
Low-Latency Network-Adaptive Error Control for
Interactive Streaming

Silas L. Fong

University of Toronto

Toronto, Ontario, Canada

silas.fong@utoronto.ca

Salma Emara

University of Toronto

Toronto, Ontario, Canada

salma@ece.utoronto.ca

Baochun Li

University of Toronto

Toronto, Ontario, Canada

bli@ece.toronto.edu

Ashish Khisti

University of Toronto

Toronto, Ontario, Canada

Wai-Tian Tan

Cisco Systems

San José, California

Xiaoqing Zhu

Cisco Systems

San José, California

John Apostolopoulos

Cisco Systems

San José, California

ABSTRACT
We introduce a novel network-adaptive algorithm that is suitable for

alleviating network packet losses for low-latency interactive com-

munications between a source and a destination. Network packet

losses happen in a bursty manner as well as an arbitrary manner,

where the former is usually due to network congestion and the latter

can be caused by unreliable wireless links. Our network-adaptive

algorithm estimates in real time the best parameters of a recently

proposed streaming code that corrects both arbitrary losses (which

cause crackling noise in audio) and burst losses (which cause unde-

sirable jitters and pauses in audio) using forward error correction

(FEC). The network-adaptive algorithm updates the coding param-

eters in real time as follows: The destination estimates appropriate

coding parameters based on its observed packet loss pattern and

then the parameters are fed back to the source for updating the un-

derlying code. In addition, a new explicit construction of practical

low-latency streaming codes that achieve the optimal tradeoff be-

tween the capability of correcting arbitrary losses and the capability

of correcting burst losses is provided. Simulation evaluations based

on real-world packet loss traces reveal that our proposed network-

adaptive algorithm combined with our optimal streaming codes

achieves significantly higher reliability compared to uncoded and

non-adaptive FEC schemes over UDP (User Datagram Protocol).

CCS CONCEPTS
•Networks→Transport protocols; •Theory of computation
→ Online learning algorithms.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00

https://doi.org/10.1145/3343031.3350942

KEYWORDS
network-adaptive algorithm, forward error correction (FEC), inter-

active streaming, low-latency

ACM Reference Format:
Silas L. Fong, Salma Emara, Baochun Li, Ashish Khisti, Wai-Tian Tan, Xiao-

qing Zhu, and John Apostolopoulos. 2019. Low-Latency Network-Adaptive

Error Control for Interactive Streaming. In Proceedings of the 27th ACM
International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice,
France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3343031.

3350942

1 INTRODUCTION
Real-time interactive streaming is an essential component for many

low-latency applications over the Internet including high-definition

video conferencing, augmented/virtual reality, and online gaming.

In particular, low-latency video conferencing has been a corner-

stone for communication and collaboration for individuals and

enterprises. At the core of these important applications is the need

to reliably deliver packets with low latency.

Packet erasure (loss) at the network layer for an end-to-end com-

munication over the Internet is inevitable. Two main approaches

have been implemented at the transport layer to control end-to-end

error introduced by the network layer: Automatic repeat request

(ARQ) and forward error correction (FEC). Both ARQ and FEC can

alleviate the damages of packet losses that may be caused by unreli-

able wireless links or congestion at network bottlenecks. However,

ARQ schemes are not suitable for real-time streaming applications

that involve arbitrary global users because each retransmission will

incur an extra round-trip delay which may be intolerable. Specif-

ically, correcting an erasure using ARQ results in a 3-way delay

(forward + backward + forward), and this aggregate (3-way) delay

including transmission, propagation and processing delays is re-

quired to be lower than 150 ms for interactive applications such as

voice and video according to the International Telecommunication

Union (ITU) [9, 15]. This aggregate delay makes ARQ impractical

for communication between two distant global users with aggre-

gate delay larger than 150 ms (even if the signals travel at the speed

https://doi.org/10.1145/3343031.3350942
https://doi.org/10.1145/3343031.3350942
https://doi.org/10.1145/3343031.3350942

of light, the minimum possible aggregate delay between two dia-

metrically opposite points on the earth’s circumference is at least

200 ms [1]).

On the contrary, FEC schemes are amenable to low-latency com-

munications among global users because no retransmission is re-

quired. Instead of using retransmissions to achieve high reliability,

FEC schemes increase the correlation among the transmitted sym-

bols by adding redundant information. Low-density parity-check

(LDPC) and digital fountain codes are two traditional FEC schemes

that are currently used in the DVB-S2 [2] and DVB-IPTV [3] stan-

dards for non-interactive streaming applications. However, they are

typically operated over a few thousand symbols and are not suitable

for interactive streaming applications where short block lengths

(e.g., a few hundred symbols) are required due to the stringent

delay constraints. On the other hand, low-latency FEC schemes

that operate over short block lengths have been proposed to im-

prove interactive communication [6, 10, 14, 17]. Indeed, the use of

FEC schemes for protecting voice streams against packet erasures

largely attributed to the success of Skype [7], and an adaptive hybrid

NACK/FEC has been used in WebRTC to obtain a better trade-off

between temporal quality, spatial video quality and end-to-end

delay [6].

Recently, several systematic studies have been carried out to

characterize the fundamental limits of streaming codes (i.e., low-

latency FEC schemes) that correct burst and arbitrary (isolated)

erasures [4, 11, 13], where the former is usually due to network

congestion and the latter can be caused by unreliable wireless links.

In particular, the authors in [4, 11] have provided a high-complexity

construction of a class of FEC streaming codes that possess the fol-

lowing two properties:

(a) Correct both arbitrary and burst erasures, which cause crackling

noise and undesirable jitters/pauses respectively for audio.

(b) Achieve the optimal tradeoff between the capability of correcting

arbitrary erasures and the capability of correcting burst erasures.

Therefore, we are motivated to design real-time error control

based on low-complexity FEC streaming codes that satisfy Proper-

ties (a) and (b) and implement the design in real-world networks.

