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Abstract

Federated learning is a decentralized approach to train-

ing machine learning models while preserving data privacy.

To accommodate data heterogeneity among clients, a long-

standing issue in Federated Learning, many Personalized

Federated Learning (PFL) strategies decompose each client

model into global modules, which are collaboratively learned

by all clients and the server, and local modules, which are

only trained locally on private data. While these strate-

gies require every client to participate in training, in real-

ity, many client devices lack sufficient data or computing re-

sources to perform meaningful local training, making it diffi-

cult to achieve personalization for every client. In this paper,

we present HyperFLoRA, a PFL framework that leverages

knowledge learned from training-capable clients to enable

the immediate creation of personalized models for training-

incapable or new clients. HyperFLoRA uses adapters for

personalization to minimize communication costs and client

training workload while employing a trainable hypernetwork

to generate personalized adapter weights for each client us-

ing minimal client statistical information. From experiments

conducted on both convolutional and Transformer neural

networks, HyperFLoRA can achieve superior model person-

alization performance for new clients that did not participate

in training than conventional PFL methods, while signif-

icantly reducing training-related communication costs and

client workload.

Keywords— Federated Learning, Model Personaliza-

tion, Hypernetworks, Adapters

1 Introduction

Federated Learning (FL) can leverage massive data dis-
tributed over a multitude of clients for distributed ma-
chine learning while promoting data privacy. Conven-
tional FL frameworks [1] delegate each client to update a
copy of the global model with its private dataset; these
trained client models are then aggregated into a new
global model. Ideally, iteratively repeating this process
amalgamates the knowledge of respective clients with-
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out directly revealing their data to the server. However,
real-world FL systems are often hampered by significant
data heterogeneity, where data distributions vary sig-
nificantly across clients, leading to a poorly performing
global model when directly deployed on every client [2].

To alleviate the impact of client data heterogeneity,
Personalized Federated Learning (PFL) has been a
highly studied area in recent years. A popular PFL
strategy [3–5] is to decompose every client model into
global and local modules. The global modules are
aggregated at the server to amalgamate knowledge from
all clients, while the local modules are privately trained
to adapt to the respective client data distribution.
However, these PFL frameworks still necessitate that
all clients be training-capable (i.e., can perform local
training). This constraint makes most PFL frameworks
infeasible for realistic scenarios involving many client
devices which are training-incapable, e.g., cellphones
with insufficient computing resources, data samples,
battery power, etc.

In this paper, we introduce the problem of Instan-
taneously Personalized Federated Learning (IPFL), with
the goal of acquiring personalized models for training-
incapable clients. For brevity, we henceforth refer to
all training-capable clients as participants, and training-
incapable clients as bystanders. We propose the Hy-
perFLoRA (Hypernetwork Federated Learning with
Low-RankAdaptation) framework to address the IPFL
problem. HyperFLoRA uses low-rank adapters [6] to
adapt client models to their respective data distribu-
tion and learns a global hypernetwork to directly gener-
ate adapter weights for each client model. In designing
HyperFLoRA, we make the following contributions:

• We introduce Low-Rank Adaptation (LoRA)
adapters [6] into federated learning to achieve client
model personalization, which significantly reduces
the communication cost and participant workload
induced by training in PFL.

• To enable instantaneous personalization on by-
standers, we propose a learnable global hypernet-
work to directly generate the low-rank adapter
weights required by each client for personalization,
based on its representation vector. The client rep-
resentation vector is composed of minimal infor-
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mation computed from its data distribution to pre-
serve data privacy.

• We further propose a novel client-pairing scheme as
an augmentation strategy for hypernetwork train-
ing. This is critical for facilitating reliable adapter
weight generation for personalized client models
when the number of training-capable participants
is limited.

We evaluate the effectiveness of HyperFLoRA on
both convolutional and Transformer models. Addi-
tionally, we compare our framework with various PFL
methods on bystander performance, participant perfor-
mance, communication cost, and workload (the num-
ber of participant-trained parameters). Based on ex-
periment results, HyperFLoRA achieves up to 11% im-
provement in bystander personalization over pFedHN [7]
while incurring magnitudely lower communication and
participant workload during training.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work on PFL. Section 3 formulates
the IPFL problem. Section 4 presents the HyperFLoRA
design. Section 5 discusses the experiment results. Sec-
tion 6 concludes the paper.

