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Abstract—In the context of personalized federated learning,
existing approaches train a global model to extract transferable
representations, based on which any client could train personalized
models with a limited number of data samples. Self-supervised
learning is considered a promising direction as the global model
it produces is generic and facilitates personalization for all
clients fairly. However, when data is heterogeneous across clients,
the global model trained using SSL is unable to learn high-
quality personalized models. In this paper, we show that when
the global model is trained with SSL without modifications, its
produced representations have fuzzy class boundaries. As a result,
personalized learning within each client produces models with
low accuracy. In order to improve SSL towards better accuracy
without sacrificing its advantage in fairness, we propose Calibre,
a new personalized federated learning framework designed to
calibrate SSL representations by maintaining a suitable balance
between more generic and more client-specific representations.
Calibre is designed based on theoretically-sound properties, and
introduces (1) a client-specific prototype loss as an auxiliary
training objective; and (2) an aggregation algorithm guided by
such prototypes across clients. Our experimental results in an
extensive array of non-i.i.d. settings show that Calibre achieves
state-of-the-art performance in terms of both mean accuracy and
fairness across clients.

Index Terms—Personalized federated learning, self-supervised
learning, model fairness, prototype learning

I. INTRODUCTION

With federated learning (FL) [1], multiple clients collabora-
tively train a global model while keeping their local datasets
private. However, with data heterogeneity, the local accuracies
that clients achieve may diverge significantly after training the
same model on their different local datasets. This leads to the
failure of achieving a more uniform — or fair — distribution
of client test accuracies [2]. Known as model unfairness, this
challenge motivated existing research on personalized federated
learning [3], which focused on training a global model for each
client to use as its starting point when training its personalized
model. Such personalized models are better aligned with local
data and may therefore improve fairness.

Unfortunately, when the local data distributions across
clients are severely non-independent and identically distributed
(non-i.i.d.), it remains challenging to improve model fairness
across clients while maintaining high overall performance. For
example, while fine-tuning a trained global model within each
client can improve the mean client test accuracy, it often leads
to a higher variance, resulting in unfairness. This discrepancy

primarily stems from significant variations in the local data
distribution of individual clients, when compared to the global
data distribution across all clients. In the context of data
heterogeneity with non-i.i.d. data across clients, it would be
ideal to achieve both low variance to improve fairness in local
test accuracies across clients, while simultaneously maximizing
the overall mean accuracy.

To achieve both objectives, it has been shown in the recent
literature that personalized model training needs high-quality
representations of samples as its starting point. Therefore,
existing research [4], [5], [6], [7] attempted to train an encoder
as the global model, which is capable of capturing generic
representations from the underlying non-i.i.d. data. However,
training models with these existing mechanisms depend on
label information. Consequently, when some classes or labels
are over-represented in the data from certain clients, model
training may become biased towards these majority classes.
This can result in limited representations that are hard to
generalize well across all clients, exacerbating the issue of
unfairness. Furthermore, the overall performance of these
existing mechanisms is also significantly reduced if clients
do not have an adequate number of labeled samples.

In this paper, we argue that utilizing self-supervised learning
(SSL) as a training approach for the global model is an effective
solution to these issues. SSL allows the global model to be
trained in an unsupervised manner without the need for labels,
thereby mitigating the issues related to label skewness. More
importantly, with the objective function of SSL, the global
model is trained to extract invariant features across clients.
With transferable representations obtained from SSL training
as a starting point, each client can then train a high-quality
personalized model, even if the number of samples is limited.
Although recent efforts in the literature, such as FedEMA [8],
explored the usage of SSL in conventional federated learning,
how SSL can be used for personalized federated learning
remains uncharted territory.

In this paper, we propose a new framework, referred to
as Calibre, that employs self-supervised learning to train
global models with a focus on two fundamental objectives
of personalization: the best possible fairness across all clients,
and optimal mean client test accuracies. Calibre contains two
federated learning stages: the training stage that trains a global
model using SSL, and the personalization stage that allows



clients to utilize the global model as the feature extractor to
train personalized models.

From empirical experiments, we observed that even though
training a global model with SSL contributes to fairness
to some extent, the quality of the produced personalized
model is poor. More specifically, the test accuracy of this
personalized model is even lower than the accuracy of a
local model trained without relying on the global model.
Furthermore, within our proposed framework that facilitates
fair comparisons, we conducted experiments involving other
recent works [8], [9], [10] under non-i.i.d. data. Surprisingly,
none of these approaches achieved competitive performance
in personalized models. To tackle this issue, we conducted
a qualitative analysis of SSL representations to gain better
insights. First, we observed that the learned SSL representations
collected from different clients were mixed without presenting
meaningful and discriminative information. For instance, no
distinct clusters emerged in the representations, even when they
originated from the same class. Second, within each client,
SSL representations exhibit unclear class boundaries, resulting
in poorer class separation, which is essential for subsequent
personalized model learning.

We naturally wonder: how can SSL representations be
calibrated to improve personalization while preserving their
fairness guarantee? Towards answering this question, we
attempt to build theoretical insights from an information
theoretic perspective [11], with the objective of exposing how
personalized learning depends on the global model and the
local dataset. On the one hand, once the global model is trained
to solely capture transferable SSL representations, it will have
a limited ability to extract client-specific information, such as
clusters of the local dataset, necessary for personalization. On
the other hand, a global model unable to capture generic rep-
resentations will contain sparse information from the datasets
of whole clients, making only information from the local
dataset contribute to personalized learning. To obtain balanced
information usage during personalization, we formulate this
process as an optimization problem, and derive important
theoretical results to analyze the generality-personalization
tradeoff.

