
Towards Optimal Multi-Modal Federated Learning
on Non-IID Data with Hierarchical Gradient

Blending
Sijia Chen

Department of Electrical and Computer Engineering
University of Toronto

sjia.chen@mail.utoronto.ca

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
bli@ece.toronto.edu

Abstract—Recent advances in federated learning (FL) made it
feasible to train a machine learning model across multiple clients,
even with non-IID data distributions. In contrast to these uni-
modal models that have been studied extensively in the literature,
there are few in-depth studies on how multi-modal models can
be trained effectively with federated learning. Unfortunately,
we empirically observed a counter-intuitive phenomenon that,
compared with its uni-modal counterpart, multi-modal FL leads
to a significant degradation in performance.

Our in-depth analysis of such a phenomenon shows that
modality sub-networks and local models can overfit and gen-
eralize at different rates. To alleviate these inconsistencies in
collaborative learning, we propose hierarchical gradient blending
(HGB), which simultaneously computes the optimal blending of
modalities and the optimal weighting of local models by adap-
tively measuring their overfitting and generalization behaviors.
When HGB is applied, we present a few important theoretical
insights and convergence guarantees for convex and smooth
functions, and evaluate its performance in multi-modal FL. Our
experimental results on an extensive array of non-IID multi-
modal data have demonstrated that HGB is not only able to
outperform the best uni-modal baselines but also to achieve
superior accuracy and convergence speed as compared to state-
of-the-art frameworks.

Index Terms—multi-modal machine learning, federated learn-
ing, gradient blending

I. INTRODUCTION

In recent years, research interests in training a machine
learning model on edge clients motivated the paradigm of
federated learning (FL) [1]–[3], which makes it feasible
for multiple devices to collaboratively train a global model
in a privacy-preserving manner. Existing federated learning
mechanisms [4]–[6] focused on training uni-modal models such
as image classifiers and text predictors, either assuming that
data is independent and identically distributed (IID) across the
clients, or with more challenging non-IID data distributions
[7]–[9].

Compared with uni-modal models, multi-modal models [10]
with multiple input modalities has become a recent trend in
machine learning. Though several existing studies [11], [12]
proposed to train multi-modal models with federated learning,
the specific challenges imposed by non-IID data distributions

in the context of multi-model federated learning have not been
explored.

In this paper, we foray into uncharted territory by focusing
on the effects of non-IID data distributions in the context of
multi-modal federated learning. Intuitively, as more information
is available from complementary modalities, multi-modal FL
should outperform the corresponding uni-modal FL. However,
we make the counter-intuitive observation from our experi-
mental results that multi-modal FL not only leads to more
communication rounds needed to reach convergence, but also
lags far behind conventional uni-modal FL with respect to the
accuracy of trained models.

In this paper, we discovered the root cause for such
performance degradation. Due to the complexity of non-IID
multi-modal data, both the local data distribution across clients
and the distribution between modalities can be extremely
heterogeneous. As a result, multi-modal models are often
prone to overfitting as they are trained on unbalanced and
small-size local datasets. To make matters worse, overfitting
and inconsistent generalization rates appear in the modality sub-
networks and the local models simultaneously. With uni-modal
FL, existing mechanisms have been proposed to address the
problems of overfitting and heterogeneity among clients, such as
local adaptation [13]–[15] and weighted global aggregation [16],
[17]. However, our experiments show that these mechanisms
were not able to provide an effective solution in the context
of multi-modal FL.

We present a thorough theoretical analysis to quantitatively
analyze weight divergence, which represents the difference
between weights updated based on non-IID multi-modal data
and centralized data. Our analysis shows that inconsistencies
found in each training stage can increase the overall divergence.
Built upon these theoretical insights, the crux of this paper
is a new mechanism, referred to as hierarchical gradient
blending (HGB), that adaptively computes an optimal blending
of modalities and reweigh updates from the clients according
to their overfitting and generalization behaviors. Intuitively,
HGB corresponds to an optimization problem with overfitting-
to-generalization rate minimization as the objective function.
The obtained optimal weights can reduce generalization error



when training the global model. Our new mechanism does not
introduce any trainable parameters, making it computationally
friendly and easy to use. From a theoretical perspective, we
show that HGB guarantees convergence in multi-modal FL
with non-IID data.

Our original contributions in this paper are as follows. First,
to our best knowledge, our work is the first to address the
performance challenges when multi-modal FL is used with
non-IID data distributions. Second, with rigorous theoretical
analyses, we demonstrate the root cause for such performance
degredation, in that both local updates and the global aggrega-
tion suffer from overfitting and inconsistent generalization
rates. Third, we propose a new mechanism, hierarchical
gradient blending (HGB), which adaptively achieves the optimal
blending of modalities and the optimal aggregation of clients’
updates. Finally, with several benchmark multi-modal datasets,
we evaluate HGB’s performance in the context of multi-modal
FL experimentally, and show that it outperforms state-of-the-
art FL mechanisms by a substantial margin in terms of both
accuracy and the speed of convergence.

II. RELATED WORK

Uni-modal federated learning. Existing mechanisms in
federated learning focused on training a shared global model
effectively, with the hope that its performance is competitive
with models trained with centralized data. However, existing
mechanisms were limited to training a uni-modal model, which
utilizes one modality as input. As examples, uni-modal FL
mechanisms were solely proposed to train an effective image
classifier or text predictor, which contains a single network
of one modality, and based on independent and identically
distributed (IID) and non-IID data across the clients.

