
DeepQueueNet: Towards Scalable and Generalized Network
Performance Estimation with Packet-level Visibility

Qingqing Yang, Xi Peng, Li Chen
∗
, Libin Liu

#
, Jingze Zhang

†
, Hong Xu

†
, Baochun Li

‡
, Gong Zhang

Huawei Theory Lab,
∗
Zhongguancun Laboratory,

†
Chinese University of Hong Kong,

#
Shandong Computer Science Center (National Supercomputer Center in Jinan),

‡
University of Toronto

ABSTRACT
Network simulators are an essential tool for network operators,

and can assist important tasks such as capacity planning, topology

design, and parameter tuning. Popular simulators are all based on

discrete event simulation, and their performance does not scale with

the size of modern networks. Recently, deep-learning-based tech-

niques are introduced to solve the scalability problem, but, as we

showwith experiments, they have poor visibility in their simulation

results, and cannot generalize to diverse scenarios. In this work, we

combine scalable and generalized continuous simulation techniques

with discrete event simulation to achieve high scalability, while

providing packet-level visibility. We start from a solid queueing-

theoretic modeling of modern networks, and carefully identify

the mathematically-intractable or computationally-expensive parts,

only which are then modeled using deep neural networks (DNN).

Dubbed DeepQueueNet, our approach combines prior knowledge

of networks, and supports arbitrary topology and device traffic

management mechanisms (given sufficient training data). Our ex-

tensive experiments show that DeepQueueNet achieves near-linear

speedup in the number of GPUs, and its estimation accuracy for

average and 99th percentile round-trip time outperforms existing

end-to-end DNN-based performance estimators in all scenarios.

CCS CONCEPTS
•Networks→Networkperformancemodeling;Network sim-
ulations;Network experimentation; •Computingmethodologies
→ Massively parallel and high-performance simulations;

KEYWORDS
Network simulation, Network performance estimation, Machine

learning, Queueing theory, Network modeling

ACM Reference Format:
Qingqing Yang, Xi Peng, Li Chen

∗
, Libin Liu

#
, Jingze Zhang

†
, Hong Xu

†
,

Baochun Li
‡
, Gong Zhang. 2022. DeepQueueNet: Towards Scalable and

Generalized Network Performance Estimation with Packet-level Visibility.

Corresponding Author: Li Chen (lichen@zgclab.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00

https://doi.org/10.1145/3544216.3544248

In ACM SIGCOMM 2022 Conference (SIGCOMM ’22), August 22–26, 2022,
Amsterdam, Netherlands. ACM, New York, NY, USA, 17 pages. https://doi.

org/10.1145/3544216.3544248

1 INTRODUCTION
Network simulators are an essential tool for network operators, and

can assist in important tasks such as capacity planning, topology

design, and parameter tuning. Conventional network simulators

are based on discrete event simulation (DES) [20, 35, 39, 46], but as

modern networks grow rapidly in their scales, the performance of

DES simulators fails to keep up. The fundamental obstacle is the

dependency between discrete events, and even distributed and par-

allelized implementations of DES cannot increase its performance

satisfactorily [22, 39].

To make network simulation more scalable, recent efforts have

sought to build end-to-end performance estimators (EPEs) using

machine learning and continuous simulation [26, 41, 42], rather

than packet-by-packet DES. An EPE encapsulates the network as

a deep neural network (DNN) model, which can be trained in an

end-to-end fashion using real traffic traces. Given an embedding of

facts of the network, EPE directly predicts end-to-end performance

metrics such as the round-trip time (RTT), flow completion time

(FCT), and packet drop rate. This has the obvious performance

advantage because the DNN models can easily be parallelized in

both the training and inference stages. Although they can achieve

impressive scalability, their usefulness is still questionable:

• Packet-level Visibility: Current EPEs fail to answer questions
about specific device or flow, and cannot give packet-level sta-

tistics (more details in § 2.3).
• Generality: Current EPEs cannot provide reliable and accu-

rate estimates when the network configuration (topology, traffic

generation models, and device traffic management (TM) mech-

anisms) is changed (more details in § 2.3). It is not economical

to re-collect traffic traces of the entire network and re-train

the model just to accommodate a minor change in simulation

settings.

Recently, to enhance visibility and generality of EPEs, Zhang

et al. [23, 50] propose to combine DES and EPE with MimicNet.

MimicNet adopts DES to quickly generate accurate data for a sub-

set (cluster) of the larger network, then uses the data to train a

“mimic”–a DNN-based estimator of a cluster’s performance, and

finally composes the mimics to form simulations of complete data-

center networks. However, MimicNet only works for FatTree [30],

and focuses on scale generalizability.

What we learn from prior efforts is that, to achieve scalability

that suits the scale of modern networks, DNNs are an indispensable

441

mailto:lichen@zgclab.edu.cn
https://doi.org/10.1145/3544216.3544248
https://doi.org/10.1145/3544216.3544248
https://doi.org/10.1145/3544216.3544248
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

Figure 1: DeepQueueNet: Mapping a target topology directly to a

neural network architecture.

tool to approximate the unknown and mathematically intractable

performance function of modern large-scale networks; but the main

problem is the generality of DNN-based solutions. MimicNet sheds

the first light on conquering this problem by reducing the scope

of the DNN model from network-scale to cluster-scale, and in this

paper, we seek to understand the following question: can we further

improve generality of network performance estimation if we narrow

the scope of DNN down to the smallest possible scale?

To this end, we embrace the continuous simulation paradigm,

which is popular for weather and physics simulations [13, 17, 19],

as well as flow-level simulation for transport layer dynamics in

networking research [2, 31, 34, 37]. Continuous simulations start by

describing the underlying mechanisms of the target system using

mathematical equations of system states (e.g. partial differential

equations (PDE)), and they compute the evolution of system state.

We believe the fundamental pitfall of prior work is that they attempt

to directly model the performance function of a group of devices

as a black-box using DNNs and forego the essential step of describ-

ing the behavior of the target system with precise mathematical

formulations.

In this work, we aim to build a scalable and general network

performance estimator with packet-level visibility. In contrast to

prior efforts, our approach combines DES and continuous simula-

tion. At a high-level, our proposed methodology is as follows: we

first build a theoretical foundation to express our prior knowledge

of the network as much as possible, then identify the parts that

are mathematically intractable or computationally expensive, and

finally replace these parts with DNNs that can be trained using real

data traces.

Following this methodology, our main contribution is towards

narrowing down the scope of the application of DNNs in EPE—

from network/cluster-scale to device-scale. We use DNNs only to

model device-local TM mechanisms, which is shown to be com-

putationally expensive by our queueing-theoretic modeling and

numerical simulations (§ 2.2). Specifically, we model the packet

stream arriving at each of the ingress ports of the device as a time

series, and the device model processes the set of ingress time se-

ries to produce a set of egress time series, which then are fed to

the down-stream devices as their ingress time series. We compose

the device model using two sub-models: a packet-level forwarding

model (PFM) and a packet-level TM model (PTM). The PFM spec-

ifies the forwarding behavior, which can be described explicitly

using tensor multiplication given the routing table. The PTM pre-

dicts how much delay is experienced for each packet (the latency

of dropped packet is +∞). Each PTM is a DNN with a customized

Transformer [9] architecture which we find to be general enough

to encapsulate both traffic variations and TM differences. Training

data for PTM is relatively easy to generate, because we only need to

collect device-local ingress and egress packet traces. With trained

device models, we can connect them with links
1
to setup arbitrary

network topology. In this way, the simulation topology is mapped

directly to DeepQueueNet’s neural network architecture (Figure 1).

The workflow of DeepQueueNet is the same as existing DES

implementations. For both DES and DeepQueueNet, we start by
constructing the network topology with device models in the simu-

lator, prepare input packet traces and run the trace on the simulator,

collect output traces, and summarize the output trace using differ-

ent metrics. Due to DeepQueueNet’s packet-level visibility, any
new metric can be applied to the output trace without retraining.

The key difference is that, while DES obtains per-packet latency on

each device sequentially, DeepQueueNet predicts packet latencies
in batches by model inference. We release an open source demo of

DeepQueueNet to illustrate this workflow
2
.

We summarize our contributions as follows:

• Packet-level Visibility:DeepQueueNetmodels the traffic flow

as a time series of packets, and the devices as "operators" on the

time series. By this construction, users of DeepQueueNet can
obtain final packet traces for each device, which helps them to

understand the final performance metric and identify problem-

atic device or flows. This helps to answer important questions

such as which device introduces the most delay to a flow, or

where is the location of the bottleneck of the topology given a

traffic pattern.

• Generality:With the expressive device-local PTMmodels,Deep-
QueueNet is also generalizable for arbitrary network topology,

traffic generation models, and device-local TM mechanisms. We

develop two algorithms, SEC and IRSA. SEC mitigate error prop-

agation and improve accuracy, while IRSA maintains the cor-

rectness of time order between packets across all devices via

an iterative approach (§ 4). As our experiments show (§ 6), in

all scenarios with different configurations, DeepQueueNet can
achieve superior accuracy for average and 99th percentile per-

packet round-trip time (RTT) and jitter compared to existing

EPEs.

• Scalability: DeepQueueNet is scalable due to two factors: 1) As
an neural network, inference of DeepQueueNet can be accel-

erated in parallel easily with current distributed deep learning

frameworks; 2) DeepQueueNet process packets in batches, and

to mitigate cross-batch packet reordering, we design an iterative

re-sequencing algorithm and prove its convergence. Our current

prototype supports multi-GPU training and inference; it is able

to achieve near-linear speed-up with the number of GPUs (§ 6).

Caveat: Although DeepQueueNet achieves significant acceleration,
it ignores the state-ful interactions among the upper layer appli-

cations, the transport protocols they uses, and the network-scale

dynamic traffic steering. In essence, DeepQueueNet is a sequence-
to-sequence predictor for general networks, and we infer the perfor-

mance of the target network by examining the latencies experienced

1
Links are also devices: a link model is a device model with a pair of input and output

ports.

2
https://github.com/HUAWEI-Theory-Lab/deepqueuenet

442

https://github.com/HUAWEI-Theory-Lab/deepqueuenet

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

by all the packets on each link of the simulation. The current pro-

totype of DeepQueueNet only looks at information at the network

layer, i.e., the path of a packet takes, the size of the packet, the inter-

arrival time of the packet, and the arrival and departure time of the

packet at each device on its path. DeepQueueNet helps users to
understand the following question: given a packet trace, a network

topology, and the TM configuration of the devices in the network,

what will the output packet trace be for each link in the topology?

We intentionally make the trade-off favoring performance over

accuracy, because, in our experience with network operators and

architects, for important network-scale tasks like capacity plan-

ning, topology design, and parameter tuning, they are often more

interested in the performance distribution when a network reaches

stability. DeepQueueNet is appropriate for these scenarios.
In the following, we first overview the background and motivate

the design of DeepQueueNet in § 2, and present its system design in

§ 3. We examine the techniques and algorithms in § 4 and evaluate

our prototype implementation in § 6.

Disclaimer: This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
In this section, we overview three types of network simulation

systems: packet-level DES, flow-level continuous simulators, and

recent DNN-based EPEs. After understanding their benefits and

limitations, we motivate the design of DeepQueueNet.

2.1 Packet-level DES
There is a variety of DES software, such as NS2/3 [21, 39], OM-

NeT++ [46] and OPNET [29]. Packet-level DES is the most explain-

able type of simulation, as the entities in simulator have direct cor-

respondence to the target network, and we can collect the packet

traces on each device/link to gain deep understanding of the sim-

ulation. Because DES processes each packet sequentially, any TM

mechanisms can be specified.

