -erasure sequence

specifies N arbitrary erasures on the discrete timeline. The set
of N -erasure sequences is denoted by ΩN .

Definition 3: The mapping gn : Fn×{0, 1} → Fn ∪ {∗} of
an erasure channel is defined as

gn(x, e) =

{
x if e = 0,
∗ if e = 1.

(6)

For any erasure sequence e∞ and any (n,m, k, T )F-streaming
code, the following input-output relation holds for the erasure
channel (s, r) for each i ∈ Z+:

y
(r)
i = gn(xi, ei). (7)

Similarly, the following input-output relation holds for the
erasure channel (r,d) for each i ∈ Z+:

yi = gm(x
(r)
i , ei). (8)

Definition 4: An (n,m, k, T )F-streaming code is said to be
(N1, N2)-achievable if the following holds for any N1-erasure
sequence e∞ ∈ ΩN1

and any N2-erasure sequence ε∞ ∈ ΩN2
:

For all i ∈ Z+ and all si ∈ Fk, we have

ŝi = si

where

ŝi = ϕi+T
(
gm(x

(r)
0 , ε0), . . . , gm(x

(r)
i+T , εi+T )

)
due to (5) and (8) and

x
(r)
i = f

(r)
i

(
gn(x0, e0), . . . , gn(xi, ei)

)
due to (4) and (7).

Definition 5: The rate of an (n,m, k, T )F-streaming code is
k

max{n,m} .

Remark 1: For any (n,m, k, T )F-streaming code, if the
transmission time of a packet is proportional to the packet
length, then n units of time are needed to transmit k units
of information over (s, r) and m units of time are needed
to transmit k units of information over (s, r). Therefore,
max{n,m} can be interpreted as the amount of time needed to
simultaneously transmit k units of information over (s, r) and
(r,d). Consequently, the rate k

max{n,m} in Definition 5 can be
interpreted as the reciprocal of the amount of time needed to
simultaneously transmit one unit of information over the two
channels.

Definition 6: The (T,N1, N2)-capacity, denoted by
CT,N1,N2

, is the maximum rate achievable by (n,m, k, T )F-
streaming codes that are (N1, N2)-achievable, i.e.,

CT,N1,N2 ,

sup

{
k

max{n,m}

∣∣∣∣∣There exists an (N1, N2)-achievable
(n,m, k, T )F-streaming code for some
n, m, k and F.

}
.

The following theorem is the main result of this paper. The
converse proof is provided in Section III, and the achievability
proof is provided in Sections IV and V.

Theorem 1: Fix any (T,N1, N2). Recalling that the point-
to-point capacity satisfies (1), we have

CT,N1,N2 = min
{
CT−N2,N1 , CT−N1,N2

}
. (9)

In particular, for any F with |F| ≥ T + 1, there exists an
(N1, N2)-achievable (n,m, k, T )F-streaming code with k =
T −N1−N2 + 1, n = T −N2 + 1, m = T −N1 + 1 and rate

k

max{n,m}
= CT,N1,N2

.

III. CONVERSE PROOF OF THEOREM 1

Fix any (T,N1, N2). Suppose we are given an (N1, N2)-
achievable (n,m, k, T )F-streaming code for some n, m, k and
F. Our goal is to show that

k

max{n,m}
≤ min

{
CT−N2,N1

, CT−N1,N2

}
. (10)

To this end, we let {si}i∈Z+ be i.i.d. random variables where
s0 is uniform on Fk. Since the (n,m, k, T )F-streaming code
is (N1, N2)-achievable, it follows from Definition 4 that

H(si|y0,y1, . . . ,yi+T ) = 0 (11)

for any i ∈ Z+, any e∞ ∈ ΩN1
and any ε∞ ∈ ΩN2

. Consider
the following two cases.
Case T < N1 +N2:
Let e∞ ∈ ΩN1

and ε∞ ∈ ΩN2
such that

ei =

{
1 if 0 ≤ i ≤ N1 − 1,
0 otherwise,

(12)

and

εi =

{
1 if N1 ≤ i ≤ N1 +N2 − 1,
0 otherwise.

(13)

Due to (12) and (13) and Definition 1, we have

I(s0; y0,y1, . . . ,yN1+N2−1) = 0. (14)

Combining (11), (14) and the assumption that T < N1 +N2,
we obtain H(s0) = 0. Since s0 consists of k uniform random
variables in F, the only possible value for k is zero, which
together with (1) implies that

k

max{m,n}
= 0 = min

{
CT−N2,N1

, CT−N1,N2

}
. (15)

Case T ≥ N1 +N2:
For every i ∈ Z+ and any e∞ ∈ ΩN1

, message si has to
be perfectly recovered by node r by time i + T − N2 given
that s0, s1, . . . , si−1 have been correctly decoded by node r, or
otherwise a length-N2 burst erasure introduced from time i+
T−N2+1 to i+T on channel (r,d) would result in a decoding
failure for both node r and node d. It then follows that

H

(
si

∣∣∣∣{xi,xi+1, . . . ,xi+T−N2
} \
{
xθ1 ,xθ2 . . . ,xθN1

}
,

s0, s1, . . . , si−1

)
= 0 (16)

for any i ∈ Z+ and any N1 non-negative integers denoted by
θ1, θ2, . . . , θN1

. By (16) and the chain rule, we conclude the
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Fig. 3: A periodic erasure sequence with period T −N2 + 1.

following for each j ∈ N whose derivation is elaborated in
Appendix A:

H
(
s0, s1, . . . , sT−N2+(j−1)(T−N2+1)

∣∣{xi(T−N2+1),

x1+i(T−N2+1), . . . ,xT−N1−N2+i(T−N2+1)}ji=0

)
= 0 (17)

where the conditional entropy involves j(T −N2 + 1) source
messages and (j + 1)(T − N1 − N2 + 1) source packets.
Therefore, the (N1, N2)-achievable (n,m, k, T )F-streaming
code restricted to channel (s, r) can be viewed as a point-to-
point streaming code with rate k/n and delay T −N2 which
can correct any N1 erasures. In particular, the point-to-point
code can correct the periodic erasure sequence ẽ∞ illustrated
in Figure 3, which is formally defined as

ẽi =

{
0 if 0 ≤ imod (T −N2 + 1) ≤ T −N1 −N2,

1 otherwise

for all i ∈ Z+. By standard arguments which are rigorously
elaborated in Appendix A, we conclude that

k

n
≤ T −N1 −N2 + 1

T −N2 + 1
= CT−N2,N1

. (18)

In addition, for every i ∈ Z+ and any ε∞ ∈ ΩN2 ,
message si has to be perfectly recovered from
(yi+N1