2 Related Work

In this section, we review recent literature relevant to
PFL and Adapter Finetuning, as these two topics are
highly related to the IPFL.

2.1 Personalized Federated Learning. Two com-
mon PFL strategies are global model personalization
and model decoupling [8]. Global model personaliza-
tion trains a single global model that accommodates
the data distribution of all clients. This can be achieved
through loss regularization. For example, FedProx [9]
penalizes client models for deviating from the global
model through L2 regularization. FedCL [10] uses Elas-
tic Weight Consolidation (EWC) to account for weight
importance during regularization. SCAFFOLD [11] cor-
rects client training through the use of control variates
to influence client updates. Similarly, FedDC [12] tracks
and corrects client deviations by using local drift vari-
ables. FedDA [13] employs momentum-based updates to
ensure better convergence stability over heterogeneous
clients. MOON [14], during client model training, si-
multaneously minimizes its agreement with the previ-
ous client model and maximizes its agreement with the
global model. FedDF [15] distills client knowledge into
the global model by training with unlabelled samples
annotated by client ensembling. Works such as [16–19]
also explored PFL under the context of meta-learning.

Model decoupling methods separate the client

model into public and private modules, where public
modules undergo standard FL, and private modules are
used for personalization. For example, LG-FedAvg [5]
proposed to learning a compact encoder globally while
allowing the model head to personalize. This is fur-
ther expanded by FedBABU [4], which first pretrains
the model encoder on randomly initialized heads and
then finetune the heads for personalization. Work by
[20], investigated the effects of simultaneous and al-
ternated updates of public and private modules within
client models. Work by [21] proposed personalization
of CNN models by decoupling on convolution channels.
FedRoD [22] employs two head components, one public
and one private, to simultaneously train a generic and
a personalized predictor.

Some model decoupling methods also permit the
dynamic selection of public and private modules. Par-
tialFed [23] introduced an adaptive partial loading
scheme, where a strategy is learned to load effec-
tive layers from the global model to the client model.
FedMN [24] builds client models by learning to choose
sub-modules from a collection of module blocks. The
pFedHN framework [7] generates the weights for entire
client models. Specifically, pFedHN federatedly trains
a hypernetwork to produce personalized model weights
based on the client representation received. This de-
sign is highly flexible, as it theoretically allows for the
extrapolation of personalized model weights for clients
without necessitating client training for personalization.

2.2 Adapter Finetuning. Transformer adapters, as
presented by [25] and [26], allow for efficient knowledge
transfer when applying pre-trained large models to
downstream tasks. LoRA, proposed by [6], improved
on previous methods by using low-rank adapters to
reduce computation overhead during finetuning and
feedforward. Adapters have also been applied for FL,
as exemplified by the works of [27] and [28].

3 Problem Formulation

IPFL extends on conventional PFL by possessing two
types of clients: training-capable participants, and
training-incapable bystanders. Each participant i has
its own private training set Di = (xn, yn)

Ni
n=1 and a

client representation vector ri computed from Di. On
the other hand, each bystander i only has its client
representation ri. (In actual deployment, the bystander
ri can be predicted from the expected data distribution
of the client-specific task.) Collectively, we define the

set of all participants as Cpart = {i}
Mpart

i=1 and the set

of all bystanders as Cbyst = {i}
Mbyst

i=1 , where Mpart and
Mbyst are, respectively, the number of participants and
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bystanders.
The IPFL problem is further separated into two

phases: a training phase followed by a testing phase.
During training, the objective is the joint reduction of
training loss over all clients. Since only participants are
involved in training, the learning objective is defined as

(3.1) min
1

Mpart

Mpart∑
i=1

1

Ni

Ni∑
n=1

L(xn, yn; θi = h(ri;ψ)),

Here the θi refers to the weights of the client model.
For subsequent explanations, we further denote it as
the output of a weight-generation function h(·;ψ) when
given the input ri.

The testing phase evaluates the effectiveness of the
proposed IPFL strategy. It is assessed through mean
accuracy over a collection of clients. Assuming that all
clients are equally important, this is defined as

(3.2) Score =
1

M

M∑
i=1

Acc(Di; θi = h(ri;ψ)).