Our real-time error control consists of the following:

(i) A new explicit construction of low-latency streaming codes over

GF(256) that satisfy Properties (a) and (b).

(ii) In order to take varying network conditions into account, we

also design a network-adaptive algorithm that updates the parame-

ters of our constructed low-latency streaming codes in real time as

follows: The destination estimates appropriate coding parameters

based on its observed erasure pattern and then the estimated pa-

rameters are fed back to the source for updating the code.

In addition, we conduct real-world experiments to demonstrate

the performance of our network-adaptive FEC streaming scheme.

Our experimental results reveal that our network-adaptive scheme

achieves significantly higher reliability compared to uncoded and

non-adaptive FEC schemes over UDP (User Datagram Protocol).

2 CONCEPT OF FEC STREAMING CODES
We first present a general framework of an FEC streaming code as

illustrated in Figure 1. The source periodically generates a sequence

of multimedia frames. Eachmultimedia frame together with a parity

Figure 1: A general FEC framework

Figure 2: Packet drops marked by dark squares

frame is encapsulated in a network packet, which travels to the

destination with a propagation delay dp. The network packets can

be dropped by the network in an arbitrary manner due to unreliable

(wireless) links or in a bursty manner due to network congestion,

which are illustrated in Figure 2 respectively. The destination aims

to recover the multimedia frames sequentially subject to a decoding

delay constraint d
d
, where lost multimedia frames can be recovered

with the help of subsequent parity frames. For example, if packets 0

and 1 are dropped as illustrated in Figure 1, then the parity frames

in packets 2 to 7 may help recover frame 0 with decoding delay of 8

frames, and the parity frames in packets 2 to 8 may help recover

frame 1 with the same decoding delay.

If we follow existing FEC technologies (e.g., WebRTC [6] and

Skype [7]) and choose the parity frames based on coding over the

past multimedia frames using maximum-distance separable (MDS)

codes, the resulting FEC streaming code is optimal for correcting

arbitrary erasures subject to the decoding delay d
d
. For instance,

if each parity frame equals the XOR between the past two frames

(e.g., p2 = s0 + s1), then the resultant code can correct two arbitrary

erasures with decoding delay of 3 frames (e.g., if packets 1 and 2 are

erased, then s1 can be recovered from packets 3 and 4; if packets 1

and 3 are erased, then s1 can be recovered from packets 0 and 2).

However, the above construction is not optimal for correcting burst

erasures. In general, simple FEC streaming strategies based on MDS

codes are not optimal.

In order to achieve the optimal tradeoff between the capability

of correcting arbitrary losses and the capability of correcting burst

losses subject to a decoding delay constraint, we have to carefully

choose the parity frames. The existence of such optimal parity

frames has been recently proved in [4, 11].

3 FORMULATION OF STREAMING CODES
This section formally states the optimality of streaming codes.

Notation
The sets of natural numbers and non-negative integers are denoted

by N and Z+ respectively. A finite field is denoted by F. The set of

k-dimensional row vectors over F is denoted by Fk . A row vector in

Fk is denoted by a ≜ [a0 a1 . . . ak−1
]. The k-dimensional identity

matrix is denoted by Ik and the L × B all-zero matrix is denoted by

0L×B . An L × B parity matrix of a systematic MDS (L + B, L)-code
is denoted by VL×B , where L + B and L denote the blocklength

and the number of data symbols respectively. For this MDS code,

any L columns of [IL VL×B] ∈ FL×(L+B) are independent. It is well
known that a systematic MDS (L + B, L)-code always exists as long
as |F| ≥ L + B [12].

Definitions and Optimality of Streaming Codes
All the definitions below follow the conventions as in [4, 11, 13].

Definition 1. An (n,k,T)F-streaming code consists of:
(1) A sequence of messages {si }∞i=0

where each message si consists
of k symbols in F.
(2) An encoder fi for each i ∈ Z+. Each fi is used by the source
at channel use i to encode the source messages according to xi =
fi (s0, s1, . . . , si), where each packet xi consists of n symbols in F.
(3) A decoder φi+T for each i ∈ Z+. Each φi+T is used by the destina-
tion at channel use i +T to produce ŝi ∈ Fk , an estimate of si , based
on the subset of packets {xj }i+Tj=0

that are non-erased.

Definition 2. An (n,k,T)F-streaming code is said to correct any
(B,N)-erasure if ŝi = si holds for all i ∈ Z+ for the following sliding-
window channel: In any sliding window {i, i+1, . . . , i+T } of sizeT +1

starting at channel use i ∈ Z+, either a burst erasure of length at
most B or multiple erasures of count at most N are introduced.

Definition 3. The (T ,B,N)-capacity is the maximum rate k/n
achievable by (n,k,T)F-streaming codes that correct all (B,N)-erasures.

Theorem 1 ([4, 11]). Define

C(T ,B,N) ≜
T − N + 1

T − N + B + 1

. (1)

For any T ≥ B ≥ N ≥ 1, the (T ,B,N)-capacity equals C(T ,B,N).

Theorem 1 motivates the following definition of optimal codes.

Definition 4. For any T ≥ B ≥ N ≥ 1, an (n,k,T)F-code that
corrects any (B,N)-erasure is said to be optimal if k

n = C(T ,B,N).

4 EXPLICIT CONSTRUCTION OF OPTIMAL
STREAMING CODES OVER GF(256)

Although the existence of optimal streaming codes has been proved

in [4, 11], no explicit construction over practical field size was given.

Motivated by the fact that finite fields with characteristic 2 allow

very efficient computation, we provide the first explicit construction

of optimal streaming codes over GF(256) whenT ≤ 11. Readers who

are uninterested in the explicit construction may skip the remaining

part of this section and take the following result as granted:

“Let F = GF(256). For any T ≥ B ≥ N ≥ 1, an (n,k,T)F-code
that corrects any (B,N)-erasure can be efficiently generated."