,yi+N1+1, . . . ,yi+T ) by node d given that
s0, s1, . . . , si−1 have been correctly decoded by node d,
or otherwise a length-N1 burst erasure introduced from time i
to i + N1 − 1 on channel (s, r) would result in a decoding
failure for node d. It then follows that

H

(
si

∣∣∣∣{x(r)
i+N1

,x
(r)
i+N1+1, . . . ,x

(r)
i+T

}
\
{
x

(r)
θ1
,x

(r)
θ2
. . . ,x

(r)
θN2

}
,

s0, s1, . . . , si−1

)
= 0 (19)

for any i ∈ Z+ and any N2 non-negative integers denoted by
θ1, θ2, . . . , θN2

. To simplify notation, let xt , [0 0 . . . 0] be
the m-dimensional zero vector for any t < 0. By (19) and the
chain rule, we conclude the following for each j ∈ N whose
derivation is elaborated in Appendix A:

H
(
s0, s1, . . . , sT−N1+(j−1)(T−N1+1)

∣∣∣{x
(r)
N1+N2+i(T−N1+1),

x
(r)
N1+N2+1+i(T−N1+1), . . . ,x

(r)
T+i(T−N1+1)

}j
i=−1

)
= 0 (20)

where the conditional entropy involves j(T −N1 + 1) source
messages and no more than (j + 2)(T − N1 − N2 + 1)
relay transmitted packets. Therefore, the (N1, N2)-achievable
(n,m, k, T )F-streaming code restricted to channel (r,d) can
be viewed as a point-to-point streaming code with rate k/m
and delay T − N1 which can correct any N2 erasures. In

 …  … …  …  … …  … 
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Fig. 4: A periodic erasure sequence with period T −N1 + 1.

particular, the point-to-point code can correct the periodic
erasure sequence ẽ∞ illustrated in Figure 4, which is formally
defined as

êi =

{
0 if N1 +N2 ≤ imod (T −N1 + 1) ≤ T,
1 otherwise

for all i ∈ Z+. By standard arguments which are rigorously
elaborated in Appendix A, we conclude that

k

m
≤ T −N1 −N2 + 1

T −N1 + 1
= CT−N1,N2 . (21)

Combining the above two cases and using (15), (18)
and (21), we conclude that (10) holds for all (T,N1, N2).

IV. SYMBOL-WISE DECODE-FORWARD STRATEGY

This section provides the preliminary results for the achiev-
ability proof of Theorem 1. The symbol-wise DF and its delay
profile are formally described in Section IV-A, while the point-
to-point code and its delay spectrum are formally described in
Section IV-B

A. Symbol-Wise DF and Its Delay Profile

Definition 7: A delay profile is defined as
((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1)) for some k ∈ Z+

where (t`, τ`) ∈ Z2
+.

Remark 2: Two examples of delay profiles are ((2, 1), (1, 2))
in Example 2 and ((1, 2), (1, 2)) in Example 3.

Definition 8: Let k be a non-negative integer and fix a
delay profile d , ((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1)). Define
T , max0≤`≤k−1{t` + τ`}. A symbol-wise DF (n,m, k,d)F-
streaming code is an (n,m, k, T )F-streaming code (cf. Defi-
nition 1) which produces estimates of the source symbols at
nodes r and d as follows. Let si[`] ∈ F be the (`+ 1)th source
symbol generated at time i for each ` ∈ {0, 1, . . . , k− 1} and
each i ∈ Z+, and recall that xi ∈ Fn and y

(r)
i ∈ Fn ∪ {∗}

denote the source packet and the relay received packet respec-
tively at time i. For each ` ∈ {0, 1, . . . , k−1} and each i ∈ Z+,
an estimate of si[`] denoted by ŝ(r)

i [`] is produced by node r

at time i+ t` based on (y
(r)
0 ,y

(r)
1 , . . . ,y

(r)
i+t`

). Next, letting

Ŝ(r)
i ,

{
ŝ

(r)
j [`]

∣∣∣∣ j + t` ≤ i,
j ∈ Z+, ` ∈ {0, 1, . . . , k − 1}

}
be the collection of estimates that have been generated by
node r by time i, node r constructs and transmits x

(r)
i ∈ Fm

at time i for each i ∈ Z+ where x
(r)
i is a function of

Ŝ(r)
i . Finally, recalling that yi ∈ Fm ∪ {∗} denotes the

destination packet received at time i, node d constructs an
estimate of ŝ(r)

i [`] denoted by ŝ(d)
i [`] by time i+ t`+ τ` based

on (y0,y1, . . . ,yi+τ`) for each ` ∈ {0, 1, . . . , k−1} and each
i ∈ Z+.
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The following corollary is a direct consequence of Defini-
tion 8 and Definition 4.

Corollary 1: A symbol-wise DF (n,m, k,d)F-streaming
code is (N1, N2)-achievable if the following holds for
any e∞ ∈ ΩN1

and any ε∞ ∈ ΩN2
: For all i ∈ Z+ and

all si = [si[0] si[1] . . . si[k − 1]] ∈ Fk, we have

ŝ
(d)
i [`] = ŝ

(r)
i [`] = si[`]

for each ` ∈ {0, 1, . . . , k − 1}.

B. Delay Spectrum for Point-to-Point Streaming Code

The following three definitions are standard (cf. [14]).
Definition 9: Let (u, v) ∈ {(s, r), (r,d)} be a point-to-

point channel in the relay network. A point-to-point (n, k, T )F-
streaming code over (u, v) consists of the following:

1) A sequence of messages {ui}∞i=0 where ui ∈ Fk.
2) An encoding function

f
(u)
i : Fk × . . .× Fk︸ ︷︷ ︸

i+1 times

→ Fn

for each i ∈ Z+, where f (u)
i is used by node u at time i

to encode ui according to

x
(u)
i = fi(u0,u1, . . . ,ui).

3) A decoding function

ϕ
(v)
i+T : Fn ∪ {∗} × . . .× Fn ∪ {∗}︸ ︷︷ ︸

i+T+1 times

→ Fk

for each i ∈ Z+, where ϕ(v)
i+T is used by node v at time

i+ T to estimate ui according to

ûi = ϕ
(v)
i+T (y

(v)
0 ,y

(v)
1 , . . . ,y

(v)
i+T ). (22)

Definition 10: A point-to-point (n, k, T )F-streaming code
over (u, v) is said to be N -achievable if the following holds
for any N -erasure sequence e∞ ∈ ΩN : For all i ∈ Z+ and all
ui ∈ Fk, we have

ûi = ui

where

ûi = ϕ
(v)
i+T

(
gn(x

(u)
0 , e0), . . . , gn(x

(u)
i+T , ei+T )

)
due to (22), (7) and (8).

Definition 11: The (T,N)-capacity, denoted by CT,N , is
the maximum rate achievable by point-to-point (n, k, T )F-
streaming codes that are N -achievable, i.e.,

CT,N ,

sup

{
k

n

∣∣∣∣There exists an N -achievable point-to-point
(n, k, T )F-streaming code for some n, k and F.