Multi-modal federated learning. As multiple modalities
can provide more information, multi-modal models outper-
formed uni-modal models in many applications, such as video
classification. There are a very limited amount of existing work
in the literature proposing to train multi-modal models in FL
settings. Liu et al. [11] generated a powerful representation
from multiple task-oriented representations obtained by the
federated learning framework. Liang et al. [12] evaluated its
proposed FL method on a task related to Visual Question
Answering (VQA). However, in-depth analysis and discussions
on challenges in multi-modal FL are still missing.

Our work in this paper attempts to present such an in-depth
analysis in the context of late-fusion multi-modal FL, in which
multi-modal models have a late-fusion structure that combines
the outputs of sub-networks for different modalities to make
the prediction. The capacity and complexity of a multi-modal
model are significantly higher than its uni-modal counterpart.

Client heterogeneity. One of the critical challenges in FL is
heterogeneity across participating clients. Local adaptation [13]–
[15], [18] aimed to train a global model that can generalize well
on each device’s local data. Ji et al. proposed FedAtt [8], [16],
which aggregates model updates from the updates with biased
weights in order to train models with higher qualities. [19],
[20] jointly optimized mixed global and local models to seek

a trade-off between overfitting and generalization. However, in
a range of non-IID multi-modal data scenarios, we will show
in this paper that existing FL mechanisms were not able to
train effective multi-modal models, or to reach convergence
within an acceptable number of communication rounds.

Our work is inspired by Wang et al. [21], which observed
the inherent overfitting problem when training a late-fusion
multi-modal model. The gradient-blending schema used in the
literature [21]–[23] serves as the foundation for our proposed
algorithm, hierarchical gradient blending. In essence, our
work is mostly related to current works that assigned weights
and probabilities to clients or added auxiliary regularization
terms to the learning objective. While all existing mechanisms
relied upon the ability to learn weights during training and
hope to achieve a balanced trade-off between overfitting and
generalization, our work is both task-agnostic and architecture-
agnostic, and optimizes weights directly without additional
learning in the context of multi-modal FL.

III. PRELIMINARIES

Federated learning aims to train a classification model
w based on the dataset D that is separately stored in C
clients in which each client ck contains its own train set
Dk : {s : (X, y)} and evaluation set D′k : {s′ : (X ′, y′)}
where the sample X and the true label y of Dk, D′k are
sampled from the local data distribution (X ,Y)k. FL considers
the following distributed optimization problem:

min
w

{
F (w) =

C∑
k=1

pkfk(w)
}

(1)

where pk ≥ 0 is the weight of k-th client and the objective
function fk of k-th client follows assumptions 1 and 2.

Assumption 1 (Convex and Smooth). The objective functions
f1, ..., fC of clients are all convex and L-smooth.

Assumption 2 (Smoothness property). For any function f ∈
[f1, ..., fC ], the smoothness property implies the inequality as
‖ Of(y)− Of(y) ‖≤ L ‖ y − x ‖.

A. Uni-modal Federated Learning

The conventional uni-modal FL considers a uni-modal model
that contains a deep network ψm with parameters vm. ψm
utilizes a single modality X = xm (e.g. RGB frames, audio,
or optical flows) as input for further classification. Thus, the
fk is computed to minimizing an empirical loss:

fk = 1
|Dk|

∑
s∈Dk

l (ψm(xm; vm); y)) (2)

where l is a user specific loss function, such as cross entropy.
Minimizing Eq. (1) of the uni-modal FL gives the solution

w∗ = v∗m for the network of modality m.



B. The Distributed Training Process

Our paper uses the distributed mini batch stochastic gradient
descent (MB-SGD) algorithm to solve Eq. (1). In the FL setting,
the training paradigm proposed by FedAvg [1] is constructed
in three stages, including local update, global aggregation, and
aggregated model broadcasting.

Let w denote parameters that are known to both the server
and the client, and v denote parameters that are only visible to
the client. The number of local update steps is E. During the
total T training iterations with the iteration index t = 0, 1, ..., T ,
the number of communication rounds is P = 2T

E with the index
p = 0, 1, ..., P . Then, in the p-th global aggregation, the local
parameter vkt of the client k is updated by the MB-SGD where
t ranges from tp−1 to tp − 1. At t = 0, the local parameters
for all clients are initialized to the w0.

local update :
{

vkt+1 = vkt − ηkg̃(vkt ) t+ 1 6∈ Ie

global aggregation :
{

wk
t+1 = vkt+1

wt+1 =
∑K
k=1 pkwk

t+1 t+ 1 ∈ Ie

broadcast :
{

vkt+1 = wt+1
(3)

where Ie = {t0, t1, ..., tP } with E = tp+1 − tp. g̃kt :=
g̃(vkt ) = Ofk(vkt ) is the ”true” gradient computed with the
target local data distribution. In MB-SGD, we compute the
gkt := g(vkt ; ξk) = 1

ξk

∑
s∈ξk Ofk(vkt , s) with a mini-batch of

samples ξk drawn from the local distribution of client k. g̃kt
and gkt follows the unbiased assumption 3.

Assumption 3 (Unbiased gradients). Eξk [g(vkt ; ξk)] = g̃(vkt )

C. Overfitting-to-generalization Rate

The overfitting-to-generalization rate (OGR) is a metric that
evaluates the performance of the trained model on both training
and validation datasets. It is defined as follows:

OGR(n1, n2) =
4O(n1, n2)
4G(n1, n2)

=
|
(
lT (wn1 )− lT (wn2 )

)
−
(
l∗(wn1 )− l∗(wn2 )

)
|

| l∗(wn1 )− l∗(wn2 ) |

(4)

where n1 < n2 is the train step index. lT is the loss in the train
set while l∗ is the ground-truth loss computed in the target
distribution.