Taking advantage of our theoretical insights, the core
contribution of this paper is to pursue fair and accurate
personalized FL by calibrating the SSL representations with
a new contrastive prototype adaptation mechanism. During
the local update of each client, client-specific prototype
regularizers can work seamlessly with any SSL approach
to optimize the global model toward capturing generic and
clustered representations. Each client then computes the average
distance between its samples and their corresponding prototypes.
Such average distance can be effectively used to measure
the local divergence rate, which acts as a weighting factor
during the server aggregation. Through an extensive array
of experiments conducted across various non-i.i.d. settings
using the CIFAR-10, CIFAR-100, STL-10 [12] datasets, we
illustrate that the utilization of a lightweight personalized model,
specifically a linear classifier, would be sufficient for Calibre

to achieve state-of-the-art performance in terms of both mean
accuracy and fairness. In addition, Calibre also generalizes
well to unseen clients that have not participated in the training
process.

II. RELATED WORK

Existing research in the FL literature has shown that the
quality of the global model deteriorates when clients across the
board have non-i.i.d. data. Personalized federated learning
(pFL) [3], [13] was proposed with the target of training
personalized models for individual clients while maintaining
fairness across clients, in that the variance of local test
accuracies is low. One of the primary research directions [4],
[6], [7], [14] exploits representation learning to train a global
model capable of extracting transferable representations. With
this model as the starting point, each client can train a high-
quality personalized model. Particularly, FedRep [6] jointly
learns a single global representation and many local heads.
FedBABU [7] shares a similar two-stage training approach
to our work. In the first stage, it trains a shared encoder
using decentralized datasets, after which each client optimizes
its local head by leveraging the features extracted from the
fixed encoder. In contrast to approaches that heavily rely
on strong supervision information, such as labels, our work
takes a different approach by incorporating self-supervised
learning (SSL) [15] into personalized FL. By leveraging SSL,
we enhance the generality of the global model without the
need of using labels in training data samples.

Exploring unsupervised training methods for addressing
non-i.i.d. challenges in federated learning is a burgeoning
research area. Existing studies that were closely related to
our work, such as [8], [9], [10], employed SSL frameworks,
including BYOL [16], SimCLR [17], and Simsiam [18]. The
overarching objective was to optimize the global model using
multiple augmentations or views of the same input data.
Specifically, FedEMA [8] conducted a comprehensive empirical
investigation into federated self-supervised learning. Based
on this study, FedEMA introduced a novel approach that
combined elements of BYOL and employed an exponential
moving average (EMA) scheme. To the best of our knowledge,
no prior research explored the effectiveness of self-supervised
learning in the context of personalized FL, while simultaneously
considering fairness and overall performance.

III. PROBLEM FORMULATION

Unlike conventional federated learning that trains a global
model θ across C clients, personalized federated learning
(pFL) aims to produce personalized models {ϕc}C

c=1 for
individual clients. This leads to an optimization problem given
by min{ϕc}C

c=1

1
C

∑
c Lc (ϕc; Dc), where Lc and Dc is the

loss function and the local train set of client c, respectively.
Among various methodologies toward achieving personalized
FL, this paper focuses on the paradigm [6], [7], [8] in which
clients cooperatively train a global model θ, containing fully
convolutional layers θb and fully-connected layers θh. After
reaching convergence, each client utilizes θb to extract features



to train its ϕ based on the local dataset. For the purpose of
evaluation, each client tests its trained ϕc on the local test
dataset D′c. In the context of image classification that we
focus on, clients compute accuracies

{
a1, ..., aC

}
. This paper

focuses on a common challenge in non-i.i.d. data scenarios,
particularly where the label distributions vary considerably
across clients.

A. Model Fairness and Overall Performance

Mean accuracy computed on
{

a1, ..., aC
}

presents the
overall performance but fails to give insights into how well
individual clients can train personalized models. Under the non-
i.i.d. data of clients, the global model θ may be trained to be
biased towards the data distribution of certain clients. Therefore,
when θ is eventually used by clients for personalization under
non-i.i.d. data, such bias introduces highly variable performance
between different clients as the trained global model cannot
generalize well to some local datasets.

This disparity in model performance across different clients
is commonly recognized as model unfairness [19]. We formally
extend this to personalized FL. Specifically, fairness is defined
as the case if, based on the trained global model, clients can
generate personalized models with similar performance. In
terms of accuracy, this leads to

{
a1, . . . , aC

}
of clients pre-

senting a low divergence, meaning that the variance computed
from these test accuracies is low.

We argue that targeting a high overall performance but
sacrificing model fairness, or vice versa, is extremely detrimen-
tal when applying personalized FL to real-world applications.
Therefore, in this paper, our objective is to impose better
fairness by decreasing the accuracy variance, while still
achieving the best possible mean accuracy.

B. Personalized FL with Self-Supervised Learning

As pointed out by the existing literature [6], [7], the core
idea to improve fairness is to train the global model toward
extracting the generic features containing common patterns of
the dataset. And thus, any clients can train personalized models
based on these extracted features of local samples. Motivated
by these observations, we propose introducing self-supervised
learning (SSL), an unsupervised learning approach, to train
the global model under personalized FL, pFL-SSL. This is
because the objective of SSL does not include labels, and as
a result, learned representation is not tied to specific labeled
outcomes. This generalizes well to local samples with different
label distributions; with non-i.i.d. data, the trained global model
will be less biased towards the data distribution of a certain
subset of clients.