This evaluation can be done on either the set of all
bystanders (M =Mbyst) or on the set of all participants
(M =Mpart). Further information about the evaluation
metrics is presented in Section 5.

4 Method

HyperFLoRA introduces two novelties. First, it inte-
grates a hypernetwork function h predicated on weights
ψ, and client-specific adapters ρi, into a PFL frame-
work. The adapters facilitate efficient personalization
when combined with a pretrained global model θpret,
while the hypernetwork learns to generate personalized
adapter weights for each client. Second, HyperFLoRA
introduces a client-pairing augmentation mechanism to
boost the personalization performance of the hypernet-
work. This is pertinent in FL systems where the partici-
pants are too few to adequately train the hypernetwork.
As an overview, the HyperFLoRA framework consists of
repeated execution of Steps 2-4:

1. The server pretrains a global model θpret through
conventional FedAvg [1] and broadcasts it to all
participants.

2. The server receives ri from some participants and
sends their respective ρi = h(ri, ψ).

3. Each participant builds its client model θi from ρi
and θpret. Afterward, only ρi is trained with the
private dataset. This can either be done through
standard training or client-paired training.

4. The server collects the trained ρi from all partici-
pants and updates the hypernetwork weights ψ.

The component design and details for standard and
client-paired training in HyperFLoRA are presented
below. The overall framework is also illustrated in
Figure 1.

4.1 Component Designs. This section describes
the design and intent for implementing LoRA adapters,
the hypernetwork, and the client-specific representation
vector.

4.1.1 Hypernetwork. The hypernetwork ψ used in
HyperFLoRA is designed based on pFedHN [7]. Archi-
tecturally, the hypernetwork is composed entirely of lin-
ear layers (aside from activation layers) and consists of
an encoder trunk and parallel out-branching single-layer
regressor heads. The encoder trunk converts a received
client representation ri into a latent encoding hi ∈ Rdψ .
This encoding is then passed to each model head to
generate the weights for a corresponding module in the
target client model θi. Note that, the weight count of
each head scales to the number of weights in its cor-
responding module, Thus, even for a moderately sized
model, the size of ψ can be quite large. This complicates
hypernetwork training and may result in the generation
of subpar θi. Moreover, if the hypernetwork must gen-
erate the entire θi, then it cannot leverage knowledge
gained from model pretraining. To circumvent these
problems, HyperFLoRA restricts the hypernetwork to
only generate the LoRA adapter weights ρi.

4.1.2 LoRA Adapter. A LoRA adapter [6] consists
of two linear layers, Wa ∈ Rda×dlow and Wb ∈ Rdlow×db ,
where dlow ≪ da, db. To build a client model θi, multiple
adapters are attached to selected linear layers within the
global model θpret. Given an arbitrary linear weight
W ∈ Rda×db , this is defined as

(4.3) z =Wx+WaWbx.

By setting a small dlow, the weight count of the LoRA
adapter, (da+db)×dlow, should be significantly smaller
than the weight count of the original linear layer, da×db.
This property reduces the communication cost and
participant training workload in HyperFLoRA.

While its original application is for Transformer
models, the LoRA adapter can theoretically be attached
to any linear layer. Since client personalization is ef-
fectively a downstream task adaptation problem, client
model training should emphasize adjusting the head
weights. Thus, an additional LoRA adapter is attached
to the model head linear layer. For later discussions, we
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Figure 1: Diagram of HyperFLoRA. Left shows standard training. Right shows client-paired training. In both
cases, the representation vector is first fed into the hypernetwork. The adapter is then sent to the relevant
participant(s) for personalization. The finalized adapter is returned to the server for hypernetwork update.

further separate ρ into ρ(enc) for adapters in the model
encoder and ρ(hd) for adapters in the model head.

4.1.3 Client Representation. The client represen-
tation vector is an indicator vector defined by ri ∈
{0, 1}K , where K is the total number of classes. If a
client i possesses data samples from class k, then the
k-th element of the vector is 1. Otherwise, the element
is 0. This simple design offers two advantages. First,
information about the client dataset Di provided by the
indicator vector is superficial, as neither the individual
data samples nor class proportions are known by the
server, thereby ensuring data privacy. Second, for real-
world applications, bystanders may have no or few data
samples to determine its data distribution. In this case,
the bystander can build its ri using a set of classes based
on the expected task.