Based on MB-SGD, in an adjacent parameter update step
wn2 = wn1 − ηg with a small gradient g, the lT (wn2) and
l∗(wn2) can be extended by Taylor theorem. Then, OGR
becomes:

OGR(n1, n2) =
〈OlT − Ol∗, g〉
〈Ol∗, g〉

(5)

D. The Gradient Blending Schema

Typically, gradient blending (GB) is a linear combination
of gradients from different models. The works of multi-task
generally utilize GB to train models of different tasks to achieve
joint optimization. As each gradient is direct derived from the
loss function, GB re-weights loss functions to obtain a blended
auxiliary loss shown as Lblend =

∑M
m=1 zmlm where lm is

the m-th loss while zm is the corresponding weight. However,
the blending weights need to be initialized and set manually.

Our work was initially motivated by the optimal gradient
blending proposed in the paper [21]. It computed the best
weights {zm}Mm=1 by minimizing a measurable OGR metric.
The direct benefit of this schema is that the computed
z∗m induces better generalization behavior without additional
learning processes.

IV. MULTI-MODAL FEDERATED LEARNING

The late-fusion multi-modal FL considers the training of
models {vm}Mm=1 with M modalities as inputs. Let each
sample used in training be X = {xm}Mm=1. Each modality
m has its own deep network ψm with parameter vm. These
sub-networks are jointly trained to minimize the empirical loss:

fk = 1
|Dk|

∑
s∈Dk

l (C(ψ1(x1), ..., ψM (xM )); y)) (6)

where C is a classifier used to process the outputs of M sub-
networks to make the prediction. C can either be designed as
a fusion operation followed by fully-connected (FC) layers or
directly average the prediction scores from M sub-networks.

A. Non-IID Multi-modal Data in FL

Compared with uni-modal data xm generated from one
distribution, multi-modal data {xm}Mm=1 is sampled from the
joint distribution of M modalities (i.e., RGB frames, audio,
and optical flow). This leads to both lable-based non-IID and
the modality-based non-IID. Besides, one client may contain
either only part of modalities or samples with incomplete
modalities. Therefore, the gradient distance between any two
clients ||Ofk(vkt ; ξk)−Ofn(vnt ; ξn)|| cannot be bounded by a
finite (fixed) constant.. This further induces that ||Ofk(vkt ; ξk)||
is not bounded. This leads to our proposition 1 on the stochastic
gradient of each client.

Proposition 1 (Unbounded stochastic gradient). The gradient
discrepancy ‖ g̃(vit)− g̃(v

j
t ) ‖2 between clients i and j cannot

be bounded by a finite (fixed) constant. This leads to the
stochastic gradients Eξk ||Ofk(vkt ; ξk)||2 in client k is not
uniformly bounded in the non-IID multi-modal data.

Proof: We have ||Ofk(vkt ; ξk)||2 = ||Eξk [Ofk(vkt ; ξk)]||2
that is not bounded. Then, as ||Eξk [Ofk(vkt ; ξk)]||2 ≤
Eξk ||Ofk(vkt ; ξk)||2, we obtain that Eξk ||g(vkt ; ξk)||2 is not
uniformly bounded. �

This further induces a new bound for the gradient variance
of participating clients, shown by lemma 1.

Lemma 1 (Bounding the gradient variance). For K participat-
ing clients, the expected gradient is g̃t =

∑K
k=1 g̃(vkt ) while

the computed stochastic gradient is gt =
∑K
k=1 g(vkt ). The

upper bound for gradient variance follows:
E ‖ g̃t − gt ‖2≤

∑K
k=1 p

2
k

[
4L
(
fk(vkt )− fk(vk∗ )

)
+ 2E ‖ Ofk

(
vk∗ ; ξ

)
‖2]

where vk∗ is the optimal value of the L-smooth function fk
based on the local dataset Dk.



Proof: According to (
∑N
n=1 an)2 =

∑
n a

2
n + 2

∑N
i=1
∑N
j=1,j 6=i aiaj

and Assumption 2, the gradient variance becomes
E ‖ g̃i − gi ‖2= η2

i

∑
k p

2
kE||(Ofk(vkt ) − Ofk(vkt , ξkt )||2].

Then, based on E ‖ X −EX ‖2≤ E ‖ X ‖2 and the 1
2 ‖ a ‖

2

− ‖ b ‖2≤‖ a− b ‖2, we can complete the proof by obtaining
E ‖ Ofk(vkt , ξkt ) ‖2≤ 4L

(
fk
(
vkt
)
− fk

(
vk∗
))

+ 2E ‖ Ofk(vk∗ , ξ) ‖2.
�

B. Challenges

The non-IID multi-modal data can induce overfitting and
inconsistent generalization rates between sub-networks of
modalities and between local models of clients. For the
former, the multi-modal model that contains M sub-networks
{ψm}Mm=1 for modalities is prone to overfitting because of
updating the model with large-scale parameters based on
limited-size local data. Then, as pointed by work [21], these sub-
networks with different structures naturally contain different
inherent generalization rates. Besides, the incomplete modalities
of local samples further introduce gradients divergence when
jointly training these sub-networks. For the latter, the gradient
variance is oriented by the diversity degree among clients, as
shown in lemma 1. Thus, starting from the shared global model,
the local models of different clients can generalize at extremely
different rates.

The problem of the non-IID multi-modal data can be
presented by the weight divergence ‖ w

(f)
tp −w

(c)
tp ‖, as shown

in work [7], where w
(f)
tp and w

(c)
tp are the weights of tp-th

round in the FL training and centralized training, respectively.
We denote the multi-modal cross-entropy loss as:

O`({vm}Mm=1) =
∑M
m=1 z

k
m

∑|Y|
i=1 pm(y = i)Oψ(i)(xm; vm)

(7)
where Oψ(i)(xm; vm) = OExm/ym=i[logψ(i)(xm,vm)] is
Lmi-Lipschitz and zkm is the weight of modality m in client k.