}
.

Theorem 2 ( [13, Sec. IV]): For any T and any N , the
(T,N)-capacity CT,N is characterized by (1).

Definition 12: A delay spectrum is defined as
(∆0,∆1, . . . ,∆k−1) for some k ∈ Z+ where ∆` ∈ Z+.

Remark 3: An example of delay spectrum is (2, 1) in
Example 4.

Definition 13: Let k be a non-negative integer and fix
a delay spectrum ∆ , (∆0,∆1, . . . ,∆k−1). Define T ,
max0≤`≤k−1 ∆`. A point-to-point (n, k,∆)F-streaming code
over (u, v) is a point-to-point (n, k, T )F-streaming code (cf.
Definition 9) which produces estimates of the source symbols
at node d as follows. Let ui[`] ∈ F be the (` + 1)th

source symbol generated by node u at time i for each
` ∈ {0, 1, . . . , k − 1} and each i ∈ Z+, and let y

(v)
i ∈ Fn

denote the destination packet received by node v at time i.
For each time i ∈ Z+ and each ` ∈ {0, 1, . . . , k − 1},
node d constructs an estimate of ui[`] denoted by û

(v)
i [`] by

time i+ ∆` based on (y
(v)
0 ,y

(v)
1 , . . . ,y

(v)
i+∆`

).

The following corollary is a direct consequence of Defini-
tion 13 and Definition 10.

Corollary 2: A point-to-point (n, k,∆)F-streaming code
over (u, v) is N -achievable if the following holds for
any e∞ ∈ ΩN : For all i ∈ Z+ and all ui =
[ui[0] ui[1] . . . ui[k − 1]] ∈ Fk, we have

û
(v)
i [`] = ui[`]

for all ` ∈ {0, 1, . . . , k − 1}.

C. Construction of a Point-to-Point Streaming Code Based on
a Block Code

We would like to construct a point-to-point streaming code
as described in Definition 13 based on a point-to-point block
code described below such that they have the same delay
spectrum and error-correcting capability. The following two
definitions concerning systematic point-to-point block codes
are standard (cf. [14]).

Definition 14: A (systematic) point-to-point (n, k, T )F-
block code over (u, v) consists of the following:

1) A sequence of k symbols {u[`]}k−1
`=0 where u[`] ∈ F.

2) A generator matrix G = [Ik P] ∈ Fk×n for some
parity matrix P ∈ Fk×(n−k). The source codeword is
generated according to

[x[0] x[1] . . . x[n− 1]] = [u[0] u[1] . . . u[k − 1]] G.
(23)

3) A decoding function

ϕ`+T : F ∪ {∗} × . . .× F ∪ {∗}︸ ︷︷ ︸
min{`+T+1,n} times

→ F

for each ` ∈ {0, 1, . . . , k − 1}, where ϕ`+T is used
by node v at time min{` + T, n − 1} to estimate u[`]
according to

û[`] =

{
ϕ`+T (y[0], . . . , y[`+ T ]) if `+ T ≤ n− 1,
ϕ`+T (y[0], . . . , y[n− 1]) if `+ T > n− 1.

Definition 15: A point-to-point (n, k, T )F-block code is said
to be N -achievable if the following holds for any N -erasure
sequence e∞ ∈ ΩN : For the (n, k, T )F-block code, we have

û[`] = u[`]
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Fig. 5: Block code for a point-to-point channel.

for all ` ∈ {0, 1, . . . , k − 1} and all u[`] ∈ F, where

û[`] =
ϕ`+T (g1(x[0], e0), . . . , g1(x[`+ T ], e`+T )) if `+ T

≤ n− 1,
ϕ`+T (g1(x[0], e0), . . . , g1(x[n− 1], en−1)) if `+ T

> n− 1

with g1 being the symbol-wise erasure function that was
defined in (6).

The symbols generated by the point-to-point block code
described in Definition 14 are illustrated in Figure 5, where
[x[0] x[1] . . . x[n − 1]] denotes the sequence of symbols
generated by a systematic block code according to (23). The
delay spectrum of a point-to-point block code can be defined
in a similar way to that of a point-to-point streaming code (cf.
Definition 13).

Definition 16: Let k be a non-negative integer and fix
a delay spectrum ∆ , (∆0,∆1, . . . ,∆k−1). Define T ,
max0≤`≤k−1 ∆`. A point-to-point (n, k,∆)F-block code over
(u, v) is a point-to-point (n, k, T )F-block code (cf. Defini-
tion 14) which produces estimates of the source symbols at
node v as follows. Let u[`] ∈ F be the source symbol generated
by node u at time ` for each ` ∈ {0, 1, . . . , k − 1}. For each
time ` ∈ {0, 1, . . . , k − 1}, node d constructs an estimate
of u[`] denoted by û[`] by time min{` + ∆`, n − 1} based
on (y[0], y[1], . . . , y[min{`+ ∆`, n− 1}]).

The following lemma states the delay spectrum of an N -
achievable point-to-point block code that achieves the rate
CT,N as characterized in (1).

Lemma 3: Suppose T ≥ N , and let k , T − N + 1 and
n , k + N . For any F such that |F| ≥ n, there exists an
N -achievable point-to-point (n, k,∆)F-block code over (u, v)
with delay spectrum

∆ = (T, T − 1, . . . , N).

Proof: Fix any F such that |F| ≥ n and let Vk×N be the
parity matrix of an MDS code, whose existence is guaranteed
due to the explanation given in Section I-I. Construct the
(n, k, n−1)-block code with generator matrix G , [Ik Vk×N ]
where the decoding delay is at most the number of columns
of G minus one, i.e., n − 1. Since the block code is MDS,
it is N -achievable. In addition, all the symbols have to be
estimated by the end of the block code, which implies that
the (n, k, n − 1)-block code can be viewed as an (n, k,∆)-
block code where

∆ , (n− 1, n− 2, . . . , n− k)

= (T, T −N, . . . , N).

The following lemma states that we can construct a point-
to-point streaming code from a point-to-point block code such

that they have the same delay profile and error-correcting
capability. The proof is based on periodic interleaving (cf. [22]
and [12, Sec. IV-A])) and is analogous to the proof of [14,
Lemma 1], and is therefore deferred to Appendix B.

Lemma 4: Given a point-to-point (n, k,∆)F-block code
which is N -achievable, we can construct a point-to-point
(n, k,∆)F-streaming code which is also N -achievable.

Remark 4: It follows from the proof of Lemma 4 that
the point-to-point streaming code in Lemma 4 is indeed a
convolutional code, which is readily seen from the proof
of [14, Lemma 1].