4.2 Standard Training. The hypernetwork is fed-
eratedly trained over multiple communication rounds.
Given that all participants already possess the pre-
trained model weights θpret, each round starts with the
server gathering the representation vectors ri from a
randomly sampled set of participants Csel. For each ri,
a corresponding set of adapter weights ρ

(init)
i = h(ri;ψ)

is generated and sent to participant i. Participant i then
constructs its client model θi and trains the model us-
ing its private dataset Di. During client training, θpret
weights are frozen and only ρi weights are updated. Af-

terward, the set of finalized adapter weights ρ
(fin)
i is

sent to the server to update ψ.
The loss function for hypernetwork training is de-

fined as a mean-squared error (MSE). Based on server
interactions with a single participant i, this loss is for-

mulated as

(4.4) Li =
1

2
(ρ

(fin)
i − ρ(init)i )2.

Recall that ρ
(init)
i = h(ri;ψ). Thus, ρ

(init)
i is differen-

tiable by ψ. Also, consider ρ
(fin)
i as the target. The

loss gradient computed from client i is therefore

(4.5) gi = ∇ψh(ri;ψ)(ρ(init)i − ρ(fin)i ).

At any communication round, multiple participants
collaborate in hypernetwork weight update. Given that
hypernetwork training is facilitated through SGD, the
per-round update is expressed as

(4.6) ψ ← ψ − γ 1

Msel

∑
i∈Csel

gi.

The γ refers to the learning rate. Over several commu-
nication rounds, the hypernetwork will learn to generate

better ρ
(init)
i . This also entails that the corresponding

ρ
(fin)
i should also become increasingly better personal-

ized for participant i. Ignoring limitations due to over-
training or errors in function approximation for both ψ
and θi, the hypernetwork training process would ideally
bootstrap toward optimal personalization.

4.3 Client-Paired Training. Ignoring the data

non-IID property due to ρ
(fin)
i changing overtime, hy-

pernetwork training in HyperFLoRA can be viewed as
a conventional supervised machine learning problem.
Each client can be perceived as a single data sam-

ple (ri, ρ
(fin)
i ). The participant and bystander clients

can therefore be considered as, respectively, training
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and testing samples. This reveals an issue of data
scarcity for hypernetwork training. Specifically, if the
number of participants is far fewer than the number
of possible variations of vector representations r, or
Mpart ≪ 2K , then the trained hypernetwork will likely
generate poorly personalized weights for a bystander. In
other words, there may be insufficient real participants
for the hypernetwork to generalize from. To address
this issue, we pair up participants in Csel to form Cpair.
Each pair of participants i and j then creates a synthetic
pseudo-client {i, j} for training.

To synthesize client representation r{i,j} of a
pseudo-client, the set of all classes present in either lo-
cal datasets Di or Dj are tallied. Thereafter, half of the
classes are randomly selected and preserved, with the
rest discarded. Note that this is conducted using only
the ri and rj in the server. Given that Ki refers to all
classes present in Di, and Kj for all classes in Dj , this
is shown as:

(4.7) r{i,j} = 1k∈Sample-Half(Ki∪Kj).

The representation r{i,j} is sent to both participants
i and j. Each participants then respectively prepare
a separate training set, (Di){i,j} and (Dj){i,j}, by
removing samples belonging to classes not recorded
under r{i,j}.

Model training with the pseudo-client involves re-
peated exchanges of the adapters between client i and

j. First, the adapter weights ρ
(init)
{i,j} = h(r{i,j}, ψ) is

generated. The adapter weights are then sent to client
i and trained using samples from (Di){i,j}. Afterward,
the adapter weights ρ{i,j} is communicated from par-
ticipant i to j, and trained with (Dj){i,j}. The inter-
client exchange of adapters would repeat several times,
with the adapter weights alternately training on the two

clients. Finally, ρ
(fin)
{i,j} is sent to the server for hypernet-

work update through Equation 4.5. With the definition
that |Csel| =Msel and |Cpair| =Mpair, the update com-
bining both training methods can be formulated as

ψ ← ψ − γ 1

Msel +Mpair

( ∑
i∈Csel

gi+∑
{i,j}∈Cpair

g{i,j}

)
.

(4.8)

By exchanging the adapter weights instead of training
samples, data privacy is ensured. Although repeated
adapter weights exchange does incur additional com-
munication costs, so long as the adapter has a relatively
small weight count, the overall communication cost per
round would still be lower than the cost of even a single
exchange of the pretrained model weight.