However, DES has scalability issue when the size of the simu-

lation increases, and much effort has been made to build parallel

and distributed DES (PDDES), which employs multiprocessor and

distributed computing platforms. However, due to messaging and

synchronization overhead between processes andmachines, PDDES

is not guaranteed to provide any speedup. In bad cases, PDDES

might execute significantly slower than sequential simulation [39].

Also, the performance and scalability of PDDES is constrained by

fine-grain communication, especially in execution environments

with high communication cost [22], and the reliability and scalabil-

ity remain problematic.

2.2 Flow-level Continuous Simulators
These type simulators are based on the abstraction of traffic flows

and target network, and there are three branches of related work:

Control-theoretic estimators are often used in the design of

transport layer traffic control protocols [2, 31, 34, 37]. These simula-

tors require users to specify PDEs of the system states and interac-

tion dynamics [2, 4]. Although there are scalable PDE solvers that

can accelerate this type of simulators, their usefulness is limited.

Firstly, they require predefined PDEs of flow-level dynamics for all

flows, which requires expertise and is often unavailable. Secondly,

for mathematical convenience, they often use fluid model that as-

sumes the packet size to be arbitrarily small, therefore they are too

simplistic to reflect real traffic and network devices TMmechanisms.

Most importantly, with only solutions to steady states, they cannot

produce useful statistics such as distribution of latency, which is

arguably most important for practical network engineering.

Network calculus (NC) [8, 25] approximates the envelopes of

flow-level arrivals and services by using wide-sense increasing

functions, rather than exact values. Using min-plus and max-plus

algebras, NC is a theoretical framework for analyzing the worst-

case bounds on delay and backlog of a network. Although NC

can handle a network of schedulers, it gives only loose bounds,

and cannot provide estimates for average or any other percentile,

limiting its usefulness in practice. For accurate latency distribution

estimations, we must turn to queueing theory.

Queueing-theoretic estimators: Queueing theory [40] enables

the evaluation of network performance by describing the system

behavior with a queueing model which are composed of the model-

ing of packet arrivals and the modeling of scheduling servers. The

packet-level queueing model can approximate latency and loss very

accurately at the expense of high complexity. For example, the Mar-

kovian arrival process (MAP) [3, 6] and its extensions have superior

representational capacity for the stochastic processes of packet

arrivals and services. Although they are analytically tractable based

on continuous-time Markov chain (CTMC) and thus allow the anal-

ysis of latency distribution and queue-length distribution, this type

of models has to hold a large state space which has a high compu-

tational complexity. Due to space limits and the fear of confusing

readers with different definition and formulation of traffic flows

and schedulers, we elaborate our queueing theoretic results in the

Appendix for interested readers. In the Appendix, we show how

an accurate MAP-based modeling applies for real network traf-

fic. Moreover, we also make the first attempt to analyze a general

multi-queue scheduler (deficit round robin (DRR), weighted fair

queueing (WFQ), weighted round robin (WRR), and strict priority

(SP)) by extending the packetized general processor sharing (PGPS)

method, and our resultant queueing-theoretic estimator achieves

high accuracy in terms of latency estimation. However, we also

emphasize that the time complexity is exponential with respect to

both the number of queues and the size of buffer (see Appendix

B.2).

Summary: The main take-away is that high-accuracy queueing-

theoretic estimator are computationally expensive and infeasible.

Despite our best efforts, the accurate queueing-theoretic model can

hardly scale beyond a single device.

2.3 End-to-end Performance Estimators
The research community have shown great interest in building

DNN-based EPEs due to their scalability with respect to the size of

the target system. Most prior efforts focus on applying advanced

DNN architectures from other domains, such as computer vision [49]

and graph learning [48], and they attempt to use DNN to model

the performance metrics of a network in an end-to-end manner.

SimNet [26] targets computer architecture simulation and uses con-

volutional neural networks. RouteNet [41, 42] employs graph neural

networks to predict key performance indicators of a network, such

as delay, jitter, and packet loss rate. DNN allows these EPE systems

443

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

to achieve high scalability due to highly efficient, parallel DNN

inference infrastructure developed in the past decade [1, 36, 45].

However, they have the following deficiencies:

• Packet-level Visibility: These EPEs fail to answer questions

about specific devices or flows. They learn a mapping from

the embedding of network facts to predetermined performance

metrics. There lacks connections between the final metrics and

traffic characteristics, topology, or device configurations. In addi-

tion, when the user becomes interested in a new metric, training

dataset must be recollected, and the model redesigned and re-

trained.

• Generality: These EPEs cannot provide reliable and accurate

estimates when the network configuration is changed. It is un-

economical to recollect traffic traces and retrain the model, just

to accommodate a minor change in simulation setting:

• Network topology: When the topology or the network’s

size changes, these EPEs must be retrained.

• Traffic patterns: We show that, by varying flow generation

parameters, existing EPEs’ performance metric can differ

greatly from that of a DES (§ 6.1). This means when traffic

pattern changes, current EPEs must be retrained.

• Trafficmanagement (TM): Trafficmanagementmechanisms

have huge impact on network performance. Current EPEs

assumes FIFO queueing discipline, while in practice, diverse

and complicated scheduling mechanisms are all used: WRR,

DRR, WFQ, SP, etc. Existing EPEs are not designed to support
different schedulers. Besides packet scheduling, current EPEs

also cannot support other popular TM mechanisms such as

buffer management and dynamic load balancing.

A recent system, MimicNet [23, 50], overcomes most of these

deficiencies by combining DES and EPE. MimicNet uses DES to

perform packet-level accurate simulation for a subset (cluster) of a

datacenter network, which includes detailed queueing and transport

layer dynamics. It then uses the collected data from this observable

subset of network to train "mimic"s, which are approximators of

the non-observable internal and cross-cluster behavior. Finally,

they compose the observable cluster with the mimic clusters to

form a full-scale datacenter network simulation. Compared to prior

work, this approach achieves orders of magnitude reduction in

simulation completion time, with moderate loss in metric accuracy.

We believe the gains of MimicNet are, in part, due to narrowing the

scope of DNN from network-scale to cluster-scale. However, in its

effort to achieve scale-generality, MimicNet targets the FatTree [30]

topology, and it cannot adapt to other network topologies.

2.4 Motivation and Design Rationale
Our design goal for DeepQueueNet is to combine the advantages

of all three types of network simulators: visible and general like
DES, accurate like single-hop queueing-theoretic models, and scalable
like DNN-based EPE. At the same time, we intend to avoid their

drawbacks.

We believe the key to visibility and generality of DES is that it

allows users to examine per-device traffic traces both before and

after entering the device. We thus decide to model each device as an

"operator" that transforms ingress packet streams to egress packet

Figure 2: DeepQueueNet System Architecture

streams. For performance simulation, each device has two function-

alities: forwarding and TM mechanism. The forwarding part of this

operator can be straightforwardly abstracted as a tensor multipli-

cation (§ 3.2.2). The challenge lies in the TM part. As we analyzed

above, to the best of our knowledge, the most accurate model is a

queueing-theoretic one, but its exponential complexity is computa-

tionally prohibitive. Thus we instead use DNN to model this part

of the operator (§ 3.2.2), which has constant time-complexity for

model inference. Compared to MimicNet that narrows down the

scope of DNN from network-scale to device-scale, our approach

further contracts the scope to only the TM part of a device. We

train this per-device DNN using ingress and egress packet traces

collected from devices. Trained model can be used to build arbitrary

topology, and the output traces of each device is simply a packet

trace, on which any new metric can be applied without retraining

the model.

This DNN-based device model is intrinsically scalable with re-

spect to simulation size. Each device model in DeepQueueNet pro-
cesses the ingress packet stream in batches, and DeepQueueNet
itself can be parallelized to multiple machines and GPUs using

distributed deep learning frameworks.

The key challenge for DeepQueueNet is ensuring generality for

topologies, traffic patterns, and TM mechanisms. We choose the

expressive Transformer DNN architecture [9], and design feature

engineering, iterative re-sequencing (IRSA), and statistical error

correction (SEC), which are elaborated in § 4.

Assumptions: In the following, we assume the routing table and

the flow-to-priority/weight assignments for packet schedulers is

given in the setup phase of simulation and stable during the simu-

lation. This is because we design DeepQueueNet to be a network

performance simulation system for large-scale networks. Build-

ing from a queueing-theoretic foundation, DeepQueueNet focuses
on modeling the performance distribution of a system when it

reaches stability, and in general ignores the transient behaviors

of the system. DeepQueueNet also processes packets in batches

to reach high scalability, ignoring possible interactions in the pro-

cess. Therefore, it is not suitable for detailed, interaction-oriented,
and state-ful protocol simulations, e.g., transport layer protocols or
routing protocols.

3 DEEPQUEUENET DESIGN
In this section, we first overview the system architecture and work-

flow of DeepQueueNet, then we present the core models of Deep-
QueueNet: packet stream, device, and network.

444

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

3.1 System Overview
3.1.1 System Components The architecture of DeepQueue-

Net is shown in Figure 2, consisting of five core components:

Device Model Utilities (DUtil) produces trained device models.

Given ingress and egress packet traces of a device, it trains a device

model, and stores it in Device Model Library for construction of

simulation topologies.

Device Model Library (DLib) stores and indexes trained device

models, including switches, routers, and links.

Traffic Generation Utilities (TGUtil) creates traffic generators

(TGen) based on user specification. In the simulation setup phase,

TGens produces ingress packet streams, and batches them into

ingress tensors. Currently, to customize TGens, users can use an

existing set of PCAP files [33], or provide a set of MAP matrices

of flows. This module can also extend to other traffic generation

methods using the same traffic generator interface.

Simulation Setup Module (SInit) parses user input and setup

the simulations. User input should contain the topology of the net-

work, configuration of each node (device type and routing table),

and traffic generators. It obtains specified device models from DLib,
and composes them based on the topology into a DeepQueueNet
model. It also uses TGen to generate ingress tensors for the Deep-
QueueNet model to inference. Finally, based on the routing tables,

SInit creates tensors that describes the packet forwarding behavior
of each device.

Simulation Execution Module (SRun) runs the simulations. It

interfaces with the underlying deep learning framework and per-

forms model inference. It uses the iterative re-sequencing algorithm

(§ 3.2.4) and statistical error correction algorithm to refine the in-

ference results. In the end, it outputs the final packet traces (time

series) of each device in the simulation topology.

3.1.2 Workflow DeepQueueNet’s workflow is the same as

that of existing DES implementations: prepare simulation settings

(topology, device configuration, and traffic generators), run the

simulation, collect packet traces, and analyse by applying arbitrary

metric to the results.

We highlight two key differences versus DES:

• Specifying device model: In DES, the device behaviors are

specified by coding its packet processing mechanisms, which

requires significant human effort. In contrast, DeepQueueNet
specifies the device’s packet processing behavior in a data-driven

manner. For TM mechanisms, we train a black-box DNN model

using real ingress and egress packet traces of the device. For

packet forwarding, we abstract it as a tensor multiplication to

guarantee correctness (more details in § 3.2.2).

• Processing packets: DES obtains per-packet latency on each

device sequentially, while DeepQueueNet predicts packet laten-
cies in batches by model inference, which is more scalable with

respect to simulation size.

Next, we describe the modeling of packet streams, devices, and

networks.

Figure 3: Example: Device model’s input & output (of a 48-port

Switch)

3.2 DeepQueueNet Modeling
3.2.1 Modeling Packet Streams We model a packet as a fea-

ture vector containing its information. In the current implemen-

tation, we use the following features: unique identification (ID)

number (pid), flow ID (fid), packet length (len), transport protocol

(trp). The packet vector 𝑝 is thus:

𝑝=<pid,fid,len,trp> (1)

This vector can also be extended to include any additional features,

such as applications or virtual network ID, if future dataset suggests

that they improve the quality of latency predication. For our current

dataset, we believe the above four features are sufficient.