Local divergence of j-th step update in each client k
can be computed as the gradient distance between vkj and
wj , i.e., ‖ Ofk(vkj , ξk) − Ofk(wj , ξ

k) ‖. Then, applying
Eq. (7) to this distance, we can get its upper bound as∑M
m=1 z

k
m

∑
i∈Y p

k
m(y = i)Lmi||wmj − vm

k
j || by using the

property of the smooth function. Then, we have the divergence
of each local step.

Lemma 2 (Divergence of each local step). We denote the
distance between the local pkm and global pm data distribution
of modality m as 4dkm =

∑
i∈Y ‖ pkm(y = i)− pm(y = i) ‖.

Then, the divergence of each local step is bounded by:∑M
m=1 z

k
mgmax

(
wmj−1

)∑
i∈Y B

k
mi
4dk

m

Bk
m

((
ηBkm + 1

)j−1−tp−1 − 1
)

(8)
where gmax

(
wmj−1

)
= maxi∈Y ‖ Oψ(i)

(
xm; wmj−1

)
‖

and Bkm =
∑
i∈Y p

k
m(y = i)Lmi =

∑
i∈Y B

k
mi.

Proof: The weight divergence of each modality is derived
separately. We first expand the ||wmj − vm

k
j || based on

the SGD update rule. Then, we add the zero term (i.e.,
Oψ(i)(xm,w(j−1)m) minus itself) and rearrange the expanded
equation using the triangle inequality and the smoothness of

the target function. The weight divergence in j-th iteration
is computed by two terms, including the divergence of j − 1
iteration and a gradient weighted by 4dkm. Finally, we utilize
the Lemma 2 in work [24] to complete the mathematical
induction for j = [tp−1, tp] to obtain the upper bound. �

Local-global divergence ‖
(
Ofk

(
vkj ; ξkj

)
− Of (wj ; ξj)

)
‖

measures the distance between the local gradient and the global
gradient.

Lemma 3 (Local-global gradient divergence). The local-global
gradient divergence is bounded by:∑

m

zkmgmax
(
wmj

)∑
i∈Y

(
pkm(y = i)− pm(y = i)

)
(9)

where gmax
(
wmj

)
= maxi∈Y ‖ Oψ(i)

(
xm; wmj

)
‖.

Then, we can obtain the multi-modal weights divergence
shown by Proposition 2.

Proposition 2 (Multi-modal weights divergence). After the p-th
synchronization, the weights divergence between the aggregated
global model w

(f)
tp in multi-modal FL and the centralized

trained model w
(c)
tp follows the inequality below:

‖ w
(f)
tp −w

(c)
tp ‖ ≤‖ w

(f)
tp−1
−w

(c)
tp−1
‖

+
K∑
k=1

pk

E∑
j=1

(dlocal + dlocal global)
(10)

where dlocal is the upper bound of the ‖ Ofk(vkj , ξk) −
Ofk(wj , ξ

k) ‖ shown in lemma 2 and dlocal global is the upper
bound of ‖ Ofk(vkj , ξk)− Of(wj , ξ) ‖ shown in lemma 3.

C. Analysis

Proposition 2 shows that the global weight divergence of
multi-modal FL is the collection of divergences in hierarchi-
cal training stages. Therefore, each level’s over-fitting and
inconsistent generalization rate is able to increase the global
divergence.

As shown by lemma 2 and 3, in the local update, the weight
divergence can be dominated by one modality m if its sub-
network overfits on the local distribution that biases a lot from
the global distribution, i.e. 4dkm. Different local distributions
of M modalities can lead to inconsistent generalization rates
among sub-networks, which leads to divergence accumulation,
as shown by lemma 2. gmax further shows that the large
gradient of either one sub-network exacerbates the weight
divergence. Also, weight divergences of participating clients
are accumulated. Therefore, a large weight divergence of any
client can significantly increase global divergence.

As presented by Eq. (8), Eq. (9), and Eq. (10), the weight
divergence of each modality and each client is re-weighted by
the zkm and pm, respectively. Therefore, these two parameters
can be tuned to reduce the global divergence based on the
overfitting and generalization behaviors.



V. HIERARCHICAL GRADIENT BLENDING

With these insights, we propose a new algorithm, named
hierarchical gradient blending (HGB), to address the discussed
challenges of multi-modal FL.

Following the analysis of proposition 2, the main idea of
our algorithm is to control the modality weights {zm}Mm=1 and
aggregation weights {pk}Kk=1 to suppress the influence of over-
fitting on the weight divergence while balancing generalization
rates in both the local update and global aggregation.

A. Theoretical Analysis of HGB

The learning target is to update the model to reduce the
training loss while achieving low evaluation loss. Thus, HGB
directly minimizes the overfitting-to-generalization ratio (OGR)
shown in Eq. (4). In the multi-modal FL training process, our
objective function is to obtain the best OGR for adjacent global
weights wtp−1 and wtp obtained by aggregating local models
from K clients.

min
{zm}M

m=1,{pk}K
k=1

( [LT (wtp−1 − LT (wtp)]− [L∗(wtp−1)− L∗(wtp)]
L∗(wtp−1)− L∗(wtp)

)2

Then, the approximate optimization problem of our objective
function is presented in lemma 4.

Lemma 4. For any global aggregation stage tp ∈ Ie, under the
non-IID multi-modal data setting of K clients, the approximate
optimization problem of our objective function is given as:

min
{zm}M

m=1,{pk}K
k=1

∑K
k=1 pk

∑tp
j=tp−1

ηj < OLTk (vm
k
j )− OL∗k(vm

k
j ),
∑M
m=1 z

k
mgm

k
j >∑K

k=1 pk
∑tp
j=tp−1

ηj < OL∗k(vm
k
j ),
∑M
m=1 z

k
mgm

k
j >

where j ∈ [tp−1, tp] and ηj is the learning rate of j-th step
update. gm

k
j is the computed j-th step gradient of m modality

sub-network in client k. LTk and L∗k are the training loss and
the ”true” loss of the local distribution in client k, respectively.