Therefore, the preliminary design is to train the global model
with SSL and then perform personalization on each individual
client based on the transferable representation learned by the
trained global model. First, during the training stage, the
global model θ is trained with the loss function of SSL
[17] till reaching the convergence. Subsequently, during the
personalization stage, each client utilizes θb of the θ as the
feature extractor of the local samples and then ϕc is trained in
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Fig. 1: Illustrations of 2D t-SNE embeddings of SSL repre-
sentations learned by four methods. Moving from left to right,
the representations are derived from local samples of 10 out
of 100 clients, using encoders trained by pFL-SimCLR and
pFL-BYOL respectively.
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Fig. 2: Visualization of 2D t-SNE embeddings of client
representations and test accuracy derived from pFL-SimCLR
and pFL-BYOL methods. The first three representations are
from pFL-SimCLR, while the last three are from pFL-BYOL.
These examples are randomly selected from a pool of 100
clients.

a supervised manner with the cross entropy loss. As the θb is
trained to extract generic representations, the ϕc is designed
to be lightweight, such as a linear classifier.

Such a pFL-SSL design ensures compatibility with a wide
range of state-of-the-art SSL methods. One only needs to
change the SSL method in the training stage to obtain a
new approach. For example, one can directly implement pFL-
BYOL, pFL-SimCLR, pFL-SimSiam, and pFL-MoCoV2 by
introducing BYOL [16], SimCLR [17], SimSiam [18], and
MoCoV2 [20], respectively.

C. Representations with Fuzzy Class Boundaries

With pFL-SSL, the transferable representations extracted
by θ on local samples are expected to demonstrate two key
properties: 1) exhibiting distinct class boundaries, even in
the presence of class-imbalanced samples for each client
[21], and 2) encompassing transferable generic semantics.
However, based on our experiment performed on CIFAR-10
under non-i.i.d. data across 100 clients, we observed that the
representations learned by pFL-SimCLR and pFL-BYOL, as
shown in Fig. 1 and Fig. 2, do not exhibit these properties. In
contrast, the 2D embeddings of features reveal the following
two limitations of PFL-SSL.
Fuzzy cluster boundaries across clients. Fig. 1 shows the
distribution of representations collected from multiple clients.
It is obvious that representations of pFL-SimCLR and pFL-
BYOL cannot be clustered into distinct groups. This means
that these approaches only learn the generic semantics without



holding class information. Specifically, the objective of pFL-
SimCLR and pFL-BYOL is designed to measure the agreement
or discrepancy between different views of the same data. This
leads to representations with higher generality, but no cluster
information is included. Without such information, the cluster
boundaries of representations are fuzzy, and thus, it is hard to
perform classification.
Fuzzy cluster boundaries within each client. As shown in
Fig. 2, even within individual clients, representations of pFL-
SimCLR and pFL-BYOL fail to shape clear class boundaries
and thus cannot embrace better class separation for subsequent
personalized learning. In the non-i.i.d. data, individual clients
exhibit class-imbalanced samples, meaning that certain classes
have a considerably larger number of samples than others, as
depicted in Fig. 2. Previous work [21] has highlighted that
SSL representations form distinct clusters for class-imbalanced
samples under central learning. However, the observations
from pFL-SimCLR and pFL-BYOL demonstrate that SSL
representations fail to maintain such a benefit under the
personalized FL with non-i.i.d. Specifically, the representations
do not exhibit clear boundaries that separate samples from
different classes.

Hence, we argue that pFL-SSL enables training a global
model that captures transferable representations holding generic
patterns. Consequently, the personalized learning of individual
clients can benefit equally from these representations. This
guarantees the model fairness. However, as cluster information
and clear boundaries are not contained in SSL representations,
clients are unable to train high-quality personalized models.
As a result, the overall performance tends to be low.

Finally, our question in this paper is how we should include
cluster information when training the global model with SSL.
Thus, SSL representations are calibrated to achieve accurate
personalized FL while maintaining its capability in fairness
guarantees.

IV. Calibre: A NEW PFL FRAMEWORK

In this section, we begin with a theoretical exploration of
the impact of self-supervised representations containing fuzzy
class boundaries on personalization. As a result, the derived
theorem guides our design of Calibre towards fair and accurate
personalized FL.

To train the personalized model ϕ, the θb extracts features
from the input x′, resulting in the latent representation z =
fθb

(x′), which is utilized to make a prediction with ϕ, denoted
as y′. Therefore, the predicted label y′ is obtained based on
information derived from: 1) the local dataset D, where x′ ∈ D
is processed by models to produce y′; and 2) θb, the encoder
responsible for extracting latent features, directly contributing
to y′.

A. Generality-Personalization Tradeoff Theorem

The learning for the personalized model ϕ of each client
depends on the self-supervised representations z extracted by
the global θb. We denote this process as x′ → z → y′. Thus,
from the information theory perspective, this process can be

formulated by two information flows, including x′ ∈ D →
ϕ → y′ and θb → y′.

Excessively generic representations. On the one hand,
when self-supervised representations z primarily exhibit generic
features across clients, such as sample-wise similarity, the
training for ϕ is adversely affected as a result of failing to
capture the class distinguishability information from client-
specific data D, as witnessed in Fig. 2. This can be denoted
as q(y′|x′, ϕ)q(ϕ|D, θb) = q(y′|x′, ϕ)q(ϕ|θb), in which the
personalized model ϕ is independent of the dataset D in the
client, such that q(y′|x′, θb, D) = q(y′|x′, θb). Hence, we have
Lemma 1 which improves personalization by maximizing the
information from D to the prediction.

Lemma 1. Given θb and the learned representation z, we can
implicitly encourage the model to use the client’s local training
data D by maximizing the lower bound of I(y′; D|θb, z) shown
as I(x′; y′|θb) − E [KL(p(z|x′, θb)||r(z))], where r(z) is a
variational approximation to the marginal.