The explicit construction leverages a standard periodic interleaving

approach which constructs streaming codes based on block codes

as defined below.

Definition 5. An (n,k,T)F-block code consists of:
(1) A sequence of k symbols {s[i]}k−1

i=0
where s[i] ∈ F.

(2) A generator matrix G ∈ Fk×n . The n codeword symbols are gener-
ated as

[
x[0] . . . x[n − 1]

]
=

[
s[0] . . . s[k − 1]

]
G.

(3) A decoder φi+T for each i ∈ {0, 1, . . . ,k − 1}. Each φi+T is
used by the destination at channel use min{i +T ,n − 1} to produce
ŝ[i] ∈ F, an estimate of s[i], based on the subset of codeword symbols[
x[0] x[1] . . . x[min{i +T ,n − 1}]

]
that are non-erased.

Definition 6. An (n,k,T)F-block code is said to correct any

(B,N)-erasure if ŝi = si holds for all i ∈ Z+ as long as either a
burst erasure of length at most B or multiple erasures of count at
most N occur in every sliding window of size T + 1. The block code is
said to be optimal if k

n = C(T ,B,N).

We will leverage the following lemma to construct optimal

streaming codes based on optimal block codes. The lemma is a di-

rect consequence of [4, Lemma 1] with the identificationW = T + 1.

The proof is standard and is based on periodic interleaving (cf. [5]

and [13, Sec. IV-A])).

Lemma 1. Given an (n,k,T)F-block code which corrects any (B,N)-
erasure, we can periodically interleave the block code and construct
an (n,k,T)F-streaming code which corrects any (B,N)-erasure.

Due to Lemma 1, Definition 4 and Definition 6, the search for

explicit construction of optimal streaming codes over GF(256) re-

duces to the search for explicit construction of optimal block codes

over GF(256). The following lemma states specific structures of the

parity matrices of optimal codes. The lemmas are expressed with

the help of the following definition of anm-row N -diagonal matrix:

Dm×(N+m)
N ≜


d (0)

0
· · · d (0)N−1

0 · · · · · · 0

0 d (1)
0

· · · d (1)N−1
0 · · · 0

.

.

.
. . .

. . .
. . .

. . .
. . .

.

.

.

0 · · · 0 d (m−1)

0
. . . d (m−1)

N−1
0


where {d

(i)
ℓ
| 0 ≤ i ≤ m − 1, 0 ≤ ℓ ≤ N − 1} assume arbitrary values.

Lemma 2 ([4, Lemmas 2, 3 and 4]). Fix any T ≥ B ≥ N ≥ 1 and
let k ≜ T − N + 1 and n ≜ k + B. If k ≥ B (i.e., k/n ≥ 1/2), there
exists a P having the form

D(B−N)×BN
0N×(B−N) Pright

V(k−B)×B

 (2)

such that G = [Ik P] is the generator matrix of an (n,k,T)-code
that corrects any (B,N)-erasures, where Dm×(N+m)

N is anm-row N -
diagonal matrix, Pright is an N × N matrix, and V(k−B)×B is a (k −
B) × B parity matrix of a systematic MDS code. On the other hand, if
k < B (i.e., k/n < 1/2), there exists a P having the form

Pleft

V(k−B+N)×(B−k)left

D(B−N)×kk−B+N

0 V(k−B+N)×(k−B+N)right

 (3)

such that G = [Ik P] is the generator matrix of an (n,k,T)-code
that corrects any (B,N)-erasure, where D(B−N)×kk−B+N is a (B − N)-row

(k−B+N)-diagonal matrix,
[
V(k−B+N)×(B−k)left V(k−B+N)×(k−B+N)right

]
constitutes the (k − B + N) × N parity matrix of a systematic MDS
code, Pleft is a (B−N)×(B−k)matrix, and 0 is the (k−B+N)×(B−N)
zero matrix.

In the rest of the paper, we assume F = GF(256). Suppose we

are given a k × B matrix Vk×B where k ≥ 1 and B ≥ 1, and let

n ≜ k + B. Then, we construct a parity matrix P ∈ Fk×B as follows.

• If k ≥ B, construct P by replacing every non-zero (i, j)th

element of P in (2) with the (i, j)th element in Vk×B .
• If k < B, construct P by replacing every non-zero (i, j)th

element of P in (3) with the (i, j)th element in Vk×B .

Let C(Vk×B) denote the (n,k,T)F-block code with generator ma-

trixG as constructed above. If C(Vk×B) corrects any (B,N)-erasure
andk = T−N+1, then C(Vk×B) is optimal by Definition 4. In search

of a useful Vk×B , we define V(T−N+1)×B
Cauchy

=
[
v
Cauchy

i j

]
0≤i≤T−N ,
0≤j≤B−1

to

be a (T − N + 1) × B Cauchy matrix over GF(256) where v
Cauchy

i j ≜

(i + j + k)−1
. Similarly, define V(T−N+1)×B

Vand
=

[
vVandi j

]
0≤i≤T−N ,
0≤j≤B−1

to

be a (T − N + 1) × B Vandermonde matrix over GF(256) where

vVandi j ≜ 2
i×j

. Using computer search, we obtain the following.

Proposition 3. Let F = GF(256). For any 1 ≤ N ≤ B ≤ T ≤ 11,
the (n,k,T)F-block code C(V

(T−N+1)×B
Cauchy) corrects any (B,N)-erasure

if (T ,B,N) < {(10, 8, 4), (11, 5, 4)}. In addition, C(V(T−N+1)×B
Vand) cor-

rects any (B,N)-erasure if (T ,B,N) ∈ {(10, 8, 4), (11, 5, 4)}.