5 Experiments

In this section, we present the experiment setup, results,
and discussions.

5.1 Experiment Setup. The HyperFLoRA frame-
work is assessed on two datasets, CIFAR10 and CI-
FAR100. For each dataset, we partition the samples into
disjoint training, validation, and test sets. We then fol-
low the data partition scheme introduced from the work
by [1] to further divide the datasets among the C = 100
clients. In this scheme, the degree of data heterogene-
ity is inversely proportional to the partitioning hyper-
parameter s, which entails the number of data shards
each client receives. By default, we set s = 10. Sum-
marily, for both CIFAR10 and CIFAR100, each client
has 450 training, 50 validation, and 100 test samples.
Finally, to realize the IPFL scenario, we designate 80
clients as participants and 20 as bystanders. Note that
since bystanders cannot conduct training, their training
sets are discarded.

The training phase is separated into a pretraining
process and a personalization process. During pretrain-
ing, the θpret is trained through conventional FedAvg
with the participants. The optimal model checkpoint
is identified through participant validation, where all
participants assess the checkpoint θpret using their lo-
cal validation set. The model with the highest aver-
aged accuracy, as defined by Equation 3.2, is selected for
the subsequent personalization phase. During person-
alization, only hypernetwork ψ and the client-specific
adaptors ρ undergo training, with θpret fixed. The opti-
mal hypernetwork is again determined through partic-
ipant validation. Specifically, each participant receives
adapter weights ρ generated by the checkpoint hyper-
network ψ, which are then used for assessment on their
respective validation set. In the final testing phase, the
reported scores are then computed by Equation 3.2 over
the test set of the respective clients.

Additional information about the model architec-
tures and the experiment hyperparameters are pre-
sented in the Supplementary Materials.

5.2 Assessment Metrics. The assessment metrics
measured include the following. Bystander Accu-
racy: This metric is reported as the mean ± std ac-
curacy over all bystanders. It is the main assessment
metric for the IPFL problem. Note that this metric is
omitted for baselines that rely on client training for per-
sonalization, as the bystanders are training-incapable.
Participant Accuracy: This metric is also reported
as mean ± std, but over all participants. It is the
conventional assessment metric for PFL. The metric is
used to further explain the performance of tested frame-
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works. Communication Cost: The communication
loss is computed as the sum of all weights communi-
cated between the server and clients within one train-
ing round. If inter-client communication is required, all
communications are assumed to be bridged through the
server. For clarity, the formula for computing the costs
are also provided. Client Trainable Weight Count
(CTWC): The CTWC measures the amount of model
weights that are updated during client training. Gen-
erally, a significantly smaller CTWC value entails less
training workload on the participant device. Hyper-
network Size (HS): This metric records the number
of weights in the hypernetwork. It is used to justify
explanations about the performance of hypernetwork-
based frameworks.

5.3 Baselines. The following baselines are imple-
mented for this experiment.

Participant Finetuning: these baselines focus on
model personalization for participants by decoupling
the client model into different modules. Each mod-
ule is then assigned to one of three training schemes:
public, private, or frozen. Public (Pub) weights are
both client-trained and server-aggregated. Private
(Prv) weights are only client-trained and not server-
aggregated. Frozen (Frz) weights are pretrained and
never trained for personalization. Note that these
frameworks are not applicable for bystander personal-
ization, as they necessitate client training. However,
they are useful for identifying the performance upper
bound of HyperFLoRA for analysis purposes.

FedProx [9]: This baseline is used to assess the
performance of a regularization-based framework for
both participant and bystander personalization.

pFedHN [7]: Since bystanders are training-
incapable, most PFL strategies cannot be adequately
applied to the IPFL problem. Thus, we mainly compare
HyperFLoRA against pFedHN. The original implemen-
tation only uses one participant per round for hyper-
network training, which differs from conventional FL
schemes that sample a group of participants per round.
Thus we also assess a modified pFedHN-Parallel de-
sign that, in each round, aggregates gradients from a
sampled group of participants for hypernetwork update.