A packet stream, 𝜏 , is a time series of packet arrivals. For a packet

stream of 𝑛 packets:

𝜏=[(𝑝0,𝑡0),(𝑝1,𝑡1),(𝑝2,𝑡2),···,(𝑝𝑛,𝑡𝑛)],where 𝑡𝑖≤𝑡𝑖+1,∀𝑖≥0 (2)

𝑡𝑖 is the arrival time of the 𝑖𝑡ℎ packet in the stream 𝜏 .

A network device, e.g., a router, usually has more than one port.

We split the physical port into a logical ingress port and a logical

egress port, as shown in Figure 3. We model the collection of all

ingress packets streams to a device as Tin. For a network device

with 𝑘 ports:

Tin=[𝜏0,in;𝜏1,in;···;𝜏𝑘−1,in] (3)

𝜏 𝑗,in is the ingress packet stream of the 𝑗𝑡ℎ port of the device.

Likewise, the collection of egress streams is:

Tout=[𝜏0,out;𝜏1,out;···;𝜏𝑘−1,out] (4)

3.2.2 Modeling Devices We start with the link model as an

introductory example, because links are the simplest type of device

with only one input and one output port. Assuming the length of

the link is 𝑙 , the propagation speed on the link 𝑐 , and the bandwidth

𝐶 , the relationship between the ingress and egress stream of the

link is thus:

𝜏out=𝜏in+[®0,𝑙𝑒𝑛(𝜏in)/𝐶+𝑙/𝑐]
=[···,(𝑝𝑖,in,𝑡𝑖+𝑙𝑒𝑛(𝑝𝑖,in)/𝐶+𝑙/𝑐),···]

(5)

𝑙𝑒𝑛(·) is a pure function which can be mapped to 𝜏 to extract the

packet lengths, and the zero vector (®0) indicates that the link does

not modify packet vectors. In other words, a link device is an op-

erator that adds a latency to all packets in the ingress time series,

based on each packet’s length and the setting of the link (𝑙,𝑐, and

𝐶).

Generally, for a multi-port network device, its device model has

two sub-models: packet-level forwarding model (PFM) and packet-

level TM model (PTM). We explain them in details below.

Packet-level Forwarding Model. The packet-level forwarding

model specifies the forwarding behavior, which can be described

explicitly using tensor multiplication given the forwarding table.

445

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

Figure 4: DeepQueueNet Device Model (𝐾-port)

Before forwarding, we first augment the packet stream of each

ingress port by adding the ingress port ID as a new feature in the

packet vectors, which becomes <pid,fid,len,trp,in_port>. For all

the ingress streams, we pad them to the same length with empty

packets.

We assume the forwarding table of each device is generated or

given before the start of the simulation, and we model it as function

that takes the flow ID of the packet and the ID of the ingress port,

and outputs the egress port ID.

𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (fid,in_port)→out_port (6)

With the augmented ingress streams and the 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (·) func-
tion, we can produce the forwarding tensor, 𝐹 , which is a 3-dimensional

0-1 tensor. 𝐹=[𝑓𝑖, 𝑗,𝑘], where 𝑓𝑖, 𝑗,𝑘∈0,1. 𝐹 is of shape𝐾×𝐾×𝑁 , where

𝐾 is the device’s number of ports and 𝑁 is the number of packets

in the ingress streams. If 𝑓𝑖, 𝑗,𝑘=1, it indicates that the 𝑘
𝑡ℎ

packet

in the ingress stream of port 𝑖 is forwarded to the egress port 𝑗 .

Otherwise, 𝑓𝑖, 𝑗,𝑘=0.

Denote the collections of ingress and egress streams of the device

as Tin and Tout, respectively, and we have:

Tout=F·Tin+Delay(···) (7)

In essence, the above tensor multiplication mixes the ingress packet

streams to form egress packets streams, based on the device’s for-

warding table. The key point here is that, using Equation 7, we can

process the forwarding in batches to enable high scalability, while

DES can only process each packet sequentially.

The 𝐷𝑒𝑙𝑎𝑦 (·) function in Equation 7 is PTM which we discuss

next.

Packet-level TM Model. A PTM model predicts how much delay

(sojourn time) is experienced for each packet. Like PFM, it processes

the packets in batches, and adds a latency to each packet in Tout.

PTM starts by augmenting the packet vectors with features related

to TM mechanism. We elaborate on the data augmentation method

in § 4.1.With the ingress packets streams prepared, the PTMprocess

them to add delays to each packet by performing inference of pre-

trained DNNmodels. We refine the resultant egress packets streams

with a post-PTM processing stage (details in § 4.1), which mitigates

the error propagation to downstream devices.

3.2.3 Modeling Networks We construct the DeepQueueNet
simulation network straightforwardly based on the target network

topology. We achieve this by connecting pre-trained link models

and device models, and form a DNN architecture that has an one-to-

one correspondence to the target network at link-level, port-level,

and device-level. We call the resultant DNNmodel aDeepQueueNet
model. We run inference on this model to obtain predictions of

packet latency for all incoming packets.

Algorithm 1: Iterative Re-Sequencing Algorithm (IRSA)

Input :G (Network Topology), I (Ingress Packet Stream)

Output :L (Packet Stream in Network)

/* Initial Inference */

1 foreach device 𝑛 in G do
2 Perform 𝑛’s model inference using I;

3 Update 𝑛’s egress packet stream in L;

4 end
/* Iterate until convergence */

5 for diameter (G) do
6 Initiate L’;

7 foreach device 𝑛 in G do
8 Perform 𝑛’s model inference using L;

9 Update 𝑛’s egress packet stream in L;

10 end
11 end

12 def diameter(G):
/* returns diameter of graph G. */

3.2.4 Running DeepQueueNet Processing packets in batches

is the key factor to enable high scalability, but it also brings the "mis-

batching" problem. To mitigate this problem, we design Iterative

Re-Sequencing Algorithm (IRSA) as the core execution logic of

DeepQueueNet.
We first examine the mis-batching problem. We split each port’s

ingress packet stream into batches based on a pre-defined time

window, and we do not know the exact delays added to the up-

stream egress packets before the upstream device model finishes

its inference. Therefore, we cannot directly concatenate the tensors

trivially as the final results, because some packets may wrongly

fall into the previous batch or the next batch, reducing the overall

prediction accuracy. We name this the "mis-batching" problem.

We design IRSA to mitigate the impact of mis-batching. The

key idea is to iteratively adjust the batches, and run the inference

multiple times until convergence. As shown in Algorithm 1, at

iteration 𝑡 , all devices (including links) will pull the packet flows

from iteration 𝑡−1 from their upstream devices. Once all the packet

streams are collected, each device splits the ingress packet stream

in batches, and performs an inference to obtain the output sequence

of these packets. These output sequences will be pulled to their

corresponding destination devices in the next iteration.

IRSA is the key execution logic of DeepQueueNet. It reorders the
packets on each link and each device based on their time-stamps in

the previous iteration, which gradually puts the packet in its correct

batch on each link. Theorem 3.1 guarantees IRSA’s convergence.

Theorem 3.1 (Convergence of IRSA). Given a network topology
𝐺 , and its diameter is 𝑑 , IRSA is guaranteed to converge in 𝑑 iterations.

Proof of Theorem 3.1: Define 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑖𝑝𝑜𝑟𝑡 𝑗=max{number of hops

required to reach ingress port j of node i | paths passing ingress

port j, node i} and 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑒𝑝𝑜𝑟𝑡 𝑗=max{ 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑖𝑝𝑜𝑟𝑡𝑘+1 | ingress port
k connected to egress port j, node i}. It’s equivalent to prove that

(i) Flows to ingress port 𝑗 , node 𝑖 in a topology can be confirmed

after 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑖𝑝𝑜𝑟𝑡 𝑗 iterations;

446

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

(ii) Flows emitting from egress port 𝑗 , node 𝑖 in a topology can

be confirmed after 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑒𝑝𝑜𝑟𝑡 𝑗 iterations.

Since (ii) can be derived directly from (i), we would prove (i) only,

which can be established by induction on the degree of ingress

ports. If 𝑑𝑛𝑜𝑑𝑒𝑖 ,𝑖𝑝𝑜𝑟𝑡 𝑗=0, i.e., ingress port j, node i is directly con-

nected to servers, the proposition follows in this case. Assume that

the proposition is valid for all ingress ports with degree ≤𝑛−1 and
consider the case of 𝑛. Notice that flows to ingress ports with de-

gree of 𝑛 are those emitting from egress ports with degree of 𝑛,

which are directly connected to ingress ports with degree ≤𝑛−1 and
can be confirmed after 𝑛−1 times of iteration from the induction

assumption. □
Theorem 3.1 provides an upper-bound on how many iterations

are needed given a network topology, which limits the simulation

completion time of DeepQueueNet. However, we also note that, in

most cases,DeepQueueNet takes much fewer iterations to complete

than the upper-bound.

4 ALGORITHMS & TECHNIQUES
In this section, we first describe the techniques and algorithms used

in PTM: the pre-PTM feature engineering and data augmentation,

the PTM DNN architecture, and the post-PTM error correction.

4.1 Pre-PTM Data Augmentation & Feature En-
gineering

We perform pre-processing of the ingress packet streams before

using it in training, testing, and model inference of the PTMmodels.

The first feature to add is the type of scheduler of the device, and

we use one-hot encoding for this feature: 1000 for SP, 0100 for

WRR, 0010 for DRR, and 0001 for WFQ. For SP schedulers, we add

a priority to the packet vector, based on a flow ID to priority table.

For WRR, WFQ, DRR schedulers, we add a weight to the packet

vector, based on a flow ID to weight table. Both tables are assumed

to be given before the simulation, and they can be described as the

following equations:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (fid)→priority (8)

𝑤𝑒𝑖𝑔ℎ𝑡 (fid)→weight (9)

We also add a workload feature to the packet vector, as a packet’s

sojourn time in a system depends on the state of the system when

it arrives. The workload is an exponential moving average of bytes

arriving at the ingress packet stream, and the smoothing factor is

0.95.

Finally, since the features extracted from the input data are of dif-

ferent scale, normalization is needed to scale the data between 0 and

1, which will also help in faster convergence. To normalize our data,

we use the MinMaxScaler function provided by scikit-learn:
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥) .

4.2 PTM Architecture
Wemodel the packet streams as time series, andwe useDNN as PTM

to encapsulate the complex TM mechanisms of network devices,

due to the exponential complexity of accurate queueingmodels. The

PTM should predict the time series of sojourn times added to each

of the event (packet) in the ingress time series, which is a sequence-

to-sequence (seq2seq) processing task. For seq2seq tasks, various

Figure 5: PTM DNN Architecture

neural network architecture have been proposed, such as recurrent

neural network [44] and long-short term memory model [11, 18].

Among them, the Transformer architecture [9] with attention mech-

anism has demonstrated state-of-the-art performance in various

seq2seq tasks [9]. We compared these approaches using traces of a

single device, and in the end choose the Transformer architecture

(Figure 5). To train the PTM, we follow the approach of regression

in forecasting the delay a packet experienced in a device. We use

the sojourn time of a packet in a device as the response variable

and the features extracted from the feature extraction module as

the predictors. We use ns.py
3
simulator to generate training data.

ns.py is an open source network DES that we implemented using

only Python. It is flexible and easy to use, especially for the study of

queueing theory for single device or small topologies. The language

choice of ns.py also makes it convenient to integrate with the deep

learning and data analytic eco-system of Python. We have verified

its simulation accuracy against ns3 [39] and an internal network

processor simulator in Huawei which is cycle-accurate. Since we

only need to conduct simulations with just one device to obtain

the training data, we choose ns.py over "heavy-weight" C++-based

simulators like ns3 or OMNet++ [46].