Example 5: Suppose we are given a 2-achievable
(5, 3, (4, 3, 2))F-block code with generator matrix

G =

 1 0 0 1 1
0 1 0 1 2
0 0 1 1 4

 ,
and let {ui}i∈Z+ be the streaming messages where ui =[
ui[0] ui[1] ui[2]

]
∈ F3. From time i − 2 to i + 5,

the symbols yielded by the (5, 3, (4, 3, 2))F-streaming code
constructed by interleaving the (5, 3, (4, 3, 2))F-block code
according Lemma 4 are shown in Table V. The symbols in
Table V that are highlighted in the same color diagonally (in
direction ↘) are encoded using the same block code. Given
the fact that each (5, 3, (4, 3, 2))F-block code is 2-achievable,
we can see from Table V that ui =

[
ui[0] ui[1] ui[2]

]
can

be perfectly recovered by time i + 5 as long as the erasure
sequence is a 2-erasure sequence.

The achievability proof of Theorem 1 hinges on the next
lemma, which investigates the delay profile of a streaming
code over the three-node relay network when the streaming
code is formed by concatenating two point-to-point codes.
More specifically, the resultant first-hop and second-hop delay
spectrums of the concatenated codes equal the respective
delay spectrums of the two point-to-point codes. The proof of
Lemma 5 is straightforward and hence deferred to Appendix C.

Lemma 5: Fix three natural numbers k, n and m such that
k ≤ min{n,m}. In addition, let t , (t0, t1, . . . , tk−1) and
∆ , (∆0,∆1, . . . ,∆k−1) be two delay spectrums. Suppose
an N1-achievable point-to-point (n, k, t)F-streaming code
and an N2-achievable point-to-point (m, k,∆F)-streaming
code are given. Then, there exists an (N1, N2)-achievable
(max{n,m}, k,d)F-streaming code over the three-node relay
network whose delay profile is

d , ((t0,∆0), (t1,∆1), . . . , (tk−1,∆k−1)). (24)

V. ACHIEVABILITY PROOF OF THEOREM 1

Fix any (T,N1, N2), and fix F such that |F| ≥ T + 1.
In view of the converse statement (10) proved in Section III,
it suffices to prove the existence of an (N1, N2)-achievable
(max{n,m}, k, T )F-streaming code such that

k

max{n,m}
= min

{
CT−N2,N1

, CT−N1,N2

}
, (25)
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XXXXXXXXSymbol
Time

i− 2 i− 1 i i+ 1 i+ 2 i+ 3 i+ 4

0 ui−2[0] ui−1[0] ui[0] ui+1[0] ui+2[0] ui+3[0] ui+4[0]

1 ui−2[1] ui−1[1] ui[1] ui+1[1] ui+2[1] ui+3[1] ui+4[1]

2 ui−2[2] ui−1[2] ui[2] ui+1[2] ui+2[2] ui+3[2] ui+4[2]

3
. . .

. . .
. . .

ui−2[0]
+ui−1[1]
+ui[2]

ui−1[0]
+ ui[1]
+ ui+1[2]

ui[0]
+ ui+1[1]
+ ui+2[2]

. . .

4
. . .

. . .
. . .

. . .
ui−2[0]

+2ui−1[1]
+4ui[2]

ui−1[0]
+ 2ui[1]
+ 4ui+1[2]

ui[0]
+ 2ui+1[1]
+ 4ui+2[2]

TABLE V: Symbols yielded by a (5, 3, (4, 3, 2))F-streaming code through interleaving a block code.

which together with (10) would imply (9). Since the right-
hand side of (25) equals zero if T < N1 +N2, we assume in
the rest of the proof that T ≥ N1 +N2.

Define k , T − N1 − N2 + 1, n , k + N1 and m ,
k + N2, and we would like to leverage Lemma 5 to prove
the existence of an (N1, N2)-achievable (max{n,m}, k, T )F-
streaming code. To this end, we invoke Lemma 3 to obtain
an N1-achievable point-to-point (n, k, t)-block code and an
N2-achievable point-to-point (m, k,∆)-block code where

t , (T −N2, T −N2 − 1, . . . , N1) (26)

and
∆ , (T −N1, T −N1 − 1, . . . , N2).

Using Lemma 4, there exist an N1-achievable point-to-point
(n, k, t)F-streaming code and an N2-achievable point-to-point
(m, k,∆)-streaming code respectively. In addition, by rela-
beling the k symbols transmitted at time i for each i ∈ Z+,
the N2-achievable point-to-point (m, k,∆)F-streaming code
can be viewed as an N2-achievable point-to-point (m, k, ∆̃)F-
streaming code where

∆̃ , (N2, N2 + 1, . . . , T −N1). (27)

It then follows from Lemma 5, (26) and (27) that there exists
an (N1, N2)-achievable (max{n,m}, k,d)F-streaming code
over the three-node relay network whose delay profile is

d , ((T −N2, N2), (T −N2−1, N2 +1), . . . , (N1, T −N1)).
(28)

In particular, the (max{n,m}, k,d)F-streaming code is an
(max{n,m}, k, T )F-streaming code that satisfies (25).

VI. MESSAGE-WISE DECODE-FORWARD AND ITS
ACHIEVABLE RATE

The following definition of message-wise decode-forward
(DF) is consistent with the brief description in Section I-E.

Definition 17: Let d = ((t0, τ0), (t1, τ1), . . . , (tk−1, τk−1))
be a delay profile. A message-wise DF (n,m, k,d)F-streaming
code is a symbol-wise DF (n,m, k,d)F-streaming code with
the additional delay constraints

t0 = t1 = . . . = tk−1

and

τ0 = τ1 = . . . = τk−1.

The maximum achievable rate for message-wise DF is
characterized in the following definition and theorem.

Definition 18: The maximum achievable rate for message-
wise DF is defined as

Rmessage
T,N1,N2

,

sup


k

max{n,m}

∣∣∣∣∣∣∣∣
There exists an (N1, N2)-achievable
message-wise DF (n,m, k,d)F-
streaming code for some n, m, k, d
and F such that max

0≤`≤k−1
{t`+τ`} ≤ T .

 .

Theorem 3: Fix any (T,N1, N2). Recalling that the point-
to-point capacity satisfies (1),

Rmessage
T,N1,N2

= max
(T1,T2):T1+T2≤T

min
{
CT1,N1

, CT2,N2

}
.

In particular, for any F with |F| ≥ T + 1, there ex-
ists an (N1, N2)-achievable message-wise DF (n,m, k, T )F-
streaming code with rate

k

max{n,m}
= Rmessage

T,N1,N2
.