In view of Proposition 3, we define for any 1 ≤ N ≤ B ≤ T ≤ 11

the parity matrix of an optimal (n,k,T)F-block code as

V(T−N+1)×B
optimal

≜

{
V(T−N+1)×B
Cauchy

if (T ,B,N) < {(10, 8, 4), (11, 5, 4)},

V(T−N+1)×B
Vand

otherwise.

Using Proposition 3 and the definition of V(T−N+1)×B
optimal

, we conclude

that C(V(T−N+1)×B
optimal

) is an optimal block code. In addition, we can

construct an optimal streaming code by periodically interleaving n

copies of C(V(T−N+1)×B
optimal

) as illustrated below (cf. Lemma 1).

Example 1. Suppose we are given a (6, 3, 5)F-block code that cor-
rects any (3, 2)-erasure with generator matrix

G =


1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 0 1 2

 .
The block code is optimal by Definition 4. Suppose we have a stream-
ing message {si }i ∈Z+ where si =

[
si [0] si [1] si [2]

]
∈ F3. From

channel use i − 2 to i + 5, the symbols yielded by the (6, 3, 5)F-code
constructed by periodically interleaving the (6, 3, 5)F-block code ac-
cording Lemma 1 are shown in Table 1. The symbols in Table 1 which
are highlighted in the same color diagonally (in direction ↘) are
encoded using the same (6, 3, 5)F-block code. Given the fact that the
(6, 3, 5)F-block code corrects any (3, 2)-erasure, we can see from Ta-
ble 1 that si =

[
si [0] si [1] si [2]

]
can be perfectly recovered by channel

use i + 5 as long as a burst erasure of length no longer than 3 or no
more than 2 arbitrary erasures occur in every sliding window of size 6.

By periodically interleaving n copies of C(V(T−N+1)×B
optimal

), we can

construct an (n,k,T)-code with k = T −N + 1 and n = k +B, which
is optimal ifT ≤ 11 by Proposition 3. For any 1 ≤ N ≤ B ≤ T ≤ 11,

we let CT ,B,N denote the optimal (n,k,T)-code that is constructed

by interleaving n copies of C(V(T−N+1)×B
optimal

). The optimal streaming

codes CT ,B,N are the building blocks for the network-adaptive

streaming scheme described in the next section.

5 NETWORK-ADAPTIVE ALGORITHM

Algorithm 1: Estimating conservative B and N

Result: B̂i and N̂i are generated at the destination for every

packet i where 0 ≤ i ≤ L − 1. All correctible

length-(T + 1) erasure patterns that occur by

channel use i can be perfectly recovered by any

code that corrects all (B̂i , N̂i)-erasures.

Inputs : T , L and eL denoting decoding delay, duration,

and length-L erasure pattern respectively.

Outputs : B̂i and N̂i for every packet i .

1 previous_seq_#← −1

2 (B̂−1, N̂−1,Nmax) ← (0, 0, 0)

3 for i ← 0 to L − 1 do // packets 0 to L − 1 sent
4 if ei = 0 then // packet i not erased
5 current_seq_#← i

6 for j ← previous_seq_# + 1 to current_seq_# do
7 W ← {j −T , j −T + 1, . . . , j}

8 B̄j ← max{span(eW)

9 N̄j ← max{wt(eW), N̂j−1}

10 Nmax ← max{wt(eW),Nmax}

11 if N̄j = 0 or N̄j = T + 1 then // trivial

12 (B̂j , N̂j) ← (B̂j−1, N̂j−1)

13 else // calculate 3 hypothetical rates

14 RB←

{
0 if B̄=T + 1,

C(T , B̄j ,max{N̂j−1, 1}) if B̄<T + 1

15 RN ← C(T ,max{B̄j−1, N̄j }, N̄j)

16 RMDS ← C(T ,Nmax,Nmax)

17 switch max{RB ,RN ,RMDS} do
18 case RB do // RB largest

19 (B̂j , N̂j) ← (B̄j ,max{N̂j−1, 1})

20 break

21 case RN do // RN largest

22 (B̂j , N̂j) ← (max{B̂j−1, N̄j }, N̄j)

23 break

24 case RMDS do // RMDS largest

25 (B̂j , N̂j) ← (Nmax,Nmax)

26 end
27 end
28 end
29 previous_seq_#← current_seq_#

30 end
31 end

We first present a conservative algorithm illustrated by Algo-

rithm 1 that estimates conservative coding parameters B and N in L
channel uses. Before the algorithm tracks any packet erasures, the

decoding delay denoted by T and the duration of the algorithm de-

noted by L are fixed, and the initial estimates for B and N , denoted

Channel use i − 2 i − 1 i i + 1 i + 2 i + 3 i + 4 i + 5

symbol 0 si−2[0] si−1[0] si [0] si+1[0] si+2[0] si+3[0] si+4[0] si+5[0]

symbol 1 si−2[1] si−1[1] si [1] si+1[1] si+2[1] si+3[1] si+4[1] si+5[1]

symbol 2 si−2[2] si−1[2] si [2] si+1[2] si+2[2] si+3[2] si+4[2] si+5[2]

symbol 3 . . .
. . .

. . . si−2[0] si−1[0] si [0] . . .
. . .

symbol 4 . . .
. . .

. . .
. . .

si−2[0]+si−1[1]+si [2] si−1[0]+si [1]+si+1[2] si [0]+si+1[1]+si+2[2] . . .

symbol 5 . . .
. . .

. . .
. . .

. . .
si−1[1] + 2si [2] si [1] + 2si+1[2] si+1[1]+2si+2[2]

Table 1: Symbols yielded by a (6, 3, 5)F-code through interleaving a (6, 3, 5)F-block code.

by B̂−1 and N̂−1 respectively, are both set to 0. In other words, the

channel is assumed to be initially ideal which introduces no erasure.

In addition, the variable Nmax which keeps track of the maximum

number of arbitrary erasures is set to 0.

