
c
�

Copyright by Baochun Li, 2000

AGILOS: A MIDDLEWARE CONTROL ARCHITECTURE
FOR APPLICATION-AWARE QUALITY OF SERVICE ADAPTATIONS

BY

BAOCHUN LI

M. S., University of Illinois at Urbana-Champaign, 1997
B. Engr., Tsinghua University, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Abstract

In heterogeneous network and operating system environments with a fair amount of perfor-

mance variations, multiple applications compete and share a limited amount of system resources,

and suffer from variations in resource availability. These complex applications, such as Omni-

Track, a client-server based omni-directional visual tracking application, are thus desired to adapt

themselves and to adjust their resource demands dynamically. Frequently, the ultimate objective

of application-level adaptation is to preserve the quality of the most critical application-specific

parameter, such as tracking precision, even at the cost of other non-critical parameters such as

perceptual quality. On one hand, current adaptation mechanisms built within an application have

the disadvantage of lacking global information to preserve fairness among all applications. On the

other hand, adaptive resource management mechanisms built within the operating system are not

aware of data semantics in the application, and reservation-based resource management mecha-

nisms may need modifications to commodity off-the-shelf operating systems or network protocol

stacks widely deployed today. We believe that appropriate application-level QoS adaptation de-

cisions can be achieved with the assistance of a middleware architecture, where both application

and system level dynamics can be observed and analyzed to decide when, how and to what extent

adaptation has to occur.

In this work, we present Agilos (Agile QoS), a novel Middleware Control Architecture to en-

force the best possible adaptation decisions for distributed multimedia applications, via dynamic

controls and reconfigurations of their internal parameters and functionalities. Several major con-

tributions are presented in this dissertation. First, for modeling adaptors, we developed a Task

Control Model based on control theory, in order to enact graceful degradation or upgrade paths

iii

within a required QoS range. With the Task Control Model, we are able to reason about and vali-

date analytically adaptation attributes such as stability, adaptation agility, fairness and equilibrium

values of the adaptive behavior. Second, complementary to the adaptors, we deployed a Fuzzy

Control Model in the design of middleware configurators, in order to model the process of choos-

ing among application-specific parameter-tuning and reconfiguration choices. Third, in order to

optimally design the reconfiguration rules in configurators so that the best possible application

QoS is achieved, we designed mechanisms and protocols for a series of Quality of Service (QoS)

probing and profiling services, named QualProbes, for the discovery of relationships among QoS

parameters and reconfiguration actions. Fourth, precise decisions on adaptation timing and scale

depend on accurate observations and estimations of system states. Estimation errors and signifi-

cant end-to-end delay may obstruct desired accurate adaptation measures. We devised an optimal

state prediction approach to estimate current states based on available state observations. Fifth,

we studied another dimension of adaptation choices in the scenario where a complex application

involves multiple servers and clients in a distributed environment. We present a gateway-centric

approach that facilitates on-the-fly reconfiguration of client-server mappings. Finally, the archi-

tecture is designed to feature generic applicability and ease of deployment of a wide variety of

applications. We present such a design emphasizing a clean division of application-neutral and

application-specific middleware components.

Evaluations and validations to our approach are not only analytical, but also experimental. We

have built a prototype of the Agilos architecture, and validated it with OmniTrack, a client-server

based omni-directional visual tracking system. The application features rich adaptation choices

in various aspects, ranging from image quality to client-server mappings. The gateway-centric

approach implemented in Agilos is thus applicable to this scenario. Among all QoS parameters

that are application-specific, the topmost priority is to preserve the tracking precision. In this

work, we show that the Agilos architecture effectively achieves the best possible performance with

respect to the most critical QoS parameter, the tracking precision, while the adaptive actions are

stable, flexible and configurable according to the needs of individual applications.

iv

TO MY WIFE FANG

v

Acknowledgments

First and foremost, I would like to thank my thesis advisor, Professor Klara Nahrstedt, for her

invaluable directions and support throughout my research efforts towards this thesis. Her insights

and suggestions to the thesis topic enlightened me in various detailed aspects throughout the work.

Her directions with regards to the development of my academic thinking and writing were inspiring

and helpful for my future work.

I would like to thank the members of my thesis committee, Professor Campbell, Vaduvur and

Belford, for their helpful discussions on the ideas in the work, as well as careful reading and

insightful comments on my thesis.

I am grateful for the support and assistance from all current and previous members of the Mul-

timedia Operating Systems and Networking (MONET) research group, especially Dongyan Xu,

Shigang Chen, Mukul Chawla, Sergio Servetto, Hao-hua Chu and Lintian Qiao. Their insightful

comments for the work are of great help.

It was also an enjoyable experience working with the tracking subgroup within the MONET

research group. I am especially grateful for William Kalter, Won Jeon, Jun-hyuk Seo and Mukul

Chawla, for their hard work and significant contributions to the entire OmniTrack and Agilos

project. The project could not achieve the current level of completeness and results without their

work.

This research was supported by the Air Force Grant under contract number F30602-97-2-0121,

NASA Grant under contract number NASA NAG 2-1250, and National Science Foundation Career

Grant under contract number NSF CCR 96-23867.

Last but not least, my family deserves particular recognition for their unconditional emotional

vi

support during the past years. I am grateful to my parents for their encouragements; and to my

wife, Fang, for her love, dedication and belief in my graduate studies, without which all that I have

achieved was not possible.

vii

Table of Contents

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Motivation . 3

1.2.1 Challenges in the Reservation-based Approach 3
1.2.2 Advantages of the Adaptation-based Approach 5

1.3 Features and Contributions of the Agilos Architecture 7
1.3.1 Agilos: A Middleware Solution . 8
1.3.2 Major Contributions . 9
1.3.3 Summary . 11

1.4 Outline of the Dissertation . 11

Chapter 2 Agilos: An Overview . 13
2.1 Objectives of Agilos . 13
2.2 The Agilos Architecture . 15
2.3 The Application Model . 16
2.4 First Tier: Adaptors and Observers . 17
2.5 Second Tier: Configurators and QualProbes . 18

2.5.1 Design of Configurators . 18
2.5.2 Design of QualProbes . 19

2.6 Third Tier: Gateway and Negotiators . 20
2.7 OmniTrack: A Case Study . 22

Chapter 3 Task Control Model . 24
3.1 Overview . 24
3.2 Review of the Task Flow Model . 26
3.3 Task Control Model for Adaptors . 26

3.3.1 Generic Form of Modeling a Target Task 28
3.3.2 Concrete Form of the Task Control Model 29

3.4 Control Theoretical Analysis of the Adaptor . 33
3.4.1 Equilibrium Analysis . 35
3.4.2 Stability Analysis . 37
3.4.3 Configuration of Adaptation Agility . 41

3.5 Summary . 43

viii

Chapter 4 Observations in Distributed Adaptation Control 45
4.1 Overview . 45
4.2 Modeling Transmission Tasks . 47

4.2.1 State Observation in the Transmission Task 48
4.2.2 Linear Model for the Transmission Task 49
4.2.3 Extending Control Algorithms to Distributed Environment 51

4.3 Optimal Prediction of Task States In Transmission Tasks 52
4.3.1 The Need for Prediction . 53
4.3.2 Mechanisms for Optimal Prediction . 54

4.4 Summary . 59

Chapter 5 Dynamic Reconfigurations . 60
5.1 Overview . 60
5.2 Motivations behind the Fuzzy Control Model . 62

5.2.1 Division between Application-Neutral and Application-Specific Components 62
5.2.2 Advantages of the Fuzzy Control Model 63
5.2.3 A Comparison with Other Alternative Approaches 65

5.3 Design of the Configurator . 67
5.3.1 The Rule Base and the Inference Engine 68
5.3.2 Rule Base for OmniTrack . 70
5.3.3 The Design of Membership Functions . 74
5.3.4 The Defuzzification Process . 74
5.3.5 An Example of the Inference Process . 76
5.3.6 The User Configurator . 78

5.4 Summary . 79

Chapter 6 The Design of QualProbes . 80
6.1 Overview . 80
6.2 QualProbes: Investigating Application-Specific Behavior 83

6.2.1 Relations Among QoS Parameters and Resources: The Dependency Tree
Model . 83

6.2.2 QualProbes Services Kernel: The QoS Profiling Algorithm 87
6.2.3 Towards Better Middleware Control . 90

6.3 Summary . 94

Chapter 7 The Gateway and Negotiators . 95
7.1 Overview of A Gateway-Centric Architecture . 96
7.2 The Client Negotiator . 99
7.3 The Server Negotiator . 101
7.4 The Gateway . 103
7.5 End-to-End Negotiation Protocol . 105
7.6 Summary . 107

ix

Chapter 8 Application Deployment Interface . 108
8.1 Overview . 108
8.2 Deployment Procedures and Strategies . 109

8.2.1 Preparation for Component-Oriented Interfaces 109
8.2.2 Installing Probes for Application-Specific QoS Parameters 113

8.3 Application Control Interface . 115
8.3.1 Interface Definitions . 115
8.3.2 Interface Registration with Agilos Middleware 116

8.4 Deployment in the Third Tier . 117
8.4.1 Gateway . 118
8.4.2 Negotiators . 119

8.5 An Example of Application Deployment . 120
8.5.1 Identifying Application QoS Parameters 121
8.5.2 Preparing Component-oriented Interfaces 121
8.5.3 Installing Probes for Observable Parameters 122
8.5.4 Defining the Application Control Interface 122
8.5.5 Registering the Application Control Interface 123

8.6 Summary . 123

Chapter 9 Implementation in Windows NT . 125
9.1 Overview . 125
9.2 Implementation of OmniTrack Application . 126

9.2.1 Migration from Unix to Windows NT . 126
9.2.2 Extension to a Client-Server Based Application 127
9.2.3 Extension to a Multi-threaded Application 129
9.2.4 Deployment with the Agilos Architecture 131

9.3 Implementation of Agilos Architecture . 133
9.3.1 Adaptor . 133
9.3.2 Observer . 133
9.3.3 Configurator . 134
9.3.4 QualProbes . 136
9.3.5 Negotiators and Gateway . 137

9.4 Summary . 138

Chapter 10 Experimental Results . 139
10.1 Experimental Testbed . 139
10.2 Adaptation Choices in OmniTrack . 140

10.2.1 Parameter-Tuning Adaptations . 140
10.2.2 Reconfigurations . 142

10.3 Experimental Scenarios and Results . 142
10.3.1 Scenario 1: Testing the First Tier . 143
10.3.2 Scenario 2: Testing the Second Tier under Fluctuating CPU Load 145
10.3.3 Scenario 3: Testing the Second Tier under Fluctuating Bandwidth and

CPU Load . 147

x

10.3.4 Scenario 4: Testing the Third Tier . 149
10.4 Conclusions . 152

Chapter 11 Related Work . 153
11.1 Communication Protocols . 153
11.2 Resource Management . 155
11.3 Middleware Services . 157
11.4 Application-Specific Mechanisms . 158
11.5 Visual Tracking Systems . 160

Chapter 12 Concluding Remarks . 162
12.1 Conclusions . 162
12.2 Future Work . 163

References . 166

Vita . 173

xi

List of Tables

3.1 The values of
�������

, � �����
and �
	 ����� used in the illustration 43

10.1 Control Actions generated by the Configurator . 147

xii

List of Figures

2.1 The Hierarchical Design of the Agilos Architecture 15
2.2 The Control Loop In the Agilos Architecture . 16
2.3 Illustration of The Task Flow Model . 17
2.4 The Task Flow Model of OmniTrack . 17
2.5 The Design of Configurator . 19
2.6 The Role of Gateway . 21
2.7 OmniTrack: A Distributed Omni-Directional Visual Tracking System 22

3.1 Review of the Task Flow Model . 26
3.2 The Task Control Model . 28
3.3 Control-theoretical Components of the Task Control Model 31
3.4 Illustrations of Configurable Agility and Dynamic Responses 42

4.1 An Distributed View of the Agilos Middleware Architecture 47
4.2 States in the transmission task . 48
4.3 State Prediction in transmission tasks . 54
4.4 The Kalman Filter in Operation . 57

5.1 The Role of Configurator in the Task Control Model 61
5.2 The Architecture of the Fuzzy Control Model . 68
5.3 Membership Functions of the Linguistic Values 75
5.4 An Example of the Inference Process to Compute Control Actions 76

6.1 The Dependency Tree for Application QoS Parameters 85
6.2 Characterization of Dependencies among QoS Parameters 86
6.3 QualProbes Services Kernel Algorithm . 89
6.4 QualProbes Services: An Example . 90

7.1 A Facility Serving a Single Client . 96
7.2 The Gateway-Centric Facility in OmniTrack . 97
7.3 Client Architecture . 99
7.4 Reconfigurations Assisted by the Client Negotiator 100
7.5 The Implementation of Agilos on the Server . 102
7.6 The Architecture of the Gateway . 104
7.7 Gateway Server Switching Protocol . 105
7.8 End-to-End Negotiation Protocol . 105

xiii

9.1 The Tracking Client in OmniTrack . 132
9.2 The User Configurator of OmniTrack . 133
9.3 The Observer in Agilos . 134
9.4 The Gateway in Agilos . 138

10.1 Experimental Results for Scenario 1 . 144
10.2 Experimental Results for Scenario 2 . 146
10.3 Experimental Results for Scenario 3 . 148
10.4 Experiments with the Gateway . 151
10.5 The Performance of Gateway Protocols . 152

xiv

Chapter 1

Introduction

The algorithmic and architectural design and implementation of Agilos (Agile QoS), our mid-

dleware control architecture, is motivated by a close examination of the advantages of adaptation-

based systems operating over commodity and best-effort based environments, compared with the

challenges and difficulties in traditional reservation-based systems. In this chapter, we introduce

the background of the research area, discuss motivations of our work, present major features and

contributions of the Agilos middleware architecture, and outline the rest of the dissertation.

1.1 Background

As modern computer and network technologies develop at a rapid pace to serve the growth of e-

businesses that deploy mission-critical servers with multimedia contents, state-of-the-art computer

systems and distributed multimedia applications become more and more complex and dynamic in

their behavior and requirements. On one hand, such complexities are due to their rich function-

alities and problem-solving capabilities offered to end users; on the other hand, they are due to

their collaborations and interactions with other applications or software components. Such inte-

grations are intensified by the convergence of component-based software engineering approaches

and distributed computing techniques, where distributed components located on heterogeneous and

interconnected end systems collaborate to complete a specific task. The Internet is a typical exam-

ple of such an observation: it is a network that scales to millions of computers of heterogeneous

1

varieties, ranging from palmtops to supercomputers. These computers are generally referred to as

end systems, and are connected through network links of different nature. The wide variety of ap-

plications that are running on them are started and terminated constantly, and have vastly different

requirements for computational and communicational resources.

Confronting such a trend of increased heterogeneity and volatility, traditional solutions with

regards to the design of applications and their supporting network protocols focus on the deliv-

ery of at least a basic level of functionalities, while operating under a range of network and end

system performance behaviors. Such a design may not satisfy the needs of a resource-hungry dis-

tributed application that wishes to deliver high performance and increased complexity, often with

integrated multimedia contents. The concept of Quality of Service (QoS) is raised to solve unique

problems brought by these applications, and various QoS architectures [1] are designed to pro-

vide QoS guarantees and satisfy the resource requirements of these applications. Without some

QoS-related measures taken, these applications are very sensitive to the performance variations of

the environment, including the network connection and end system resources such as computa-

tional power. A good example is a video stream that is sensitive to bandwidth limitations, or a

speech stream that may become incomprehensible under excessive jitter, i.e., dynamic fluctuations

of latency.