Proof: For the achievability part, we first fix any F with
|F| ≥ T + 1. For any (T1, T2) that satisfies T1 + T2 ≤ T ,
it follows from Lemma 3 that there exists an N1-achievable
point-to-point (n, k, t)F-streaming code over (s, r) with delay
spectrum

t = (T1, T1, . . . , T1)

such that
k

n
= CT1,N1

,

and there exists an N2-achievable point-to-point (m, k,∆)F-
streaming code over (r,d) with delay spectrum

∆ = (T2, T2, . . . , T2)

such that
k

m
= CT2,N2 .

Consequently, it follows from Lemma 5 that

Rmessage
T,N1,N2

≥ max
(T1,T2):T1+T2≤T

min
{
CT1,N1

, CT2,N2

}
.

For the converse part, we first fix an arbitrary (N1, N2)-
achievable message-wise DF (n,m, k,d)F-streaming code
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(a) Symbol-wise DF with rate
CT,N1,N2 ≥ 2/3.
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(b) Message-wise DF with rate
Rmessage

T,N1,N2
≥ 2/3.

Fig. 6: Set of achievable pairs (N1, N2) when T = 11.

where max0≤`≤k−1{t` + τ`} ≤ T . By Definition 17, there
exist non-negative integers T1 and T2 such that T1 + T2 ≤ T
and

d = ((T1, T2), (T1, T2), . . . , (T1, T2)).

Since the first-hop and second-hop delay spectrums are
(T1, T1, . . . , T1) and (T2, T2, . . . , T2) respectively, the
(N1, N2)-achievable (n,m, k,d)F-streaming code restricted
to (s, r) and (r,d) can be respectively viewed as an N1-
achievable point-to-point (n, k, T1)-streaming code and an
N2-achievable point-to-point (m, k, T2)-streaming code (cf.
Definition 4 and Definition 8). Therefore, we obtain by
Theorem 2 that k/n ≤ CT1,N1

and k/m ≤ CT2,N2
. It then

follows from Definition 18 that

Rmessage
T,N1,N2

≤ max
(T1,T2):T1+T2≤T

min
{
CT1,N1

, CT2,N2

}
.

Combining Theorem 1 and Theorem 3, we conclude that

Rmessage
T,N1,N2

< CT,N1,N2

if and only if T > N1 +N2. In other words, message-wise DF
is sub-optimal if and only if T > N1 +N2. The sub-optimality
of message-wise DF can also been seen in Figure 6, which
shows that the set of achievable pairs (N1, N2) for symbol-
wise DF is strictly larger than that for message-wise DF under
the two constraints that T equals 11 and the rate is no smaller
than 2/3.

VII. AN UPPER BOUND ON LOSS PROBABILITY ATTAINED
BY SYMBOL-WISE DF FOR RANDOM ERASURE

Our main result stated in Theorem 1 characterizes the max-
imum achievable rate for the three-node relay network subject
to deterministic erasures, and the maximum achievable rate
can be attained by symbol-wise DF schemes. After showing
that symbol-wise DF is optimal for the deterministic erasure
model, we turn our attention to the more realistic random
erasure model as described in Section I-C. More specifically,
we would like to obtain an upper bound on the loss probability
attained by the following symbol-wise DF scheme that is

used in the achievability proof in Section V: Fix any N1-
achievable point-to-point (n, k,d)F-block code and an N2-
achievable point-to-point (m, k,∆)-block code where

k = T −N1 −N2 + 1,

n = T −N1 + 1,

m = T −N2 + 1,

d = (T −N2, T −N2 − 1, . . . , N1)

and
∆ = (N2, N2 + 1, . . . , T −N1).

Then periodically interleave both point-to-point block codes as
performed in the proof of Lemma 4 in Appendix B (illustrated
in Table V) and obtain an N1-achievable (n, k,d)F-streaming
code and an N2-achievable (m, k,∆)F-streaming code with
the following properties:

(i) For every si[`] located at the (`+ 1)
th position of the

length-k packet transmitted at time i by the (n, k,d)F-
streaming code over (s, r), ŝ(r)

i [`] is generated by the
relay at time i−`+n−1. If there are at most N1 erasures
inside the window {i− `, i− `+ 1, . . . , i− `+ n− 1},
then ŝ(r)

i [`] = si[`].
(ii) For every uj [`] located at the (`+ 1)

th position of the
length-k packet transmitted at time j by the (m, k,∆)F-
streaming code over (r,d), uj [`] can be perfectly recov-
ered by the destination at time j + N2 + ` if there are
at most N2 erasures inside the window {j + N2 + ` −
m+ 1, j +N2 + `−m+ 2, . . . , j +N2 + `}.

Then, the two point-to-point streaming codes are concatenated
according to Lemma 5 such that every relay estimate ŝ(r)

i [`]

is transmitted at the (`+ 1)
th position of the length-k packet

at time j , i − ` + n − 1 by the (m, k,∆)F-streaming
code over (r,d). Then, the following property holds due to
Property (ii):
(iii) Every ŝ

(r)
i [`] transmitted by the relay at time i − ` +

n − 1 can be perfectly recovered by the destination at
time i + N2 + n − 1 if there are at most N2 erasures
inside the window {i+N2 + n−m, i+N2 + n−m+
1, . . . , i+N2 + n− 1}.

Combining Properties (i) and (iii), we conclude that the
following (N1, N2)-acheivability condition holds: For each
si ∈ Fk, we have ŝi = si as long as no more than N1 erasures
occur on (s, r) during the time interval {i − k + 1, i − k +
2, . . . , i+n−1} and no more than N2 erasures occur on (r,d)
during the time interval {i+N2 + n−m, i+N2 + n−m+
1, . . . , i+N2 +n−1}. We are ready to obtain an upper bound
on the average loss probability

PT,N1,N2
, lim
L→∞

1

L

L∑
i=0

P{ŝi 6= si} (29)

achieved by the above symbol-wise DF strategy under the
random erasure model. According to the aforementioned
(N1, N2)-achievability condition, we have

P

{
ŝi 6= si

∣∣∣∣∣
i+T−N2∑
`=i+N1

e` ≤ N1,
i+T∑

`=i−T+2N1+N2

ε` ≤ N2

}
= 0

(30)
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P

{{ i+T−N2∑
`=i−T+N1+N2

e` > N1

}
∪
{ i+T∑
`=i+N1

ε` > N2

}}

≤
2T−N1−2N2+1∑

`=N1+1

(
2T −N1 − 2N2 + 1

`

)
α`(1− α)2T−N1−2N2+1−` +

T−N1+1∑
`=N2+1

(
T −N1 + 1

`

)
β`(1− β)T−N1+1−`,

(31)

for every i ≥ T − N1 − N2 where e∞ and ε∞ denote the
random erasure sequences introduced by (s, r) and (r,d)
respectively. Let α , P{e0 = 1} and β , P{ε0 = 1} be
two erasure probabilities as defined in Section I-C. Since

P
{{∑i+T−N2

`=i−T+N1+N2
e` > N1

}
∪
{∑i+T

`=i+N1
ε` > N2

}}
satisfies (31) as shown at the top of this page, it follows
from (30) that PT,N1,N2

is bounded above by the right-hand
side of (31), which implies that

PT,N1,N2 ≤ κ1(T,N1, N2) · αN1+1 + κ2(T,N1, N2) · βN2+1

for some positive constants κ1(T,N1, N2) and κ2(T,N1, N2)
that do not depend on α and β. In other words, PT,N1,N2

decays exponentially fast in min{N1 + 1, N2 + 1}.