Proof. With KL(p(y′|z, θb)|q(y′|z, θb)) ≥ 0, I(y′; z|θb)
has a lower bound

∫
p(z, y′|θb) log q(y′|z, θb)dy′dz , where

q(y′|z, θb) is a variational approximation to the target distri-
bution p(y′|z, θb). Then, given∫

p(z, y′|θb)dy′dz =
∫

p(x′, y′|θ)p(z|x′, θb)dx′dy′dz

(1)
we can approximate the lower bound of I(y′; z, |θb) by

using the empirical data distribution of p(x′, y′) on D′.
We obtain I(y′; z, |θb) ≥ E

∫
p(z|x′

n, θb) log q(yn|z, θb)dz.
Utilizing the reparameterization trick, this can be estimated as
Ex′Eϵ∼N(0,I) [log q(y′|x′, θb, ϵ)].

Excessive personalization. On the other hand, personalized
learning is hindered when the trained global encoder θb mainly
concentrates on capturing client-specific class distribution from
local samples, while providing limited prior generic information
learned from datasets of other clients. As a result, with no infor-
mation from θb being included, the training for ϕ relies solely
on the information flow from the D. This can be mathematically
denoted as q(y′|x′, ϕ, θb)q(ϕ|D, θb) = q(y′|x′, ϕ)q(ϕ|D),
in which ϕ only depends on limited local samples D, thus
significantly damaging the training speed and the prediction
performance. Therefore, we should enhance the generic of self-
supervised representations by improving the mutual information
I(y′; z|θb). Thus, we have lemma 2.

Lemma 2. With the representation z obtained by applying
the θb on the sample x′, more information of θb can be
given to personalized prediction y′ by maximizing the mutual
information I(y′; z|θb) with a lower bound estimated as
Ex′,y′

∫
p(z|x′, θb) log p(y′|z, θb)dz.

Proof. We first get a zero term I(x′; y′|D, θb, z). Then, we
can naturally follow the theoretical analysis in the Appendix
A.2 of the work [11] to obtain I(y′; D|θb, z) ≥ I(x′; y′|θb, z).
For each client, the input x′ used to predict y′ is the sample



of the test set that has a consistent class distribution with the
training set. Then, we have

I(y′; D|θb, z) ≥ I(x′; y′|θb, z) ≥ I(x′; y′|θb) − I(x′; z|θb)
≥ I(x′; y′|θb) − E [KL(p(z|x′, θb)||r(z))]

(2)
where the second inequality is obtained by using the chain rule
of mutual information and then removing the mutual informa-
tion term I (x′, θb|θb, y′). Then, with the variational approxima-
tion r(z), we can achieve the final term by extending the third
term to I(x′; y′|θb) − Ep(x′)p(z|x′,θb)

[
log p(z|x′,θb)

p(z|θb)

]
which

can be bounded by E
[
log p(z|x′,θb)

r(z)

]
in which p(z|x′, θb)

can be computed as a deterministic function by using the
reparameterization trick. However, we do not compute this
term in our work for simplicity.

Considering both conclusions, fair and accurate personalized
learning can be achieved by calibrating the self-supervised rep-
resentations to capture client-specific concepts while preserving
high-level semantics. This gives rise to a mutual information
maximization problem, as depicted below:

max I(y′; z′|θb, D)
s.t.I(y′, D; θb|x′) ≤ Ic

(3)

where Ic is the constant information constraint.
Addressing this optimization problem leads to the core

theorem that guides the methodology design of this paper.

Theorem 1 (Generality-Personalization Tradeoff). To calibrate
the self-supervised representations for personalization in fed-
erated learning, the global encoder θb is trained to attain
balanced information flows as formulated in Eq. (3). This is
equivalent to focusing on the following objectives during the
training process:

max
θb

E

∫
p(z|x′, θb) log p(y′|z, θb)dz

− Eθb|DED′c [lc(θb; x′, y′)]
− βE [KL(p(θb|D, x′, y′)||r(θb)]
− E [KL(p(z|x′, θb)||r(z))]

(4)

where ϕc ∼ q(ϕc|Dc, θb), (x′, y′) ∼ D′c. lc can a classifica-
tion loss function.

Proof. Given the optimization problem:

max I(y′; z′|θb, D)
s.t.I(y′, D; θb|x′) ≤ Ic

(5)

where Ic is the constant information constraint.
The predictive process can be defined as a Markov chain

shown as Y ↔ X ↔ Z, where Y is the label, X is the input
sample and Z is the latent feature. The optimization problem
in Eq.5 is solved by introducing a Lagrange multiplier β.

Then, the problem is transformed into maximizing the
formula below

△ =I(y′; z, |θb, D) − βI(y′, D; θb|x′)
=I(y′; z, |θb) + I(y′; D|θb, z) − I(y′; D|θb)

− βI(y′, D; θb|x′)
(6)

Then, the final term equals to E
[
log p(y′,D,θb|x′)

p(y′,D|x′)p(θb|x′)

]
=

E
[
log p(θb|D,x′,y′)

p(θb|x′)

]
, which has the lower bound

E [KL(p(θb|D, x′, y′)||r(θb)] where r(θb) ∼ N(0, I)
can be a variational approximation to the target distribution of
θb.