Ideally, after a certain level of QoS guarantees are provided to these sensitive applications,

critical quality requirements such as soft real-timeliness 1, precision, perceptual quality, reliability

and security will be satisfied. Most of these qualities can be identified and measured quantitatively

with application-level QoS parameters. Based on user preference, some of these parameters may

be more critical for the purpose of satisfying user requirements than others. For example, in a

video conferencing application, the perceptual quality may be quantified by application-level QoS

parameters frame rate and image resolution. In this case, a particular user may feel that the frame

rate is more critical than image resolution during adaptation, or vice versa.

1For multimedia applications, timing constraints of media streams are stringent for playback purposes. We refer
to these timing properties as soft real-timeliness to differ from hard real-time applications where timing deadlines are
guaranteed.

2

In order to deliver their rich functionalities, these complex applications need to consume re-

sources. There are three important types of resources for these applications: CPU capacity, network

bandwidth and storage. CPU capacity is mostly needed in computationally intensive applications,

such as those for scientific computing. Network bandwidth is necessary in all distributed appli-

cations that need data transfers among end systems. Storage resources include main memory and

secondary storage, which is the resource of concern in database applications that need an exceed-

ingly amount of storage. Since variations in resource availability affect application-level QoS

parameters in various aspects, these resources are critical to the provision of QoS guarantees to

sensitive applications.

1.2 Motivation

1.2.1 Challenges in the Reservation-based Approach

In order to deal with such complex multimedia applications that are sensitive to variations in

resources, the ultimate goal of any QoS-aware mechanisms is to assure that the Quality of Service

delivered by the execution environment matches the one required by the applications, and vice

versa. A direct solution is via a portfolio of reservation-based QoS mechanisms involving resource

reservations, admission control, as well as renegotiations when the demand or supply changes.

Existing research achievements that fall under this category can usually provide either strict or

statistical QoS guarantees, so that whenever an application is admitted for service and allocated

adequate resources, a guarantee for Quality of Service via reservations is enforced, assuming that

the resource usage of the application does not exceed its agreed resource reservations.

Although the advantages of such reservation-based approaches are obvious, there are difficul-

ties for these mechanisms to solve QoS problems with complex real-world applications. These

issues are enumerated as follows.

1. It is frequently hard, if not impossible, to give precise estimates of the amount of required

3

resources for the lifetime of a specific complex application. Such an application may execute

in a distributed environment, require simultaneous access to resources of various types, and

be closely integrated with functionalities of other applications, so that the inter-application

boundaries are not clear. These observations make it much more difficult to issue resource

allocation estimates a priori for reservation purposes.

2. The required amounts and types of resources during the service of an application usually

vary over time, sometimes by a significant gap between the minimum and maximum usage

patterns. For example, video streaming over a network link is known to demonstrate the

property of Variable Bit Rate (or VBR). Such variations in resource demands and consump-

tion are frequently observed in other complex applications, due to the inherent nature of

processing and transmitting data in these applications.

3. The QoS requirements of a specific application usually vary according to the interactions

from an end user during application runtime, frequently via graphical user interfaces (GUI)

of the application. Combined with variations in resource demands inherent to the application,

these interactions with the end user creates further difficulties in the process of estimating re-

source requirements a priori for reservation purposes. Reservation-based approaches resort

to two problematic solutions. First, to reserve the maximum amount of resources required.

This may not be cost-effective and beneficial for the overall system utilization, since it re-

duces the degree of statistical multiplexing. Second, to make resource renegotiations when

such variations actually occur. Such renegotiations may be costly, since it involves execu-

tion of negotiation protocols within vertical layers in both operating systems level and the

network protocol stack. Furthermore, if such renegotiations fail, the QoS guarantee, one of

the main advantages of reservation-based approaches, may not be offered to the application

during its entire lifetime.

4. Current existing commodity and off-the-shelf operating systems (OS) and network proto-

cols, that are actively deployed in both the end systems and within the network infrastruc-

4

ture of Internet and Intranets, are mostly best-effort. These protocols and OS components are

designed to provide the basic services that stress correctness and reliability, even when con-

gestions, short-term disconnections or partial failures occur. Prominent examples include the

TCP/IP protocol being used for most of the Internet, or off-the-shelf Windows NT operating

system found in most of the low-end personal workstations or even departmental servers.

Reservation-based approaches call for an overhaul and replacement of such a best-effort in-

frastructure with QoS-aware components, with a portfolio of reservation-based mechanisms

integrated. This is necessary since in order to provide QoS guarantees and to reserve re-

sources, all OS service layers and network protocols need to be involved. If any segment or

layer is omitted, that part may fail to reserve resources in order to meet QoS expectations of

the application.

1.2.2 Advantages of the Adaptation-based Approach

The above challenges and difficulties in reservation-based mechanisms motivate the study of

the adaptation-based approach, which either operates on a standalone basis or complements exist-

ing reservation-based approaches.

As a result of the previously discussed disadvantages of reservation-based approaches, a va-

riety of new programming models, middleware components, operating system mechanisms and

network protocols that fall under the category of adaptation-based approaches have been devel-

oped. Such adaptation-based solutions attempt to address the following two unique issues raised

by the heterogeneity of environments and complexity of applications:

1. These adaptation-based solutions best target the heterogeneous end-to-end computing envi-

ronments that support most of the mission-critical applications today. From a system’s point

of view, we observe that either the entire end-to-end infrastructure is best-effort and QoS-

unaware, or that QoS-aware system components coexist with QoS-unaware components in

end systems and networks along the end-to-end path. For example, while the backbone net-

5

work infrastructure may adopt QoS-aware resource reservation and scheduling protocols,

best-effort network protocols are still being used in local area networks, which are parts

of the end-to-end path. From the application’s point of view, if services with statistical or

no guarantees exist in the underlying environment, the QoS level that the application de-

mands may not be satisfied continuously. Violations of application QoS requirements may

be caused by physical resource limitations such as inherent bandwidth variations and error

characteristics in wireless links, or by statistical multiplexing and concurrency introduced

by a dynamic number of application tasks sharing the same resource pool in end systems

and networks. These observations demand that adaptation-based solutions be deployed in

the system or application levels.

2. These adaptation-based solutions best target complex distributed applications with multime-

dia contents integrated, residing in the above described heterogeneous and dynamic envi-

ronment. Since the resource demands of these applications are dynamic due to their com-

plexities, they must be adaptive to the QoS variations during their lifetime of execution.

Apparently, applications which have strict hard real-time requirements do not fit in this en-

vironment, because the adaptation-based solutions cannot satisfy these applications with

deterministic QoS guarantees that they need. Frequently, despite their complexities and dy-

namic behavior, complex distributed applications do not have hard real-time requirements,

and they usually have very flexible and dynamically-changing demands within a specific

range of QoS requirements between a minimum and a maximum level. This range of flex-

ibility is an important prerequisite for adaptation-based solutions to work, since they allow

room for adaptations to occur. We refer to such applications as flexible applications. Within

such a range, these applications can accept and tolerate resource scarcity to the minimum

bound, and may improve its performance if a larger share of resources is allocated. On the

other hand, these applications are willing to sacrifice the performance of some quality pa-

rameters in order to preserve the quality of the most critical parameter. When QoS variations

6

occur and QoS cannot be maintained for all application quality parameters, it is possible and

desirable to trade off less critical parameters for the interests of preserving the quality of the

most critical parameter. We refer to such a critical parameter as the critical performance

criterion of an flexible application.

OmniTrack, a client-server based omnidirectional visual tracking application, is a typical ex-

ample of such flexible applications. The basic client-server relationship in such an application

works as follows. A tracking server captures live video frames in real time from a video camera,

and sends them over the network to the tracking client. The client executes multiple computation-

ally intensive tracking algorithms, referred to as trackers, which track the coordinates of interested

objects. Finally, the client visually shows the result of these tracking algorithms. Our interests

focus on key application QoS parameters such as the tracking precision of trackers, which depends

on image quality, number of active trackers being executed concurrently, covered region of active

trackers, and so on. These application-level QoS parameters again depend on resource availabil-

ity (such as network bandwidth and CPU). As long as the tracking precision is preserved, other

parameters in the application, such as the image quality, can be dynamically tuned, adjusted and

reconfigured. This shows that the critical performance criterion is to keep the tracking precision as

small as possible. We will describe the implementation and capabilities of the OmniTrack applica-

tion and all aspects of its adaptation possibilities and QoS parameters in details in Chapter 9 and

10.

1.3 Features and Contributions of the Agilos Architecture

Based on such a detailed comparison study between reservation-based and adaptation-based

approaches, our work on the Agilos middleware control architecture adopts an adaptation-based

approach, and operates in the middleware layer, with a strong focus on critical application-level

Quality of Service parameters. In this section, we first present the major characteristics of the

Agilos middleware architecture, followed by by emphasizing the key contributions of the work

7

presented in this dissertation, and concluded by a list of highlights in Agilos.

1.3.1 Agilos: A Middleware Solution

If we examine the adaptation efforts implemented in all layers within a distributed system, we

note that there are two distinct levels that adaptation may take place: within the system level (e.g.

operating systems and network protocols, usually in the kernel space) and within the application

level (usually in user space). Even though the actual adaptation practices and mechanisms used

may be diverse, they both attempt to adapt according to condition changes in the system. However,

adaptation practices in these two categories have different targets. In the system level, as in the

case of various adaptive resource management schemes, the objectives of adaptation are set at a

much lower level, for example packets or cells in network protocols, and time slices with respect to

adaptive soft real-time scheduling algorithms for the CPU resource. In addition, the emphasis and

interests are focused on global properties such as fairness, system utility or resource utilization.

On the contrary, in the application level, adaptations are more focused on higher level application-

specific semantics, such as optimizations towards meeting the critical performance criterion, e.g.,

keeping the tracking precision in the OmniTrack application.

Ideally, it is best to propose a design that may achieve both of the above goals, so that both

system level and application level interests would be satisfied. In reality, of course, this may

be impossible to achieve. However, emerging distributed applications begin to rely heavily on

specialized software facilities in between applications and operating systems, referred to as the

middleware. Traditionally, middleware components provide a layer of programming transparency

by encapsulating remote procedure calls to foreign application components and objects, so that the

location and platform heterogeneity within a distributed application may be shielded from applica-

tion developer. Recent research efforts note that such a notion of middleware should be extended to

virtually all software facilities that may provide generic services to the applications. For example,

web-based applications may need a layer of middleware to provide database connectivity from the

web server to backend database repository.

8

We have chosen to design our adaptation-based solutions in the middleware layer, since it does

not require tight integration or modifications to the best-effort services in OS kernel and network

protocol stack, which is the major advantage of adaptation-based over reservation-based systems.

Our goal with the Agilos middleware architecture is to monitor system resources and achieve some

system-wide adaptation properties, and be fully configurable to the application’s needs and aware

of application-specific semantics as well. While it is impossible to pursue both interests fully as

in the ideal case, we focus on application-specific requirements and on making the adaptation path

better meet the needs of these requirements, such as to satisfy the critical performance criterion.

Naturally, since both middleware components and the actual QoS-aware applications may be

reconfigured to adapt to the changing environment, two approaches exist with two distinctive fo-

cuses. One approach, as adopted by the middleware solutions in the QoO [2] and Da CaPo++ [3]

projects, is to dynamically reconfigure the middleware itself so that it can transparently provide a

stable and predictable operating environment to the application. This approach is attractive since it

does not require any modifications to the application, any legacy application can be deployed with

little efforts and with a certain level of QoS assurance. However, since it can only provide a generic

solution to all applications, a set of highly application-specific requirements cannot be addressed.

Alternatively, the middleware may be active, and exert strict control of the adaptation behavior of

QoS-aware applications, so that these applications adapt and reconfigure themselves under such

control. This approach enjoys the advantage of knowing exactly what are the application-specific

adaptation priorities and requirements, so that appropriate adaptation choices can be made to ad-

dress these requirements. We take the latter alternative in the Agilos middleware architecture.

1.3.2 Major Contributions

The key contributions of the Agilos middleware control architecture presented in this disserta-

tion are summarized as follows.

1. The Agilos architecture bridges the functionalities of both the traditional system-level adap-

9

tive resource management mechanisms, such as flow control, and application-specific adap-

tive mechanisms, such as frame dropping schemes in MPEG. On one hand, it is designed to

focus on determining adaptation strategies by tuning the application via available application-

specific adaptation choices. On the other hand, it maintains system-wide properties, such as

adaptation agility or fairness, in such process of tuning the applications.

2. Unlike many resource-centric approaches that focus on managing system-level resources

such as CPU and network bandwidth, the Agilos architecture “manages” the applications

themselves by exerting strict control over its adaptive behavior. In order to achieve such

a goal, the adaptive policies adopted by Agilos is expressed by a rule base, and is highly

configurable to the application’s adaptation needs. Armed with such highly configurable

adaptive policies, the generic decision-making process in Agilos is able to satisfy the critical

performance criterion of an application via the selection of a suitable adaptation strategy.

3. Unlike many application-specific adaptive approaches that focus on how and when to adapt

within a specific application, such as the work presented in [4] and [5], Agilos is an mid-

dleware architecture designed to be completely decoupled from the applications. It features

generic applicability to a wide range of applications that comply to a minimal set of require-

ments, and the deployment process include easy steps that are straightforward to implement

by the application developer. All communications between the applications and Agilos are

made through a standard component model, which is CORBA in our implementation.

4. The Agilos architecture features a hierarchical design with multiple tiers. The first tier fo-

cuses on system-wide adaptation properties. The second tier focuses on application-specific

adaptation choices, and may be tuned to meet the needs of individual applications. The third

tier promotes reconfigurations with respect to mappings among multiple clients and servers.

Such a multi-tier architecture makes it possible for Agilos to be both generic and flexible.

In Chapter 2, we extend the above skeleton descriptions of our contributions and features, by

presenting an design overview of the Agilos middleware control architecture.

10

1.3.3 Summary

Our work with respect to Agilos belongs to the category of adaptation-based approaches, and

is implemented in the middleware layer. The Agilos architecture focuses on the following features:

1. It implements a middleware-based QoS adaptation scheme that actively controls the behavior

of applications in a heterogeneous distributed environment.

2. It implements the control mechanisms necessary to make correct decisions about when, how

and to what extent application-level QoS adaptations should occur.

3. It is strongly focused on achieving the best possible adaptation strategy for the interests of

applications, particularly emphasizing the critical performance criterion, the single most

critical QoS parameter in the application.

4. It features a hierarchical design with multiple tiers.

1.4 Outline of the Dissertation

In the remainder of this dissertation, we present a thorough examination of our work with the

Agilos middleware control architecture and the OmniTrack application. Our work in Agilos and

OmniTrack is both theoretical and experimental. In Chapter 2, we first present an overview of the

overall architecture of Agilos, with a layered division among application-neutral and application-

specific middleware components. We will also introduce the rich functionalities in the OmniTrack

application, and illustrate its adaptation choices in various domains. In subsequent chapters, we

present a rigorous treatment on the design and implementation of each type of middleware com-

ponents in Agilos, namely, the adaptors, configurators, QualProbes, negotiators and the gateway.

On the theoretical front, Chapters 3, 4 and 5 focus on the design of adaptors and configurators,

namely, the Task Control and Fuzzy Control Model. Chapter 6 focus on the algorithmic design

of QualProbes, which provide probing and profiling services in the Agilos architecture. Chapter 7

11

discusses outstanding issues related to the relationship between multiple servers and clients in an

application such as OmniTrack. An application-level gateway is introduced to handle responsibil-

ities such as server switching and selections. In addition, negotiators are introduced on all clients

and servers to facilitate their interactions with the gateway. On the implementation front, Chapter

8 presents the application programming interface via which the applications interact with Agilos,

which is designed to feature generic applicability and ease of deployment for new distributed ap-

plications. Chapter 9 illustrates problems and their solutions with respect to the implementation

of Agilos and the deployment of OmniTrack. Chapter 10 presents various experimental results.

Chapter 11 discusses related work, and Chapter 12 concludes the dissertation and discusses future

work.