We perform extensive experiments to evaluate the PTMmodel in

§ 6, and it has shown high accuracy and generality.We believe this is

because this architecture can capture relationships and correlations

between packets, due to its multi-head attention mechanism and

processing packet streams as a whole.

4.3 Post-PTM Statistical Error Correction
To control the propagation of error, we use a statistical error cor-

rection (SEC) method. Since the predicted sojourn time is added

to the arrival time in the packet streams, the errors will propagate

to the next devices, and accumulate along the path for all packets.

Therefore, we must add a post-processing step for PTM to mitigate

this effect. We design SEC based on observations of sojourn time

prediction errors of different PTMs. Figure 6 shows three examples

of relative error vs. predicted sojourn time for different schedulers.

We make three observations: 1) the relative error of a single PTM

model is not monotonic with respect to the predicted sojourn time;

2) for similar sojourn time predictions, their errors are also similar;

3) for a device model, the error distribution is stable for different

schedulers and traffic generation patterns.

3
https://github.com/TL-System/ns.py and https://pypi.org/project/ns.py/

447

https://github.com/TL-System/ns.py
https://pypi.org/project/ns.py/

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

Figure 6: Statistical error distribution.

Thus we decide to 1) for each PTM, after its training has con-

verged, we collect the errors for each sojourn time predictions (same

as Figure 6); 2) we cluster the errors of nearby sojourn predictions

into bins using DBSCAN algorithm [43], and 3) for sojourn time

predictions falling into a bin, we subtract the average error of the

bin from the prediction. SEC is based on the statistics of error dis-

tribution, which is a by-product of model training. We demonstrate

the accuracy improvement of SEC in § 6.

5 PROTOTYPING DEEPQUEUENET

5.1 Implementation
We implement DeepQueueNet using Python 3.7 and TensorFlow

1.13.1. We follow the system architecture (Figure 2), and implement

the techniques and algorithms in § 4.
The detailed workflow of our implementation is as follows: We

implement training-related tooling and the model architecture in

DUtil. We use DUtil to produce trained models, which are indexed

and stored in DLib before we conduct a simulation. For each sim-

ulation, we expect the users to provide network topology, device

configuration, and traffic generators as input. SInit processes the

topology and device configuration, and then fetches the device

models from DLib. It then composes the fetched models to form a

DeepQueueNet model for this simulation. TGUtil is a factory for

traffic generators, and can take packet capture (PCAP) files or MAP

matrices as input for the generators. For example, if a PCAP file

is provided, TGUtil produces a TGen generator, which parses the

file to yield batched time series of packets arrivals. With the time

series and the DeepQueueNet model of the target network, SRun
performs inference of the model, and runs IRSA and SEC to refine

the results. Finally, SRun outputs the packet-level time series for

each link of the topology as simulation results.

5.2 Training DeepQueueNet
Due to resource limits, we conduct training and inference on two

testbeds. We perform the training on our testbed with an Nvidia

Tesla V100-32GB GPU (Testbed 1), and execute the inference phase

Time steps 21

BLSTM (200,100)

Multi-head attention 3, (64,32)

Table 1: Hyper-parameters of DeepQueueNet.

Figure 7: MSE over time for PTM Training.

on another testbed with 4 Nvidia Tesla V100-16GB GPUs (Testbed

2). We select a 2-layer BLSTM cell for the Decoder-Encoder compo-

nents of the PTM model. We adopt 3 parallel heads to jointly attend

to information from different representation subspaces at different

positions. Table 1 shows the hyper-parameters of the model. We

train PTM model on a collection with 3,500 packet streams sampled

from the 𝐾-port switch in ns.py simulations. The packets arrival

at the ingress ports are assumed to follow one of three stochastic

processes: MAP, Poisson Process, and an On-Off process. We vary

the intensity of these processes so that the load factor of each port

of the device is in the range of [0.1,0.8]. Each packet stream lasts for

max{1.6𝑒4,4𝐾 ·1𝑒3}+Time steps−1 units of time, namely there are

max{1.6𝑒4,4𝐾 ·1𝑒3} datapoints in each packet stream for sequence-

to-sequence learning. Despite this dataset only contains samples

from a 𝐾-port switch, it includes 3,500 randomly generated routing

schemes and a wide variety of traffic matrices with different traffic

intensity. We also configure the packet scheduler of the switch to

enable FIFO, SP, DRR and WFQ disciplines. For SP, the packet’s

priority are randomly selected from 1 to 3. For DRR and WFQ, the

weights are randomly selected from 1 to 9.

We train our model on 80% of the samples and evaluate it on

the remaining 20%. For the exogenous evaluation, we randomly

generate 8 extra packet streams with totally different configura-

tions from the training set. During the training, we minimize the

mean square error (MSE) between the predicted sojourn time and

the ground truth. The loss function is minimized using the Adam

optimizer with a fixed learning rate of 0.001. 256 samples from the

training dataset is used to estimate the error gradient. In Testbed

1, this took around 1h40m for the device model of a 2-port switch

to converge, 3h22m for a 4-port switch, and 11h24m for a 64-port

switch. Figure 7 shows the loss during the training process of a

4-port switch. Table 2 shows the approximating precision of Deep-
QueueNet to a 𝐾-port switch with different packet schedulers. We

measure the accuracy of the model using the normalised Wasser-

stein distance𝑤1=W1(prediction,label)/W1([0]*len(label),
label): if the predictions are accurate (close to ground-truth de-

lays), then𝑤1 is close to 0 (the lower the better).

We observe that the training is stable and the loss drops quickly.

The obtained PTM can achieve a DES-level accuracy in the simplest

configuration. And the achieved accuracy drops with the increase

of a device’s complexity (𝐾) due to the inherent uncertainty of the

448

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Device No. of class 𝑤1 𝑤1 (Refined)

FIFO

2-port 1 0.006967 -

4-port 1 0.022549 0.009185

8-port 1 0.032825 0.016606

16-port 1 0.047078 0.032306

32-port 1 0.051662 0.049363

64-port 1 0.053358 0.052345

Multi-level
4-port 2 0.028651 0.016296

4-port 3 0.036128 0.024085

Table 2: Precision of DeepQueueNet to a 𝐾-port switch. The

normalizedWasserstein distance𝑤1 is used tomeasure the accuracy.

The final column in the table is the results of a 𝐾-port switch by

simply doubling the time steps from 21 to 42.

model. We believe this kind of uncertainty can not be eliminated

but can be mitigated by fine-tuning DeepQueueNet, due to the fact

that we are processing packets in batches. For example, the sojourn

time of a packet with lower priority depends on whether or not

there are packets arriving at the system when it is in the system,

which can be depicted by a random variable but by no means a

definite value. We list the𝑤1 with refined data in Table 2, and we

can see that the inference accuracy greatly improves, especially for

𝐾≤16.

6 EVALUATION
By construction, DeepQueueNet gains packet-level visibility: its
DNN architecture maps directly to target network topology, and

the simulation results are traces of packet streams, which can be

analysed using arbitrary metric. Thus, in this section, we focus on

verifying its accuracy, generality, and scalability. We summarize

our results as follows:

Summary of Results:
• Accuracy: DeepQueueNet achieves superior accuracy for

average and 99th percentile round-trip time (RTT) in all

scenarios compared to state-of-the-art DNN-based EPEs [42].

• Generalizability: Using extensive experiment, we show

that DeepQueueNet’s estimation accuracy with respect to

𝑤1 remains high across variations in topology, TM config-

urations, and traffic generation models, without need for

model re-training.

• Scalability: We show that DeepQueueNet can be accel-

erated in parallel using multiple GPUs. We deploy Deep-
QueueNet on a 4-GPU cluster, and it demonstrates near-

linear speed-up with the number of GPUs.

Setting. We perform experiments using trained DeepQueueNet
models, and all experiments are done without model retraining. We

use Testbed 2 described in § 5 to conduct the experiments, and we

use the hyper-parameters. For all experiments, the ground-truth is

generated using the ns.py simulator using the same settings. The

links in the topology is 10Gbps.

Our main comparison targets are RouteNet [41, 42] for general

topology and MimicNet [23, 50] for FatTree topology. For RouteNet,

we follow the latest paper [42] to setup and train RouteNet. For

MimicNet, we ensure that the traffic generation procedure is consis-

tent with DeepQueueNet, and we run the default MimicNet model

and training approach [50] to obtain the prediction model on an

numToRsAndUplinks numOfServersPerRack numClusters

FatTree16 2 4 2

FatTree64 4 4 4

FatTree128 4 4 8

Table 3:MimicNet’s Parameter setting for different sizes of FatTree.

avgRTT (𝑤1) p99RTT (𝑤1) avgJitter (𝑤1) p99Jitter (𝑤1)

DQN
MAP 0.017 0.039 0.031 0.035

Poisson 0.009 0.014 0.055 0.035

Onoff 0.006 0.051 0.016 0.022

BC-pAug89 0.003 0.012 0.009 0.007

Anarchy 0.026 0.068 0.097 0.030

RN
MAP 0.044 0.014 0.041 0.030

Poisson 0.674 0.972 1.951 1.083

Onoff 0.549 0.578 1.420 0.847

Table 4: Generality for traffic generation models. DQN stands for

DeepQueueNet; RN stands for RouteNet. The normalized Wasser-

stein distance𝑤1 is done path-wise.

AWS p3.2xlarge instance (Tesla V100 GPU, 16GB, 8 vCPUs). We

summarize the parameter setting for MimicNet in Table 3.

6.1 Generality of DeepQueueNet
We evaluate DeepQueueNet’s generality in three aspects: traffic

generation models, topology, and TM mechanisms.

Generality for Traffic Generation Models.We use three traffic

generation models: MAP (fit well with realistic traffic traces, de-

scribed in Appendix A.1), Poisson (_ varies to generate 0.1 to 0.9

link load), and On-Off (with transition probability of 0.2 for On

state and 0.5 for Off state). The sources and destinations of the

traffic flows are selected uniformly at random.

Figure 8 shows the performance of DeepQueueNet in the base-

line configuration - FIFO queuing discipline - for a FatTree(𝑘=4)

network with 16 servers (FatTree16). Also shown are results from

RouteNet, which was trained on the FatTree16 network. Here, we

explored three different traffic generation models with the same

traffic matrix to evaluate how they affect the modeling capabilities

of DeepQueueNet and RouteNet. We observe that DeepQueueNet
achieves superior generality over RouteNet. RouteNet, due to its

inherent drawback of using the traffic matrix as the input features,

is virtually devoid of generality for traffic generation models. In

Figure 8 (e,f,g), the 𝑥-axis is ground-truth latency and the 𝑦-axis

is predicted latency. We can see that, if the prediction is accurate,

the predicted latency should fall close to the solid line (𝑦=𝑥). In

Figure 8 (f,g), when the traffic pattern is changed from MAP to

Poisson and On-Off, RouteNet’s predictions fall far-away from line

(𝑦=𝑥), and DeepQueueNet’s predictions fall close to it, showing

higher accuracy and generality for traffic generation models.