After introducing the lemmas 1, lemma 2 and the above
obtained lower bound for the β term, the chain rule flat-
ten of △ additional includes the mutual information term
I(x′; y′|θb) − I(y′; D|θb). If the I(x′; y′|θb) is 0, the model
predictions do not depend on the given x′, leading to low
accuracy. Thus, maximizing I(x′; y′|θb) term is equivalent to
minimizing classification losses lc for high accuracy. Similarly,
as the online encoder θb learns the generic representation
for prediction on the client, the representation containing
distinguishable features for classification leads to predictions
that are less dependent on local training data sets, i.e., a smaller
I(y′; D|θb). Therefore, the local representation learned by the
θb in each client is expected to contain prototype information
for the local classes for direct prediction on the D′. Therefore,
we can replace this term with a conditional classification loss
objective function that is computed conditioned on the global
model θb.

B. Design

Building on the Theorem 1, the core of Calibre to fair and
accurate personalized FL is a novel loss function Lc containing
four terms as shown in Eq. (4).
Prototype generation. Extending the concept of prototypes
[22], Calibre first generates pseudo labels through a straight-
forward clustering algorithm, such as KMeans, thereby the
prototype vector for the k-th cluster is calculated as the average
of encodings assigned to this group.
Client-adaptive prototype regularizers. The last two terms
of the Eq. (4) can be safely omitted without negatively affect-
ing local learning. Specifically, [KL (p(θb|D, x′, y′)||r (θb))]
is removed because the θb is designed upon discrimi-
native parameters. Kullback-Leibler (KL) divergence term
E [KL(p(z|x′, θb)||r(z))] is ignored because aligning the
learned latent space with a desired prior distribution in our
training stage is unnecessary.

Two regularizers, originating from the first two terms, are
calculated adaptively based on the samples utilized by each
client during the local update.

With the reparameterization trick, the first term
E

∫
p(z|x′

n, θb) log q(yn|z, θb)dz is estimated as
Ex′Eϵ∼N(0,I) [log q(y′|x′, θb, ϵ)]. Conditional on θb, the
input x′ is encoded to z = fθb

(x′). After generating
prototypes {vk}K

k=1 from a batch of encodings, the
prototype-based meta regularizer Ln is computed based on



Algorithm 1: Loss computation for Calibre (SimCLR)
Input : Global model θ. One batch of samples B.
Output: Computed loss L

1 for xi ∈ B, i ∈ {1, ..., N} do
2 Use augmentation functions A of SimCLR [17]
3 x̂2i−1 = A (xi); x̂2i = A (xi)
4 z2i−1 = fθb

(x̂2i−1); z2i = fθb
(x̂2i)

5 h2i−1 = fθh
(z2i−1); h2i = fθh

(z2i)
6 end
7 ls = NTXent

(
{hi}2N

i=1

)
8 for k ∈ Kr do
9 ν2k−1 = 1

Nk

∑
j∈Ik

e
hj

10 ν2k = 1
Nk

∑
j∈Ik

o
hj

11 end
12 lp = NTXent

(
{νi}2K

i=1

)
13 Kr = KMeans (z), z = [z2i−1, z2i]
14 for k ∈ Kr do
15 vk = 1

Nk

∑
j∈Ik

o
zj

16 end
17 Ln =

∑
k∈Kr

−1
Nk

∑
j∈Ik

e
log exp(zj ·vk/τ)∑

a∈Ie⧹k
exp(za·vk/τ)

18 Lc = lc + ls + α (lp + ln)

pθb
(y′ = k|x′) = softmax (−d (z, vk)) [23], where d (·)

represents a distance measurement function, such as the
Euclidean distance. The second term Eθb

ED′c [lc(θb; x′, y′)]
aims to boost the representations extracted from θb by
introducing class distinguishability to benefit the personalized
prediction. Under unsupervised learning, we propose a
prototype-oriented contrastive regularizer Lp aiming to
reduce prototype variances of the same classes from different
augmented views of samples or vice versa.

Algorithm 1 presents the pseudocode for computing the loss
of Calibre (SimCLR) during the training stage. During each
iteration of the local update, the computation of Ln and Lp

relies on the augmented views of input samples generated
by SSL approaches. Specifically, for one batch B containing
N samples, the augmented dual-view samples are denoted as
I ≡ {Io, Ie} where Io = {x̂2i}N

i=1 and Ie = {x̂2i−1}N
i=1. To

compute ln, the prototypes {vk}Kr

k=1 are generated based on
the representations z of the sample from Ie. After assigning
Io to these prototypes, the ln is the distance between each
encodings of Io and its corresponding prototype, formulated
as Ln =

∑
k∈Kr

−1
Nk

∑
j∈Ik

e
softmax (−d (zj , vk)), where Ik

e

represents the samples assigned to prototype k and Nk = |Ik
e |.

Then, for the Lp, the prototypes {ν2k}K
k=1 and {ν2k−1}Kr

k=1
of Io and Ie are computed based on the model outputs
h2i−1 and h2i. These two views of prototypes then behave
as contrastive samples to compute the Lp following the
formulation of NTXent loss [17]. Finally the global loss
L = lc + ls + α (lp + ln), where ls depends on which SSL
approach is used. In the case of Calibre (SimCLR), the NTXent
loss [17] is used and denoted as Ls, as shown in Table 1.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Experimental platform. All experiments are conducted
on Plato, an open-source research framework for federated
learning. We utilize a single NVIDIA RTX A4500 GPU with
20 GB of CUDA memory. Additionally, one task is allocated
10 CPUs, each CPU having 3GB of memory.

Datasets. We perform the evaluation on three widely-used
datasets, CIFAR-10, CIFAR-100, and STL-10 [12]. The first
three frequently utilized datasets comprise fully annotated sam-
ples. However, STL-10 comprises 100, 000 unlabeled samples
in addition to 5, 000 labeled training samples.