12

Chapter 2

Agilos: An Overview

In this chapter, we give an overview of our study on application-aware QoS adaptations, and

present original contributions in Agilos, a middleware control architecture. The term application-

aware adaptation was first introduced in the Odyssey project [6, 7], and was defined as adapta-

tion that exists in between application-transparent system-level adaptation mechanisms, and the

laissez-faire approach, where applications deal with adaptations completely by themselves. The

functionality of the Agilos architecture exactly fits such definition of application-aware QoS adap-

tations, with the benefit of balancing the interests and advantages of adaptation in both system and

application levels.

2.1 Objectives of Agilos

The goal of the Agilos architecture is to solve the following three major problems towards

application-aware QoS adaptation.

1. Application-generic Adaptation. Agilos is designed to serve as a distributed and application-

neutral coordinator to control the adaptation behavior of all concurrent applications in the

end systems sharing the same pool of resources (e.g. CPU), so that if viewed globally, these

applications do not adapt in a conflicting or unfair way.

13

2. Application-aware Adaptation. By directly controlling the adaptive behavior of a complex

distributed application, Agilos assists the application to make more effective adaptation deci-

sions. Such decisions include when, how and to what extent adaptation is carried out within

an application. We refer to the methods used for making these adaptation decisions as adap-

tation strategy. Since the objective of all adaptation-based approaches is to provide the best

possible Quality of Service to an application allowed by the current conditions of resource

availability, the important issue is to find ways to qualitatively measure the optimality of an

adaptation strategy. In our work, we focus on an application-specific critical performance

criterion, which is associated with the most critical QoS parameter within the application.

3. Probing and Profiling. On behalf of the applications, Agilos is responsible to probe the cur-

rent dynamics of application-level QoS parameters and resource availability, in a heteroge-

neous environment and on the fly. In addition to such probing services, it is also responsible

for recording the probing results in QoS profiles, so that inter-parameter mappings may be

derived.

Without the introduction of such a middleware architecture, applications are compelled to make

application-level adaptation decisions within themselves. They are thus required to implemented

QoS probing and any adaptation strategies within the application. This increases the burden with

application development, the results may not be fair to other applications sharing the same pool of

resources, and proprietary implementations that are tightly bound to a specific application cannot

be shared with other applications, even with similar semantics and behavior.

The ultimate objective of Agilos is to control the adaptation process within the application so

that under any resource conditions, it is steered towards maximum achievable user satisfaction with

respect to delivered performance of a critical QoS parameter.

14

2.2 The Agilos Architecture

Agilos is designed as a three-tier architecture. In the first and lowest tier, application-neutral

adaptors and observers support low level resource adaptation by reacting to changes in resource

availability. Therefore, adaptors and observers both maintain tight relationships with individual

types of resources. In the second tier, application-specific configurators are responsible for mak-

ing higher-level functional adaptation, including decisions on when and what application func-

tions are to be invoked in a client-server application, based on on-the-fly user preferences and

application-specific rules. Furthermore, QualProbes provide QoS probing and profiling services

so that application-specific adaptation rules can be either derived by measurements or specified

explicitly by the user. In the third tier, adaptation in the highest level is performed in a distributed

environment, with the assistance of a centralized gateway and multiple negotiators on both clients

and servers. These components are introduced to control adaptation behavior in an application

with multiple clients and servers, so that dynamic reconfigurations of client-server mappings are

possible and tuned to the best interests of the application.

Adaptors

CPU Network Bandwidth

Configurators

Functional Quantitative

Observers

CPU Network Bandwidth

First Tier Middleware: Application Neutral, Resource Specific

Second Tier Middleware: Application Specific, Client-Server

Third Tier Middleware: Application Specific, Multiple Clients and Servers

OS and Communication Networks

QualProbes
User

NegotiatorsGateway

Distributed applications with multiple clients and servers

OmniTrack Servers OmniTrack Clients

���������
	

Adaptation Path

Live Video

Figure 2.1: The Hierarchical Design of the Agilos Architecture

15

For the interests of generic applicability and ease of deployment of new complex applications,

all communications among the middleware components, as well as between middleware layer and

the application, are designed to be via a standard service enabling platform, such as the Common

Object Request Broker Architecture (CORBA) [8] or the Component Object Model (COM) [9].

This three-tier hierarchical design of the Agilos architecture is shown in Figure 2.1.

Since the goal of middleware is to actively exert control of applications, a closed control loop is

naturally formed to steer the applications so that they react to resource fluctuations. Such a control

loop is formed with an integrated framework including the adaptors, configurators and observers,

shown in Figure 2.2. The illustration shows a hybrid control approach adopted by Agilos. With the

controller comprising of application-neutral adaptors and application-specific configurators, the

generated control actions are both globally fair to other concurrent applications sharing the same

local resources (such as the CPU) on an end system, and specific to the application’s adaptation

needs and critical performance criterion as well.

Adaptor Configurator

Observer

Gateway
Application Server

Interface

Application Client

Interface
Application-specific
 control actions

Negotiator

Resource availabilityObserved values

Application-neutral
 control actions

Target load

Figure 2.2: The Control Loop In the Agilos Architecture

2.3 The Application Model

In all subsequent discussions about application QoS parameters and resource types, we assume

a Task Flow Model [10] for distributed applications. A complex distributed application can be

modeled as several application tasks, each task generates output for the subsequent task, which

can be measured by one or more output QoS parameters. Such output forms the input of subse-

quent tasks. In order to process input and generate output, each task requires a specific amount of

16

resources. An acyclic task graph, as shown in Figure 2.3 can be used to illustrate such a model.

Application Task: A Closer Look

Application
Task 1

Application

Application

ApplicationTask 2

Task 3

Task 4
Task Output

Resources

Input

A Generic Task Flow Graph

Figure 2.3: Illustration of The Task Flow Model

With such a conceptual model, we note that there may be various definitions of the concept

application task, distinguished among themselves by the granularity of functional partitions in the

application. Since we attempt to optimize the adaptation behavior of the application to achieve a

performance goal, we divide the applications with coarse granularity, and demand that each task

must present a one-to-one mapping to an individual executable component within the application.

Static or dynamic linked library objects (such as codec or encryption modules) and individual

working threads are not tasks themselves, though they may be partitioned as subtasks. As an

example, the Task Flow Model of OmniTrack is shown in Figure 2.4.

Subtask

Frame Grabbing

Tracking Server

Transmission
Network

Omni-directional
Facilitator

SendDisplay

Tracking Algorithms

Receive Display

Interactive selection
of camera directions
and tracking servers

Task

Figure 2.4: The Task Flow Model of OmniTrack

2.4 First Tier: Adaptors and Observers

The design objectives of the adaptors are as follows. First, they react to variations in resource

availability, where the output is governed by customized algorithms derived from standard digital

control algorithms, such as PID control. Second, with respect to resources, adaptors attempt to

17

maintain fairness among all concurrent applications within the same end system, and to control

the application QoS requirements for system resources. Third, the control algorithm is parame-

terized and highly configurable so that a variety of different adaptation agility (the responsiveness

of the system to changes) can be achieved. The adaptors and observers are designed to be inte-

gral part of the Task Control Model, discussed in detail in Chapter 3. The adaptors are based on

control-theoretical methodology, using a customized PID (Proportional Integral Derivative) control

algorithm.

Each system-wide adaptor corresponds to a type of resource, such as CPU and network band-

width. Such an adaptor controls all concurrent applications sharing the resource in an end system.

Three properties in an adaptor are configurable: the target load, weights of importance for each

application, and adaptation agility. First, the target load is the load on resource consumptions

at control equilibrium, shared by all applications. Should variations occur, the adaptors produce

output in order to steer applications towards the target load on resources. Such a load depends on

resource demands of each application and the level of application concurrency. Second, weights as-

signed to applications represent the relative importance of applications sharing the same resources,

i.e., an application with a higher weight is allowed more resources following the weighted max-min

fairness property. Third, adaptation agility expresses the responsiveness of the adaptors reacting

to variations. To ensure fairness, it is configurable on a system-wide basis for all applications.

2.5 Second Tier: Configurators and QualProbes

2.5.1 Design of Configurators

The configurators determine discrete control actions based on application-specific needs and

control values produced by adaptors. Their behavior is fully configurable via the definition of a rule

base. An example of a rule in such a rule base could be “if (cpu is high) and (rate

is low) then rateaction := compress”. The configurators are based on the Fuzzy

18

Control Model, discussed in detail in Chapter 5. The application-neutral output of the adaptors

is piped into the configurator as input to the inference engine based on the rule base. Any output

from the inference engine is then used to directly control higher-level adaptations in applications.

Figure 2.5 shows such a design within the configurator.

Adaptor Application

Configurator

Application-specific
 control actions

Application-neutral
 control actions

Fuzzy Inference Engine

Application-specific Rule Base

Figure 2.5: The Design of Configurator

In order to meet the needs of a wide variety of adaptation possibilities within an application,

the configurators can be categorized in three groups. First, functional configurators attempt to re-

configure the application via the control interface, such as switching from one compression format

to another. They decide which reconfiguration choice to activate via the control interface to the ap-

plication. Such reconfigurations are only carried out in extreme cases where resource availability

or application-specific parameters are beyond certain thresholds, defined by the rule base. Second,

quantitative configurators tune application-level QoS parameters, such as tuning the compression

ratio of a specific codec. Third, user configurators integrate application-specific user interfaces,

with visual tuning and selection interfaces for the user to directly manipulate and adapt the appli-

cation. This is necessary to fulfill the user’s needs, especially when certain application behavior

cannot be detected automatically. For example, in OmniTrack, if the object roams out of view, the

user may need to interact with the camera to pan and tilt the camera or switch to a different view,

so that tracking may resume.

2.5.2 Design of QualProbes

As shown in Figure 2.2, adaptors, configurators and observers form a closed loop to actively

exert control of the application via its control interface. A clean division of application-neutral (e.g.

19

adaptors) and application-specific middleware components (e.g. configurators) ensures generic

applicability to a wide variety of applications, as well as the ease of deploying new applications

with minimum efforts. However, what is left unanswered is the following set of questions: (1)

How do applications specify to the middleware what QoS parameter they favor? What is their

critical performance criterion that any adaptation should focus on? (2) Frequently, the critical

performance criterion cannot be directly measured or calculated on-the-fly, such as the tracking

precision in OmniTrack or the overall user satisfaction of streamed media. In such cases, how do

the changes in controllable QoS parameters relate to the critical performance criterion and resource

demands?

QualProbes, a set of middleware QoS probing and profiling services, addresses these concerns.

Its responsibilities are three-fold: First, it allows applications to specify to the Agilos middleware

about its critical performance criterion, along with its relationship with other controllable QoS

parameters. Such a specification is made in the form of a dependency tree. Second, the QoS

probing service actively probes the application in trial runs for detailed QoS mapping functions

among application QoS parameters. Such off-line probing is based on the dependency tree that the

application specifies. Third, the QoS profiling service logs all probing results in QoS profiles. The

actual specification of the rule base in configurators is based on these profiles.

Chapter 6 thoroughly presents a dependency tree model for capturing application-level QoS

parameters and the relationships among themselves and between application and system QoS pa-

rameters, as well as internal mechanisms in QualProbes.

2.6 Third Tier: Gateway and Negotiators

The addition of a third tier, including the gateway and negotiators within Agilos architecture,

removes the limitation that adaptation can only be performed within individual clients and servers,

and allows for distributed adaptation control. There may be instances when the best option for a

client may be to switch its data feed to a new server which better exploits available resources. For

20

the OmniTrack example, when bandwidth becomes restricted, local adaptations may be insufficient

to provide an acceptable level of QoS. Rather, the best adaptation may be to switch to a compressed

video format which requires less bandwidth, such as MPEG. However, the current server may not

be able to provide video in MPEG format, either due to a software or hardware insufficiency. If

there were another server providing the equivalent video in MPEG format, the best client adap-

tation would be to switch to the compressed video server. The gateway, when collaborated with

negotiators, is designed to facilitate such adaptation choices within the third tier.

Based on these goals, the third tier is designed as a gateway-centric architecture. Figure 2.6

shows the role of the gateway and the topology of nodes within the framework. The gateway

manages control connections between a client and multiple servers, and assists the client in its

distributed QoS adaptive behavior. Note that the transfer of data will follow a direct path between

one client and one server.

Gateway

Server

Server

Server

Server

Server

Server

ServerClient

Control Path
Data Path

Facility

Figure 2.6: The Role of Gateway

The gateway and negotiators on servers are collectively coordinated to serve as a single facility.

At any given time, each client is being serviced by a single server within the facility. The decision

as to which server is serving the client is dynamically chosen based on server load and its ability

to satisfy user requirements in the client.

Chapter 7 discusses important design issues related to the gateway and negotiators, which

facilitates adaptation in a multiple-client multiple-server scenario.

21

2.7 OmniTrack: A Case Study

As a case study, we have developed OmniTrack, a distributed omni-directional visual tracking

system, using tracking algorithms in the XVision [11] project. OmniTrack is a flexible, multi-

threaded and client-server based application, which adopts complex tracking capabilities in mul-

tiple domains, such as visual object tracking, camera tracking and switching, and features full

integration of user preferences. This application illustrates the coexistence of multiple adaptation

possibilities, ranging from image properties, codec choices, server selections, to tracker quanti-

ties and variety. The actual adaptation choices are based on a combination of user preferences

and decisions made by the underlying Agilos middleware control architecture. An illustration of

OmniTrack architecture is shown in Figure 2.7.

Agilos

Client

Application
Tasks

Middleware

OS and
Network

Gateway
Interface

Gateway

containing
Scene

tracked object

"F"

"L"

90

180"B"

"R"

270

0

Server Task

Negotiator

Server

Server

Server Task

Negotiator

Server Task

Negotiator

Server

Omni-Directional
Camera

Server

Server Task

Negotiator

Figure 2.7: OmniTrack: A Distributed Omni-Directional Visual Tracking System

In a basic client-server relationship, the tracking server captures live video from its panable

camera, encodes the video in a specific media format, and streams the encoded frames to the client.

One or multiple tracking algorithms are executed at the client side, attempting to track the posi-

tion of corresponding moving objects in the decoded video. In the scenario with multiple servers

and clients, a server spawns a separate working thread to handle video streaming responsibilities

associated with one particular client. On the contrary, each client only receives the video stream

22

from one of the servers at a time. Different servers have different characteristics with respect to the

angle of views, media codec selection and server workload, thus enabling the client to switch from

one to another based on its preferences. A User Configurator is also available on the client side,

which is responsible for all interactions with the end user with respect to omni-directional views.

The user may pan the camera, switch to a different view and specify advanced preferences related

to the type and group of objects currently tracking.

OmniTrack is implemented in Windows NT, deployed under the control of Agilos middleware.

OmniTrack exports a control interface which is clearly defined in the CORBA Interface Definition

Language (IDL). All control commands made by the Agilos middleware are carried out through

such a control interface via CORBA. This ensures that Agilos middleware architecture is generic

and applicable to any application. Besides exporting the control interface, OmniTrack reports on-

the-fly observations of its application-specific QoS parameters to the CORBA Property Service, so

that they are always observable from the middleware’s point of view.

Chapter 9 presents implementation details of the Agilos middleware architecture and deploy-

ment of OmniTrack, while Chapter 10 presents important adaptation choices available in Omni-

Track.

23

Chapter 3

Task Control Model

Our objective is to rigorously model the functionalities in the first tier of the Agilos middle-

ware architecture. The first tier is application-generic in the sense that it is designed to focus on

resource-based and system-wide properties related to adaptation, such as adaptation agility, sta-

bility, equilibrium values, as well as fairness among applications sharing the same end system

resources.