We report the𝑊1 (Wasserstein distance) metric, which is a dis-

tance function defined between two distributions—in our case, the

predicted latency distribution and the ground-truth. Table 4 is a sum-

mary of all the experiments we perform in Figure 8 together with

the results of DeepQueueNet on traces from two public datasets:

BC-pAug89 trace
4
and Anarchy trace

5
. Notably, the readout neu-

ral networks of RouteNet are connected to the path’s and/or the

link’s hidden states. It can only estimate some path and/or link-

level metrics. Since there exist multiple available paths for most

of source-destination pairs in a network, it is almost impossible

for RouteNet to provide an accurate quantile-based end-to-end

4
The dataset is available at http://www.sfu.ca/ ljilja/TRAFFIC/Bellcore/.

5
The dataset is available at https://datasets.simula.no/ao/.

449

http://www.sfu.ca/~ljilja/TRAFFIC/Bellcore/bellcore.info
https://datasets.simula.no/ao/

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

(a) PDF of delay. (b) CDF of delay. (c) PDF of jitter. (d) CDF of jitter.

(e) MAP: avgJitter. (f) Poisson: avgJitter. (g) Onoff: avgJitter. (h) 𝑊1: RouteNet vs. Deep-
QueueNet.

Figure 8: Generality for traffic generation models. The accuracy of DeepQueueNet in the baseline configuration (FIFO) for a FatTree16

network. Also shown are results from RouteNet. Since RouteNet can only output a certain path’s delay/jitter (not end-to-end), all accu-

racy comparisons are done path-wise. The Pearson correlation 𝜌 becomes unreliable when accessing RouteNet’s generality for traffic

generation models. Accuracy is then quantified via the Wasserstein distance (𝑊1) to the distribution observed in the original simulation

(W1(prediction,label)/W1([0]*len(label), label)). Lower is better.

Figure 9: Inference accuracy of DeepQueueNet with different traf-

fic intensity.

measure in a network, because quantile-based measures are not

sub-additive.

Finally, we also conduct an experiment to show that Deep-
QueueNet can be generalized to dynamic load factors. Recall in

the training data in § 5, the load factor of each port of the device

is in the range of [0.1,0.8]. In these experiments, we increase the

range of load factor variation to [0.1,0.9], and plot the inference

accuracy in Figure 9. We observe that, for a previously unseen load

factor of 0.9, DeepQueueNet can still achieve high accuracy (low

normalized𝑤1 distance).

Topology Generality. We explore three different network topolo-

gies to show DeepQueueNet’s generalizability: Line, 2dTorus, Fat-
Tree

6
, as well as two Wide Area Networks from Internet Topol-

ogy Zoo
7
: Abilene and GÉANT. These topologies present different

connectivity in practical scenarios, which may affect the learning

capability and estimation accuracy.

Tables 5 shows the summary of the obtained evaluation results in

the baseline configuration coupled with a Poisson arrival process.

6
FatTree16 is a FatTree(4) network with 16 servers; FatTree64 [30] is a FatTree (4-ary

3-tree) network with 64 servers; FatTree128 is a FatTree(8) network with 128 servers.

7
http://www.topology-zoo.org/

In these results, we can observe that DeepQueueNet shows an
obvious advantage over RouteNet, especially in Line graphs, which

is the simplest cascaded network and can be simply treated as

a path or a special case of some complex networks. Table 5 also

shows the𝑊1 distance to the ground-truth distribution. We can see

that the estimated distribution of DeepQueueNet is much closer

to the ground-truth (𝑊1 is close to 0 for all cases), while RouteNet

performs well only for one scenario. For varying scale of FatTree

topology, we also compare against MimicNet. We observe that

MimicNet achieves higher accuracy which is reasonable as it uses

DES to accurately simulate a small subset of the network, and thus

can obtain detailed information such as queueing and protocol

interactions.

We credit the topology generalization capability of DeepQueueNet
to SEC and IRSA. As an ablation study, we turn off SEC for Line6,

FatTree64 and FatTree128, and the average RTT accuracy of Deep-
QueueNet degrades to 81%, 64%, and 13%, respectively. We also

emphasize that IRSA cannot be turned off, because without IRSA,

we cannot guarantee the correctness of simulation due to the mis-

batching problem. With SEC and IRSA, a trained 𝐾-port switch

PTMmodel can be used to construct any topology with node degree

no more than 𝐾 . As we have proven in§ 3.2.4, IRSA is guaranteed to

converge after 𝑑 iterations, where 𝑑 is the diameter of the topology.

TM Generality. Unlike current EPEs, which are insensitive to the

traffic management mechanisms, DeepQueueNet’s PTM model is

TM-aware due to the data augmentation procedures. To demon-

strate generalizability for TMs, we use two type of packet sched-

ulers, SP and WFQ (representing DRR and WRR). For two class

WFQ, we vary the weight ratio between 1:1, 5:4, and 9:1. For 3-class

WFQ, we use 1:1:1 as the weight ratio. For SP, we equally mark

450

http://www.topology-zoo.org/

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

avgRTT (𝑤1) p99RTT (𝑤1) avgJitter (𝑤1) p99Jitter (𝑤1)

DQN

Line4 0.0003 0.0023 0.0037 0.0000

Line6 0.0002 0.0016 0.0041 0.0002

Abilene 0.0017 0.0042 0.0137 0.0011

GÉANT 0.0009 0.0013 0.0023 0.0032

2dTorus(4x4) 0.0041 0.0274 0.0233 0.0158

2dTorus(6x6) 0.0066 0.0277 0.0319 0.0156

FatTree16 0.0086 0.0145 0.0548 0.0349

FatTree64 0.0176 0.0395 0.0291 0.0215

FatTree128 0.0133 0.0532 0.0395 0.0438

RN

Line4 0.5266 0.1978 5.3139 2.2943

Line6 0.6561 0.2555 2.9424 1.4225

Abilene 0.4781 0.1984 4.4904 5.5434

GÉANT 0.4589 0.1328 4.1983 5.4555

2dTorus(4x4) 1.2527 1.4644 5.5023 2.3050

2dTorus(6x6) 1.1005 0.5959 4.6492 2.6154

FatTree16 0.6737 0.9723 1.9510 1.0834

FatTree64 0.1406 0.3370 5.2964 2.2873

FatTree128 0.9824 0.6397 6.7684 1.8705

MN
FatTree16 0.0090 0.0135 0.1559 0.1172

FatTree64 0.0167 0.0179 0.1687 0.0625

FatTree128 0.0172 0.0194 0.1628 0.0667

Table 5: Topology Generality in the baseline configuration - FIFO

+ Poisson. DQN stands for DeepQueueNet; RN stands for RouteNet;

MN stands for MimicNet. The normalized Wasserstein distance𝑤1

is done path-wise.

(a) CDFs of delays.

(b) CDFs of jitters.
Figure 10: The performance of DeepQueueNet on a FatTree16

network with different traffic management configurations.

the traffic flows with different priorities. We fix the topology to be

FatTree16 and the traffic source for all flows is MAP.

We show the performance results in Figure 10 and Table 6. We

observe that DeepQueueNet’s predicted latency distribution is very

close to the ground-truth, which shows that DeepQueueNet re-
mains highly accurate for different configuration of packet sched-

ulers.

6.2 Scalability of DeepQueueNet
DeepQueueNet has high scalability with respect to the size of sim-

ulation. This is because estimation using DeepQueueNet is simply

avgRTT (𝑤1) p99RTT (𝑤1) avgJitter (𝑤1) p99Jitter (𝑤1)

2-class WFQ 0.020 0.046 0.037 0.042

SP 0.023 0.050 0.040 0.045

3-class WFQ 0.027 0.050 0.048 0.041

SP 0.028 0.029 0.032 0.026

Table 6: TM Generality. The normalized Wasserstein distance𝑤1

is used to assess the performance of DeepQueueNet on End-to-End

delay/jitter prediction.

topology method # GPUs time speedup

FatTree16

DES 0 2h22m11s -

MimicNet 1 4m2s -

DeepQueueNet 1 5m12s baseline

DeepQueueNet 2 2m45s 1.89-fold

DeepQueueNet 4 1m27s 3.59-fold

FatTree64

DES - 9h23m53s -

MimicNet 1 11m18s -

DeepQueueNet 1 29m17s baseline

DeepQueueNet 2 15m12s 1.93-fold

DeepQueueNet 4 8m5s 3.62-fold

FatTree128

DES 0 20h15m39s -

MimicNet 1 11m34s -

DeepQueueNet 1 1h6m18s baseline

DeepQueueNet 2 33m23s 1.99-fold

DeepQueueNet 4 17m5s 3.88-fold

Table 7: Inference execution time with parallelization for 30s of

simulated time on different FatTree networks (288,192 packets for

a FatTree16 network, 1,152,768 packets for a FatTree64 network,

and 2,305,536 packets for a FatTree128 network).

model inference, and we can run model inference in parallel on

multiple devices or machines using distributed runtime of popular

machine learning frameworks. In this way, we circumvent the key

obstacle for DES, and can be accelerated in parallel. We showcase

parallel acceleration of FatTree16/128 topologies onDeepQueueNet
in Table 7. For each network configuration, we run DeepQueueNet,
OMNet++ [46], andMimicNet over the same sets of generated work-

loads. We no longer use ns.py in this experiment because it is less

performant compared to OMNet++ due to the language choice of

Python. We evenly divide the DeepQueueNet model to the GPUs,

and the division for FatTree16 topology on 4 GPUs is shown in

Figure 11 as an example. Currently, we perform the division by

hand, and we leave the automatic partitioning and parallelization

of DeepQueueNet as future work.
In all systems, simulation time consists of both setup time, which

is used to construct the network, allocate resources, and schedule

the traffic, as well as the actual simulation. DeepQueueNet substan-
tially speeds up both phases compared to DES. The running time

of OMNet++ (the DES rows in Table 7) is shown for reference only,

and it is not a fair comparison because of the computational power

differences between CPU and GPU. The running time of MimicNet

outperforms DeepQueueNet for all scales of FatTree topology us-

ing only a single GPU, and this is expected because MimicNet is

optimized for this topology and DeepQueueNet needs to perform

iterative procedures (IRSA) to guarantee correctness. Looking only

at DeepQueueNet, our results show that DeepQueueNet can pro-

vide near-linear speed-ups with the number of additional GPUs.

This is because we are only running inference on the GPUs, and

the time complexity is almost constant.

451

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

Figure 11: Example: Network decomposition for model-parallel

inference of DeepQueueNet on 4 GPUs (FatTree16).

7 DISCUSSION
We have shown that DeepQueueNet helps network operators and

designers answer the following question: given a packet trace, a

network topology, and the TM configuration of the devices in the

network, what will the output packet trace be for each link in the

topology? In this section, we discuss DeepQueueNet’s limitations

and future directions.

Modeling State-ful Behaviors. DeepQueueNet is unable to deal

with state-ful behaviors of network devices. BecauseDeepQueueNet
only looks at the network layer, and indeed, ignores the complex in-

teractions among the higher layers, such as the transport protocols

they uses, the network layer TM mechanisms, as well as any possi-

ble interaction between devices. We make this intentional trade-off

favoring scalability over accuracy, and the same trade-off is also

made by prior works that uses DNN to accelerate performance

estimation [23, 26, 42, 50]. Inspired by the flow-level feeder models

in MimicNet [50], one promising future direction is to model the

state-ful behavior of network participants using DNN-based traffic

generation models, and integrate themwithDeepQueueNet to com-

pose an comprehensive simulator. This is made possible because

DeepQueueNet does not put any limit on the traffic generation

model and only processes packet traces.

Usage Scenarios. DeepQueueNet focuses on modeling the perfor-

mance distribution of a network when it reaches stability, and in

general ignores the transient states of the network. This accelerates

the simulation of the network. We believe that DeepQueueNet is
useful for scenarios where operators care more about the behavior

of the network at stability, such as capacity planning and topology

design. In addition, since a DeepQueueNet model is fully differen-

tiable, we can combine it with a gradient-descent-based algorithm

to optimize parameters of network devices [28], and we leave this

as future work.