Model settings. We utilize the ResNet-18 network in experi-
ments on CIFAR-10, CIFAR-100 and STL-10 datasets. In order
to maintain a fair comparison, the fully-connected layers of both
networks are substituted with a linear classifier. Consequently,
for the CIFAR-10, CIFAR-100, and STL-10 datasets, the input
dimension of this classifier is set to 512, corresponding to
the number of classes as the output. We refer to the fully
convolutional neural part as the Encoder while the linear
classifier as the Head. Thus, in SSL approaches, the Encoder
is the feature backbone, which also behaves as the global model
exchanged between clients and the server. Calibre (BYOL),
Calibre (SimCLR), Calibre (MoCov2), Calibre (Simsiam),
Calibre (SwAV), and Calibre (SMoG) are built upon BYOL
[16], SimCLR [17], Simsiam [18], MoCoV2 [20], SwAv [24],
and SMoG [25], respectively.

Benchmark approaches. Well-known federated learning
approaches, including FedAvg [1], LG-FedAvg[4], SCAFFOLD
[26], are included as the benchmark approaches. Specifically,
FedAvg-FT and SCAFFOLD-FT refer to scenarios where the
global model is initially trained using FedAvg and SCAFFOLD,
respectively. Subsequently, the Head component of the model
is fine-tuned based on the local dataset. Our experiments
also contain advanced personalized FL approaches, including
FedRep [6], FedBABU [7], FedPer [14], PerFedAvg [27],
APFL [28]. Calibre is also compared with Ditto [19], which
achieves fairness through personalization. Additionally, we
assess Calibre against the closely related work FedEMA [8]
to provide a comprehensive evaluation. Finally, in addition to
these approaches, we allow each client to train its personalized
model (i.e., a linear classifier) separately based solely on their
local datasets. Script-Convergent refers to the model trained
until convergence, whereas Script-Fair corresponds to the model
trained after 10 epochs.

Learning settings. We have a total of 100 clients par-
ticipating in training the global model for 200 rounds. In
addition, there are 50 novel clients that are excluded from
the training process. In each round, 10 clients are randomly
selected to perform 3 epochs of local update. After 200 rounds
of training, all 150 clients will download the trained global
model to perform the personalization based on the local dataset.
Leveraging the trained global model, denoted as the Encoder,
as the feature extractor, each client optimizes their personalized
model for 10 epochs using the SGD optimizer with a learning
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Fig. 3: Comparison of Mean and Variance of Test Accuracy among 100 clients across different non-i.i.d. settings in the
CIFAR-10, CIFAR-100, and STL-10 datasets.

rate of 0.05. The batch size is 32. In the loss computation
of Calibre, we set the value of α as 0.3. During empirical
comparisons of SSL approaches, we chose a batch size of 256.
Although this batch size is relatively small, it does not impact
the validity of our experiments or the resulting conclusions.

Non-i.i.d. settings. Quantity-based label non-i.i.d., abbrevi-
ated as Q-non-i.i.d., means that each client owns data samples
of a fixed number of labels. Thus, we control the heterogeneity
of CIFAR-10, CIFAR-100 and STL-10 by assigning different
numbers S of classes per client, from among K = 10 and
K = 100 total classes, respectively. Each client is assigned
the same number of training samples, namely D

K , where D
is the total samples. It is denoted as (S, #samples). For
distribution-based label non-i.i.d., abbreviated as D-non-i.i.d.,
each client uses a divided partition of the whole dataset,
biased across labels according to the Dirichlet distribution
with the concentrate 0.3. We refer to this non-i.i.d. setting as
(0.3, #samples) for clarity and distinction.

Embeddings of representations. The qualitative results
in our paper are depicted through a 2D embedding of the
learned representations generated by the global model. During
the personalization stage, each client forwards their local
samples through the trained global model (Encoder) to extract
features. The quality of these extracted features significantly
impacts subsequent personalized learning. Thus, to gain deep
insights, t-SNE is exploited as a dimensionality reduction
technique to reduce the high-dimensional feature space to

a 2D representation for visualization.

B. Accuracy

As shown in Fig. 3, and Fig. 4, Calibre, built upon four SSL
methods, consistently obtains competitive accuracy. Especially,
Calibre (SimCLR) maintains the highest mean accuracy in
various non-i.i.d. settings of four datasets. In the Q-non-i.i.d.
setting, when applied to the datasets CIFAR-10, CIFAR-100,
and STL-10, Calibre utilizing the SimCLR learning structure
demonstrates superior performance in terms of mean accuracy.
It outperforms sub-optimal methods by 1.71%, 1.51%, and
6.03% on the respective datasets. This is because features
extracted by the global model trained with Calibre contain
cluster information. Moreover, based on these transferable
representations, the personalized model converges faster and
can generalize better on the specific dataset, even when local
samples are limited and imbalanced. Finally, any client can
train a high-quality personalized model to gain high accuracy
on its test set.

While both non-i.i.d. settings involve label skewness among
clients, the D-non-i.i.d. setting presents a greater challenge
than the Q-non-i.i.d. setting. This is because, in the D-
non-i.i.d. setting, each client experiences sample skewness
among classes, further complicating the learning process.
Remarkably, under the D-non-i.i.d. setting for the STL-10
dataset, Calibre (SimCLR) significantly outperforms FedBABU
by a considerable margin of 15.18%. The primary reason is
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Fig. 4: Comparison of Mean and Variance of test accuracy of 150 clients in CIFAR-10 and CIFAR-100 datasets under the
distribution-based label non-i.i.d..