3.1 Overview

As noted in Section 2.2, the fundamental goal of Agilos is to actively exert control of the

applications. A closed control loop, as shown in Figure 2.2, is naturally formed to steer applications

so that they may timely react to resource variations. Obviously, this model corresponds identically

to a typical control system. Such an analogy is explained as follows.

In a control system, there is a target system to be controlled. This target system takes appropri-

ate actions to process the input. Such an input is determined by a controller, which monitors the

states inside the target system, and compares them to the desired values referred to as the reference

or setpoint. Both the target system and the controller can be modeled mathematically, and such a

model for the controller includes the control algorithm. Similarly, in the Agilos middleware archi-

tecture, making adaptation decisions also requires observations of the current states in the target

application, and such decisions are also enforced as input to the target application. The adaptors

24

are thus introduced to implement the functionality of a controller, while observers are responsible

for monitoring the states of the target applications, including availability of resources.

The Task Control Model [12, 13] is derived based on such an analogy. Theoretically, the critical

parts in the Task Control Model are: (1) the actual mathematical model for the target applications;

(2) the control algorithms in the adaptors. The key contributions of the Task Control Model are as

follows.

1. By establishing a linear mathematical model for the target applications in the Task Control

Model, it is possible to utilize various proved theorems and properties available in the control

theory. Thus, the model can rigorously evaluate the equilibrium, stability and adaptation

agility properties of the control algorithms in adaptors, using control theoretical techniques.

2. The Task Control Model separates actual adaptation choices, such as tuning application

QoS parameters, from the control algorithms used to determine the timing and scale of

such adaptations. It actually makes it possible to flexibly match various application-specific

adaptive mechanisms, such as media scaling, filtering and functional reconfigurations, with

application-neutral control signals produced by the adaptors. On one hand, the control algo-

rithms in the adaptors guarantee equilibrium, stability, fairness and adaptation agility prop-

erties; On the other hand, the detachment from application-specific adaptation mechanisms

ensures flexibility and ease of deployment of new applications.

3. Since the control theory provides a natural mapping and a solid foundation for the Task

Control Model, it is used to derive the customized control algorithms being executed in

the adaptors. Along with the mathematical model derived for the target applications, such

control algorithms in the adaptor complete the closed control loop, which models the control

process that the Agilos adaptors and observers go through to adapt the application.

25

3.2 Review of the Task Flow Model

In order to analyze QoS adaptation using control-theoretical methodology, we need a strict

mapping between traditional control systems and our system architecture to control QoS adapta-

tions in a distributed environment. For this purpose, we consider the Task Flow Model that we

briefly described in Chapter 2. In such a model, application tasks represent execution units that

perform certain actions to deliver a result to other application tasks or the end user. The Task Flow

Graph is a directed acyclic graph which consists of multiple application tasks, and illustrates the

consumer-producer dependencies among the tasks. A directed edge from the task
���

to the task
���

indicates that the task
���

uses the output and its QoS produced by the task
���

. Tasks can be

uniquely characterized by its input quality, output quality and utilized resources, all influencing

the state space of an application task.

(a) A Generic Task Flow Graph (b) One Application Task in the Task
Flow Graph

Figure 3.1: Review of the Task Flow Model

Figure 3.1(a) illustrates a generic Task Flow Graph, Figure 3.1(b) illustrates the key character-

istics of a single task in the Task Flow Graph.

3.3 Task Control Model for Adaptors

The Task Control Model concentrates on a single application task in the Task Flow Graph,

referred to as the target task, which is the application task to be controlled by tuning or recon-

figuring the target application. In addition, we introduce the adaptor, which performs the control

26

algorithm, as well as the observer, which observes the states of the target task and feeds them back

to the adaptor.

The ideal objective of the Task Control Model is to achieve the following properties. First,

dynamic changes in application QoS requirements, possibly affected by user interactions on the

fly, can be accommodated in a timely fashion. This property is reflected by the characteristics

of adaptation agility when modeling the adaptation behavior. The property of adaptation agility

also affects the way that the model reacts to variations in resource availability. Second, in order

to accommodate concurrency of resource access among multiple applications sharing the same

pool of observable resources (often on the same end system), fairness needs to be balanced among

all competing tasks accessing the shared resource. These properties will be satisfied by a careful

design of a customized control algorithm in the adaptor, with the assistance of the observer. The

key elements in the Task Control Model are enumerated as follows.

1. Adaptor: The adaptor implements the control algorithm derived from the control theory,

and produces a series of control signals based on a specific control algorithm. These control

signals are used by the target task to tune the controllable parameters. Controllability has

a two-fold interpretation. First, “a parameter is controllable” means that it is possible to

dynamically tune its values in the target task. Second, it also means that by changing values

of the parameter, it is possible to affect the internal states of the target task and thus eventually

affect the quality associated with the critical QoS parameter.

2. Task states: In order to apply the linear control theory, we need a precise analytical model

to characterize the internal dynamics in the target task. We refer to the parameters in this

model as task states. The most important task states in any application task are its parameters

directly correspond to the resource usage of the application. All tasks have to consume

resources in order to perform actions on input and produce output.

3. Observer: The adaptor needs knowledge about the current states of the target task in order

to execute the control algorithm. If the task states are observable, they are observed by

27

the observer and propagated to the adaptor. Otherwise, if some related parameters can not

be observed, observers will estimate or predict the current states, based on the estimation

algorithm of its choice. We present an example of such an estimation algorithm in Chapter

4, for the purpose of estimating task states within the transmission task in a distributed

environment.

Figure 3.2 summarizes the Task Control Model, as well as different roles of the target task,

adaptor and observer in a typical Task Flow Graph.

Adaptor

Observer
Resource availabilityObserved values

Application-neutral
 control actions

Target load

Target Task in the application

Figure 3.2: The Task Control Model

3.3.1 Generic Form of Modeling a Target Task

Once the above concepts are introduced in the Task Control Model, we are ready to present the

Task Control Model and the customized control algorithm. In the most generic fashion, we use �

for the vector of task states, � for the vector of controllable input parameters of the target task, �
for the vector of observed output parameters, � for the vector of uncontrollable variations in the

task, and � for the vector of the observation errors. Using the above notations, we model the target

task in the Task Control Model with the following equations:

� � ��� �
��� 	�
� ��� ������ � ��� ��� � ��� ��� � ��� �������

(3.1)

� ��� ������ � ��� ��� � ��� ������� (3.2)

With the above definition, the task is said to be at equilibrium when:

28

� ��� �� � ���� � ��� ��� � ��� ��� � ��� �������
(3.3)

An equilibrium is stable if small disturbances do not cause the state � to diverge and oscillate.

Otherwise, it is an unstable equilibrium. From a practical point of view, this formal definition of

stability is identical to the definitions in previous work [14, 15], where stability is defined as the

ability of the system to steer the target system back to equilibrium state after a disturbance has

occurred.

The above stated definitions are generic and can illustrate a wide variety of adaptation capa-

bilities of the target task. According to these definitions, the target tasks may be continuous in

time, non-linear and time-varying. In this chapter we study a subset, namely, the tasks that can be

approximated without loss of accuracy by discrete and linear equations as the following form:

� � ������ � ������� ���
	 � ������� ��� � � ���� �
(3.4)

� � ��� �� � ����� (3.5)

� ����� � � ����� � � ��� (3.6)

where
� ��

to
�������

, and
�

,
	

, and
�

are known transition matrices without an error. In

later discussions, we develop a concrete analytical model based on the above generic linear model,

which is frequently used within the state space approach in control systems.

3.3.2 Concrete Form of the Task Control Model

The Task Flow Model stated in Section 3.2 can characterize a wide variety of application tasks.

To demonstrate a concrete example, we consider the following scenario. Let us assume multiple

application tasks competing for a shared resource pool with the capacity � ����� . Each task makes

requests for resources in order to perform their actions on inputs and produce outputs. These re-

quests may be granted or outstanding. If a request is granted, resources are allocated immediately.

29

Otherwise, the request waits in the outstanding status until it is granted. The system is granting

requests from multiple application tasks with a constant request granting rate � .

The mapping between the abstract notation resource requests and the actual services that pro-

cess the resource requests varies among different types of system resources. For temporal re-

sources, such as central processing capability and transmission throughput, where the resources

are shared in a temporal fashion, outstanding resource requests may be mapped to the waiting

queue, and granted requests may be mapped to allocated temporal resources, such as bandwidth.

For spatial resources, such as volatile or non-volatile storage capacity, outstanding requests may

be mapped to the actively used and occupied capacity, such as temporal buffers in caches and real

memory (swapped in pages), and granted requests may be mapped to the reclaimed capacity by

the system due to inactivity, such as swapped out pages. The framework presented in this section

applies to both cases.

To be more exact, we take CPU and network bandwidth as two examples of all resource types.

For network bandwidth resource, from the point of view of a client-server based distributed ap-

plication, outstanding resource requests can be interpreted as those data units 1 that are in transit

between the server and the client. Granted resource requests, in this case, can be interpreted as

the data units that have been received at the server. For CPU capacity resource, since allocation of

CPU is on a time-sharing basis 2, the interpretation of the above abstract notions is more indirect.

In order to achieve this, we can first construct an ideal case where full CPU capacity is available to

the application, i.e., the application is running at the top possible speed that is necessary to deliver

the functionalities of the application. We can thus utilize the measurements within the application

in the ideal case as an ideal reference value. In actual cases, we interpret granted resource requests

as the actual measurements in the application, and outstanding resource requests as the difference

between ideal measurements and actual measurements.
1At the system level, data units may be cells or packets. However, at the application level, the actual interpretation

of data units depend on the application-specific semantics. For example, in media streaming applications a data unit
may be interpreted as a frame.

2An instruction at the assembly level of the application is either issued to the CPU or blocked for its time slice by
the operating system scheduler.

30

Figure 3.3 illustrates the above scenario and the complete Task Control Model. Naturally, if

the target task is greedy and makes an excessive number of resource requests in a short period of

time, it is not fair to other tasks sharing the same resource pool. Thus, the request rate needs to be

throttled by the adaptor. What the adaptor tries to control is the resource request rate, made by the

target task, so that it does not exceed its fair share. The adaptor executes the control by producing

control signals, which are translated to parameter-tuning actions within the application.

Observer

From Previous Task New Resource Requests u(k)

Core Functionalities

Adaptation Points

To Next Task

Control Algorithm Estimation Observation

Requesting Resources

Shared Resource PoolGranted Resource

x(k)

Requests y(k)
Requests x(k)
Resource

Outstanding

Requests
Granting

Middleware Adaptor

Resource Management and Scheduler

Adaptor

Target Task

Figure 3.3: Control-theoretical Components of the Task Control Model

In the Task Control Model, we define the following variables corresponding to a target task
� �

:

1. � is the constant request granting rate that the system grants resource requests from multiple

application tasks.

2.
�
	 is a constant sampling time interval, which is the time elapsed in interval

� � � � � � �
,
�

being time instants;

3. � � � ��� is the number of resource requests made by
���

during
� � � � � � �

;

4. �
� �����

is the number of resource requests during
� � � � � � �

allowed by the adaptor of
� �

, which

is referred to as the adapted request rate;

5. � ����� is the total number of outstanding resource requests made by all tasks at time
�

;

31

6.
� � ���

is the total number of active target tasks competing for resources in the system;

7. � � ���
is the set of target tasks at time

�
whose request rate is adapted by the adaptor, � �����

is the set of other target tasks that are not affected by the adaptors;

8.
�������

is the number of tasks in � � � �
(
��� ��� �� � �������

),
� � ��� � � �����

is the number of tasks in

� � ���
(
� � � ����� � � ��� � �������

). We assume that both
� � ���

and
��� ���

stay constant within

one time interval
� � � � � � �

.

9. � � is the static weight of
� �

showing its relative priority or importance compared to other

target tasks.

Using the above notation, the derivative of outstanding resource requests can be described as

follows:

� � � � ��� � � ����� � 	��
��������
����� �

� ������ ���
� (3.7)

The Difference Equation (3.7) depicts the internal dynamics of the adaptive system, where � is

the constant request granting rate.

The objective of the control is to maintain the number of outstanding requests � to stay around

a specific reference value � 	 � � � . Under the assumption that the dynamics of the adaptive system

behave according to the Equation (3.7), we can derive a control algorithm in the adaptor for
���

to calculate �
� � ���

values, which will lead to the desired values for � . For example, if a standard

proportional-integral-derivative (PID) control [16] 3 is engaged, then �
� � ���

obeys the equation

�
� �����

�
� ��� ��� ����� � � 	 ������� � � ����� ����� � � 	 � ����� � ����� � � � � 	 ������� ��� � � ����� � � � (3.8)

where
�

and
�

are configurable scaling factors. This is one of the many effective control

3PID control is a classic control algorithm where the control signal is a linear combination of the error, the time
integral of the error, and the rate of change of the error.

32

algorithms illustrating the ability of the Task Control Model to capture the adaptation dynamics

and map these dynamics onto a classic control model.

3.4 Control Theoretical Analysis of the Adaptor

This section continues with a rigorous analysis of the stability, fairness and adaptation agility

of the Task Control Model characterized by the target task in Equation (3.7) and the PID control

algorithm in Equation (3.8), in order to prove the validity of our approach using the Task Control

Model.

We assume in our analysis that the controllable parameter of task
� �

is the request rate � � � � � .

The adaptor may control � � ����� at a lower rate �
� � ���

, namely, �
� � � � � � � � ��� . The PID control

algorithm presented in Equation (3.8) becomes:

�
� ����� ������

� �
�

�
� � ���� ����� � � 	 � ����� � ����� ��� ��� � � 	 � ����� � ����� ��� � � 	 � ����� ��� � ��� �� � � � �

(3.9)

Where
��� � � � is defined as:

��� � � ��
	

�

�

�
if �� � ,

�
if ��� �

,

� otherwise.

(3.10)

In addition, since at time
�

we assume that, among all target tasks,
��� ���

tasks are adapted by

their respective adaptation tasks, and
� � ��� � � �����

tasks are not affected, we conclude that the total

number of outstanding resource requests in the system shows the following dynamic property (an

extension to the Equation (3.7)):

33

� � ��� � ������� 	� � � � ����� � � �� �	��

�������
�
� ������� ��� �� �	��
 �������

� � ������� ��� �

� �
� (3.11)

 � � ����� � � � ����� � � ����� �� ���
�
� ���� ��� � � ���� ���

�
�

, where (3.12)

� ����� �� ����
 � �
� � ����� , and (3.13)

�
� � ������ � � ��� ���������

�
�����

(3.14)

where
�

�
�����

is the average rate for all �
� �����

that satisfy �
� � � � � � ����� . In this equation,� � �����

is the dynamic weight of task
� �

which indicates priority for resource requests, and satis-

fies � � ����

� �
� � � ���� �

. The dynamic weight of
� �

can be derived from the static weight � � of
� �

,

with the following calculation:

� � ������ � �� ��� ��

� � � � (3.15)

Combining the Equation (3.9) and Equation (3.12), we obtain the complete characterization of

the adaptation system. Associated with each task
���

, we have a static weight � � , and three internal

task states:

� � �������� � 	 � ����� � ������� � 	 ������ ��� � � ����� ����� � ������� � ��� ���� � ���� ��� ��� ��� �
� � ��� �� �
��� ���� � ��� �

(3.16)

� � ����� is the task state matrix of
� �

, and � 	 � ��� and 	 �! �
 � �"
� � are the equilibrium values of � ����� and�
� � , respectively. The detailed analysis of the equilibrium states is given in Section 3.4.1.