Accommodating New Devices. DeepQueueNet is able to per-

form single-device black-box modeling of any new TMmechanisms,

including queueing disciplines. We are able to train a black-box

model for any device given its input packet trace and output packet

trace. The device model can then be used to form DeepQueueNet
models of an entire network, so that the designer of the new mecha-

nism can inspect its performance at a larger scale. In our experience

with network operators, they are usually more interested in perfor-

mance of a larger network than that of a single device. However,

this model is limited. For example, any network device/middle-box

that combines or splits packets, are hard to model with the de-

vice model of DeepQueueNet, and we leave modeling of general

packet-processing device as future work.

8 RELATEDWORKS
We identify two research areas are closely related toDeepQueueNet:
network simulation and DNN explainability.

As discussed in § 2, network simulation solutions have three

types: DES, continuous simulators, and DNN-based EPEs. The main

problem of DES [21, 29, 39, 46] is scalability. DeepQueueNet over-
comes this issue by incorporating continuous simulation tech-

niques, and use DNN to approximate latency functions which

can be deployed to parallel computing clusters. For continuous

simulation, both control-theoretic simulators [2, 31, 34, 37] and

network calculus cannot provide useful statistics for network en-

gineering, and the computational cost of queue-theoretic perfor-

mance estimator is too high. DeepQueueNet carefully identify the

mathematically-intractable and computationally-expensive parts

of queueing-theoretic models, and model them using DNNs, which

has constant time complexity during inference. Finally, existing

EPEs [41, 42] are neither visible at packet-level nor generalizable,

as we have shown in our evaluations. DeepQueueNet, by design,

has packet-level visibility. Recently, to enhance visibility and gen-

erality of EPEs, MimicNet [23, 50] propose to limit the application

of DNN from network-scale to cluster-scale. However, MimicNet

only works for FatTree [30], and focuses on scale generalizability.

As our experiments have shown, DeepQueueNet can generalize to

arbitrary topology, popular TM mechanisms, and different traffic

generation models.

Visibility is closely linked to model explainability of DNN [10,

12, 47], and the design of DeepQueueNet is also inspired by dif-

ferentiable programming [17, 19], especially its usage in physics

simulations [27]. We do not claim contribution to this area. Instead,

our work is an application of the principles of explainable artificial

intelligence, and we focus on packet-level visibility in the design of

DeepQueueNet. Structurally,DeepQueueNetmodel has one-to-one

correspondence with the target network topology; the output traces

of each device is simply a packet trace, on which any new metric

can be applied without retraining the model.

9 CONCLUDING REMARKS
We present DeepQueueNet, a scalable and generalizable network

performance estimator with packet-level visibility by combining

scalable DNN-based continuous simulation with discrete event sim-

ulation. In contrast to prior solutions, we limit the use of DNN to

the modeling of device-local TM mechanisms, guided by a solid

queueing-theoretic modelling of modern packet schedulers. In

this way, we directly map target network topology to form Deep-
QueueNetmodels. Experiments show that our prototype can achieve

near-linear speed-up, while maintaining high accuracy across all

scenarios.

Acknowledgements: We thank our shepherd Prof. Vincent Liu

and the anonymous SIGCOMM reviewers for their constructive

feedback and suggestions. We also thank Dr. Qizhen Zhang for

his help with the evaluation. This work is supported in part by

funding from the Huawei-CUHK Joint PhD Program (6906388),

Jinan Scientific Research Leader Studio Project (2021GXRC091),

and National Natural Science Foundation of China (61802233).

452

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] Martín Abadi. 2016. TensorFlow: learning functions at scale. In Proceedings of the

21st ACM SIGPLAN International Conference on Functional Programming. 1–1.
[2] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. 2011. Analysis

of DCTCP: stability, convergence, and fairness. ACM SIGMETRICS Performance
Evaluation Review 39, 1 (2011), 73–84.

[3] Søren Asmussen and Ger Koole. 1993. Marked point processes as limits of

Markovian arrival streams. Journal of Applied Probability (1993), 365–372.

[4] F. Baccelli and D. Hong. 2003. Flow level simulation of large IP networks. In Proc.
IEEE INFOCOM, Vol. 3. 1911–1921.

[5] Giuliano Casale, Eddy Z Zhang, and Evgenia Smirni. 2008. KPC-toolbox: Simple

yet effective trace fitting using Markovian arrival processes. In Proc. IEEE Int.
Conf. Quantitative Evaluation of Systems. St. Malo, France, 83–92.

[6] Srinivas R Chakravarthy. 2010. Markovian arrival processes. Wiley Encyclopedia
of Operations Research and Management Science (2010).

[7] Srinivas R Chakravarthy, Shruti, and Alexander Rumyantsev. 2020. Analysis of a

Queueing Model with Batch Markovian Arrival Process and General Distribution

for Group Clearance. Methodology and Computing in Applied Probability (2020),

1–29.

[8] Florin Ciucu and Jens Schmitt. 2012. Perspectives on network calculus: no free

lunch, but still good value. In Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer communication.
311–322.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Krishna Gade, Sahin Cem Geyik, Krishnaram Kenthapadi, Varun Mithal, and

Ankur Taly. 2019. Explainable AI in industry. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 3203–
3204.

[11] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:

Continual prediction with LSTM. (1999).

[12] David Gunning. 2017. Explainable artificial intelligence (xai). Defense Advanced
Research Projects Agency (DARPA), nd Web 2, 2 (2017).

[13] Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C

Schulthess. 2015. STELLA: A domain-specific tool for structured grid meth-

ods in weather and climate models. In Proceedings of the international conference
for high performance computing, networking, storage and analysis. 1–12.

[14] Qi-Ming He. 2014. Fundamentals of matrix-analytic methods. Vol. 365. Springer,
New York.

[15] Gábor Horváth, B. Van Houdt, and M. Telek. 2014. Commuting Matrices in the

Queue Length and Sojourn Time Analysis of MAP/MAP/1 Queues. Stochastic
Models 30, 4 (2014), 554–575.

[16] Gábor Horváth and Hiroyuki Okamura. 2013. A fast EM algorithm for fitting

marked Markovian arrival processes with a new special structure. In Proc. Eur.
Workshop Perform. Engineering. Springer, Berlin, Heidelberg, Venice, Italy, 119–
133.

[17] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan

Ragan-Kelley, and Frédo Durand. 2019. Difftaichi: Differentiable programming

for physical simulation. arXiv preprint arXiv:1910.00935 (2019).
[18] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF models for

sequence tagging. arXiv preprint arXiv:1508.01991 (2015).
[19] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B

Shah, and Will Tebbutt. 2019. A differentiable programming system to bridge

machine learning and scientific computing. arXiv preprint arXiv:1907.07587
(2019).

[20] Teerawat Issariyakul and EkramHossain. 2009. Introduction to network simulator

2 (NS2). In Introduction to network simulator NS2. Springer, 1–18.
[21] Teerawat Issariyakul and EkramHossain. 2009. Introduction to network simulator

2 (NS2). In Introduction to network simulator NS2. Springer, Boston, MA, 1–18.

[22] Shafagh Jafer, Qi Liu, and Gabriel Wainer. 2013. Synchronization methods in

parallel and distributed discrete-event simulation. Simulation Modelling Practice
and Theory 30 (2013), 54–73.

[23] Charles W. Kazer, João Sedoc, Kelvin K.W. Ng, Vincent Liu, and Lyle H. Ungar.

2018. Fast Network Simulation Through Approximation or: How Blind Men Can

Describe Elephants. In Proceedings of the 17th ACM Workshop on Hot Topics in
Networks (HotNets ’18). Association for Computing Machinery, New York, NY,

USA, 141–147.

[24] Alexander Klemm, Christoph Lindemann, and Marco Lohmann. 2003. Modeling

IP traffic using the batch Markovian arrival process. Performance Evaluation 54,

2 (2003), 149–173.

[25] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a theory of
deterministic queuing systems for the internet. Vol. 2050. Springer Science &

Business Media.

[26] Lingda Li, Santosh Pandey, Thomas Flynn, Hang Liu, Noel Wheeler, and Adolfy

Hoisie. 2022. SimNet: Accurate and High-Performance Computer Architecture

Simulation using Deep Learning. Proceedings of the ACM on Measurement and

Analysis of Computing Systems 6, 2 (2022), 1–24.
[27] Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. 2019. Differentiable pro-

gramming tensor networks. Physical Review X 9, 3 (2019), 031041.

[28] Libin Liu, Li Chen, Hong Xu, and Hua Shao. 2020. Automated Traffic Engineer-

ing in SDWAN: Beyond Reinforcement Learning. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
430–435.

[29] Zheng Lu and Hongji Yang. 2012. Unlocking the Power of OPNET Modeler. Cam-

bridge University Press, New York, NY.

[30] M.Alonso, S.Coll, J.M.Martínez, V.Santonja, and P.López. 2015. Power consump-

tion management in fat-tree interconnection networks. Parallel Comput. 48
(2015), 59–80.

[31] Marco Ajmone Marsan, Michele Garetto, Paolo Giaccone, Emilio Leonardi, Enrico

Schiattarella, and Alessandro Tarello. 2005. Using partial differential equations

to model TCP mice and elephants in large IP networks. IEEE/ACM Transactions
on Networking 13, 6 (2005), 1289–1301.

[32] Hiroyuki Masuyama and Tetsuya Takine. 2003. Sojourn time distribution in

a MAP/M/1 processor-sharing queue. Operations Research Letters 31, 5 (2003),
406–412.

[33] S McCanne. 2006. Libpcap. ftp://ftp. ee. lbl. gov/libpcap. tar. Z. (2006).
[34] Vishal Misra, Wei-Bo Gong, and Don Towsley. 2000. Fluid-based analysis of

a network of AQM routers supporting TCP flows with an application to RED.

In Proceedings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. 151–160.

[35] Jason C Neumann. 2015. The book of GNS3: build virtual network labs using Cisco,
Juniper, and more. No Starch Press.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[37] Qiuyu Peng, Anwar Walid, Jaehyun Hwang, and Steven H Low. 2014. Multipath

TCP: Analysis, design, and implementation. IEEE/ACMTransactions on networking
24, 1 (2014), 596–609.

[38] Xi Peng, Fan Zhang, Li Chen, and Gong Zhang. 2021. A MAP-based Perfor-

mance Analysis on 5G-powered Cloud VR Streaming. In Proc. IEEE International
Conference on Communications (ICC). 1–6.

[39] George F Riley and Thomas R Henderson. 2010. The ns-3 Network Simulator. In

Modeling and Tools for Network Simulation. Vol. 14. Springer, Berlin, Heidelberg,
527.

[40] Thomas G Robertazzi. 2012. Computer networks and systems: queueing theory and
performance evaluation. Springer Science & Business Media, New York, NY.

[41] Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert

Cabellos-Aparicio. 2019. Unveiling the Potential of Graph Neural Networks for

Network Modeling and Optimization in SDN. In Proceedings of the 2019 ACM
Symposium on SDN Research (SOSR’19). Association for Computing Machinery,

New York, NY, 140–151.

[42] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio.

2020. RouteNet: Leveraging Graph Neural Networks for Network Modeling and

Optimization in SDN. IEEE Journal on Selected Areas in Communications 38, 10
(2020), 2260–2270.

[43] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.

2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN.

ACM Transactions on Database Systems (TODS) 42, 3 (2017), 1–21.
[44] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and

long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404
(2020), 132306.

[45] Han Vanholder. 2016. Efficient inference with tensorrt. In GPU Technology
Conference, Vol. 1. 2.