VIII. NUMERICAL RESULTS

Recall that the motivation of this work is to find stream-
ing codes that perform well not only for the deterministic
model described in Section I-D, but also for the random
model described in Section I-C. Therefore, we consider a
statistical three-node relay network where i.i.d. erasures are
independently introduced to both channels, and let α and β be
the respective probabilities of experiencing an erasure in each
time slot for channels (s, r) and (r,d). We will compare the
symbol-wise DF and message-wise DF schemes constructed
by concatenating point-to-point streaming codes as prescribed
by Lemma 3 (constructing block codes), Lemma 4 (con-
structing point-to-point streaming codes from block codes)
and Lemma 5 (constructing DF schemes by concatenating
two point-to-point streaming codes). More precisely, we will
consider symbol-wise DF and message-wise DF schemes
constructed by concatenating an (n, k, T1)F-streaming code
and an (m, k, T2)F-streaming code where F is chosen to
satisfy |F| ≥ T + 1. We will also consider an instantaneous
forwarding (IF) strategy which uses a point-to-point streaming
code (as prescribed by Lemma 3 and Lemma 4) over the
three-node relay network as if the network is a point-to-point
channel. More specifically, under the IF strategy, the source
transmits symbols generated by the streaming code and the
relay forwards every symbol received from (s, r) to (r,d) in
each time slot. The overall point-to-point channel induced by
the IF strategy experiences an erasure if either one of the
channels experiences an erasure. It follows from (1) that the
IF strategy achieves the theoretic rate CT,N1+N2

.
In order to demonstrate the advantage of using symbol-wise

DF over message-wise DF and IF, we investigate their loss
probabilities as defined in (29) where each loss probability
is approximated by simulating the schemes over 108 channel

uses. Suppose T = 11. Choose an arbitrary finite field F with
|F| ≥ T + 1 = 12. For each N and T̄ satisfying N ≤ T̄ ≤ T ,
it follows from Lemma 3 that an N -achievable point-to-point
(n, k,∆)F-streaming code with ∆ = (T̄ , T̄ − 1, . . . , N), k =
T̄−N+1 and n = T̄+1 always exists, and we will refer such
an (n, k,∆)F-streaming code as an (n, k, T̄ )F-streaming code
in the rest of this section. We would like to investigate the
error-correcting capabilities of all symbol-wise DF, message-
wise DF and IF schemes with delay T = 11 whose coding
rates are greater than or equal to 2/3. Our simulation results
reveal the following:

1) Note that there are 18 combinations of (N1, N2) for
symbol-wise DF schemes with delay T = 11 and rate
no less than 2/3 as shown in Figure 6a. The symbol-
wise DF scheme with parameters (N1, N2) = (3, 3) and
rate 2/3 that is constructed by concatenating two copies
of 3-achievable point-to-point (9, 6, 8)F-streaming code
achieves the largest N1 +N2.

2) Note that there are 15 combinations of (N1, N2) for
message-wise DF schemes with delay T = 11 and rate
no less than 2/3 as shown in Figure 6b. The message-
wise DF scheme with parameters (N1, N2) = (2, 2) and
rate 2/3 that is constructed by concatenating two copies
of 2-achievable point-to-point (6, 4, 5)F-streaming code
achieves the largest N1 + N2. Although the message-
wise DF with parameters (N1, N2) = (2, 2) that is
constructed by concatenating a 2-achievable point-to-
point (6, 4, 5)F-streaming code and a 2-achievable point-
to-point (7, 5, 6)F-streaming code achieves the same
rate 2/3, it is inferior to the aforementioned one because
a point-to-point (6, 4, 5)F-streaming code can correct
more erasure patterns than a point-to-point (7, 5, 6)F-
streaming code. For example, the periodic erasure pat-
tern shown in Figure 7 can be perfectly recovered by a
point-to-point (6, 4, 5)F-streaming code but not a point-
to-point (7, 5, 6)F-streaming code.

3) Note that the set of parameters (N1, N2) that can be
chosen by an IF scheme with rate no less than 2/3
is {(N1, N2) : N1 + N2 ≤ 4} because an IF strategy
with parameters (N1, N2) achieves the theoretic rate
C11,N1+N2

= 12−(N1+N2)
12 . The IF scheme that uses a

4-achievable point-to-point (12, 8, 11)F-streaming code
achieves rate 2/3 and the largest N1 +N2 = 4.

We plot in Figure 8 the loss probabilities of the aforementioned
symbol-wise DF, message-wise DF and IF schemes with
largest N1 +N2. The upper bound (31) on the loss probability
for symbol-wise DF with T = 11, N1 = N2 = 3 and α = β is
also plotted on the same figure. As shown in Figure 8, symbol-
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Fig. 7: A periodic erasure sequence with period 6.
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Fig. 8: Loss probabilities for symbol-wise DF, message-wise
DF and IF with T = 11, rate 2/3 and largest N1 +N2 where
α denotes the symmetric erasure probability.

wise DF uniformly outperforms both message-wise DF and IF
for 0.01 ≤ α = β ≤ 0.2 where each scheme is operated at
rate 2/3 with decoding delay T = 11.

IX. EXTENSION TO SLIDING WINDOW MODEL

Consider the following sliding window model: Chan-
nels (s, r) and (r,d) introduce at most N1 and N2 erasures
respectively in any period of T + 1 consecutive time slots
(sliding window of size T + 1). Under the sliding window
model described above, we let CSW

T,N1,N2
be the (T,N1, N2)-

capacity as defined for the deterministic model in Definition 6.
Our goal is to show that

CSW
T,N1,N2

= CT,N1,N2
. (32)

Since any N1-erasure sequence can be introduced by chan-
nel (s, r) and any N2-erasure sequence can be introduced by
channel (r,d) in the sliding window model, we have

CSW
T,N1,N2

≤ CT,N1,N2
. (33)

It remains to show that

CSW
T,N1,N2

≥ CT,N1,N2
. (34)

Therefore, it suffices to show that the achievability stream-
ing scheme presented in Section V can be used to achieve
CT,N1,N2 in the sliding window model. Fix any (T,N1, N2),
and fix F such that |F| ≥ T + 1. Since CT,N1,N2

= 0 if
T < N1 + N2, we assume in the rest of this section that
T ≥ N1 +N2. As in Section V, define k , T −N1−N2 + 1,
n , k + N1 and m , k + N2, and we would like to prove
the existence of a (max{n,m}, k, T )F-streaming code that
corrects all erasures in the sliding window model. To this
end, we invoke Lemma 3 to obtain an N1-achievable point-to-
point (n, k, t)-block code and an N2-achievable point-to-point

(m, k,∆)-block code that satisfy (26) and (27) respectively.
It then follows from the proof of Lemma 4 and the proof
of Lemma 5 that there exists a (max{n,m}, k,d)F-streaming
code with delay profile specified in (28) such that every
message can be recovered as long as the following two
conditions hold:

1) Channel (s, r) introduces at most N1 erasures in any
period of n consecutive time slots where

n = T −N1 + 1 ≤ T.