One special case is when � 	 � ��� always remains constant, which is �
	 . In this case, Equation

3.9 is reduced to

�
� ������ ��� �

� �
�

�
� ������� ����� � � 	 � � � ��� � � � � � � � � � � � ���� � � �

(3.17)

34

which is equivalent to

�
� � ��� ��� �

 � �
�

�
� � ����� � ��� � � 	 � � � � � ��� ��� ��������� ���

�
� ����� ��� � � ���� ���

�
� �

(3.18)

If we consider Equation 3.14, Equation 3.18 becomes

�
� � ��� � � �

 � �
�

�
� ������� ����� � � 	 � � � ��� ��� � � �

� ������� �� � � ����� � � � ������� ���
�
� �

(3.19)

Equation 3.18 and 3.19 may be explained as follows. The �
�

at the next time instant is deter-

mined by the �
�

at the current time instant and two corrective terms. The first corrective term is

based on the difference between the target load and current load, while the second corrective term

is based on the resource demands from all active target applications. In such a control algorithm,

the first term ensures the transient response of the system, and the second term (weighed by
� � � ���

)

ensures fairness properties at system equilibrium. With the second term, the system is able to re-

balance towards the new equilibrium when a new application enters or when existing applications

are terminated. A more detailed analysis of these properties may be found in Section 3.4.1 and

Section 3.4.2.

3.4.1 Equilibrium Analysis

Now that we have established the control algorithm in the adaptor, we start to analyze the exact

value for which the system stays at equilibrium. The ideal case is that � ����� always stays the same

as the reference � 	 � ��� . Let us assume that for a specific period of time
� �

�
� �

�
�
, � 	 � � � , ��� ��� , � �����

and � �����
are all stable and stay at constants �
	 � ,

�
� ,

�
� and � � , respectively. Then we show the

following properties:

35

Theorem 1: Within
� �

�
� �

�
�
, the number of outstanding resource requests � in the system,

established by the Equations (3.9) and (3.12), will converge to an equilibrium value which equals

to the reference value � 	 � . In addition, the system also fairly shares resources among competing

tasks according to their static weights.

Proof: Let � � and
�

� � be the equilibrium values corresponding to the system established by the

Equations (3.9) and (3.12).

� �

�� ������� � � �

� �
�

�
� �

� � �

�
�
�

(3.20)

� � �
�

�
� �

�� ��� �� � �
�

�
� �

��� � � 	 �
� � �

� �
(3.21)

Ignoring the threshold cases, the solution to the Equations (3.20) and (3.21) is

�
� �

 �
� � �

�
�

(3.22)

� �

 � 	 � (3.23)

Equation (3.23) directly proves the first part of the theorem. Let us assume that the stable set

of adapted tasks is � � . Then the Equation (3.22) can be rewritten for task
� �

at equilibrium as

follows:

�
�
� �

�

 � � �
�

�
� �

 � � � �� ��� ��

� � �

�
� � �

�
�

 � � � �� ��� �

� � �

� ��
�

� � �
�

� �
�

� 	� �

� � �

�
�

�
(3.24)

Equation (3.24) presents the following weighted max-min fairness property. Each task
���

can

be granted at least a � � share of the resources. In addition, if
�

�

� �
� tasks request less than their

fair share, namely, only
�

� tasks are adapted, then the free portion
 � � � " � � 	� �

� � � can be distributed

among those Target Tasks which are degraded and thus need these resources. The distribution can

be done according to their static weights � � , which identify their relative priority and importance.

36

This concludes the proof. �

3.4.2 Stability Analysis

The concept of stability has a two-fold meaning. First, in an environment of multiple target

tasks simultaneously sharing the limited availability of resources, the ensemble of the adaptation

activities in all tasks needs to be stable, which means that when the number of active target tasks is

fixed, system resources allocated to each Target Task settle down to an equilibrium value in a defi-

nite period of time. This definition also implies that, if a new task becomes active, existing active

tasks will adjust their resource usage so that after a brief transient period, the system settles down to

a new equilibrium. Second, stability implies that with respect to variations in resource availability

due to unpredictable and physical causes, for example a volatile wireless connection, adaptation

activities do not suffer from oscillations. Oscillations are undesirable because they cause both

fluctuations in user-perceptible qualities, and an excessive amount of adaptation attempts that may

occupy too much resource to overload the system.

In order to converge to the equilibrium of the system regardless of disturbances and statistical

multiplexing, we need to prove that the system is stable. Due to the nonlinear nature of the system

given by the Equations (3.9) and (3.12), we are unable to derive a global and absolute stability

condition, which is the case for most systems with nonlinear properties. However, formal condi-

tions for local asymptotic stability can be addressed analytically. We present the following theorem

related to local asymptotic stability conditions.

Theorem 2: The adaptation system established by the Equations (3.9) and (3.12) is asymptot-

ically stable for the task
� �

around a local neighborhood, under the condition that
� � � � � � � ,

and
� ��� � �� � � .

Proof: Given the states defined in the Equation (3.16), we define

� ������ � 	 � � ��� � � ��� (3.25)

37

�
�
� ����� � � ��� ��� ���

�
������� �

� � �����
������� �

(3.26)

In order to examine the asymptotic stability properties, we simplify the dynamic equations

(3.9) and (3.12) in the neighborhood of equilibrium by: (1) removing the nonlinearities introduced

by
����� � � at both thresholds; (2) treating

� �����
and � � ���

as constants in the neighborhood of the

equilibrium. Thus, Equations (3.9) and (3.12) become:

�
�
� ����� �

�
� ������� ����� � � � ����� � � � � � � � � ���� � � (3.27)

� � ���� � ������� ���
�� � �� ������� �

(3.28)

We perform z-transform on Difference Equations (3.27) and (3.28) to obtain
� � ��� �

and � � ��� � ,
respectively, as follows:

�
�
� ��� ���� ��� �� � ��� ����� � ��� � ����� � ��� � ��� ��� � ��� � �

��� ��� ��� � �� � ��� �� ��� � � � �	� ��� � � ��� �
� � ��� �� �

�
� ��� �
� ��� �

 � � � � �	� ���� ��� ���
 ��� � � �
� � �

� ��� (3.29)

� ��� ���� ��� � ��� � �
�� � � ��� �� � ��� �

��� ��� ��� � � ��� ��
�� � � ��� �

��� �

� � ��� �� � ��� ��
�
� ��� �

� ���� � ��� ��� ��� �
 �� � ��� �� � (3.30)

Thus, the transfer function � � ��� � of the entire system is [16]:

� � ��� ��
� � ��� � � � ��� �� � � � ��� � � � ��� �

 � � � ��� ��� ��� � � �
� � � ��� � ��� � � � ��� � ��� � ��� � (3.31)

38

We then consider the discrete characteristic equation of the above:

� � � � �� � � �� � � � �
� � � �� � �� �� � (3.32)

According to theorems in the digital control theory [16], in order for the system to be stable,

all roots of the Equation (3.32) need to be within the stability boundary, which is the unit circle. In

other words, for any root
�
, we need

� � � � . We thus derive
�

as follows:

�
� � � � � � � � � ��� � � � � � � � � � � � � � � � � � �

� (3.33)

� �

� (3.34)

Let
� � � � � � and � � � , we have

� � � � ��� � � � ���� (3.35)

 � � � � ��� � � � ���� (3.36)

If stability is desired, let
� � � � , which is equivalent to

� � � � � ��� � � � ���� � � (3.37)

We divide the proof into two cases.

1. When
� � � ��� � � , that is �
	�� , real roots exist. Corresponding to the Equation (3.37),

we thus have

� �
� � ��� � � �

���� � (3.38)

39

Which leads to

� �
� � � � � � � ���� and

� � � � � � � ���� �
� � � � � � ��� � � � and

� � � � � � � ��� �
� � � � and

� � � ��� � � � � � �

and
� � � and

� � � ��� � �

� � and
� � � � � and

� � � and � � �
� � �� and max

� � � � � � � � ��
� �

�
�

�� � � �� � � and max
� � � ��� �� � � �� � ��� � � �� � � � � ��� � � �

�
� � � and

� � � and
�

�� � ��� �� � � and �
�� � � �� � � �� � � �

(3.39)

2. When
� � � ��� � , imaginary roots exist. We thus have:

� � � �� � � � � � ���� � �

� � � �
� � � � �

� � � � � � ��� �
� � � �

� � � � � � �

�
� � � � � ���

� �
� � � � � ���

� �

� �
(3.40)

We thus have:

� �

� ��
�

and
� � �

40

�
�� � � �� � � and

��� � � � � � �

�
�� � �� � � �� �

�
�� � ��� �� � � and

� � � and
� � � and �

�� � � � �� � � �� � � �

(3.41)

If we merge the results from the Equations (3.39) and (3.41), we have:

� � � � � � � � and
� ��� � � � � (3.42)

Equation (3.42) concludes the proof. �

It is obvious to see from Theorem 2 that the asymptotic stability of the adaptation for task
���

is

determined by an appropriate choice of
�

and
�

. It then follows that in order to guarantee that the

entire system is stable, we need to choose
�

and
�

so that for any task
� �

with any static weight

values � � , stability is ensured.

Corollary: There exist appropriate values of parameters
�

and
�

so that all the tasks in the

system are stable, for any pre-determined static weight � � for task
� �

.

Proof: Assume � � � � is the minimum value among all pre-determined � � . �
and

�
can be

chosen to satisfy

� � � � � � � � and
� � � � � � � � ���� � � � �� � �� ��� ��

� � � �

������� �
(3.43)

It follows from Theorem 2 that if these conditions hold, the system will be stable for any task
� �

with a static weight � � . �

3.4.3 Configuration of Adaptation Agility

In addition to stability requirements, it is also desired that the system responds quickly to

changes in both resource availability and QoS requirements of the application tasks. First intro-

duced in the Odyssey project [6], adaptation agility is defined as the speed and accuracy of an

adaptive system with respect to detecting and responding to changes in resource availability and

41

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(a) �����������
	�� 	�

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(b) ����	�����������	�� ���

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(c) ����	�� 	�����������	����

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 R

es
ou

rc
e

R
eq

ue
st

s

k

average
total outstanding requests

Task i

(d) ����	�����������	������

Figure 3.4: Illustrations of Configurable Agility and Dynamic Responses

application QoS requirements. In short, it is the responsiveness, or the sensitivity, of an adaptive

system to dynamic variations. This notion is similar to the notion of sensitivity introduced in [15],

though the work focuses on ABR flow control algorithms in ATM networks.

It is desirable for the system to configure adaptation agility in each adaptor corresponding to

different types of system resources. For example, a network-centric system (such as a web server)

may be much more sensitive to changes in network bandwidth than to changes in CPU availability.

In our Task Control Model, adaptation agility is determined by the configurable parameters in

the control algorithm. In the specific case of a PID control algorithm in the Equation (3.9),
�

and
�

are configurable as long as the stability conditions in Theorem 2 hold. The actual configuration

42

is tailored to the needs of the system.

Four illustrations are given in Figure 3.4(a) - 3.4(d) to show the effects of different configura-

tions on the system. In all four graphs, we simulate the system established by Equation (3.9) and

(3.12) for 1000 time intervals. The changes of
��� � �

, � �����
and � 	 ����� are given in Table 3.1:

Time
�

0-100 100-200 200-300 300-400 400-500 500-700 700-850 850-1000� �����
2 2 4 5 3 3 3 3

� � ���
3 3 3 3 3 7 4 4

� 	 � ��� 9 11 11 11 11 11 11 14

Table 3.1: The values of
� �����

, � � ���
and �
	 ����� used in the illustration

It can be seen from these illustrations that the dynamics of the system is affected significantly

by different configurations of the adaptor. In Figure 3.4(d), it even starts to oscillate in the interval
� ����� � � ��� � . The configuration in Figure 3.4(b) reaches equilibrium much faster than Figure 3.4(c),

and both of them do not show the oscillating transient response shown in Figure 3.4(a). Overall, the

illustrations show that the adaptor is configurable according to the needs of the system. For the PID

control algorithm in Equation (3.9), there are two parameters,
�

and
�

, to configure. However, for

more complex control algorithms, there will be more dimensions for finer tuning of the transient

responses.

3.5 Summary

Our work in this chapter has made two major contributions. First, we established the Task

Control Model based on the Task Flow Model presented in Chapter 2 and rigorously defined the

mapping between the classic linear control systems and the Task Control Model. Second, we

utilized the PID control algorithm in the control theory, applied the algorithm in the Task Control

Model, and analyzed fairness properties, asymptotic stability conditions, and adaptation agility of

the adaptation behavior. Obviously, control theory itself is not new; our contribution is to propose

a model that successfully applies the control-theoretical methodology to the practice of modeling

application-aware QoS adaptations, so that from a systems point of view, stability of adaptation in

43

any active applications are guaranteed, agility can be tuned, and application concurrency is fairly

promoted with respect to QoS adaptations.

44

Chapter 4

Observations in Distributed Adaptation
Control

4.1 Overview

In the first tier of the Agilos architecture, in order to adjust the application appropriately, and to

decide when, how and to what extent for the application to adapt, accurate identification of current

system states is critical, based on all or a subset of observable parameters. As noted in Section

2.2, this observe and control process forms a closed control loop, which is the nature of a control

system. In digital control theory, the control signals in such a process are determined by a con-

troller, based on the current state estimates. In Chapter 3, we developed a Task Control Model that

takes advantage of the control theory to model this process, and gave theoretical results to prove

stability and fairness properties in the model. Such a design is implemented in the adaptors within

the Agilos middleware. The objective of this approach is to optimally adjust the internal parame-

ters and semantics of flexible applications, so that their adaptive behavior conforms to system wide

properties, such as fairness among all applications sharing the same pool of end system resources.

In addition to a rigorous definition of the mathematical model for the target task, which has been

elaborated in Chapter 3, it has been noted that the effectiveness of a control algorithm executed

in the adaptor depends on accurate observations of system states. For the states associated with

some of the end system resources such as CPU availability, an accurate observation may be easily

45

achieved. However, associated with resources in a distributed environment with the presence of

end-to-end delays, such system states are not directly observable in the end points of the network,

thus they need to be estimated. A typical example that applies to the OmniTrack application is

the throughput (in terms of volume per time unit) that data is transmitted among end systems. In

such a scenario, in order to control the application and dynamically adjust the data rate transmitted

from server to client, we need to obtain system states such as quantities of data in transit in the

networks or arrived at the client. Significant end-to-end delay may obstruct the desired accurate

observations, when estimations are used instead.

The chapter presents the design of an optimal state estimation mechanism [17] executed in the

observers of Agilos, that estimates data throughput in a distributed application. The key contri-

butions of this mechanism are the following. (1) An extended Distributed Task Control Model:

The Task Control Model is extended from a model focusing on local resources such as CPU, to a

distributed model focusing on bandwidth availability in transmission tasks. Since it is impossible

to observe network traffic sharing the same links, the tradeoff is that the fairness property that

was previously proved can no longer be guaranteed. (2) A linear model for transmission tasks:

To characterize the transmission tasks in a distributed application, we develop a linear model with

concrete coefficients, on which state estimation techniques are based. (3) Optimal state prediction

mechanisms: Accurate control signals are based on precise estimates of system states. With the

presence of significant end-to-end delay that obstructs accurate state observations, we present an

optimal prediction approach to estimate current system states based on available observations in

history. We adopt optimal estimation theories such as the Kalman Filter in our approach. Assisted

by optimal state prediction techniques, the application can be appropriately controlled to adapt to

dynamic variations.

46

4.2 Modeling Transmission Tasks

As introduced in Chapter 2, we view each application as a series of connected tasks, with each

application task as a concrete component that performs operations on the input, generates output

and consumes resources. With such a view of an application, a distributed application has one or

more transmission tasks in its Task Flow Graph, which transmits application data between two end

systems. We observe the current system states within the observer, such as available bandwidth

in the transmission task. These observations are delivered to the adaptor, which calculates control

signals according to the control policy. Similar to Figure 2.1, the distributed view is shown in

Figure 4.1 in the example of a client-server based application.