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

Fig. 5: Illustrations of 2D t-SNE embeddings for representations obtained from encoders trained with pFL-SimSiam, pFL-
MoCoV2, Calibre (SimSiam), and Calibre (MoCoV2), respectively. This experiment is conducted on the CIFAR-10 dataset
under D-non-i.i.d. with the concentration 0.3. We collect representations from 6 out of 100 clients for visualization.

that Calibre is designed to learn robust representations that
target the generality-personalization tradeoff without explicitly
relying on labels. Therefore, non-i.i.d. data challenges present
limited influence on the training process of our Calibre. And,
Calibre is able to sufficiently learn from a large number of
unlabeled samples in STL-10 while other methods cannot.

When compared to traditional personalized FL methods,
recent approaches like FedRep [6] and FedBABU [7], which
focus on learning a global encoder capable of extracting generic
representations, demonstrate improved accuracy across clients
and reduce accuracy divergence. The unique advantage of
Calibre is the ability to avoid label skewness in represen-
tation learning while exploiting prototypes to maintain the
distinguishability of features. The incorporation of Calibre into

SimCLR and MoCoV2 during the federated training stage
proves to be highly effective, as evidenced by the results
obtained in the D-non-i.i.d. scenario on the CIFAR-10 and
CIFAR-100 datasets shown in Fig. 4. By utilizing the well-
trained global model of Calibre, the majority of clients can train
personalized models of high quality, resulting in significantly
improved mean accuracy. Specifically, in the demanding non-
i.i.d. scenarios of CIFAR-10 and CIFAR-100, as illustrated in
the subfigure of the first column in Fig. 4, Calibre (SimCLR)
achieves superior mean accuracy compared to FedAvg-FT,
surpassing it by 2.97% and 7.11%, respectively.

C. Fairness
The fairness guarantee of our proposed Calibre has been

substantiated through extensive experiments conducted on



TABLE I: Test Accuracy mean ± std on the non-i.i.d. setting
with (2, 500) for the CIFAR-10 dataset. The checkmark (✓)
indicates that the corresponding term is included in Calibre.

Ln Lp Calibre (SimCLR) Calibre (SwAV) Calibre (SMoG)

54.67 ± 14.32 85.03 ± 15.1 86.19 ± 11.32

✓ 73.58 ± 10.13 84.76 ± 12.5 87.23 ± 10.9

✓ 81.07 ± 12.92 79.31 ± 15.73 77.31 ± 13.24

✓ ✓ 89.16 ± 10.58 81.42 ± 11.93 80.07 ± 11.2

diverse datasets and a wide range of non-i.i.d. settings, as
evidenced by the results depicted in Fig. 3, and Fig. 4.
Calibre consistently maintains a remarkably low accuracy
variance across all four datasets, demonstrating its competitive
performance.

As shown in the first row of Fig. 3, under the Q-non-i.i.d. in
CIFAR-10 and CIFAR-100 datasets, the fairness performance
of Calibre significantly approaches the optimal APFL and
FedBABU, with the variance being only 0.0031 and 0.0048
higher than those of the two methods, respectively. This implies
that the generated representations of Calibre face challenges in
achieving robust generalization for 2-way classification tasks on
certain clients. However, in the face of the challenging dataset,
as exemplified by the second row of Fig. 3 for the STL-10
dataset, Calibre demonstrates a substantial enhancement in
fairness, surpassing the competitor method, FedEMA, by an
impressive 31.1% in percentage.

Notably, the advantage of Calibre in achieving fairness can
be verified in challenging D-non-i.i.d. cases where clients
exhibit varying degrees of label imbalance in their samples.
As illustrated in the first column of Fig. 4, Calibre, built upon
SimCLR and MoCoV2, trains the model to capture a fair
condition that the accuracy of most clients remains a higher
value. Consequently, Calibre achieves a remarkable reduction
of 23.8% in variance compared to FedAvg-FT. We contend that
training the global encoder in an unsupervised manner naturally
captures generic representations, particularly under D-non-i.i.d.
scenarios. Although such representations can contribute fairly
to all clients, the sparse class information in the representations
may result in suboptimal mean accuracy. Calibre resolves this
issue by calibrating the pure SSL representations using the
concept of prototypes, leading to significant improvements.

D. Performance on Novel Clients

As shown in the second column of Fig. 4, Calibre is able
to achieve fair and accurate personalized learning even on
novel clients that are unseen during training. In particular,
when considering both the mean and variance of accuracy,
Calibre achieves a suitable balance by achieving competitive
fairness without compromising model performance. For exam-
ple, the mean accuracy of Calibre (SimCLR) outperforms the
FedBABU by 2.2% and 9.6% in CIFAR-10 and CIFAR-100,
respectively. Meanwhile, the corresponding variance on the
CIFAR-10 dataset for Calibre (SimCLR) is 0.01 lower than that
of FedBABU. Despite the fact that the fairness of Calibre lags

behind FedBABU by 0.0045%, its mean accuracy outperforms
FedBABU by an even greater margin. A similar conclusion
can be drawn when comparing Calibre with other approaches.

The reason for such outstanding performance of Calibre
on novel clients is that Calibre trains the model to learn
generic information while maintaining the ability to generate
clusters for representations, all without depending on any client-
specific information. Meanwhile, representations extracted by
the trained model naturally contain prototypes of samples,
guaranteeing a better class separation. Consequently, the trained
global encoder can be readily employed by clients with any
data distribution.