2) Channel (r,d) introduces at most N2 erasures in any
period of m consecutive time slots where

m = T −N1 + 1 ≤ T.

Since the two conditions simultaneously hold under the slid-
ing window model, the (max{n,m}, k,d)F-streaming code
can recover every message. Consequently, (34) holds, which
together with (33) implies that (32) holds.

X. CONCLUDING REMARKS

The maximum coding rate of streaming codes with decoding
delay T that correct N1 and N2 erasures introduced by the
respective channels (s, r) and (s, r) is proved to be CT,N1,N2

as stated in Theorem 1. The maximum coding rate can be
achieved by symbol-wise DF. Symbol-wise DF outperforms
message-wise DF if and only if T > N1+N2 as shown in Sec-
tion VI. The maximum coding rate remain unchanged in the
more general sliding window model described in Section IX.
Numerical results in Section VIII demonstrate that symbol-
wise DF outperforms both message-wise DF and IF for some
three-node relay network where the channels are subject to
i.i.d. erasures.

Since packet erasures often occur in a bursty manner [23,24]
in addition to a sparse manner, future work may explore
streaming codes over the three-node relay network that cor-
rect both burst and arbitrary erasures and investigate the
corresponding maximum coding rate, similar to the studies
carried out for the point-to-point channel in [14,18]. Another
direction may generalize the existing streaming models for
point-to-point channels [15]–[17] and investigate the corre-
sponding streaming codes over the three-node relay network.
As explained in Introduction, the motivation behind studying
streaming codes over the three-node relay network is to
explore streaming codes that are suitable for low-latency appli-
cations in a practical cloud CDN that spans across continents.
Therefore, future studies may implement the symbol-wise DF,
message-wise DF and IF relaying strategies over data centers
in practical cloud CDNs.

APPENDIX A
DERIVATIONS IN THE CONVERSE PROOF OF THEOREM 1

Derivation of (17): For all ` ∈ Z+,∣∣∣∣{`, `+ 1, . . . , `+ T −N2} ∩ {i(T −N2 + 1), 1 +
i(T −N2 + 1), . . . , T −N1 −N2 + i(T −N2 + 1)}ji=0

∣∣∣∣
= T −N1 −N2 + 1. (35)
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Using the chain rule, we have

H
(
s0, s1, . . . , sT−N2+(j−1)(T−N2+1)

∣∣{xi(T−N2+1),

x1+i(T−N2+1), . . . ,xT−N1−N2+i(T−N2+1)

}j
i=0

)
=

T−N2+
(j−1)(T−N2+1)∑

`=0

H
(
s`
∣∣{xi(T−N2+1),x1+i(T−N2+1), . . . ,

xT−N1−N2+i(T−N2+1)

}j
i=0

, s0, s1, . . . , s`−1

)
≤ 0

where the inequality is due to (35) and (16).
Derivation of (18): Since the (N1, N2)-achievable

(n,m, k, T )F-streaming code restricted to channel (s, r) can be
viewed as a point-to-point streaming code with rate k/n and
delay T −N2 which can correct the periodic erasure sequence
ẽ∞ illustrated in Figure 3, it follows from the arguments in
[18, IV-A] that (18) holds. For the sake of completeness, we
present a rigorous proof below.

Using (17), we have

|F|k×j(T−N2+1) ≤ |F|n×(j+1)(T−N2−N1+1) (36)

because j(T − N2 + 1) source messages can take
|F|k×j(T−N2+1) values and (j + 1)(T −N2−N1 + 1) source
packets can take at most |F|n×(j+1)(T−N2−N1+1) values for
each j. Taking logarithm on both sides of (36) followed by
dividing both sides by j, we have

k(T −N2 + 1) ≤ n(1 + 1/j)(T −N1 −N2 + 1). (37)

Since (37) holds for all j ∈ N, it follows that (18) holds.
Derivation of (20): For all ` ∈ Z+,∣∣∣∣∣∣

{`+N1, `+N1 + 1, . . . , `+ T} ∩{
N1+N2+i(T−N1+1), N1+N2+1+i(T−N1+1),
. . . , T+i(T−N1+1)

}j
i=0

∣∣∣∣∣∣
= T −N1 −N2 + 1. (38)

Using the chain rule, we have

H
(
s0, s1, . . . , sT−N1+(j−1)(T−N1+1)

∣∣{x(r)
N1+N2+i(T−N1+1),

x
(r)
N1+N2+1+i(T−N1+1), . . . ,x

(r)
T+i(T−N1+1)

}j
i=−1

)
=

T−N1+
(j−1)(T−N1+1)∑

`=0

H
(
s`
∣∣s0, s1, . . . , s`−1,

{
x

(r)
N1+N2+i(T−N1+1),

x
(r)
N1+N2+1+i(T−N1+1), . . . ,x

(r)
T+i(T−N1+1)

}j
i=−1

)
≤ 0

where the inequality is due to (38) and (19).
Derivation of (21): Since the (N1, N2)-achievable

(n,m, k, T )F-streaming code restricted to channel (r,d) can
be viewed as an N2-achievable point-to-point (m, k, T−N1)F-
streaming code that can correct the periodic erasure sequence
ê∞ illustrated in Figure 4, it follows from the arguments in
[18, IV-A] that (21) holds. For the sake of completeness, we
present a rigorous proof below.

Since j(T − N1 + 1) source messages can take
|F|k×j(T−N1+1) values and (j + 2)(T −N1 −N2 + 1) relay

transmitted packets can take at most |F|m×(j+2)(T−N1−N2+1)

values for each j, it follows from (20) that

|F|k×j(T−N1+1) ≤ |F|m×(j+2)(T−N1−N2+1). (39)

Taking logarithm on both sides of (39) followed by dividing
both sides by j, we have

k(T −N1 + 1) ≤ m(1 + 2/j)(T −N1 −N2 + 1). (40)

Since (40) holds for all j ∈ N, it follows that (21) holds.