[46] Andras Varga. 2019. A practical introduction to the OMNeT++ simulation frame-

work. In Recent Advances in Network Simulation. Springer, Switzerland, 3–51.
[47] XiangWang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. 2018. Tem:

Tree-enhanced embedding model for explainable recommendation. In Proceedings
of the 2018 World Wide Web Conference. 1543–1552.

[48] Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan

Liu. 2021. Graph learning: A survey. IEEE Transactions on Artificial Intelligence 2,
2 (2021), 109–127.

[49] Hyeon-Joong Yoo. 2015. Deep convolution neural networks in computer vision:

a review. IEIE Transactions on Smart Processing and Computing 4, 1 (2015), 35–43.
[50] Qizhen Zhang, Kelvin KW Ng, Charles Kazer, Shen Yan, João Sedoc, and Vincent

Liu. 2021. MimicNet: fast performance estimates for data center networks with

machine learning. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
287–304.

453

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A MAP-BASED MODELING FOR NETWORK
TRAFFIC

Queueing modeling lays the foundation of theoretically analyzing

the network performance, and is independent of the implementa-

tion of a DES. Since the origin of queueing theory was activated

by A.K. Erlang in 1909, myriad models have been proposed for

understanding and analyzing various networks, such as M/M/1 and

GI/G/1 for single queueing systems and Jackson networks for the

network of queues. Although general queueing models like GI/G/1

have few conditions, they are not tractable and thus difficult to

obtain analytical or numerical results on performance measures of

interest, such as the latency distribution and queue-length distribu-

tion. Classical tractable queueing models extensively uses Poisson

processes to model the arrival process and the service process, such

as the M/M/1 and Jackson networks, but such models turn out to

be too simplistic in real networks. The Markovian arrival process

(MAP) and its extensions are regarded as the most expressive mod-

els that are analytically tractable by using matrix-analytic methods.

They have attracted much attention in the quantification of network

performance [14, 15, 24, 32, 38]. When we sort the family of MAPs

in ascending order of complexity, the list covers the Poisson pro-

cess, the phase-type (PH) renewal process, the Markov modulated

Poisson process (MMPP), the MAP and the batch MAP (BMAP).

The same is true of representational capacity. Here we take the

MAP as an example to show its application to real networks.

A.1 Model of inter-arrival times
The MAP can model the network traffic at a fine granularity by

describing inter-arrival times (IATs) between packets. The MAP is

governed by an underlying continuous-time Markov chain (CTMC)

with finite states. Let J={1,2,...,𝑀},𝑀≥1, be the state space of this
CTMC. Let 𝑫0 and 𝑫1,𝑀×𝑀 matrices, denote rate matrices of state

transitions with zero and one arrival, respectively. Matrix 𝑫0 is non-

singular and its diagonal entries are negative. The other entries

of 𝑫0 and all entries of 𝑫1 are non-negative. The infinitesimal

generator of the CTMC is given by 𝑫0+𝑫1, and its row sum is zero

by definition and hence a MAP has (2𝑀2−𝑀) free parameters.

A critical problem of applying a MAP-based model is to effec-

tively estimate parameters fitted to the observed data. There are two

categories of methods: the moment-matching (MM) method [5] and

the maximum likelihood estimation (MLE) [16]. The MLE usually

gives a better fitting performance at the expense of higher com-

putational complexity. The idea of MLE is to estimate parameters

by maximizing a likelihood function of the probability distribution

of IATs, so that the observed data is the most probable under the

assumed MAP model. Applying the expectation-maximization (EM)

algorithm, this problem can be efficiently solved. Moreover, if 𝑫0

and 𝑫1 are assumed to have special structures, the solution will be

more efficient [16].

With 𝑫0 and 𝑫1, the cumulative distribution function (CDF) of

IATs [32] is explicitly give by

𝐹 (𝑡)=1−𝝅𝑎𝑒𝑫0𝑡1, 𝑡≥0,

where 𝝅𝑎 is the unique solution of the linear system{
𝝅𝑎 (−𝑫0)−1𝑫1=𝝅𝑎

𝝅𝑎𝒆= 1

.

We show the effectiveness of MAPmodeling by fitting real-world

traffic traces from two public datasets: BC-pAug89 and Anarchy,

respectively. Figure 12 depicts the fitting performance of MAP mod-

els by comparing the CDF of IATs. We observe that MAP models

well capture the characteristics of the raw traffic. A higher dimen-

sional MAP model improves the fitting accuracy, but suffers from

higher computational complexity and overfitting. Our experiment

shows that a moderate dimension could achieve a satisfactory per-

formance.

In a nutshell, the MAP modeling is a powerful tool for describing

complex traffic. For trainingDeepQueueNet, we utilizeMAPmodels

to generate additional training datasets.

10−4 10−3 10−2 10−1

IAT (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

raw trace
MAP(2)
MAP(3)
MAP(6)
MAP(9)

(a) BC-pAug89 Trace

10−2 10−1 100

IAT (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

raw trace
MAP(2)
MAP(3)
MAP(6)
MAP(9)

(b) Anarchy Trace

Figure 12: Fitting real traces with MAP models.

A.2 Model of service times
The service times 𝑡𝑠 of a packet is determined by 𝑡𝑠=

𝐿
` , where 𝐿

the packet size and ` is the service rate. The distribution of service

times exactly reflects the distribution of packet sizes if the network

uses constant service rate. The family of MAPs can also be used

to describe service times. In practice, since service times is not as

sophisticated as IATs, the most common type of service times is

exponential distribution, which means the service occurs according

to a Poission process. Other types like PH process and Markovian

service process (MSP) have also been employed [15]. There are also

454

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Figure 13: A multi-queue packet scheduler.

studies on general distributed service times, but they are usually

intractable [7].

B STATE-AWARE MODELING OF NETWORK
PACKET SCHEDULERS: SP/DRR/WFQ

A packet scheduler plays the role of an arbiter in packet switch-

ing network, which provides specific reordering of the queueing

packets by using scheduling disciplines such as SP, DRR, WFQ, etc.

In prior works, the analysis of packet schedulers are based on the

PGPS where the arrivals are assumed to form a Poisson process

and all buffers are always non-empty. These assumptions are too

strong for real scenarios where the packet arrivals are bursty and

correlated, and the scheduler skips empty queues and only serves

non-empty ones in every round. Here we propose a fine-grained

queueing model of multi-queue packet scheduler. Our work extends

the representational capacity and enhances the accuracy of classical

PGPS modeling, while remains tractable.

B.1 Queueing-theoretic modeling
Figure 13 illustrates how multi-class flows share the available link

bandwidth (i.e., service rate) of a multi-queue packet scheduler. The

incoming aggregate flow consists of 𝐾 classes and is classified into

𝐾 separate flows according to their classes. Each class maintains a

separate queue, which is assumed to have infinite buffer space. The

discipline of each queue is FIFO. In each round, the head-of-line

packets of non-empty queues will be selected to transmit based on

a specific scheduling discipline, for example, the WFQ with weights

[𝛼1,𝛼2,...,𝛼𝐾].
B.1.1 Model of multi-class arrivals We characterize the ag-

gregate network flow by using the MAP with the infinitesimal

generator 𝑫=𝑫0+𝑫1, and the state space J={1,...,𝑀}, where 𝑫0=[
𝑑0
𝑗𝑘

]𝑀
𝑗,𝑘=1

and 𝑫1=

[
𝑑1
𝑗𝑘

]𝑀
𝑗,𝑘=1

are𝑀×𝑀 matrices. The probability

of the 𝑘-th class is 𝑝𝑘>0, which stands for the arriving rate pro-

portion of each class in the aggregate flow. It holds that

∑𝐾
𝑘=1

𝑝𝑘=1.

Therefore, the arrivals of the 𝑘-th class are characterized by{
𝑫 [𝑘]
0

=𝑫0+(1−𝑝𝑘)𝑫1

𝑫 [𝑘]
1

=𝑝𝑘𝑫1 .

Let row vector 𝝅 denote the stationary probability vector of the

underlying CTMC, which is uniquely determined by 𝝅 (𝑫0+𝑫1)=0
and 𝝅𝒆=1. The mean packet arrival rate of aggregate flow and of

the 𝑘-th class are given by _=𝝅𝑫1𝒆 and _𝑘=𝑝𝑘_, respectively.

B.1.2 Model of state-aware scheduling We first look into the

WFQ, WRR and DRR disciplines. For tractability, we consider ser-

vice times to be exponentially distributed. Service rate ` is assigned

to all classes in proportion to corresponding weights [𝛼1,𝛼2,...,𝛼𝐾],

which can be regarded as the weights used in WFQ and WRR or

the quanta used in DRR. When some queues are empty, the service

rate will only be allocated among the nonempty queues. In practice,

these scheduling disciplines achieve almost the same allocation

effect in the long run. In the sequel, we refer all these disciplines

as the WFQ to simply the exposition. Then we consider the SP

discipline where the lower priority is starved until all the higher

priority queues are empty. In both WFQ and SP, the actual sched-

uling depends on queue states, which motivates us to develop a

state-aware scheduling model.

Let us denote the queue dynamics as a row vector

𝒏=
[
𝑛1,𝑛2,...,𝑛𝐾

]
,

where 𝑛𝑘∈N0 is the queue length of class 𝑘 . The actual service rates

allocated to class 𝑘 , denoted by 𝑔𝑘 , is a function of 𝒏. For WFQ, we

have

𝑔𝑘 (𝒏)=
𝛼𝑘1{𝑛𝑘>0}∑𝐾
𝑖=0𝛼𝑖1{𝑛𝑖>0}

`,

and for SP, we have

𝑔𝑘 (𝒏)=`1{𝑛𝑘>0 and 𝑛𝑖=0,∀𝑖<𝑘 },
where 1{·} is the indicator function. Besides the solution of WFQ

and SP, our method can also be extended to other schedulers.

B.2 LDQBD reformulation
WithMAP-based arrivals and the state-aware scheduling model, the

queueing system is governed by the CTMC 𝑍 (𝑡)={𝒏(𝑡), 𝑗 (𝑡),𝑡≥0},
and the state space is given byN𝐾

0
×J, where × is the Cartesian prod-

uct operator.We enumerate all states based on awell-designed order.

The summation of all queue-lengths is defined as the level of this

system, that is, 𝑙=𝒏𝒆. We utilize a level-ascending-state-descending

sequencing for all permutations of 𝒏, and an ascending sequencing

for the MAP states 𝑗 . Take the case of two-class scheduling as an

example. Its states can be listed as

𝑙=0:(0,0,1),...,(0,0,𝑀);
𝑙=1:(1,0,1),...,(1,0,𝑀);(0,1,1),...,(0,1,𝑀);
𝑙=2:(2,0,1),...,(2,0,𝑀);(1,1,1),...,(1,1,𝑀);

(0,2,1),...,(0,2,𝑀);
···

The first two digits stand for queue-length states 𝑛1 and 𝑛2, and

the last digit represents the MAP state 𝑗 .

In general, the number of possible permutations of queue-length

states is given by the binomial coefficient

𝑐𝑙=

(
𝑙+𝐾−1
𝐾−1

)
=
(𝑙+𝐾−1)!
𝑙 !(𝐾−1)! .

Since the size of the MAP state space is 𝑀 , the number of all states

at level 𝑙 is obtained as 𝑑𝑙=𝑀𝑐𝑙 .

In order to achieve a tractable analysis, we reformulate the CTMC

into a level-dependent quasi-birth–death (LDQBD) process, where

the transitions from level 𝑙 are categorized into three kinds:

(1) to states in level 𝑙 ;

(2) to states in level (𝑙−1);
(3) to states in level (𝑙+1).

455

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands Q. Yang, et al.