Every packet transmitted at channel use i ∈ Z+ is assumed to

either reach the destination in the same channel use or be erased. In

practice, packets that are either dropped in a network or received in

the wrong order are erased. For every non-erased packet received

at channel use i ∈ Z+, the algorithm first deduces the erasure

pattern eW ≜ (ej−T , ej−T+1, . . . , ej) ∈ {0, 1}
T+1

for each sliding

windowW = {j −T , j −T + 1, . . . , j} of size T + 1 such that j ≤ i ,
where an element of eW equals 1 if and only if the corresponding

packet is erased. Let wt(eW) ≜
∑

ℓ∈W eℓ and

span(eW) ≜

{
0 if wt(eW) = 0,

p
last
− p

first
+ 1 otherwise

be the weight and span of eW respectively, where p
first

and p
last

denote respectively the channel use indices of the first and last

non-zero elements in eW . Intuitively speaking, span(eW) is the
minimum length over all intervals that contain the support of eW .

For each deduced erasure pattern eW = (ej−T , ej−T+1, . . . , ej), the
algorithm first calculates wt(eW) and span(eW), and then assign

the values to (B̄j , N̄j ,Nmax) as shown at the beginning of the pseudo-

code. Then one of the following updates will occur:

(i) B̂j will be assigned the value B̄j .

(ii) N̂j will be assigned the value N̄j .

(iii) Both B̂j and N̂j will be assigned the value Nmax.

More specifically, the estimates B̂j and N̂j will be output according

to the following three mutually exclusive cases:

Case N̄j = 0: In this case,

B̄j = N̄j = wt(eW) = span(eW) = N̂j−1 = B̂j−1 = 0,

which implies that no erasure has yet occurred upon the receipt

of packet j. Then, Algorithm 1 sets N̂j = B̂j = 0, meaning that the

estimates for N and B remain to be zeros.

Case N̄j = T + 1: In this case, all the elements of eW equal one,

meaning that all the packets in the window {j −T , j −T + 1, . . . , j}
are erased, which implies that no (n,k,T)F-code can correct eW .

Therefore, Algorithm 1 sets N̂j = N̂j−1 and B̂j = B̂j−1, meaning

that the estimates for N and B remain unchanged.

Case 0 < N̄j , T + 1: In this case, every length-(T + 1) erasure

pattern εT+1
that has occurred up to channel use j can be classified

into the following two types, with the terminology that εT+1
is

a (B,N)-erasure if either span(eW) ≤ B or wt(eW) ≤ N holds:

(i) εT+1
consists of all ones, hence it is uncorrectable;

(ii) εT+1
is simultaneously a (B̄j ,max{N̂j−1, 1})-erasure, a

(max{B̂j−1, N̄j }, N̄j)-erasure, and a (Nmax,Nmax)-erasure.

Note that by construction, every length-(T + 1) erasure pattern

up to channel use j − 1 can be classified into either Type (i) or is

an (B̂j−1, N̂j−1)-erasure. Therefore, Algorithm 1 calculates the best

estimates for B̂j and N̂j so that the following two conditions hold:

(I) Every length-(T + 1) erasure pattern up to channel use j can
be classified into either Type (i) or is a (B̂j , N̂j)-erasure.

(II) The loss in the maximum achievable rate induced by updat-

ing the estimates from (B̂j−1, N̂j−1) to (B̂j , N̂j) is minimized.

The presence of Condition (II) is essential because without Con-

dition (II), the algorithm can always output the trivial estimates

B̂j = N̂j = T that lead to the lowest rate C(T ,T ,T) = 1

T+1
.

In order to calculate the best estimates for B̂j and N̂j so that Con-

ditions (I) and (II) hold, Algorithm 1 computes the three hypothetical

rates (RB ,RN ,RMDS) based on the (T ,B,N)-capacity as shown in

the middle of the pseudocode, where RB denotes the hypothetical

maximum achievable rate if B̂j is assigned the value B̄j followed by

N̂j being assigned the value max{N̂j−1, 1} (note that any (B̂j , N̂j−1)-

erasure is also a (B̂j ,max{N̂j−1, 1})-erasure), RN denotes the hy-

pothetical maximum achievable rate if N̂j is assigned the value N̄j
followed by B̂j being assigned the value max{B̂j−1, N̂j } (note that

any (B̂j−1, N̂j)-erasure is also a (max{B̂j−1, N̂j }, N̂j)-erasure), and

RMDS denotes the hypothetical maximum rate if both B̂j and N̂j are

assigned the same value Nmax. Finally, Algorithm 1 sets (B̂j , N̂j) as

shown at the end of the pseudocode so that the resultant maximum

achievable rate C(T , B̂j , N̂j) equals max{RB ,RN ,RMDS}.

Combining the above three cases, we conclude that for all 0 ≤

i ≤ L− 1, Algorithm 1 generates estimates (B̂i , N̂i) such that Condi-

tions (I) and (II) hold. Algorithm 1 provides conservative estimates

for B and N in the sense that the algorithm yields a code that per-

fectly corrects all length-(T + 1) correctible erasure sequences that

have been observed.

An obvious drawback of Algorithm 1 is that the sequence of

recommended coding rates is monotonically decreasing over time.

Therefore, we propose the following network-adaptive algorithm
based on interleaving Algorithm 1 as follows: At each channel

use ℓ = 0, L, 2L, . . ., an instance of Algorithm 1 denoted by Aℓ is

initiated. Each Aℓ lasts for 2L channel uses, and let (B̂
(ℓ)
j , N̂

(ℓ)
j)

denote the corresponding estimates at channel use j. Then at each

channel use j, the network-adaptive algorithm outputs the esti-

mate (B̂
(ℓ)
j , N̂

(ℓ)
j) provided by Aℓ at channel use j where ℓ is the

unique integer that satisfies ℓ + L ≤ j < j + 2ℓ. In other words,

each interleaved Algorithm 1 will run for 2L channel uses where

the first L estimates are ignored by the algorithm and the last L
estimates are output by the algorithm. Due to our construction,

the coding rate generated by our network-adaptive algorithm is

not monotonically decreasing over time. Particularly, if there are

no erasures for consecutive 2L channel uses, the next estimates of

(B,N) would be (0, 0).