HyperFLoRA Variants: We derive variations of the
HyperFLoRA frameworks to assess the validity of cer-
tain design decisions and to check for potential improve-
ments. These include the following. HyperFLoRA
w/o CP where the client-paired training is removed.
HyperFLoRA Seq, where the hypernetwork follows
the same sequential gradient update scheme used by
pFedHN. HyperFLoRA+θ(hd), where the hypernet-
work learns to generate personalized weights for both

ρ(enc) and θ(hd); the ρ(hd) is consequently unused.

5.4 Preliminary Experiments. We first deployed
a LeNet-5 [29] model as θ to verify the feasibility of
the HyperFLoRA design. Results from Table 1 con-
firm that HyperFLoRA is indeed effective for IPFL.
The results from ρ-Priv+θ-Frz demonstrate that train-
ing the LoRA adapters alone while freezing the global
model can achieve good personalization for the par-
ticipants. The participant accuracy of pFedHN, while
notably worse than ρ-Priv+θ-Frz is nevertheless better
than that of Pretrain. This suggests that pFedHN can
generate moderately personalized weights for each par-
ticipant. However, the pFedHN bystander accuracy is
worse than that of Pretrain, showing that this method
alone is ineffective for IPFL. On the other hand, Hy-
perFLoRA simultaneously achieved superior bystander
accuracy over pFedHN and approaches the optimal par-
ticipant accuracy of ρ-Priv+θ-Frz. This shows that Hy-
perFLoRA effectively combines the hypernetwork and
LoRA components, and performs well for both PFL and
IPFL. Finally, we note that FedProx does not show any
notable improvement over Pretrain, and is thus unsuit-
able for either participant or bystander personalization.
Based on the success achieved in the preliminary exper-
iment, additional experiments, which replace LeNet-5
with ViT [30], are then conducted.

5.5 General Discussion. Summarily, it is observed
that HyperFLoRA, or one of its derivative designs,
can achieve superior bystander (IPFL) score while ap-
proaching the optimal participant (PFL) score. We dis-
cuss the results for CIFAR10 and CIFAR100 separately
due to differences between the datasets.

5.5.1 CIFAR10. HyperFLoRA significantly outper-
forms pFedHN and pFedHN-Parallel, with an 11% im-
provement in bystander accuracy and an 8% improve-
ment in participant accuracy. This observation can be
explained in two ways. First, since the hypernetwork in
HyperFLoRA only generates the adapter weights, it can
directly leverage the knowledge contained in the pre-
trained global weights θpret. In contrast, since pFedHN
must repeatedly generate new weights for the entire
θpret for hypernetwork training, it must learn to ap-
proximate this knowledge. Compared to HyperFLoRA,
pFedHN thus possesses more sources (model weights)
where approximation errors within the hypernetwork
could be introduced to the client model, thereby leading
to inferior personalization. Second, the weight count of
ψ in pFedHN far exceeds that of HyperFLoRA to ac-
commodate for the larger output space. This introduces
greater complexity during hypernetwork training, espe-
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Table 1: Results with LeNet-CIFAR10

Framework Bystander Acc. Participant Acc. Communication Cost CTWC HS
Pretrain 70.75 ± 6.96 68.94 ± 7.57 1.03E6 = 2Msel|θ| 6.41E4 -
ρ-Prv+θ-Frz - 78.00 ± 7.21 0 8.50E2 -
FedProx 70.75 ± 6.74 69.42 ± 6.76 1.03E6 = 2Msel|θ| 6.41E3 -
pFedHN 69.45 ± 6.95 72.05 ± 6.83 1.03E6 =Msel|r|+ 2Msel|θ| 6.41E4 8.30E6
HyperFLoRA 78.30 ± 5.47 77.86 ± 6.40 5.46E4 = 2Msel|r|+ (2Msel + 4EMpair)|ρ| 8.50E2 1.44E5

Table 2: Results with ViT-CIFAR10

Framework Bystander Acc. Participant Acc. Communication Cost CTWC HS
Pretrain 69.25 ± 5.99 68.10 ± 6.07 3.33E6 = 2Msel|θ| 2.08E5 -