Therefore, 𝑍 (𝑡) has a block-tridiagonally structured generator:

𝑸=

𝑄00 𝑄01 𝑂 𝑂 𝑂 𝑂 𝑂 · · ·
𝑄10 𝑄11 𝑄12 𝑂 𝑂 𝑂 𝑂 · · ·
𝑂 𝑄21 𝑄22 𝑄23 𝑂 𝑂 𝑂 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . . · · ·

𝑂 𝑂 𝑂 𝑂 𝑄𝑙,𝑙−1 𝑄𝑙,𝑙 𝑄𝑙,𝑙+1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

. . .

where 𝑄𝑙,𝑙+1∈R𝑑𝑙×𝑑𝑙+1 ,𝑙≥0, is a set of transitions form level 𝑙 to

level (𝑙+1),𝑄𝑙,𝑙∈R𝑑𝑙×𝑑𝑙 ,𝑙≥0, is a set of transitions within level 𝑙 , and
𝑄𝑙,𝑙−1∈R𝑑𝑙×𝑑𝑙−1 ,𝑙≥1, is a set of transitions form level 𝑙 to level (𝑙−1).
The ordering of states with a level is fixed up to a permutation. Note

that 𝑄𝑙,𝑙−1 and 𝑄𝑙,𝑙+1 are non-negative rectangular matrices, and

𝑄𝑙,𝑙 is non-singular square matrix with negative diagonal entries

and non-negative off-diagonal entries. Level 0 is the boundary

level and has two non-zero blocks. The state transition rates of the

LDQBD are given by:

(1) In 𝑄𝑙,𝑙+1,𝑙≥0: (𝒏, 𝑗)→(𝒏+𝒆𝑖 ,𝑘) at 𝑝𝑖𝑑1𝑗𝑘 ;
(2) In 𝑄𝑙,𝑙−1,𝑙≥1: (𝒏, 𝑗)→(𝒏−𝒆𝑖 , 𝑗) at 𝑔𝑖 (𝒏), if 𝒏−𝒆𝑖∈N𝐾

0
;

(3) In 𝑄𝑙,𝑙 ,𝑙≥0: (𝒏, 𝑗)→(𝒏,𝑘) at 𝑑0
𝑗𝑘
, if 𝑗≠𝑘 ; and (𝒏, 𝑗)→(𝒏, 𝑗) at

𝑑0
𝑗 𝑗
−∑𝐾

𝑘=1
𝑔𝑘 (𝒏);

(4) All the remaining entries of 𝑄 are zeros.

Note that the row sum of 𝑄𝑙,𝑙−1+𝑄𝑙,𝑙+𝑄𝑙,𝑙+1 is zero.
Suppose the queueing system is stable, that is, the utilization

𝜌=_` ≤1. The stationary probability vector of the LDQBD process is

denoted by a row vector

𝝓=[𝝓0,𝝓1,𝝓2,...],
where 𝝓𝑙∈R𝑑𝑙 is the stationary probability vector of level 𝑙 , and we

have 𝝓𝑙=
{[
𝜙𝒏,1,...,𝜙𝒏,𝑀

]
,𝒏∈N𝐾

0
,𝒏𝒆=𝑙

}
. The stationary distribution

vector 𝝓 is uniquely determined by the linear system{
𝝓𝑸=0
𝝓𝒆=1

Based on 𝝓, we can compute the marginal distribution of queue-

length for each class. Here we skip the details of our algorithm to

solve the linear system, since it is beyond this paper. The main idea

is to apply the matrix continued fractions (MCFs) and to design

an numerical iterative algorithm. The computational complexity

is 𝑂

(
𝑀3𝐿3𝐾

)
, and therefore is not feasible for solving large-scale

scheduling system.

B.3 Numerical examples
Here we validate our modeling and solution by comparing our

result with the DES result. In this example, there are three classes

in an aggregate flow and their proportion is 20%, 30% and 50%. The

MAP(2) representation of the aggregate flow’s IATs is given by

𝑫0=

[
−12000 0

0 −3000

]
and 𝑫1=

[
3600 8400

2100 900

]
.

The average arriving rate of the aggregate flow is 4800 packets per

sec according to the MAP(2) model. The packet size is assumed

to be constant 1426 bytes and the service rate to be exponentially

0 5 10 15 20 25 30
queue length

0.6

0.7

0.8

0.9

1.0

CD
F SP-class0

SP-class1
SP-class2
theo-class 0
theo-class 1
theo-class 2

(a) SP

0 5 10 15 20 25 30
queue length

0.6

0.7

0.8

0.9

1.0

CD
F WFQ-class0

WFQ-class1
WFQ-class2
theo-class 0
theo-class 1
theo-class 2

(b)WFQ

Figure 14: Queueing performance of schedulers.

1 2 3 4
the number of classes

10−2

10−1

100

101

102

ru
nn

in
g

tim
e

(s
ec

)

SP
WFQ

Figure 15: Running time of different scheduling cases.

distributed with mean rate of 100 Mbps. Figure 14 shows the queue-

length CDFs under SP and WFQ (1:1:1). The solid lines stand for

the empirical CDFs given by DES, while the dash lines are the

queueing-theoretic CDFs.

As reflected in Figure 15, the running time increases exponen-

tially as the number of classes rises, which coincides our complexity

analysis. It demonstrates that the scalability of the tractable queue-

ing model is a major challenge, which hinders its application to real

networks of thousands or even millions of queues. In conclusion,

queueing models give a theoretical insight into the system dynam-

ics and an accurate estimation. But the exact analysis of queueing

networks under real traffic becomes quickly intractable due to the

state explosion.

456

DeepQueueNet: Towards Scalable and Generalized Network Performance...SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

avgRTT p99RTT avgJitter p99Jitter

𝜌 95% CI 𝜌 95% CI 𝜌 95% CI 𝜌 95% CI

DeepQueueNet

MAP 0.994 [0.992,0.995] 0.979 [0.974,0.983] 0.981 [0.975,0.985] 0.966 [0.958,0.973]

Poisson 0.999 [0.999,0.999] 0.988 [0.985,0.990] 0.985 [0.981,0.987] 0.978 [0.973,0.982]

Onoff 0.997 [0.996,0.998] 0.950 [0.931,0.961] 0.971 [0.963,0.976] 0.932 [0.915,0.945]

BC-pAug89 0.999 [0.999,0.999] 0.983 [0.979,0.986] 0.981 [0.975,0.985] 0.972 [0.965,0.978]

Anarchy 0.997 [0.996,0.997] 0.965 [0.956,0.972] 0.937 [0.922,0.948] 0.968 [0.960,0.974]

Table 8: Generality for traffic generation models. The Pearson correlation 𝜌 is used to assess the performance of DeepQueueNet on
End-to-End delay/jitter prediction.

avgRTT p99RTT avgJitter p99Jitter

𝜌 95% CI 𝜌 95% CI 𝜌 95% CI 𝜌 95% CI

DeepQueueNet

Line4 0.9999 [0.9999,0.9999] 0.9974 [0.9966,0.9980] 0.9985 [0.9980,0.9989] 0.9999 [0.9999,0.9999]

Line6 0.9999 [0.9999,0.9999] 0.9973 [0.9965,0.9979] 0.9994 [0.9991,0.9995] 0.9999 [0.9999,0.9999]

Abilene 0.9947 - 0.9920 - 0.9923 - 0.9991 -

GÉANT 0.9997 - 0.9931 - 0.9991 - 0.9923 -

2dTorus(4x4) 0.9999 [0.9999,0.9999] 0.9899 [0.9886,0.9911] 0.9949 [0.9942,0.9955] 0.9882 [0.9862,0.9899]

2dTorus(6x6) 0.9999 [0.9999,0.9999] 0.9912 [0.9906,0.9917] 0.9934 [0.9930,0.9937] 0.9851 [0.9841,0.9860]

FatTree16 0.9993 [0.9991,0.9994] 0.9879 [0.9854,0.9900] 0.9845 [0.9812,0.9871] 0.9778 [0.9732,0.9815]

FatTree64 0.9984 [0.9983,0.9984] 0.9765 [0.9751,0.9778] 0.9739 [0.9724,0.9753] 0.9577 [0.9552,0.9600]

FatTree128 0.9968 [0.9966,0.9970] 0.9572 [0.9546,0.9597] 0.9584 [0.9562,0.9606] 0.9201 [0.9159,0.9243]

Table 9: Topology Generality in the baseline configuration - FIFO + Poisson. The Pearson correlation 𝜌 is used to assess the performance of

DeepQueueNet on End-to-End delay/jitter prediction.

avgRTT p99RTT avgJitter p99Jitter

𝜌 95% CI 𝜌 95% CI 𝜌 95% CI 𝜌 95% CI

2-class
WFQ 0.989 [0.987,0.991] 0.969 [0.963,0.973] 0.978 [0.975,0.981] 0.931 [0.921,0.939]

SP 0.989 [0.986,0.991] 0.968 [0.962,0.972] 0.978 [0.975,0.981] 0.930 [0.919,0.939]

3-class
WFQ 0.979 [0.976,0.982] 0.937 [0.927,0.945] 0.962 [0.958,0.966] 0.903 [0.887,0.913]

SP 0.984 [0.981,0.986] 0.952 [0.943,0.959] 0.971 [0.967,0.974] 0.915 [0.899,0.926]

Table 10: TM Generality. The Pearson correlation 𝜌 is used to assess the performance of DeepQueueNet on End-to-End delay/jitter

prediction.

C ADDITIONAL EVALUATION METRICS
In this section, we reveal additional evaluation metrics which are

not included in § 6.1 due to space limits. We mainly report two

statistical metrics: the Pearson correlation coefficient 𝜌 between

the latency distribution of DeepQueueNet and the ground-truth,

and the 95% percentile confidence interval (CI) for 𝜌 . 𝜌 is a measure

of linear correlation between two sets of data (closer to 1 is better).

Generality for Traffic Generation Models. Table 8 shows a
summary of all the experiments we made in Figure 8 We observe

that DeepQueueNet’s 𝜌 of average RTT is above 0.99 across all

scenarios. For 99th percentile (p99) estimations (tail latency), 𝜌 is

also above 0.95.

Topology Generality. Table 9 shows the summary of the ob-

tained evaluation results in the baseline configuration coupled with

a Poisson arrival process.Across all topologies, DeepQueueNet’s 𝜌
is always above 0.99 in terms of average RTT estimation.

TMGenerality.To demonstrate TMgenerality of DeepQueueNet,
we show the performance results in Figure 10 and Table 10. Its 𝜌

achieves above 0.97 for 2/3-class SP and WFQ in terms of average

RTT estimation, and above 0.93 for p99 RTT estimation.

457

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Packet-level DES
	2.2 Flow-level Continuous Simulators
	2.3 End-to-end Performance Estimators
	2.4 Motivation and Design Rationale

	3 DeepQueueNet Design
	3.1 System Overview
	3.2 DeepQueueNet Modeling

	4 Algorithms & Techniques
	4.1 Pre-PTM Data Augmentation & Feature Engineering
	4.2 PTM Architecture
	4.3 Post-PTM Statistical Error Correction

	5 Prototyping DeepQueueNet
	5.1 Implementation
	5.2 Training DeepQueueNet

	6 Evaluation
	6.1 Generality of DeepQueueNet
	6.2 Scalability of DeepQueueNet

	7 Discussion
	8 Related Works
	9 Concluding Remarks
	References
	A MAP-based modeling for network traffic
	A.1 Model of inter-arrival times
	A.2 Model of service times

	B State-aware modeling of network packet schedulers: SP/DRR/WFQ
	B.1 Queueing-theoretic modeling
	B.2 LDQBD reformulation
	B.3 Numerical examples

	C Additional Evaluation Metrics