6 NETWORK-ADAPTIVE STREAMING CODE
Based on the estimates {(B̂j , N̂j)}j ∈Z+ suggested by the network-

adaptive algorithm (which could be computed at the destination

and then fed back to the source), the source adjusts the streaming

encoder accordingly so that more erasure patterns can be corrected

at the cost of a small rate loss. Initially starting from channel use 0,

the network-adaptive algorithm outputs (B̂0, N̂0) = (0, 0) and the

source will use the trivial rate-1 encoder so that the transmitted

codeword is identical to the generated message. The source contin-

ues to use the trivial rate-1 encoder until the algorithm updates the

estimates for B and N to positive values.

Whenever the algorithm provides new estimates for (B,N) at
channel use j denoted by (B̂j , N̂j), the source will switch to the new

encoder associated with the code CT ,B̂j ,N̂j
(defined at the end of

Section 4). In order to ensure a smooth transition from using an old

encoder with parameters (B
old
,N

old
) to using a new encoder with

parameters (Bnew,Nnew) , (Bold,Nold
), the source has to ensure

that every transmitted packet is protected by either the old or new

encoder. The smooth transition is carried out as described below.

Suppose the source wants to use a new encoder associated with

CT ,Bnew,Nnew
starting from channel use i , it will use both the old

and new encoders to encode the same message into old and new

codewords from channel use i to channel use i + T . As a result,

the messages generated before channel use i +T are protected by

the old codewords in CT ,Bold,Nold
, while the messages generated

from channel use i +T until the next transition will be protected

by the new codewords in CT ,Bnew,Nnew
. During the next transition,

the new encoder will be replaced by another encoder and treated

as an old encoder, and the transition procedure repeats.

Since everymessage is protected by either an old encoderwith pa-

rameters (B
old
,N

old
) or a new encoderwith parameters (Bnew,Nnew)

during the transition, any (B
old
,N

old
)-erasure of length-(T + 1) that

occurs before the transition can be corrected by the old encoder

and any (Bnew,Nnew)-erasure of length-(T + 1) that occurs during

and after the transition can be corrected by the new encoder.

The prototype of our proposed network-adaptive streaming

scheme is illustrated in Figure 3, which is explained as follows.

The parameter estimator uses the network-adaptive algorithm to

generate the estimates (B̂i , N̂i) for each i ∈ Z+. At each channel

use i , an FEC message is generated which consists of a data buffer,

an integer specifying the size of the buffer, a sequence number

and the latest available estimates (B̂, N̂). The FEC message is then

encoded into an FEC codeword and transmitted through the era-

sure channel. Each FEC codeword consists of a codeword buffer,

an integer specifying the size of the codeword buffer, the sequence

Figure 3: Prototype of network-adaptive streaming scheme

number originated from the corresponding FEC message, and the

coding parameters (B,N). For every codeword received at channel

use i , the destination decodes all the messages generated before

channel use i −T that have not been decoded yet, where the appro-

priate decoder can be chosen by the destination based on the coding

parameters contained in all the received codewords up to channel

use i . Therefore, every received codeword may result in more than

one decoded message. For every reconstructed FEC message, the

corresponding data buffer, the size of the buffer and the sequence

number are extracted for further processing.

7 EXPERIMENTAL EVALUATION
Practical Implementation
In order to explore the potential of our proposed network-adaptive

streaming scheme, we implement the proposed scheme for low-

latency communication between two users over the Internet and

present experimental results that compare our streaming codes

with non-adaptive streaming strategies.

Suppose a source transmits a stream of compressed multimedia

frames to a destination over the Internet. Each compressed multi-

media frame could be generated from raw data by using a standard

video or voice codec. Next, the compressed frame together with the

estimated coding parameters received from the feedback channel

is encapsulated in an FEC message. The FEC message is further

encoded into an FEC codeword to be encapsulated in a network

packet, which is then forwarded to the destination. Every network

packet is either received by the intended destination or dropped

(erased). At the destination side, every received FEC codeword is

extracted from every received network packet and one or more

FEC messages are recovered based on the codeword. A recovered

compressed multimedia frame is further extracted from every re-

covered FEC message and then decompressed back to raw data by

the video or voice codec.

The two interface modules between the streaming code and the

network layer are illustrated in Figure 3. The first module is the

interface at the source side that simultaneously encapsulates every

FEC codeword into a UDP packet and forwards every estimated

parameters received from the feedback channel to the message

assembler. The second module is the interface at the receiver side

that simultaneously extracts the codeword buffer in every network

packet to form an FEC codeword and forwards every estimated

parameters to the feedback channel over UDP.

Parameters and Error Metrics
We compare the frame loss rates (FLRs) achieved by the uncoded

scheme and our network-adaptive streaming scheme as described in

Section 5. In addition, we illustrate the effectiveness of our proposed

network-adaptive algorithm by comparing the FLRs achieved by

our adaptive streaming scheme with a delay constraint of T frames

and non-adaptive schemes with fixed coding parameters (B,N). To
this end, we fix the frame duration and bit rate for the compressed

multimedia frame to be 10 ms and 240 kbit/s respectively, which

are practical as existing audio codecs typically have frame duration

2.5–60 ms and bit rate 6–510 kbit/s [8, 16]. Consequently, every 300-

byte compressed frame is generated every 10 ms. The 10 ms frame

duration and the delay constraintT must be carefully chosen so that

the resultant playback delayT×10ms in addition to the propagation

delay must be smaller than the 150 ms delay required by ITU for

interactive applications [9, 15]. For example, if the propagation

delay is 100 ms, then the resultant playback delay must be less than

150−100=50 ms, which can be achieved by choosing T and frame

duration such that their product is below 50 ms.