Adaptor Observer Observer Adaptor

System States

Operating Systems

Application Transmission
 Task

Configurator

System States

signals middleware

Operating Systems

Transmission
 Task

Application
 Task 2

middleware Configurator

Task 1

end-to-end delay

signals

Figure 4.1: An Distributed View of the Agilos Middleware Architecture

Presented in Chapter 3, the customized control algorithm in the adaptor is the outcome of

applying the control theory to the theoretical analysis of adaptation behavior. In such an algorithm,

we were able to prove that, if priority weights are given to each application task, the system fairly

allocates resources among competing tasks according to the weighted max-min fairness property.

We also proved that the system converges to the equilibrium, and stability of control is preserved

around a local neighborhood. In this chapter, with an appropriate model for the transmission task,

we can extend the model to apply to a distributed environment, with the presence of significant

end-to-end delays.

47

4.2.1 State Observation in the Transmission Task

The accuracy of control signals calculated by the adaptor relies on precise observations of

system states. However, in the distributed environment where observing system states in a trans-

mission task is necessary, end-to-end propagation delay poses serious difficulties to observe and

capture such information.

An important state to observe is available bandwidth within the transmission task
� �

, with
�

being an index in the series of tasks within the application. We take a client-server application as

an example, and assume that the observer located on the client can observe the number of received

data units1 during the time
� � � � ��� �

(
�

being discrete time instants),
� � � ���

. In reality, we assume

that � � � ��� is the number of data units actually received during
� � � ��� � �

. At the server side, the

actual number of data units sent by
� �

during
� � � � � � �

, denoted by �
� � � �

, is controlled by the

adaptor. Finally, � � ����� is the number of data units in flight in the transmission task
� �

. Note that

the transmission task
� �

itself is distributed at both client and server side, therefore, both � � ����� and

� � � ��� are internal states in
� �

, while � � � � � is also the output of
� �

. The above scenario is illustrated

in Figure 4.2.

Adaptor Observer
Observer

y i (k)

u i(k)
u i(k)

System States

end-to-end delay

iTranmission Task T

x

Transmission Task T i

In Flight z
 i
(k)

(k)
i

Sent

 Actually received

Observed

y

Server

Network

data units

Client

i (k)

Figure 4.2: States in the transmission task

The challenge is the following. Since the Agilos middleware architecture is deployed separately

in each of the end systems, if end-to-end delays are present, at any particular time instant
�

, the

server observer can only obtain previously observed states by the client observer, with the lag

1Data units are defined based on application-specific semantics. For example, in a video-on-demand application, a
data unit may be defined as a video frame.

48

equivalent to the end-to-end delay. This calls for an estimation algorithm in the server observer to

compensate the observation error, and to predict the states for the current time instant
�
.

4.2.2 Linear Model for the Transmission Task

As a preparation for later applications of analytical techniques in the optimal estimation theory

to estimate system states in the distributed transmission task, we present a precise analytical model

to characterize the internal dynamics of the transmission task
���

.

Review of the Generic Target Task

As previously presented in Section 3.3.1, in order to control any target task, we identify several

key parameters in this task, referred to as task states. When using the vector � to denote task states,

� to denote input to the task, � to denote task output, � to denote system noise within the task,

� to denote observation, and � to denote observation error, we examine a linear and discrete-time

model described by the following form, repeating the model we presented in the Equations (3.4),

(3.5) and (3.6):

� � ������ � ������� ���
	 � ������� ��� � � ���� �
(4.1)

� � ��� �� � ����� (4.2)

� ����� � � ����� � � ��� (4.3)

where
� ��

to
�������

, and
�

,
	

, and
�

are known transition matrices without an error. In

later discussions, we develop a concrete analytical model for the transmission task in a distributed

environment, based on the above abstract model.

49

Concrete Model for the Transmission Task

In order to develop a concrete model for the transmission task
� �

in a client-served based

distributed application, we consider two types of noise in the system. First, the data units in transit

in the network from server to client, � � ����� , may suffer from random and unpredictable variations

and disturbances �
�
� �����

, caused either by physical unstable conditions (in the case of wireless

links) or statistical multiplexing of network connections. Consequently, the received quantity of

data units during
� � � � � � �

, � � � � � , may also suffer from random disturbances � �� �����
. These are

obviously system noises caused by the external dynamics in the transmission task. Second, the

observer itself is also subject to random errors, which can be characterized as the observation

noise � � � ��� . Assume that the observed value is
� � �����

, we have

� � � ��� � � ������� � � ����� (4.4)

If we compare the Equation (4.4) to the Equation (4.1), we notice that � � ��� is actually a scalar

�
� �����

, � ����� is a scalar � � ����� . and � ����� is a scalar � � ����� . From the Equation (4.2), we have � � � ����
� � � ��� . Since � � ��� needs to contain � � ����� , we assign

� � � � �
, � ������

���
�

� � � ���

� � � ���

����
� (4.5)

In addition, from the definition of � � ����� , � � � � � , �
�
� � ���

and � �� �����
, we have

� � � � � � � ������� ��� � � � ����� ��� �
� � ���� ��� �

�
� ������� �

(4.6)

� � � ���� � � ������� � � � �� ������� �
(4.7)

It follows from Equations (4.6), (4.7), (4.1) and (4.5) that

50

�
���
�
� �
� � �

� ��
� ,
	

���
�
�
�

� ��
� and � ������

���
� � �� � ���

�
�
� �����

� ��
� (4.8)

This concludes the complete state space representation of the linear model for transmission

task
� �

.

4.2.3 Extending Control Algorithms to Distributed Environment

In Chapter 3, a customized PID control algorithm was given to model the adaptor, and a

weighted max-min fairness property was proved. A prerequisite for the fairness property to hold

is that the observer has the ability to observe complete global system states. For example, if the

resource being observed is CPU usage in the same end system, global states can be observed for

all competing tasks.

However, this is normally not the case in a distributed environment, when observing task states

within the transmission task. Since the observers act as Agilos components in the end system, they

do not have the ability to obtain states corresponding to all other connections sharing the network.

In such cases, the only observable states are the parameters used or allocated by the transmission

task itself, such as occupied bandwidth. Therefore, while the control algorithm still adapts to

variations in resource availability and shows stability and convergence properties, it lacks crucial

observations to guarantee any global fairness properties.

In distributed applications, the PID control algorithm adopted in the adaptor may be modified

as follows:

�
� � � ��

�
� � ����� ����� � � 	� � ����� � � � ����� �

��� � � 	� ����� � � � ����� � � � � 	� � ����� � � � � � ����� ����� (4.9)

where � 	� is the reference value expected at equilibrium, �
� � � �

is the actual number of data

51

units sent by
� �

, � � � ��� is the number of data units in transit from server to client, and
�

and
�

are configurable scaling factors. The stability and convergence proofs still hold as in the previous

chapter.

However, with the presence of end-to-end delays, it is inherently not trivial to accurately esti-

mate � � � � � directly at the server, since the number of data units in transit in
� � � � � � �

is not directly

observable.2 � � ����� , the number of data units received, is directly observable, but only at the client

side. Therefore, at the server side, the available values for �
� � ���

computation in the control algo-

rithm (Equation (4.9)) are imprecise, as the � � � ��� values (needed for � � ����� computation) previously

observed by the client are received by the server only after an end-to-end delay from the time of

observation. This leads us to the following approach. Instead of deriving � � ����� using only the

available observed values transmitted from the client to the server with an end-to-end delay, we

will adopt optimal state prediction techniques to estimate � � ����� at the current time instant, which

forms discussions in the next section.

4.3 Optimal Prediction of Task States In Transmission Tasks

In this section, we present an optimal prediction approach to optimally predict the current task

states in the transmission task, based on observed task states in previous time instants before the

end-to-end delay. The optimal prediction algorithms are implemented in the server observer, while

the actual observation is made in the client observer. Optimality in the prediction algorithms guar-

antees that the relative error between the prediction and actual values of task states is minimized,

i.e., a best possible guess is obtained. We adopt the optimal control and estimation theory [18] to

develop the proposed algorithms, and associate the theoretical solutions with the practical cases in

complex distributed applications, focusing on the transmission task.

2Equation (4.6) is part of the linear model of the transmission task, but it can not be easily utilized for the estimation
of ��������� since it is not observable directly.

52

4.3.1 The Need for Prediction

It is obvious from Equation (4.4) that the client observer is able to observe � � ����� as
� � � � �

,

with an observation noise � � � � � . However, from the control algorithm expressed in Equation (4.9),

we note that � � � � � is actually used in the adaptor. In order to derive � � ����� on the server from

the observed values
� � � ���

on the client, we assume that the client acknowledges all received data

units to the server, and that the server observer has the knowledge of the total number of data

units unacknowledged at the server up to the time instant
�
, denoted by � �� � � �

. Then, we have
� �� � ��� � �� � ��� � � �� � ���

as the observed values of � �� � � �
with an observation noise � �� � � �

. Naturally,

� �� �����
represents the total number of unacknowledged data units which are either in flight from

server to the client, which is � � ����� , or received by the client, but acknowledgments not yet received

by the server. We thus have

� � � ���� � �� � ����� ������
� �

� � ���
�
�����

� � ��� � (4.10)

where
� �

is the end-to-end transmission delay from client to server,
�
	 is the sampling time

interval between
� � ��� � � �

, assuming
� �	� �

	 . Ideally, if � � ��� ��� � ��
 � ������ ��� �
	
� � � ��� �

is known,

� � ����� can be computed and then used in the control algorithm of Equation (4.9). However, the

end-to-end delay, represented by
� �

, prevents the knowledge of � � ��� ��� � ��
 � � ����� ��� �
	
� � � ��� �

.

The last available observation is
� � ��� ����� ��� �

	
� �

. The need of predicting these values of � � ��� � in the

server observer before calculating � � ����� arises from this lack of knowledge. Figure 4.3 illustrates

the above scenario.

We use
�� � � � � to denote the predicted values of � � ����� . Assuming that

�� � � � � is already obtained

optimally, we can estimate � � � � � by the following Equation:

� � �������� �� � ����� ������
� �

��� � �
�
�����

�� � ��� � (4.11)

The problem then shifts to the development of appropriate mechanisms to obtain
�� � � ��� .

53

Acks

Observation
 Task

x (k)
i

u (k) i

z
 i
(k)

z
 i
(k)

d

d i

d i

t c

t c

y i (k)

y i (k)

iTranmission Task T Transmission Task T

 Actually received

Observation
 Task

Observed
Data units in flight

Data units sent

i

i (k)ys unacknowledged

Server Client

Time (t)kk-1k-2k- i
(current time instant)

z
 i

Last Available

History

end-to-end delay

Future
Predicted

Figure 4.3: State Prediction in transmission tasks

4.3.2 Mechanisms for Optimal Prediction

Definition of Optimality

Based on the Separation Principle [18], for a linear stochastic system where an observer is used

to estimate the system state, the parameters for the observer and controller are determined sepa-

rately. Informally, this means that we can develop an optimal prediction algorithm for � � ��� ��� � �

� � � � 	

�� � � � � � � � in the server observer, while still retaining complete freedom for adopting alter-

native control algorithms in the server adaptor.

With regards to the prediction accuracy, we prefer to design an optimal prediction algorithm

that minimizes the sum of squared errors between the predictions and values being estimated, i.e.,

a least-squares estimate. More precisely, if � � � � � � ����� � �� � � ��� , where
�� � � ��� is the predicted

values of � � � ��� at time
�
, we try to minimize the quadratic error cost function

� � � �� � � � � � ��� ��

�� �
� �����

. The optimal prediction approach, e.g., Kalman Filter, presented in this section is designed

to minimize
� � � � .

Requirements of an Optimal Solution

The optimal prediction problem is generally hard if the linear stochastic system is in its generic

form. However, it is proved in optimal control theory [19] that simplified prediction algorithms

54

can be adopted as an optimal solution in a special case, with two prerequisites. First, the system

random disturbances � � ���
and observation noises � ����� are uncorrelated white Gaussian-Markov

sequences with zero mean. This can be interpreted that: (1) random vectors in the same stochastic

sequence are independent of each other; (2) they can be uniquely characterized by a joint Gaussian

probability density function; (3) this density function has zero mean expectation, and (4) random

vectors in different stochastic sequences are uncorrelated with each other. Second, the initial sys-

tem state vector � � � � is also a Gaussian random vector with zero means.

We assert that the system states and noises in the transmission task
� �

observe such nature.

This assertion is based on the following characteristics.

(1) The states in the observer and the transmission task are not correlated, since the observers

are implemented separately in the middleware level, while the transmission task is part of the

application. This observation guarantees that the observation noise � ����� and the system noise

� �����
are uncorrelated.

(2) Within the transmission path, when the number of simultaneous connections � sharing the

same physical communication channel (statistical multiplexing in intermediate switches) is large,

we expect the changes in � in
�
	 is very small compared to � . This leads to the fact that changes

in � � � ��� due to activities of other connections will be small. Thus, when we model � � � ��� as a

process given by Equation (4.6) � � � ���� � � � � � � ��� � � ��� �
� � � �
� ��� �
� � � �

�
� � � � � �

, the term

�
�
� � � � � �

, which represents the dynamic disturbances caused by activities of other connections,

can be modeled as a zero-mean Gaussian white noise [14]. Even though when � � � ��� is small and

the connection is in a starting stage, the possibility of an increase is larger than a decrease, this

assumption of zero mean is justifiable when � � � ��� is sufficiently far from
�
. The same observation

also applies to � � � � � and � �� � � �
. This concludes that the random noise � � ����� is a white Gaussian-

Markov sequence with zero mean.

We conclude that random disturbances of the transmission task satisfy the requirements of

applying the simplified prediction algorithms, such as the Kalman Filter prediction algorithm that

follows.

55

Parameters in the Kalman Filter

We now apply the frequently used optimal estimation algorithm, Kalman Filter, to solve the

prediction problem of task states in the transmission task.

Equation (4.8) shows that both
� ��� ��� �

and
	 ��� ��� �

in Equation (4.1) are constants without

error. In addition, � ��� � � � are also known in the server observer without error in the interval
� � � � � ��� �

. We introduce the definition of the following terms:

(1) The expected values, or expectations,
� � � � of any random vector � is defined as the mean

vector of � . Formally,
� � � � � � � � � � � � ��� � � � � � ��� � � � , where

� � � � for a random variable � is

defined as
� � � ������

� � ��� � � � � � , if � � � � is the probability density function of � .

(2) The error covariance matrix � of � in the transmission task is defined as:

� � � �� � � � � � ��� � �� ����� � � � � ��� � �� � ����� � � (4.12)

(3) The dynamic system disturbance � is a white, zero-mean Gaussian random sequence show-

ing the following properties, where � �����
is the system noise covariance matrix:

� � � � ����� �
(4.13)

� � ���� � � � � ��� � ����� � � �
(4.14)

� � � � ��� � �
	 � � � � � � �
	�� ���
(4.15)

(4) Similarly, in Equation (4.2) and (4.3),
�

is a constant and the observation noise is modeled

as a white, zero-mean Gaussian random sequence that is uncorrelated with the system disturbance:

� � � � � � � � (4.16)

 ������ � � � � � � � � ��� �
� �

(4.17)

56

� � � � ��� � �
	 � �
� � � � � 	 � � �

(4.18)

� � � ����� � �
	 � � � � � �
all
	

and
���

(4.19)

where
 � ���

is the observation noise covariance matrix. According to Equation (4.5), � � ���

is a scalar � � � ��� , it follows that
 � � �

is the variance of � � � ��� , ��� � � � � � ��� � �� �

, when � � � ��� is a

Gaussian distribution
��� ��� �

.

In practice, it is necessary to determine � � ���
and

 � � �
offline. These covariance matrices

indicate the level of confidence in the system model and observations, respectively. If one were

to increase � , this would indicate that stronger noises are driving the dynamics. Consequently,

the rate of growth of the elements of the error covariance matrix � � ���
will also increase, which

increases the filter gain
� � ���

, thus weighing the measurements more heavily. Therefore, by in-

creasing � , we in effect put less confidence in the system model. Similarly, increasing

indicates

that the observations are subject to a stronger corruptive noise, and therefore should be weighed

less by Kalman Filter.