Proof: The main tools used in our proof are Taylor
theorem, recursion, and Jensen inequality. Firstly, we get
the Taylor expansion of LT (vmj) and L∗(vmj) where
j ∈ [tp−1, tp − 1] is the local iteration index. Then, with the
recursion, we obtain the LTk (vm

k
tp) and L∗k(vm

k
tp) which

are then aggregated with pk to get the
∑
k pkL

T
k (vm

k
tp) and∑

k pkL
∗
k(vm

k
tp). Secondly, using Jensen inequality, we get the

relation LT (
∑
k pkvm

k
tp) ≤

∑
k pkL

T
k (vm

k
tp), which induces

LT (
∑
k Pkvm

k
tp)− LT (

∑
k Pkvm

k
tp−1

) ≤
∑
k Pk

∑
j ηj < OL

T
k (vm

k
j ), gkj >.

Likewise for the L∗ terms. Finally, we can obtain the upper
bound of the original objective function by putting the derived
terms back to the equation. �

The optimization problem in lemma 4 can be solved by the
conclusion in theorem 1.

Theorem 1 (Optimal hierarchical gradient blending). Ac-
cording to the training procedure of the federated learning
framework, the optimization problem in lemma 4 can be re-
garded as the combination of computing the optimal

{
zkm
}M
m=1,

k ∈ [1,K] in the local updates and computing the optimal
{pk}Kk=1 in the global aggregation.

In the local update, we can regard the
{

gm
k
j

}M
m=1 as

a set of estimates for L∗k in the client k whose overfitting
satisfies E

[
〈OLTk − OL∗k, gn

k
j 〉〈OLTk − OL∗k, gq

k
j 〉
]

= 0 if
n 6= q and n, q ∈ M . Also, in the global aggregation, the
gradient of each client can be regard as one estimate for the
L∗ computed on the whole data. Besides, K estimates satisfies
E
[
〈OLTn − OL∗n, gnj 〉〈OLTq − OL∗q , g

q
j 〉
]

= 0 if n 6= q and
n, q ∈ K.

The optimal
{
zk∗m
}M
m=1 and {p∗k}

K
k=1 are computed by:

zk∗m = 1
Q

〈Ol∗k, gkm〉
σ2
m

, Q =
∑M
m=1

〈Ol∗k,g
k
m〉

σ2
m

2 (13)

where σ2
m = E[〈OlTk − Ol∗k, gkm〉2].

p∗k = 1
M

4Gk(tp−1, tp)
2 (4Ok(tp−1, tp))2 ,M =

K∑
k=1

4Gk(tp−1, tp)
2 (4Ok(tp−1, tp))2

(14)
where 4Gk and 4O are the OGR terms of client k.

Finally, the z∗m in the server is computed as:

z∗m =
∑K
k=1 z

k∗
m∑M

m=1
∑K
k=1 z

k∗
m

(15)

Proof: We omit the full proof due to space constraints. For
both the optimization problem in the local update and the global
aggregation, we use (

∑
n an)2 =

∑
n a

2
n +

∑
i

∑
j 6=i aiaj

and the assumption to remove the cross terms. Also, without
loss of generality, we use the constrains

∑M
m=1 z

k
m = 1 and∑K

k=1 pk = 1. Thus, we can apply lagrange multipliers to the
corresponding objective function, which can then be solved
directly by setting its gradient to zero. Then, Eq. (15) is
obtained directly by calculating votes on each modality m
from K clients. �

Finally, we can minimize the OGR of our multi-modal FL by
using the optimal weights shown in Eq. (13) and Eq. (14). And,
our mathematical analysis presents that the parameters of HGB
can be adaptively computed according to the overfitting and
generalization conditions during the learning process. Besides,
through Eq. (15), we can conclude that modality sub-network
with high generalization is desired to be assigned higher z∗m.

B. HGB in Practice

In practice, one basic setting is that the l∗ can be approxi-
mated by the loss lV computed on the validation set, which
agrees with work [21]. Thus, l∗k of each client k is measured
based on its validation set D′k. Besides, we utilize the cross-
entropy loss function as discussed in proposition 2.{

zk∗m
}M
m=1 is obtained at the end of E local steps in client k.

Based on Eq. (4), Eq. (5) and our discussion in the theorem 1,
σm can be replaced by the overfitting term 4Okm(tp−1, tp) of
modality m between the initialization weight vm

k
tp−1

and the
updated weights vm

k
tp . Also, the 〈Ol∗k, gkm〉 is replaced by the

generalization term 4gkm(tp−1, tp) of the modality m. The
losses used for computing 4Okm and 4gkm are obtained by



applying the corresponding weight vk
m to the trainset Dk and

validation set D′k. Thus, in the local update stage, K clients
can obtain their own

{
zk∗m
}M
m=1 in parallel.

For {p∗k}
K
k=1, to compute Eq. (14), each client requires

to report its own overfitting rate 4Ok and generalization
rate 4Gk to the server. For each client k, we implement
the optimal gradient blending by loss re-weighting formatted
as
(
LTk
)
blend

=
∑M
m=1 zml

T
km where lTkm is the training

loss of the modality m. Likewise for the validation loss(
LVk
)
blend

. Finally, these blended losses are used to measure
4Ok(tp−1, tp) and 4Gk(tp−1, tp).