For our experimental purpose, we assume the propagation delay

is less than 50 ms and choose T = 10 so that the resultant playback

delay T × 10 = 100 ms in addition to the propagation delay is

below 150 ms. We set L = 1000 for the network-adaptive algorithm

described in Section 5. In other words, each interleaved Algorithm 1

will run for 2L×10/1000 = 20 seconds where the L = 1000 estimates

produced in the first 10 seconds are ignored by the algorithm and

the next L = 1000 estimates are output by the algorithm.

Let M = 360 be the number of 10-second sessions throughout

the transmission, which involves a total of L × M = 1000 × M
packets lasting for one hour. In each session, L = 1000 packets

are transmitted from the source to the destination. For simplic-

ity, let the sequence number of a packet be its channel use in-

dex, starting from 0 and ending at LM − 1. During each session

m ∈ {1, 2, . . . ,M}, the source transmits packets with sequence num-

ber between L(m − 1) and Lm − 1. For each sessionm, let εm denote

the corresponding FLR achieved by our network-adaptive streaming

scheme. More precisely, L(1 − εm) is the number of FEC messages

with sequence number between L(m − 1) and Lm − 1 which are

perfectly recovered by the destination. We will express in the next

section our experimental results in terms of εavg ≜ 1

M
∑M
m=1

εm
and ε

low-fi
≜ 1

M
∑M
m=1

1 {εm > 0.1} where εavg characterizes the

average FLR and ε
low-fi

characterizes the fraction of undesirable

low-fidelity sessions with FLR larger than 10%.

Experimental Results
In our experiment, the source and the destination are connected

to the same Wi-Fi network with capacity ≈ 30 Mbit/s subject to

UDP cross traffic introduced by Iperf. We call the UDP cross traffic

offered load. The average FLRs for our network-adaptive streaming

scheme and the uncoded scheme are plotted against the percentage

of the network capacity occupied by Iperf traffic in Figure 4. In

addition, we use the packet loss traces recorded during the real-

world experiments performed for our adaptive streaming scheme

to simulate the average FLR for the best non-adaptive streaming

code CT ,B,N whose coding rate does not exceed the average coding

rate of the adaptive scheme. The average FLR for the best non-

adaptive streaming code CT ,B,N with parameters (B,N) is plotted

strategy redundancy average FLR low-fi fraction
network-adaptive 19.03% 0.01190 0.03047

MDS-adaptive 20.17% 0.01757 0.03878

no coding 0% 0.03489 0.01856

(a) T = 10 for 30%-capacity offered load

network-adaptive 16.6% 0.02586 0.07202

MDS-adaptive 17.2% 0.02617 0.07756

no coding 0% 0.04003 0.17452

(b) T = 9 for 30%-capacity offered load

network-adaptive 16.10% 0.00486 0.00831

MDS-adaptive 17.24% 0.01040 0.01108

no coding 0% 0.02486 0.13573

(c) T = 11 for 30%-capacity offered load

Table 2: Performance of streaming strategies

in Figure 4. Figure 4 shows that our adaptive streaming scheme

achieves a significantly lower average FLR than the rest.

For interactive audio, low-fidelity sessions lead to unclear speech

or even call termination which directly affects user experience.

Figures 5 shows that our adaptive streaming scheme provides a

substantially better audio quality than the other two. In Figure 6a,

we show the variation of average FLRs for our adaptive streaming

scheme and UDP across the 360 sessions under 40%-capacity offered

load (i.e., the cross traffic equals 40% of the network capacity), and

the sessions with packet loss are highlighted in Figure 6b. It can

be seen from Figure 6 that for more than 1/4 of the sessions that

experience packet loss, our adaptive scheme achieves less than half

of the UDP loss. In addition, we display the variation of FEC redun-

dancy (i.e., one minus coding rate) in Figure 7, which demonstrates

how quickly our adaptive algorithm reacts to erasures.

The reason why our adaptive scheme significantly outperforms

non-adaptive ones can be explained with the help of Figure 8. As

shown in Figure 8, 11 out of 40 of the network packets are dropped.

Our adaptive coding scheme updates the code in this order: C10,1,1

and C10,5,2 before transmitting packets 4 and 18 respectively. There-

fore, the subsequent five packets losses are all recovered by C10,5,2

as shown in Figure 8, whereas the fixed-rate code C10,4,4 can only

recover one packet.

Finally, in order to demonstrate the advantage of using our con-

structed streaming codes over traditional MDS-based codes, we

consider the following MDS-adaptive scheme: Instead of outputting

the coding parameters (B̂, N̂) for an optimal block code which cor-

rects a length-B̂ burst erasure and N̂ arbitrary erasures, the adaptive

algorithm outputs a single coding parameter N of an MDS code

which corrects only N arbitrary erasures such that the resultant

coding rate
T−N+1

T+1
is approximately C(T , B̂, N̂) (cf. (1)). We use the

recorded packet loss traces obtained from a repeated experiment

with 30%-capacity offered load to compare the network-adaptive

streaming scheme with the MDS-adaptive scheme for T = 10. Ta-

ble 2a shows that although the two schemes have similar rates, the

network-adaptive scheme achieves around 80% of the average FLR

and 80% of the low-fidelity sessions achieved by the MDS-adaptive

scheme, which implies that our constructed optimal streaming

Figure 4: Average frame loss rate (FLR) Figure 5: Low-fidelity fraction

(a) Original version with all frames (b) Modified version without error-free frames

Figure 6: Average FLRs for adaptive FEC and UDP over time for 40%-capacity offered load

Figure 7: FEC redundancy for 40%-capacity offered load

Figure 8: Packet losses recovered by different schemes

codes outperforms traditional MDS-based streaming codes in real-

world networks. The reduction in FLR is not surprising because our

optimal streaming codes treat burst erasures and arbitrary erasures

differently while MDS-based codes do not differentiate them. Even

if T slightly deviates from 10, our experimental results displayed

in Tables 2b and 2c show that the network-adaptive scheme com-

pared with the MDS-adaptive scheme can achieve a considerable

reduction in FLR.