θ(hd)-Prv+θ(enc)-Pub - 75.96 ± 5.90 3.32E6 = 2Msel|θ(enc)| 2.08E5 -
θ(enc)-Prv+θ(hd)-Pub - 70.99 ± 6.53 1.04E4 = 2Msel|θ(hd)| 2.08E5 -
θ-Prv - 71.33 ± 6.67 0 2.08E5 -
ρ-Prv+θ-Frz - 75.16 ± 5.70 0 2.12E3 -
FedProx 70.85 ± 5.94 67.94 ± 5.77 3.33E6 = 2Msel|θ| 2.08E5 -
pFedHN 61.00 ± 6.34 64.97 ± 8.09 3.33E6 =Msel|r|+ 2Msel|θ| 2.08E5 2.69E7
pFedHN-Parallel 64.55 ± 6.55 68.09 ± 7.34 3.33E6 =Msel|r|+ 2Msel|θ| 2.08E5 2.69E7
HyperFLoRA-noCP 75.15 ± 6.64 76.33 ± 6.05 3.40E4 =Msel|r|+ 2Msel|ρ| 2.12E3 3.08E5
HyperFLoRA-Seq 74.30 ± 6.42 76.11 ± 5.92 1.36E5 = 2Msel|r|+ (2Msel + 4EMpair)|ρ| 2.12E3 3.08E5
HyperFLoRA+θ(hd) 76.20 ± 5.95 76.53 ± 6.32 1.73E5 = 2Msel|r|+ (2Msel + 4EMpair)(|ρ(enc)|+ |θ(hd)|) 2.70E3 3.82E5
HyperFLoRA 75.35 ± 6.48 75.92 ± 6.15 1.36E5 = 2Msel|r|+ (2Msel + 4EMpair)|ρ| 2.12E3 3.08E5

cially given that the number of client representation ri
is scarce due to the limited number of clients. This
results in poorly trained ψ weights, which results in in-
ferior personalization by pFedHN. Finally, we remark
that the communication cost per round of HyperFLoRA
is smaller than pFedHN by magnitudes, thus further
demonstrating our design as an improvement.

We further compared the derivative HyperFLoRA
designs with respect to the original HyperFLoRA. First,
we note that the HyperFLoRA-Seq yields slightly worse
bystander accuracy, despite its participant accuracy be-
ing comparable to that of HyperFLoRA. This suggests
that the client-sequential training scheme, as was em-
ployed in the original pFedHN, is inferior at extrapolat-
ing personalized weights for new bystanders. Second, at
least for CIFAR10, removing the client-paired training
process in HyperFLoRA did not result in notable per-
formance degradation. This is explained by the relative
simplicity of the CIFAR10 dataset due to only having
10 classes. Given the shards per client s is set to 10,
the data distribution between different clients would be
relatively similar (but still sufficiently different to ne-
cessitate personalization), thus rendering the improve-
ment from client-paired training relatively marginal. Fi-
nally, the leading performance of HyperFLoRA+θ(hd)

indicates that better performance could be achieved by
training the head and adapter weights jointly, with the
tradeoff being an increase in the communication cost.
Note that this design is more feasible for models with
fewer θ(hd) weights (a smaller head). Otherwise, the
communication of a large θ(hd) would incur significantly
more communication cost than only finetuning the head

adapter ρ(hd).

5.5.2 CIFAR100. Since CIFAR100 is more complex
due to possessing 100 classes, the overall accuracy scores
of all frameworks are noticeably lower. Furthermore, a
stronger discrepancy between bystander and participant
accuracy is observed. This is because the greater diver-
sity between client data distributions, and consequently
variations in representation vectors, renders the learn-
ing and extrapolation of personalized model weights sig-
nificantly harder for the hypernetwork. Nevertheless,
HyperFLoRA achieved superior results over pFedHN
and pFedHN-Parallel, with at least an 8% difference in
bystander accuracy and a 3% difference in participant
accuracy. Additionally, HyperFLoRA communication
cost is at least one magnitude smaller than pFedHN.
Interestingly, pFedHN performed better than pFedHN-
Parallel in CIFAR100 for bystanders, which is opposite
to the observation made in CIFAR10.