Operations of Kalman Filter

Based on these definitions, Kalman Filter operates recursively in a predict-update manner.

Informally, we may describe the operations in the following phases. Formal descriptions are post-

poned to the next section.

Update

i (k-1) zi (k)

x (k-1) x (k-1)

Observed

Estimated
- +

x (k) x (k)
- +

Phase

k-1(k-1)- (k-1)+

t c
PropagationUpdate

(k)- k (k)+

Update

Time

PredictPredict Update

z

Figure 4.4: The Kalman Filter in Operation

57

(1) Prediction Phase occurs at time
� � , that is, before observations are made at time

�
. State

predictions
�� � ����� are made for states � � � ��� , and error covariance predictions � � ����� is also made.

(2) Kalman Filter Gain Computation Phase occurs between
� � and

���
, where

� �
is the time

after
�

. The Kalman Filter gain matrix
� �����

is computed to be used later in the Update Phase.

(3) Update Phase occurs at time
� �

. The Kalman Filter gain matrix
� � � �

is used along with

the new observation � ����� . The error covariance matrix � � � ��� is also updated from previously

predicted � � � ��� in the Prediction Phase.

These phases are executed repetitively till the time when the latest observation is available from

the client observer. After this time instant, we can deploy a linear-optimal predictor to predict the

state and its error covariance on the basis of all information that are available without observation.

Denoting the time of latest available observation on the client as
� � � 	

�� � � for transmission task
� �

,

where
�

is the present time instant on server, the linear-optimal predictor starts with the latest state

estimate update phase using Kalman Filter, i.e.,
�� � ��� � � 	

�� � � � , and then recursively applies the state

prediction phase to calculate
�� ��� � ��� � ��� ��� � �
 � � � � 	

�� � � � � � � � . According to Equation (4.5),

we have the following for transmission task
���

:

�� � ��� �� ���� ��� ����� �
 � ����
� �
�
	

� � ����� �
(4.20)

Equation (4.20) concludes our prediction mechanisms utilizing the Kalman Filter. When the

estimated values of � � � ��� are applied to Equation (4.10), � � ����� can be obtained and thus applied to

the control algorithm in the adaptor as presented in Equation (4.9).

Formal Steps in the Kalman Filter

In the following equations, we distinguish between estimates made before and after the up-

dates.
�� � ����� is the state estimate that results from the prediction equation (4.21) alone (i.e. before

the observations are considered), and
�� � � ��� is the corrected state estimate that accounts for the ob-

servation made. � � ����� and � � ����� are defined similarly. For completeness, the initial conditions

58

are
�� � � � � and � � � � � .

� State Estimate Prediction Phase:

�� � � ��� �� �� � � ����� � � 	 � � ����� � (4.21)

� � � � �� � � � ������� � � � � � ������� �
(4.22)

� Kalman Filter Gain Computation Phase:

� � ���� � � ����� � � � � � � � ��� � � � ����� � ��� (4.23)

� Update Phase:

�� � � ��� �� � � ����� � ����� � � � ����� ���� � ����� � (4.24)

� � � ��� � � � � � � ��� �
� � � ��� ��� � ����� � ��� (4.25)

4.4 Summary

In this chapter, we focus on the development of an optimal estimation strategy when some of

the system states are not observable, and must be estimated, due to end-to-end delays between

end systems in a complex distributed application. We have extended the Task Control Model to

the distributed environment, modeled the transmission task in a state-space representation, and

presented an optimal state prediction mechanism to overcome end-to-end delay in distributed state

observations. The optimal prediction mechanism proposed in this chapter is integrated in the

observer, as a middleware component and part of the Agilos architecture in a larger scale.

59

Chapter 5

Dynamic Reconfigurations

5.1 Overview

Chapter 3 and 4 discussed control and estimation problems in the Task Control Model, focus-

ing on the adaptor and observer in Agilos. The major contribution of the Task Control Model is

that it addresses system-wide global adaptation properties, such as stability guarantees, adaptation

agility and fairness. However, the issues related to the mapping between system-wide adaptation

and application-specific adaptation choices still remain to be addressed. This chapter discusses the

design of the configurator, located in the second tier of the Agilos architecture. We present the

Fuzzy Control Model [20] in a top-down fashion, which forms the theoretical basis of designing

both functional and quantitative configurators. The goal of the Fuzzy Control Model is to appropri-

ately represent application-specific adaptation choices in an application-neutral processing model,

so that it is flexible enough to be aware of the adaptive capabilities of a wide range of applications.

Within the scope of the Task Control Model, the configurator may be recognized as an ex-

tension to the “controller” component of a closed-loop control process. Before introducing the

configurator, such a component is represented by the adaptor in Agilos. The role of the configura-

tor is to bridge between the application-neutral output of the adaptors and the application-specific

adaptation actions. Particularly, the configurator utilizes the Fuzzy Control Model to translate

the control signals generated by the adaptors into actual adaptation choices, which are invoked in

the application. Note that this translation mechanism differs and supersedes the QoS translation

60

between different categories of QoS parameters, in the sense that it translates the control actions,

rather than parameter values. In Figure 5.1, we illustrate the role of configurator in the Task Control

Model.

Adaptor

Observer

Configurator

Resource availabilityObserved values

Application-neutral
 control actions

Application-specific
adaptation choices

Target load

Application

Figure 5.1: The Role of Configurator in the Task Control Model

The key contributions of this chapter are the following. (1) We present strong motivations

to the introduction of the Fuzzy Control Model, by showing why fuzzy control theory is chosen

rather than alternative models. (2) We show that our approach is feasible when dealing with non-

linearities of different control choices, such as a hybrid combination of parameter-tuning actions

and reconfiguration choices. These choices are naturally nonlinear and mostly discrete, while

the rules that guide the decision-making process are mostly intuitive and heuristic. These rules

are application-specific and determined manually with the assistance of QualProbes (presented in

Chapter 6) to best fit the interests of the particular application. (3) We illustrate the application of

fuzzy control theory in the design of the configurator, so that the adaptation choices and prefer-

ences for different applications can be expressed explicitly in the rule base and member functions

for each linguistic value. The rule base provides linguistic rules that the inference engine is based

on, and the fuzzy inference engine generates manipulating signals that control the actual applica-

tion. (4) We show in details the internal works of the fuzzy inference engine, which implements the

decision-making process that maps from application-neutral control signals to application-specific

adaptation choices.

61

5.2 Motivations behind the Fuzzy Control Model

Similar to the role of the Task Control Model in the design of adaptors, we utilize the rich

semantics and features in existing fuzzy logic and fuzzy control theory to design the configurators,

which we refer to as the Fuzzy Control Model. In this section, we discuss the reasons that motivate

the adoption of the Fuzzy Control Model.

5.2.1 Division between Application-Neutral and Application-Specific

Components

The objective of designing the configurator is to design a mapping process, which translates

from application-neutral control signals generated by the adaptors, to application-specific adapta-

tion choices, including parameter-tuning and reconfiguration choices. Let us assume that we focus

on one specific application, such as the OmniTrack. Intuitively, the ad-hoc approach is to hard-code

a specific configurator that caters to the needs of this application only, and hand-tune the mapping

process implemented by such a configurator. However, such an approach is obviously not flexible,

since a different application requires re-implementing the configurator.

Consequently, a more flexible design is to extract the application-specific adaptation policies

and specify them in a separate input file, while keeping the mapping process itself generic to all

applications. The design of the Fuzzy Control Model follows this principle with a clean division

between the generic fuzzy inference engine and the application-specific rule base, that “fuels”

the fuzzy inference engine. With the fuzzy control theory, the inference engine precisely models

the application-neutral mapping process, yet flexibility is offered by switching the rule base for

different applications. The rule base is specified with a input file that the inference engine uses

when the mapping process is activated.

The flexibility requirements in the design of the configurator rule out of the possibility of adopt-

ing some alternative approaches that are less flexible, such as using non-linear control theory. Since

it is hard to specify the precise mathematical models for the diversely different target application

62

to be controlled, non-linear control theory is not feasible to be utilized to design our configurator.

5.2.2 Advantages of the Fuzzy Control Model

The advantages of adopting the Fuzzy Control Model are the following:

1. Taken the fact that multiple reconfiguration options and parameter-tuning possibilities exist

in a typical complex application, the controllable regions and variables within the application

are in most cases discrete, non-linear and complex. In these applications, the model for the

target task is nonlinear in nature. On the other hand, a control system based on fuzzy logic

can be conceived as a nonlinear control system, in which the relationships between controller

inputs and outputs are expressed by using a small number of linguistic rules stored in a rule

base. The nonlinearity of the fuzzy controller matches naturally with the inherent nonlinear-

ities with respect to controllable regions and adaptation possibilities within an application.

Such a fuzzy controller is the foundation of the design of configurators.

The reason why we have chosen to use fuzzy logic rules rather than a plain rule-based system

is as follows. First, the inference process for a plain rule-based system is based on binary

logic, which is a subset of fuzzy logic. We believe that the fuzzy logic theory is able to

provide better facilities to express richer semantics and a more complicated mapping process.

Second, a plain rule-based system is only able to react on comparisons with threshold values,

which eliminates the need for membership functions. Threshold values are sufficient if there

are only a few adaptation alternatives to choose from. However, if there are many alternatives

and each have overlapping resource needs, attempting to make correct adaptation decisions

by only threshold values is hard. On the contrary, fuzzy rules, along with the fuzzy inference

process, are able to provide a natural solution to such a highly complex scenario. Finally,

if the membership functions are specified as simple shapes such as trapezoids or triangles,

a system based on fuzzy rules presents equivalent performance overhead with respect to the

mapping process, if compared to a plain rule-based system.

63

2. The Fuzzy Control Model is inherently generic and highly configurable. Both the rule base

and the definition of membership functions for linguistic values can be configured to be

application-specific. The Fuzzy Control Model offers a common design for configurators

suitable for all applications, without loss of generality and configurability.

3. The Fuzzy Control Model includes the fuzzy inference engine (with its linguistic rule base),

which represents the decision-making process and resembles natural human communication

and reasoning. For this reason, it is natural and straightforward for the application to specify

its own adaptation preferences and decisions in the form of linguistic values and rules. The

merits of the simplicity, however, do not affect the flexibility and power of fuzzy control

systems to define the most complicated nonlinear multiple-dimensional control surface.

4. Nowadays, we are faced with applications that have increasingly complex adaptation mech-

anisms and behavior, for which different modeling representations (e.g., piecewise linear

models, radial-based function models) may be difficult to obtain. With an appropriately de-

fined rule base, the Fuzzy Control Model may lead to models that describe the adaptation

behavior of applications sufficiently well. Thus, such a fuzzy modeling approach may turn

out to be a useful complement to traditional modeling and control approaches, such as those

used in adaptors, when both the complexity and uncertainty about the application increases.

5. The Fuzzy Control Model is able to quickly express the control structure of a system using a

priori knowledge, and to depend less on the availability of a precise model of the target task

being controlled. This is of great practical significance, since precise modeling is usually

the bottleneck for the application of effective model-based control systems. In most cases,

the rule base in the Fuzzy Control Model leads to compact descriptions of application-level

adaptation behavior, as well as natural handling of any inherent nonlinearities in the closed

control loop. Without the assistance of such a fuzzy modeling method, implementation of

such a controller could be difficult, if not impossible.

64

Both quantitative and functional configurators are designed with the Fuzzy Control Model. The

only difference is that they have a different defuzzification process focusing the parameter-tuning

actions and reconfigurations, respectively. We discuss such a minor design difference in Section

5.3.4. The user configurator does not enlist the assistance of the Fuzzy Control Model. Instead,

it presents a user interface so that the user may interact with the application, in order to activate

reconfigurations and tune the parameters dynamically during application runtime.

5.2.3 A Comparison with Other Alternative Approaches

There are other alternative models that the configurator may take advantage of in its design. In

this section, we compare the Fuzzy Control Model with three examples of alternative models in

details. Such comparisons strongly motivate the selection of the Fuzzy Control Model.

Threshold Values

The most straightforward approach of the mapping process is to activate certain adaptation

choices whenever the output of resource adaptors increases or decreases beyond certain threshold

values. This is the approach adopted by many previous research work [6] [21]. Essentially, this

model resembles the behavior of step functions, in the sense that reconfiguration options are either

turned on or off based on a comparison with threshold values. The obvious advantage of this model

is that the mapping process is easy to implement when there are only one or a few application-

specific parameters to adapt. The disadvantage is that this model lacks the expressive power to

model a complicated mapping process that is beyond a clear-cut solution. In fact, if we specify the

membership functions in the Fuzzy Control Model as step functions that the only possible values

are
�

and
�
, they are identical with the specification of threshold values. This explains that the

Fuzzy Control Model is a superset and it is capable in modeling a more complex mapping process.

65

Discrete-Parameter Markov Chains Model

An alternative approach is to use the discrete-parameter Markov chains model. Each individ-

ual state in the Markov chain is used to model the different execution or fidelity levels within the

application. A transition matrix that contains single-step transition probabilities. These transition

probabilities are capable of expressing a more complicated conversion process and transitional

conditions. However, there are two intrinsic drawbacks to this approach. First, the specification of

all the conditional probability values in the transition matrix is inherently hard, since they may not

be intuitively derived from the adaptation policies. In comparison, the specification of fuzzy rules

are straightforward since the linguistic values correspond naturally to the semantics of the applica-

tion QoS parameters. Although the specification of membership functions are less straightforward,

the QualProbes, which are introduced in Chapter 6, provide important insights into the adaptive

behavior of the applications, and are able to significantly help such a design process. Second, since

each state in the Markov chain corresponds to a different execution or fidelity level in the appli-

cation, such a level consists of a set of parameter values and reconfiguration options. Because of

this, such a model restricts adaptation possibilities to a set of predefined levels, and does not allow

each parameter and reconfiguration option to be tuned freely and independently. These drawbacks

are exactly the advantages of the Fuzzy Control Model, where adaptation choices are specified

with a set of rules, which are intuitive for the application developer to specify and tune. Further

discussions of the advantages and problems of applying the Markov chain model are also found in

previous work on video transmissions over IP networks [22].

Non-linear Control Theory

There are alternative domains in the control theory that are particularly applicable to the needs

of non-linear time-variant target systems. Examples of these domains are adaptive control and

robust control theory. Robust control theory attempts to establish a linearized model for non-linear

systems, while adaptive control theory attempts to change the control algorithms by on-the-fly

66

system identification.

One of the major requirements to apply these models is to have an initial mathematical model

for the control target to start with. In the adaptive control theory, for example, such a basic analyti-

cal model for the control target is required for the system identification process to work. However,

it is almost impossible to come up with a precise analytical model for a specific target application,

due to the various adaptation choices and alternatives available.

Compared to the above approaches, modeling the mapping process with the fuzzy control the-

ory does not need an analytical model for the target application in order to design the control

algorithms, since the controller is designed as a set of linguistic rules. Relaxing this requirement

shows a clear advantage of adopting the Fuzzy Control Model.

5.3 Design of the Configurator

As stated in the previous section, the configurator takes the output of the adaptor as input, and

generates actual manipulating and control actions to activate reconfiguration or parameter tuning

within the application. The Fuzzy Control Model, shown in Figure 5.2, is used for designing

both quantitative and functional configurators. The model comprises of five components built

within the configurator. The fuzzy inference engine implements particular fuzzy control algorithms

defined in the application-specific rule base and membership functions for linguistic values. The

input normalizer, fuzzifier and defuzzifier prepare input values for the fuzzy inference engine, and

convert fuzzy sets (the decisions made by the inference engine) to the actual real-world control

actions for the applications.