E. Rationale Behind the Superior Performance of Calibre
(SimCLR)

Despite the significant improvements observed in SSL
approaches calibrated by our Calibre, Calibre (SimCLR)
consistently outperforms other methods by a substantial margin
across all settings, as depicted in Fig. 3, and Fig. 4. We
contend that the remarkable performance can be attributed
to the NT-Xent objective function of SimCLR. This objective
function simultaneously measures the inter- and intra-relations
of positive and negative samples. By effectively bringing similar
samples closer together while pushing dissimilar samples
apart, it seamlessly cooperates with our regularizers, namely
Lp and Ln, to induce more robust prototypes. As a result,
the clusters formed by different samples exhibit even clearer
boundaries. As a comparison, the objectives of alternative
methods, like BYOL, which exclusively utilize cosine similarity
for measuring pairwise sample distances, could potentially
undermine our desired tradeoff shown by Theorem 1. An
illustrative example can be observed in Fig. 6, which compares
the representations of Calibre (SimCLR) and Calibre (BYOL).

Experimental results, shown in Table I, further present that
the objective function of the SSL approach can work well
in central learning but may show strong conflict with the
regularizers of Calibre. The mean accuracy of Calibre (SwAV)
and Calibre (SMoG) are lower than Calibre (SimCLR) by
7.74% and 9.09%, respectively. Nevertheless, the corresponding
std is 1.35 and 0.62 higher. Therefore, although SwAV and
SMoG inherently incorporate prototypes into the learning
process, their objective cannot cooperate with Calibre.

F. Ablation Study

In the ablation study presented in Table I, we examine
the contributions of various components, including the two
regularizers Ln and Lp, to the performance of Calibre. First, Ln

is more critical than Lp, as it is computed using the prototypes
of encodings z, which are utilized during personalized learning.
Nevertheless, in the case of Calibre (SwAV) and Calibre
(SMoG), where they construct their prototypes within the
objective function, the importance of Lp surpasses that of
Ln. Incorporating Ln into their training process may even
have a detrimental effect. Notably, although SwAV and SMoG
inherently incorporate prototypes in the learning process, they
conflict with Ln, resulting in a considerable performance
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Fig. 6: Illustrations of 2D t-SNE embeddings for representations obtained from encoders trained with Calibre (SimCLR) and
Calibre (BYOL), respectively. This experiment is conducted on the CIFAR-10 dataset under D-non-i.i.d. with the concentration
0.3. Representations from 6 out of 100 clients are collected for visualization in the first two sub-figures. In comparison to Fig. 2,
the last subfigures display the local representations for Client 14 using Calibre (SimCLR) and Client 56 using Calibre (BYOL).
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Fig. 7: Illustrations of 2D embeddings obtained by utilizing
the t-SNE on the learned representations of six methods. This
experiment is conducted on the CIFAR-10 dataset under the
D-non-i.i.d. with the concentration 0.3. From left top to right
bottom, the representations are extracted from each client’s
local samples based on the encoder trained by FedAvg, Fe-
dRep, FedPer, FedBABU, LG-FedAvg and Calibre (SimCLR),
respectively.

drop. Second, Lp contributes more significantly to fairness.
For example, for Calibre (SimCLR), Calibre (SwAV), and
Calibre (SMoG), containing Lp in the objective leads to a
lower variance.

G. Qualitative Results

Fig. 5 and Fig. 6 showcase the 2D embeddings of SSL
representations after being calibrated by our proposed Calibre.
In comparison to representations learned by pFL-SimSiam and
pFL-MoCoV2, which exhibit limited generic information and
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Fig. 8: Illustrations of 2D embeddings obtained by utilizing the
t-SNE on the learned representations of six methods. This
experiment is conducted on the STL-10 dataset under the
Q-non-i.i.d. with each client assigned 2 classes. From left
top to right bottom, the representations are extracted from
each client’s local samples based on the encoder trained by
FedAvg, FedRep, FedPer, FedBABU, LG-FedAvg and Calibre
(SimCLR), respectively.

indistinct boundaries, the Calibre representations from multiple
clients demonstrate clear clusters with refined class boundaries,
as visually depicted in Fig. 5. Significantly, when comparing
Fig. 6 with Fig. 1, Calibre effectively addresses the issue of
fuzzy cluster boundaries across clients discussed in subsection
III-C. For instance, BYOL learns the relationship between
positive and negative samples, but after the application of
Calibre, it can capture clear cluster information for individual
clients. Moreover, as illustrated in Fig. 6, Calibre substantially



alleviates the problem depicted in Fig. 2, which displays fuzzy
cluster boundaries within each client.

Lastly, to facilitate a direct comparison of representations,
we analyze the 2D embeddings of FedAvg, FedRep, FedPer,
FedBABU, LG-FedAvg, and Calibre (SimCLR) using samples
from the CIFAR-10 and STL-10 datasets. As shown in Fig. 7
and Fig. 8, it is obvious that representations of Calibre
(SimCLR) consistently present clear clusters, which results
in better boundaries for easier class separation.

VI. CONCLUDING REMARKS

In this paper, we focused on personalized federated learning
and have thoroughly investigated how a fair model performance
across clients can be achieved while maximizing the average
training performance. Our objective for designing Calibre,
our new personalized federated learning framework, was to
adopt self-supervised learning (SSL) in the training stage to
train a global model that could generalize well to individual
clients. However, we empirically found that although this model
benefits model fairness across clients, its average accuracy
is even worse. It turned out that the root cause for this
observation was the lack of class separation information in
the representations extracted by the global model. After a
comprehensive theoretical analysis, we presented a theorem,
called generality-personalization tradeoff, to include cluster
information in the representation of SSL. With these insights,
we proposed a new contrastive prototype adaptation mechanism
that was able to improve the mean accuracy while maintaining
a uniform accuracy across clients (model fairness). We showed
convincing results from a wide array of experiments that
Calibre achieves higher model fairness, maintains better mean
accuracy, and shows more consistent performance on multiple
non-i.i.d. data scenarios than its state-of-the-art alternatives in
the literature.
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