APPENDIX B
PROOF OF LEMMA 4

Fix a natural number k and a delay spectrum ∆ =
(∆0,∆1, . . . ,∆k−1). Suppose we are given an N -achievable
point-to-point (n, k,∆)F-block code over (u, v), and let

G = [ Ik P] ∈ Fk×n

be the generator matrix. By Definition 15, the (n, k,∆)F-block
code has the following properties:

(i) The length of the block code is n.
(ii) From time 0 to k − 1, the source symbols[

x[0] x[1] · · · x[k − 1]
]

=
[
s[0] s[1] · · · s[k − 1]

]
are transmitted.

(iii) From time k to n− 1, the parity-check symbols[
x[k] x[k + 1] · · · x[n− 1]

]
=
[
s[0] s[1] · · · s[k − 1]

]
P

are transmitted.
(iv) Let ∆`,n , min{∆`, n − 1 − `} to simplify notation.

Upon receiving[
y[0] y[1] . . . y[`+ ∆`,n]

]
=[

g1(x[0], e0) g1(x[1], e1) . . . g1(x[`+ ∆`,n], e`+∆`,n
)
]
,

the destination can perfectly recover s[`] by time `+∆`,n

for each ` ∈ {0, 1, . . . , k − 1} as long as e∞ ∈ ΩN .
In order to construct an N -achievable point-to-point

(n, k,∆)F-streaming code (cf. Definition 16), we first let
{ui}∞i=0 denote a sequence of length-k packets and let ui[`]
denote the (`+ 1)th element of ui such that

ui , [ui[0] ui[1] · · · ui[k − 1]] (41)

for all i ∈ Z+. Then, construct[
xi[0] xi+1[1] · · · xi+n−1[n− 1]

]
,
[
ui[0] ui+1[1] · · · ui+k−1[k − 1]

]
G (42)

for each i ∈ Z+ where G is the generator matrix of the N -
achievable (n, k, T )F-block code. In other words, we code ui
diagonally as illustrated in Table V. At each time i ∈ Z+,
node u transmits

x
(u)
i ,

[
xi[0] xi[1] · · · xi[n− 1]

]
. (43)

Our goal is to show that the streaming code specified by (41),
(42) and (43) is N -achievable. To this end, we fix any i ∈ Z+



0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2940833, IEEE
Transactions on Information Theory

16

and any e∞ ∈ ΩN , and would like to show that node v can
perfectly recover ui =

[
ui[0] ui[1] · · · ui[k − 1]

]
based on

[y
(v)
0 y

(v)
1 . . . y

(v)
i+T ]

= [gn(x
(u)
0 , e0) gn(x

(u)
1 , e1) . . . gn(x

(u)
i+T , ei+T )]. (44)

According to (43), for each i ∈ Z+,
[
xi[0] xi+1[1] · · ·

xi+n−1[n − 1]
]

are transmitted from time i to i + n − 1.
Therefore, it follows from (42), Property (iv) and (44) that
for each i ∈ Z+ and each ` ∈ {0, 1, . . . , k − 1}, the
destination can perfectly recover ui[`] by time i + ∆` based
on [y

(v)
i y

(v)
i+1 . . . y

(v)
i+∆`

]. Consequently, for any i ∈ Z+

and any e∞ ∈ ΩN , the destination can perfectly recover
ui[`] by time i + ∆` for each ` ∈ {0, 1, . . . , k − 1}, which
implies by Corollary 2 that the (n, k,∆)F-streaming code is
N -achievable.

APPENDIX C
PROOF OF LEMMA 5

Suppose we are given an N1-achievable point-to-point
(n, k, t)F-streaming code and an N2-achievable point-to-point
(m, k,∆)F-streaming code where t = (t0, t1, . . . , tk−1) and
∆ = (∆0,∆1, . . . ,∆k−1). We would like to concatenate
the two codes over the three-node relay network such that
the (n, k, t)F-streaming code and the (m, k,∆) are used
over (s, r) and (r,d) respectively. To this end, we first let
{f (s)
i }i∈Z+

and {f (r)
i }i∈Z+

be the encoding functions of the
(n, k, t)F-streaming code and the (m, k,∆)F-streaming code
respectively. Consider the following symbol-wise DF scheme
constructed by concatenating the two point-to-point codes.

For each time i ∈ Z+, let si =
[
si[0] si[1] . . . si[k − 1]

]
denote the k symbols transmitted by node s, let

x
(s)
i , f

(s)
i (s0, s1, . . . , si)

be the length-n source packet generated by the (n, k, t)F-
streaming code, and let

ŝ
(r)
i ,

[
ŝ

(r)
i−t0 [0] ŝ

(r)
i−t1 [1] . . . ŝ

(r)
i−tk−1

[k − 1]
]

be the k estimates for si−t0 [0], si−t1 [1], . . . , si−tk−1
[k − 1]

constructed by the (n, k, t)F-streaming code. In addition, let

x
(r)
i , f

(r)
i (ŝ

(r)
0 , ŝ

(r)
1 , . . . , ŝ

(r)
i )

be the length-m relay transmitted packet generated by the
(m, k,∆)F-streaming code, and let

ŝ
(d)
i ,

[
ŝ

(d)
i−t0−∆0

[0] ŝ
(d)
i−t1−∆1

[1] . . . ŝ
(d)
i−tk−1−∆k−1

[k − 1]
]

be the k estimates for ŝ(r)
i−t0 [0], ŝ

(r)
i−t1 [1], . . . , ŝ

(r)
i−tk−1

[k − 1]
constructed by the (m, k,∆)F-streaming code. To simplify
notation, for any ` ∈ {0, 1, . . . , k−1}, we let sj [`] = ŝj [`] = 0
for any j < 0.

Fix any erasure sequences e∞ ∈ ΩN1 and ε∞ ∈ ΩN2 . Since
the (n, k, t)F-streaming code is N1-achievable,

ŝ
(r)
i−t` [`] = si−t` [`] (45)

for all i ∈ Z+ and all ` ∈ {0, 1, . . . , k − 1}. Similarly, since
the (m, k,∆)F-streaming code is N2-achievable,

ŝ
(d)
i−t`−∆`

[`] = ŝ
(r)
i−t`−∆`

[`] (46)

for all i ∈ Z+ and all ` ∈ {0, 1, . . . , k − 1}. Combining (45)
and (46), we have

ŝ
(d)
i−t`−∆`

[`] = si−t`−∆`
[`] (47)

for all i ∈ Z+ and all ` ∈ {0, 1, . . . , k − 1}. Since (47) holds
for any e∞ ∈ ΩN1

and ε∞ ∈ ΩN2
, the resultant concatenated

code is an (N1, N2)-achievable (max{n,m}, k,d)F-streaming
code where d is as defined in (24).
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