Applying weights to the whole training set or validation set
can be expensive. Thus, we can compute losses based on the
subsets Dk

s and D′ks .
The detailed procedure of HGB in the multi-modal FL is

shown in algorithm 1.

C. Convergence Analysis

As described in the algorithm 1, the HGB computes the
optimal weights for the modality sub-networks and local models
online. According to our theorem 1, the only requirement of the
online computation is to obtain the training and validation errors
of the updated model. This prevents HGB from introducing
additional trainable parameters into the objective function and
training architecture. Therefore, our HGB is both task-agnostic
and architecture-agnostic.

Following our discussion Proposition 1, non-IID multi-modal
data among clients leads to the unbounded gradient. Also, the
bound of gradient variance shown in lemma 1 induces that the
convergence depends on the meaningful quantity

∑K
k=1 pkE ‖

Ofk
(
vk∗ ; ξ

)
‖2. Under the convex and smooth assumptions, the

general convergence statement has been made in Corollary 1
of the work [25]. The convergence rate 1√

KT
of HGB in multi-

modal FL can be guaranteed by using E = O
(
T

1
4K−

3
4

)
where K is the number of selected clients in each round.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
HGB training algorithm in multi-modal FL. Based on a total
of M = 3 modalities, including RGB frames (RGB), optical
flow (OF), and audio (A), the multi-modal model is trained to
complete the video classification task. The test platform used
in all experiments is Plato, a software framework to facilitate
scalable federated learning research.

A. Experimental Setup

Datasets. We utilize Kinetics [26] and Finegym [27] datasets.
Kinetics is a standard benchmark for action recognition with
260k videos of 400 human action classes. There are 240k and
20k videos in the train split and validation split, respectively.
For the Finegym dataset, we utilize the Gym99 containing
20484 and 8521 element-level action instances in the train
split and validation split, respectively.

Learning Setting. Our experiments focus on the video
classification task. There are a total of C = 50 clients. The

Algorithm 1: Multi-modal FL with Hierarchical Gra-
dient Blending
Input: initial Learning rate η0, local update step E and

batch size B, total round P , total client C with
index k, subset percent S, number of modalities
M .

Output: {wmP , z
∗
mP }

M
m=1.

1 Initialization: t0 ← 0, initialize {wm0}
M
m=1,

zm0 = 1
M .

2 - Main loop
for each round p = 1, 2, ..., P do

3 Ctp ← random set of K clients from total C clients

4 Distribute
{

wmtp−1 , z
∗
mtp−1

}M
m=1

to Ctp

5 for each client k ∈ Ct in parallel do
6 Operate clientOperation.

7 Send
{

wm
k
tp , z

k
mtp

}M
m=1

,4Ok,4Gk to server.

8 end
9 Compute p∗k using

{
4Ok

}K
k=1 and

{
4Gk

}K
k=1

according to Eq. (14);
10 Compute wmtp =

∑P
k=1 p

∗
kwm

k
tp and z∗mtp .

11 end
12 Function clientOperation({wm, z

∗
m}

M
m=1):

13 j ← 0, vmj = wm
14 Ds, D

′
s ← Random S percent subset from D,D′.

15 For each modality m, compute lTm
(
vmj

)
,

lVm
(
vmj

)
.

16 for each step j = 1, 2, ..., E do
17 b← sample a batch of data from D.

vmj+1 = vmj − ηjO
(∑M

m=1 zmlm
(
vmj

))
.

18 end
19 For each modality m, compute lTm (vmE),

lVm (vmE)
20 Compute z∗m = 1

Q
4Gm(0,E)

(4Om(0,E))2 , where

Q =
∑M
m=1

4Gm(0,E)
2(4Om(0,E))2 .

21 Compute 4G(0, E) and 4O(0, E) with
lV =

∑M
m=1 z

∗
ml

V
m.

22 return
{

vm
k
E , z

∗
m

}M
m=1 ,4O,4G

maximum number of communication rounds is P = 1000.
Then, in each round, K = 40 clients are randomly selected to
participate in the training, and each client runs E = 300 steps
mini-batch SGD in the local update with a momentum of 0.9.
The corresponding batch size is 24. The learning rate of each
client is 0.000125, while the weight decay is 0.001. The 40%
percent of the dataset is pulled from the local train set and
local validation set to obtain LT and LV .

Model. We use Recognizer3D with 50 layers as the visual
backbone for RGB and optical flow (OF). Then the AudioRec-
ognizer with 50 layers is used to process the audio (A) data. The



classification heads of all modalities share the same structure-
a two-layer fully connected network with hidden dimension
512. Then, the modality fusion part is designed as a network
with two fully-connected layers. The features from visual and
audio backbones are concatenated to feed into the prediction
layer with dimension 512. Therefore, we have four multi-modal
models that process different modality combinations, including
A+RGB, OF+RGB, A+OF, A+OF+RGB. For simplicity, we use
these abbreviations to represent the corresponding multi-modal
models. Also, the corresponding uni-modal models include A,
RGB, and OF. For RGB and flow, we use clips of 16×224×224
as input. We follow CSN [28] for visual pre-processing and
augmentation. As for the audio, we use log-Mel with 100
temporal frames by 40 Mel filters. Audio and visuals are
temporally aligned.

Benchmark methods. The FL methods, including the
FedAvg [1], FedAttn [16], and FedNova [17], are used as
the benchmark to compare with HGB. The use of HGB in the
FL paradigm is referred to as FedHGB in our experiments.
Besides, we use the corresponding best uni-modal model model
as the baseline.