8 CONCLUSION AND FUTUREWORK
We have designed a network-adaptive FEC streaming schemewhich

consists of (i) a network-adaptive algorithm for estimating the cod-

ing parameters of streaming codes that correct both burst and

arbitrary network packet losses, and (ii) an explicit construction

of low-latency optimal streaming codes over GF(256) for T ≤ 11.

The computation bottleneck of our network-adaptive streaming

scheme is bounded above by Gauss-Jordan elimination, which is

used for decoding a length-(T + 1) block code and has at most

O(T 3) complexity. More precisely, the computation bottleneck is

close toO(D3) where D denotes the average number of lost packets

in a sliding window of size T + 1. Real-world experiments reveal

that our adaptive streaming scheme significantly outperforms non-

adaptive ones. There are several interesting directions for future

investigation: (i) Finding the largest T such that optimal streaming

codes exist over GF(256) remains open. (ii) Future work may explore

the interplay between our adaptive streaming scheme and existing

congestion control algorithms that adjust the sizes of streaming

messages in real time. (iii) The investigation of how multiple in-

stances of our network-adaptive scheme compete with each other

in a congested environment is interesting. (iv) The choice of L for

our heuristic adaptive algorithm, set to 1000 in this work, could

be optimized with extra effort. Also, machine learning techniques

could be used to develop new network-adaptive algorithms. (v)

This work compares FEC schemes only. Considering additional

complementary methods in existing industrial schemes (e.g., Skype,

WebRTC and other ARQ-based schemes) such as Adaptive Media

Playout, adaptive live encoder and retransmissions is meaningful.

REFERENCES
[1] A. Khisti A. Badr, W.-T. Tan, and J. Apostolopoulos. 2017. Perfecting Protection

for Interactive Multimedia: A survey of forward error correction for low-delay

interactive applications. IEEE Signal Process. Mag. 34 (2017), 95 – 113. Issue 2.

[2] European Telecommunications Standards Institute. 2014. Digital video broadcast-
ing (DVB); Second generation framing structure, channel coding and modulation
systems for broadcasting, interactive services, news gathering and other broadband
satellite applications; Part 1: DVB-S2. ETSI EN 302 307-1.

[3] European Telecommunications Standards Institute. 2016. Digital video broad-
casting (DVB); Transport of MPEG-2 TS based DVB services over IP based networks.
ETSI TS 102 034.

[4] S. L. Fong, A. Khisti, B. Li, W.-T. Tan, X. Zhu, and J. Apostolopoulos. 2019. Optimal

Streaming Codes for Channels with Burst and Arbitrary Erasures. IEEE Trans.
Inf. Theory 15, 7 (2019), 4274–4292.

[5] G. D. Forney. 1971. Burst-Correcting Codes for the Classic Bursty Channel. IEEE
Trans. Inf. Theory 19, 5 (1971), 772 – 781.

[6] S. Holmer, M. Shemer, and M. Paniconi. 2013. Handling packet loss in WebRTC.

In Proc. IEEE Intl. Conference on Image Process. Melbourne, VIC, Australia.

[7] T. Huang, P. Huang, K. Chen, and P. Wang. 2010. Could Skype be more satisfying?

A QoE-centric study of the FEC mechanism in an Internet-scale VoIP system.

IEEE Netw. 24, 2 (2010), 42 —- 48.

[8] International Telecommunication Union. 1998. Pulse code modulation (PCM) of
voice frequencies. Recommendation G.711.

[9] International Telecommunication Union. 2003. One-way transmission time. Rec-
ommendation G.114.

[10] J. Korhonena and P. Frossard. 2009. Flexible forward error correction codes with

application to partial media data recovery. Signal Processing: Image Communica-
tion 24, 3 (2009), 229 – 242.

[11] M. Nikhil Krishnan and P. Vijay Kumar. 2018. Rate-Optimal Streaming Codes

for Channels with Burst and Isolated Erasures. In Proc. of IEEE Intl. Symp. on Inf.
Theory. Vail, CO, USA, 1809 – 1813.

[12] F. J. MacWilliams and N. J. A. Sloane. 1988. The Theory of Error-Correcting Codes
(1st ed.). North-Holland, Netherlands, Amsterdam, Holland.

[13] E. Martinian and C.-E. W. Sundberg. 2004. Burst erasure correction codes with

low decoding delay. IEEE Trans. Inf. Theory 50, 10 (2004), 2494 – 2502.

[14] M. Nagy, V. Singh, J. Ott, and L. Eggert. 2014. Congestion control using FEC

for conversational multimedia communication. In Proc. the 5th ACM Multimedia
Systems Conference. Singapore, 191–202.

[15] T. Stockhammer and M. Hannuksela. 2005. H.264/AVC video for wireless trans-

mission. IEEE Wireless Commun. 12 (Aug. 2005), 6–13.
[16] JM. Valin, K. Vos, and T. Terriberry. 2012. Definition of the Opus Audio Codec.

RFC 6716. RFC Editor. https://tools.ietf.org/html/rfc6716

[17] J. Wang and D. Katabi. 2010. ChitChat: Making Video Chat Robust to Packet Loss.
Technical Report. MIT Computer Science and Artificial Intelligence Lab (CSAIL).

https://tools.ietf.org/html/rfc6716

	Abstract
	1 Introduction
	2 Concept of FEC Streaming Codes
	3 Formulation of Streaming Codes
	4 Explicit Construction of Optimal Streaming Codes over GF(256)
	5 Network-Adaptive Algorithm
	6 Network-Adaptive Streaming Code
	7 Experimental Evaluation
	8 Conclusion and Future Work
	References