Analyzing the performance of the derivative designs
with respect to the original HyperFLoRA, we make the
following remarks. First, the inclusion of client-paired
training in this scenario results in a notable gain of
2% in bystander accuracy. Combined with observations
on CIFAR10, this suggests that client-paired training
is best applied in scenarios where the diversity of
client representations (per client data distributions) far
exceeds the number of actual participants. Second,
the slightly inferior performance by HyperFLoRA-Seq
suggests that, overall, sequential hypernetwork update
does not result in any notable benefits on HyperFLoRA
performance, despite such observations being made for
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Table 3: Results with ViT-CIFAR100

Framework Bystander Acc. Participant Acc. Communication Cost CTWC HS
Pretrain 30.10 ± 6.07 31.11 ± 7.29 3.42E6 = 2Msel|θ| 2.14E5 -

θ(hd)-Prv+θ(enc)-Pub - 65.97 ± 6.52 3.32E6 = 2Msel|θ(enc)| 2.14E5 -
θ(enc)-Prv+θ(hd)-Pub - 65.75 ± 6.33 1.04E5 = 2Msel|θ(hd)| 2.14E5 -
θ-Prv - 66.17 ± 5.78 0 2.14E5 -
ρ-Prv+θ-Frz - 64.10 ± 6.66 0 2.21E3 -
FedProx 30.60 ± 6.07 31.01 ± 6.40 3.42E6 = 2Msel|θ| 2.14E5 -
pFedHN 36.35 ± 8.31 60.00 ± 6.86 3.42E6 =Msel|r|+ 2Msel|θ| 2.14E5 2.76E7
pFedHN-Parallel 30.20 ± 6.31 60.54 ± 6.88 3.42E6 =Msel|r|+ 2Msel|θ| 2.14E5 2.76E7
HyperFLoRA-noCP 42.80 ± 9.01 62.83 ± 5.99 3.62E4 =Msel|r|+ 2Msel|ρ| 2.21E3 3.31E5
HyperFLoRA-Seq 44.30 ± 8.20 63.08 ± 6.29 1.43E5 = 2Msel|r|+ (2Msel + 4EMpair)|ρ| 2.21E3 3.31E5
HyperFLoRA+θ(hd) 44.50 ± 8.26 62.91 ± 6.06 5.49E5 = 2Msel|r|+ (2Msel + 4EMpair)(|ρ(enc)|+ |θ(hd)|) 8.55E3 1.15E6
HyperFLoRA 44.95 ± 8.50 63.38 ± 5.90 1.43E5 = 2Msel|r|+ (2Msel + 4EMpair)|ρ| 2.21E3 3.31E5

the pFedHN results. Finally, the inclusion of model
head for hypernetwork weight generation is not effective
in more complex scenarios, contrary to the leading
performance achieved in CIFAR10.

Comparing the participant accuracy of Hyper-
FLoRA with those of the Participant Finetuning frame-
works, HyperFLoRA performed only slightly worse.
Furthermore, we note that ρ-Prv+θ-Frz is also worse
than θ-Prv by about 2%. Along with the pFedHN re-
sults, these results reveal two constraints limiting the
personalization performance. The first constraint is the
use of only adapters for personalization. Intuitively, us-
ing well-trained adapters with a frozen model is inferior
to well-trained weights for an entire model, as the for-
mer have far fewer weights available to accommodate
the client data distribution. The second constraint lies
in the use of hypernetwork to approximate the adapter
weights in the client model. Given the limited number of
participant clients and the relatively large output space,
the hypernetwork-generated ρ weights are inferior to op-
timally trained ρ weights regardless of the integration
of client-paired training or other client augmentation
strategies. These two constraints must be addressed for
future works to achieve further improvements in both
bystander and participant personalization.

6 Conclusion

In this paper, we introduce and investigate the prob-
lem of Instantaneous Personalized Federated Learning,
with the objective of leveraging training-capable partic-
ipant clients to create personalized models for training-
incapable and resource-constrained bystander clients.
To solve this problem, we present the HyperFLoRA
framework, which relies on participants to train a hyper-
network to directly generate personalized models for any
given client. To minimize the communication cost and
computation workload incurred during the training pro-
cess, the hypernetwork learns to only generate weights
for the LoRA adapter used in model personalization.

Furthermore, to address the problem of limited num-
ber of participants, additional pseudo-clients are cre-
ated through client-pairing to serve as an augmentation
strategy for hypernetwork training. From experiments
on both convolutional and Transformer models, Hyper-
FLoRA is shown to be superior to baseline methods
on bystander personalization (IPFL) performance, ap-
proaches optimal participant personalization when com-
pared to conventional PFL, and minimizes the overall
communication cost as well as the number of model pa-
rameters trained by each participant.
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