Non-IID multi-modal data. We consider three different
ways (Case A,B,C) of distributing the data to clients, thereby
simulating the non-IID multi-modal data among participating
clients. For all the cases, clients contain all classes but with
different distributions. Thus, the basic setting is the distribution-
based label non-IID implemented by Dirichlet distribution
with concentration parameter 0.5. In case A, three modalities
are uniformly assigned to each client, making each sample
contains all modalities. In case B, we achieve the quantity-
based modality non-IID in which each client can only contain
subset modalities. It has three types, including mixed − B,
2M−B, and 1M−B. In mixed−B, the number of modalities
in each client is in the range [1, 3] while 2M−B and 1M−B
contain 2 and 1 modalities, respectively. Case C is built based
on case mixed−B. We additionally add the sample skewness
among modalities. Therefore, datasets of different modalities
have different sizes, leading to modality incompleteness.

Performance metrics: The video classification top-1 accu-
racy (V@1) and the number of communication rounds (CR)
required to convergence are used to present the performance
of the training algorithm.

B. Inconsistent Overfitting and Generalization Rates

We first apply the FedAvg method to the uni-modal FL and
the multi-modal FL to present the challenges of training the
multi-modal model in the non-IID multi-modal data. Using
the Kinetics dataset with non-IID case 1M -B, we compare
the audio-RGB (ARGB) model with the uni-modal RGB-only
model, i.e., FedAvg-RGB and FedAvg-ARGB, respectively.

Fig. 1 (a) plots the training curve and the validation curve on
Kinetics. The over-fitting problem of FedAvg-ARGB containing
two sub-networks is far more severe than that of FedAvg-RGB.
Specifically, training the audio-RGB model achieves lower
training error and higher validation error than the RGB-only
model, inducing the accuracy drop shown in Table I. The
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Fig. 1: Severe overfitting and inconsistent generalization
rate of audio-RGB multi-model on Kinetics with non-IID
case B. Solid lines plot validation error while dashed lines
show train error.

audio network and RGB network of FedAvg-ARGB show
significantly different generalization rates. The RGB network
generalizes better than that of the audio network. Therefore, the
low convergence speed and accuracy in Table I can be further
explained by joint training two sub-networks that generalize at
different rates.

Fig. 1 (b) shows the generalization errors of participating
clients in the training process. The generalization variance
among local models of FedAvg-ARGB maintains a particularly
higher value than the FedAvg-RGB. Especially in communi-
cation round 300, the variance of generalization errors is ten
times higher than that of FedAvg-RGB. Thus, the inconsistent
generalization rates among local models lead to an unstable
learning process and a sub-optimal model. This explains the
significant performance degradation for multi-modal FL in
Table I.

TABLE I: The performance comparison of the FedAvg method
on uni-modal FL and the multi-modal FL under the non-IID
data settings of three modalities.

Centralized FedAvg
Modalities V@1 V@1 #Rounds

RGB 71.52 58.43 480
A+RGB 72.17 49.91 519

OF+RGB 72.3 52.57 504
A+OF+RGB 73.62 38.62 557

C. Comparison with State-of-the-Art

This section shows the quantitative results and analysis of
HGB compared with state-of-the-art benchmark methods under
non-IID cases A, B, and C. The performance of the listed
methods is evaluated by applying them to train a multi-modal
model with three modalities A+OF+RGB sub-networks.

Fig. 2 shows the validation curve in the training process,
and Table II shows the validation accuracy in two non-IID
types of case B. As shown by Fig. 2, the smooth validation
curve demonstrates that our FedHGB can maintain stability
in learning under all non-IID cases. In summary, on both the
datasets with three non-IID cases A, B, and C, the performance



TABLE II: The performance comparison of methods in case B
with two modality non-IID types (i.e., Mixed-B and 2M-B). The
evaluation metric is the top-1 accuracy and the communication
rounds distance (4CR) between FedHGB and the fastest
method.

Datasets Kinetics Gym
Case B settings Mixed-B 2M-B Mixed-B 2M-B

FedAvg 38.04 44.32 42.33 51.42
FedAttn 51.79 56.91 58.07 64.52
FedNova 55.12 58.76 63.92 68.3
FedHGB 62.97 64.39 71.66 73.34
4CR 34 15 51 20

Uni-RGB 62.33 70.52

of our FedHGB outperforms other leading methods in terms of
validation accuracy and convergency speed. In case A shown
by Fig. 2 (a)(b), with only around 300 communication rounds
(CRs), FedHGB achieves about 68% and 75% accuracy on
the two datasets, outperforming other methods. In the more
challenging case B in Table II, FedHGB utilizes minimum CRs
to achieve average 6.745% and 6.44% improvements on two
datasets over the best heterogeneous federated optimization
method FedNova. Besides. In the case C shown by Fig. 2
(e)(f), the accuracy of our method is more than 10% higher
than FedNova, yet with at least 100 CRs reduction compared
with others. Also, shown by the last row of Table II, the
performance of multi-modal trained by FedHGB consistently
outperform the best uni-RGB model.

The experimental results that HGB is far superior to other
methods demonstrate that in multi-modal FL, training the
optimal multi-modal model with multiple sub-networks requires
the optimal blending of modalities and reweighting of the
local models. FedAvg that sole averages the local models
with equal weights obtain the worst accuracy in all cases.
Then, compared with FedAttn that reweights the local models
based on the weight divergence, our FedHGB computes the
optimal weights according to clients’ generalization behaviors
directly, leading to at least 15% higher validation accuracy. One
main reason for this is presented by Eq. 10 in proposition 2.
The discussion in FedAttn ignores that the weight divergence
is also derived from the M sub-networks in multi-modal
FL. The FedNova that aggregates the normalized stochastic
gradients from local updates partly addresses the challenge in
multi-modal FL because it suppresses the gradient divergence
among clients. However, our FedHGB further induces the
optimal blending of modalities in the local update, making
it significantly outperform FedNova in cases B and C that
mainly contain modality-based non-IID.

D. Ablation Experiments

This section illustrates the performance impact of optimal
gradient blending in each layer of HGB. Specifically, we
consider two ablations, including the M-GB and C-GB. The
M-GB only computes the optimal blending of modalities z∗m
in the local update but fixes the p∗k as the 1/K. C-GB only
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Fig. 2: The validation curves on Kinetics (i.e., (a), (c), (e))
and Gym (i.e., (b), (d), (f)) datasets with three non-IID
cases A, 1M -B, and C. FedHGB far surpasses other methods
in non-IID case A, B, and C whose sub-figures are presented
in the first row, second row, and third row, respectively.

computes p∗k but fixes z∗m as 1/M . Our proposed theorem 1
supports these ablation experiments as the two blending levels
can be computed separately to minimize the global OGR.

As presented in Table III, compared with the full HGB, the
validation accuracy obtained by solely applying M-GB or C-GB
shows a significant performance decrease in two datasets under
all cases. This demonstrates that simultaneously achieving the
optimal blending of modalities and computing the aggregation
weights of local models is the key point to efficiently training
an effective multi-modal model under the non-IID multi-modal
data. This verifies our theorem 1.

Then, the importance of optimal blending of modalities in
multi-modal FL is shown by the competitive results of M-GB
in all settings. For instance, under non-IID cases A and C,
M-GB shows averaged 3.56% and 5.46% accuracy drop in two
datasets, respectively. M-GB still maintains strong performance
in challenging case B. The main reason is that in all cases of
multi-modal FL, adjusting the gradient of different modality
sub-networks is an inherent requirement for joint training. As
each client contains a subset of modalities, there is a high
degree of inconsistency among clients. The limited accuracy
drop obtained by C-GB shows the necessity of reweighting



TABLE III: The performance comparison between ablation
methods of HGB in two datasets with all non-IID settings.
The evaluation metric is the top-1 accuracy (%) and the
communication rounds4CR that is computed as CR of M-GB
minus the CR of C-GB .

Datasets methods CaseA mixed-B 2M-B 1M-B Case C

Kinetics
M-GB 65.92 56.55 60.47 58.73 57.66
C-GB 63.83 55.91 57.02 58.64 52.81
4CR 25 48 66 95 67

Gym
M-GB 71.36 66.13 69.92 67.34 65.17
C-GB 70.03 64.4 66.1 66.38 58.93
4CR 41 36 69 87 46

local models to alleviate the gradient divergence. However,
M-GB still obtains accuracy close to C-GB. We argue that
M-GB can suppress gradients of sub-networks that damage
local generalization, making the weight update direction of
each client contribute to global generalization.

Convergence speed comparisons of case B in Table III
demonstrate that C-GB with local updates reweighting can
reduce communication rounds by 70 on average compared
to M-GB while maintaining a lower accuracy drop of 1.39%.
However, in case C with the modality incompleteness, C-
GB presents a 4.85% accuracy drop compared with M-GB.
We believe that training in case C requires the blending of
modalities. However, unlike M-GB, C-GB does not compute
the optimal blending of gradients from sub-networks in each
local update step to reduce generalization error, leading to its
low accuracy.

E. Qualitative Analysis

Our analysis of qualitative results in this section aims to
present the effectiveness of the modality blending in the local
update and the relation between the generalization rate and the
client’s weight pk.

As shown by the first column of Fig. 3, with the optimal
blending of modalities in the local update, gradients that
damage the generalization are alleviated, making the local
model is updated toward the minimum OGR direction as
described in our theorem 1. Thus, the generalization error
variance of updated local models in FedHGB is significantly
lower than the variance in FedAttn.

The relationship between the generalization error of the client
and the assigned weight, shown in Fig. 3 demonstrates that
FedHGB tends to assign higher weights to those clients with
low generalization errors, especially when CR ∈ [150, 200].
This contributes to training a global model that behaves well on
the whole population. On the contrary, the weights computed
by FedAttn are independent of the generalization condition,
leading to its low validation accuracy. Thus, we can empirically
conclude that the best performance of FedHGB is derived from
consistently focusing on tuning weights for low generalization
error.

VII. CONCLUDING REMARKS

In this paper, we investigated the challenges involved as
multi-modal models are trained in federated learning (FL) with
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Fig. 3: Comparison of quantitative results between Fed-
HGB and FedAttn on the Kinetics dataset, where the three
rows represent the three non-IID cases A, mixed−B, and
C, respectively. The first column shows the generalization
distribution of clients before aggregation in different commu-
nication rounds. The first column shows the generalization
distribution of clients before aggregation in different communi-
cation rounds. The second column in the right subfigure shows
the relationship between generalization error and the computed
weight pk for participating clients in the round 50− 100. The
third column shows the corresponding relation in the round
150− 200.

non-IID multi-modal data. The primary challenge we focused
on is that both the local updates and global aggregation suffer
from overfitting and inconsistent generalization rates, which
causes significant degradation in the performance of existing
FL methods. A highlight in our original contributions is a
new training algorithm, referred to as hierarchical gradient
blending (HGB), which adaptively achieves the optimal blend-
ing of modality sub-networks and the optimal aggregation of
local updates. Notably, HGB’s design seeks to minimize the
overfitting-to-generalization rate (OGR) of the global model.
We have presented a rigorous theoretical analysis to prove that
HGB guarantees effectiveness in the context of multi-modal FL.
Based on such a design, the blending weights are computed
online based on the overfitting and generalization behaviors.
Our extensive experimental results on video classification
datasets validated our theoretical analysis and demonstrated
the effectiveness of HGB in a variety of non-IID multi-modal
data scenarios.
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