While the architecture of the Fuzzy Control Model is generic and can be applied to any appli-

cations by configuring the rule base and membership function definitions, we use the OmniTrack

application as a concrete example to elaborate our design of the configurator.

67

CPU

FuzzifierInput Normalizer DefuzzifierInference
Fuzzy

Engine

Membership
Fuctions

Rule Base

Control
Actionsx

in

u(k)

u(k)

Bandwidth

Configurator

 for
Adaptor

Adaptor
for

Figure 5.2: The Architecture of the Fuzzy Control Model

5.3.1 The Rule Base and the Inference Engine

The decisions of selecting linguistic values and rules in the rule base are based on a combina-

tion of human expertise and the output of QualProbes (presented in Chapter 6) operating on the

particular application. The tradeoff is to decide on a minimum number of linguistic rules, while

still satisfying the desired critical performance criterion in order to achieve an acceptable adapta-

tion performance. All of the linguistic values used in the rule base should use words of a natural or

synthetic language, such as moderate or low for the linguistic variable cpu. These values are

modeled by fuzzy sets. In most cases, this form of representation leads to a compact description of

the adaptation behavior within the application.

The design of the rule base is a two-phase process. First, the linguistic rules are determined.

Second, membership functions of the linguistic values are set. In the configurator, the first phase

of design generates a set of conditional statements in the form of if-then rules. The generic form

is:

�
 ��� � if
�

� is �
 ���� and ����� and
�
� is �
 ���� then � is �
 ���

����� �����

�

�

� � if
�

� is �

�

�� and ����� and
�
� is �

�
�� then � is �

�
� (5.1)

where
�

� �����
�
� and � are linguistic variables, �
� �� ����� �
� �� and �
 � � (

� ��� ����� ���) are linguistic

values, defined by fuzzy sets
	�
� �� �����

	�
� �� and
	
�
 � � (

� � � ����� ���), respectively. These linguistic

values are also characterized by their membership functions,

������ � � � and
�� ���� � � � (
� ��� ����� ���),

68

respectively, with � and � being the elements of universal sets
�

and � . Each rule defines a fuzzy

implication that performs a mapping from fuzzy input state-space to a fuzzy output value. After the

defuzzification process, the fuzzy output value directly corresponds to a particular control action

within the application.

The fuzzy inference engine operates by using the dual concepts of generalized modus ponens

and compositional rule of inference [23]. In our implementation of the fuzzy inference engine, we

adopt the C-FLIE inference engine implementation [24] as well as its input format for specifying

the rule base and membership functions. For the mathematical completeness of this chapter, we

summarize the internal mechanisms as follows.

The concept of generalized modus ponens is derived from the operation of modus ponens in

binary logic. Modus ponens is the operation to draw a conclusion from two premises. Assume

that we have the proposition � � ” � is � ” and the implication if-then rule ��� � � ”if � is � then

� is � ” as true, we can conclude that the proposition � � ” � is � ” has to be true. In fuzzy logic

theory, Generalized modus ponens extends the above operation in the following manner. If we

have propositions � � ”
�

is � ” and � � ” � is � ” where
�

and � are linguistic variables and � and

� are linguistic values, when both the if-then implication rule ��� � � ”if
�

is � then � is � ”

and proposition ��� � ”
�

is ��� ” is valid, where �	� is not necessarily the same as � , we can perform

the generalized modus ponens and conclude �
� � ” � is ��� ”. The membership function
 of ���
is calculated by using the ���� �	� compositional rule of inference and Larsen’s product operation

rule:

 ��� � � � ����� �

 � � � ���

 � � �
 � � � ��� (5.2)

where
�

is a t-norm operator. An usual selection is the intersection definition of t-norm: �
� �

min
�

�
� � �

.

When multiple input linguistic variables exist in the rule, inference can be extended by in-

terpreting the fuzzy set of �
 � � , which is
	�
 � � , as the product of fuzzy sets �
 � ��

� ����� � �
 � �� . Its

69

membership function is defined as:

�� �������������

 � ��
�

� � �
� ����� � � � �

�� �� � � �

���

�� �
�

� � �
��� ����� �

�� �� � � � � (5.3)

where
�

is the previously defined t-norm operator and
� ��� ����� � � .

If a rule base contains multiple rules, overall decision of the inference engine is obtained by tak-

ing the union of
	
�
 � � � ��� ��� ����� ��� �

, which is the fuzzy sets of linguistic values �
 � � � calculated

by Equation (5.2) and (5.3). The calculation is as follows:

�� � � � �	��
�
�
 � � � � � � � � �
�� � � � � � � �� ����� �
 � � � � � � � � (5.4)

where
�

represents the s-norm operator for defining disjunctions in approximate reasoning. A

usual selection is �
� �

max
�

�
� � �

.

5.3.2 Rule Base for OmniTrack

We consider the OmniTrack application as an example for designing the rule base and mem-

bership functions used in the configurator. As we noted, the ultimate objective and most critical

application-specific quality parameter in the application is the tracking precision. If the precision

is compromised, the objects lose track and other parameters are not meaningful.

In this application, the adaptation possibilities can be classified into two categories. First, con-

trol actions may occur in order to adapt to transmission bandwidth variations, so that bandwidth

requirements within the application are adjusted to maintain tracking precision. Second, adapta-

tions may take place to adapt to varied availability of CPU cycles, so that CPU requirements are

adjusted. For other complicated applications, memory or secondary storage requirements are also

taken into consideration.

Within the above categories of adaptation possibilities, there are two different kinds of adapta-

tion choices. First, parameter-tuning actions try to tune quantitatively continuous parameters, such

70

as image size, to meet adaptation goals. These actions are controlled by the quantitative configu-

rator. Second, application-level reconfiguration choices are available so that the resource demands

of applications may be adapted by choosing among available configuration options, each having

diverse requirements for resources. This process sometimes involves an alteration in the Task Flow

Graph of the application, and is controlled by the functional configurator.

As an example, we have identified some of the adaptation possibilities in the basic client-

server relationship of OmniTrack as follows, divided into two major categories. A more elaborate

discussion of all adaptation choices in OmniTrack is presented in Section 10.2.

� Adaptation of Communication Bandwidth Requirements. Since the application is client-

server based, sufficient bandwidth is required for preserving tracking precision. First, the

following options exist for parameter-tuning actions for uncompressed image transfer. (1)

The image size can be enlarged or reduced to adjust bandwidth requirements, by chopping

the edges. The tradeoff is that the smaller the image, the higher the probability that the

objects move out of range. (2) The frame rate of live video streaming can be increased

or decreased. (3) The color depth can be altered. Existing choices for coding one pixel

are 24 bits RGB, 16 bits packed RGB, 8 bits grayscale or 1 bit black-and-white. Second,

if we consider reconfiguration choices, compression and corresponding decompression can

be activated, using available choices such as Motion-JPEG and streaming MPEG-2 among

others. Bandwidth requirements are reduced dramatically at the expense of increased CPU

load.

� Adaptation of CPU Requirements. The tracking algorithms, referred to as trackers, are in-

herently computationally intensive. In the current implementation, there are three frequently

used trackers. Line tracker and corner tracker are edge based algorithms, the SSD tracker is

a region based algorithm. These algorithms present diverse computational requirements. In

addition, the application can run multiple trackers simultaneously tracking multiple objects.

The tradeoff is increased computation load. These facts motivate the following reconfigu-

71

ration choices: (1) Add additional trackers to utilize idle CPU; (2) Drop active trackers to

decrease CPU demand; (3) Replace existing trackers by less or more computationally in-

tensive trackers. Finally, parameter-tuning adaptation may also be applied by modifying the

size of the tracked region of a specific tracker, effectively tuning the computational load of

the tracker. The tracked region is defined as the searching range of the tracker in the feature

detection stage of computation.

The adaptation measures described above make it possible to design the rule base for the basic

client-server pair in OmniTrack, following the generic form given in the Equation (5.1). As Figure

5.2 shows, the Fuzzy Control Model takes the output of multiple adaptors as input, each of which

corresponding to one type of resource. In the particular case of OmniTrack, we focus on two types

of resources: CPU cycles and transmission bandwidth. In our rule base, the linguistic variable cpu

corresponds to the values �
�����

generated by the adaptor with respect to the CPU resource, and the

linguistic variable rate corresponds to the values �
�����

generated by the adaptor with respect to

transmission bandwidth. The range of measuring linguistic variable cpu is
� � � � � ��� �

with an unit

of 0.1% of CPU load, and the range of measuring linguistic variable rate is
� � � � � ��� �

with an unit

of kilobytes transmitted per second. Before processing in the inference engine, the numerical crisp

values � � are first linearly normalized to the above ranges and units, then mapped to a fuzzy set

by the fuzzification process, of which the mathematical details are documented as follows for the

mathematical completeness of this chapter.

A fuzzy inference engine calculates fuzzy sets as results, taking fuzzy sets as inputs. In the

above equations, the calculated union of fuzzy sets
	
�
 � � � ��� ��� ����� � � �

is the output of the infer-

ence engine, while the inference rules and the fuzzy set
	� � are the inputs.

However, we do not normally have the fuzzy set
	��� in advance, since we normally deal with

numerical crisp values. The fuzzification process takes the numerical crisp value � � � as input, and

generates a fuzzy set
	��� . If there is no uncertainty in the numerical values, a simple fuzzification

process can be:

72

 � � � ��
	

�

�
���

if � � � �
� �

if � � � � �
(5.5)

Otherwise, if there is some uncertainty in the numerical value � � � , the membership values of

the elements of
	� � can be selected such that,

 � � � � is taken as

�
if � � � � , and

 � � � � decreases

linearly from
�

as � moves farther away from � � � .

In the former case where no uncertainty is involved, since
	��� will contain only a single element

with membership value equal to
�
, calculation in Equation (5.2) will become

 ��� � � �

 � � � � �
 � � � � (5.6)

In the case of multiple input variables, we substitute Equation (5.3) in (5.6) and obtain

 ��� � � � min
�

 � � � � � ��� ����� �

 � � � � � � �
 � � � � (5.7)

to compute the output of one inference rule. Finally, we compute an overall decision by ap-

plying Equation (5.4) to aggregate the calculated
	
�
 � � � � � � � ����� ��� . This shows that the simple

fuzzification process shown in Equation (5.5) simplifies the inference process in the inference en-

gine.

There are two inference outputs using the rule base, corresponding to the bandwidth adaptation

and CPU adaptation actions, respectively. The linguistic variables used for the output are rate-

action and cpuaction, respectively. Each linguistic value that the variables rateaction

and cpuaction corresponds to a particular control action, such as size for image size in the

quantitative configurator, and compress for the functional configurator. With respect to the input,

the linguistic values used for both cpu and rate are low, moderate and high.

We present an example of the rule bases for control actions related to the basic client-server

relationship in OmniTrack, using the input format in the C-FLIE implementation of fuzzy inference

73

engine. Particularly, an example of the rule base defined for the configurator may be:

if (cpu is low) and (rate is moderate) then rateaction:= size;
if (cpu is moderate) and (rate is moderate) then rateaction:= size;
if (cpu is high) and (rate is moderate) then rateaction:= size;
if (cpu is high) and (rate is low) then rateaction:= compress;
if (cpu is high) and (rate is high) then rateaction:= compress;
if (cpu is moderate) and (rate is high) then rateaction:= raw;
if (cpu is low) and (rate is high) then rateaction:= raw;
if (cpu is low) and (rate is low) then rateaction:= blacknwhite;
if (cpu is moderate) and (rate is low) then rateaction:= blacknwhite;

if (cpu is moderate) and (rate is high) then cpuaction:= adjustregion;
if (cpu is moderate) and (rate is moderate) then cpuaction:= adjustregion;
if (cpu is moderate) and (rate is low) then cpuaction:= adjustregion;
if (cpu is low) and (rate is moderate) then cpuaction:= droptracker;
if (cpu is low) and (rate is high) then cpuaction:= droptracker;
if (cpu is low) and (rate is low) then cpuaction:= droptracker;
if (cpu is high) and (rate is low) then cpuaction:= addtracker;
if (cpu is high) and (rate is moderate) then cpuaction:= addtracker;
if (cpu is high) and (rate is high) then cpuaction:= addtracker;

5.3.3 The Design of Membership Functions

In normal design practices of fuzzy control systems, Gaussian, triangular or trapezoidal shaped

membership functions are used to define the linguistic values of a fuzzy variable. Since triangular

and trapezoidal shaped functions offer more computational simplicity, we choose them to define

all membership functions for linguistic values used in the rule base.

The particular design of these membership functions is largely application-specific. In our

visual tracking application, we have defined the membership functions as shown in Figure 5.3, in

four universal sets for variables cpu, rate, cpu demand and rate demand, respectively.

5.3.4 The Defuzzification Process

Since the decision of the inference engine is expressed in fuzzy sets, in order to be able to

use it as a control signal for applications, it has to be mapped to reconfiguration options or crisp

numerical values of parameter-tuning actions. The defuzzification process produces a non-fuzzy

output, �
���

�
, whose objective is to represent the possibility distribution of the inference. There is no

74

rate rateaction

cpuaction0

1
moderate

0

1

0

1

2000

1000

KB/sec

1000

Grayscale RGB16_colorb&w

compress0

1

2000

KB/sec

low high

low high

size

raw

replacetracker

droptracker adjustregion

addtracker

0.1% 0.1%

cpu

moderate

Figure 5.3: Membership Functions of the Linguistic Values

single method for performing the defuzzification. In fuzzy control systems, because of the ability

of generating smoother control surfaces, the Center of Gravity method is frequently used. Detailed

mathematical definition of the Center of Gravity method is presented as follows.

The Center of Gravity method is a frequently used method for the defuzzification process. This

method divides the integral of the area under the membership function of the output fuzzy set

(Equation 5.7) into half, and the defuzzified value �
���

�
marks the dividing point. Formally, in the

continuous case this results in

�
� �

� � �
 � � � � � � �

�
 ��� � � � � � (5.8)

Once �
���

�
is obtained, the mapping method to the actual control actions varies in different types

of configurator. In functional configurators, if in the rule base,
	
� is a fuzzy set corresponding

to a reconfiguration option (e.g. droptracker, etc.) and
 � � �
���

� � � �
, the corresponding

reconfiguration is activated. In the quantitative configurator, if
	
� is a fuzzy set corresponding to

a parameter-tuning action associated with the parameter � (e.g. size associated with image size)

and the tuning range
� � � � � � � ��� � � , then the modified value of � is set at

� � � ��� � � � � � � � �
 � � �
���

� ��� � � � � (5.9)

when
 � � �
���

� � � �
.

75

In our specific implementation of quantitative configurators, the tuning range
� � � � � � � ��� � � is

specified for the parameter � in a separate configuration file, the details of which is presented in

Chapter 9.

5.3.5 An Example of the Inference Process

To summarize the internal fuzzy inference process presented mathematically from Section 5.3.1

through Section 5.3.4, we visually illustrate the mathematical inference process from the input to

the output control actions in Figure 5.4.

evaluation of
 inputs

calculation of
output

rule 1: if
(rate is moderate) and (cpu is moderate) then cpuaction := adjustregion

rule 2: if (rate is moderate) and (cpu is high) then cpuaction := addtracker

300 1000 1500 KBytes/sec

300 1000 1500 KBytes/sec
0

1

0

1

0 0

0

1 1

1 1

0 0
100 580 1000

100 580 1000

0.1% 0.1%

0.1%
0.1%

0.4
0.4

0.22
0.22

453

Center of Gravity

0.62

Control Action:
Adjust to region size = (RegionSize max - RegionSize min) * 0.62 + RegionSize min

 = (10000 - 900) * 0.62 + 900
 = 6542 (pixels)

moderate

moderate high

moderate high

moderate

adjustregion

addtracker

cpuaction

cpuaction

Figure 5.4: An Example of the Inference Process to Compute Control Actions

In Figure 5.4, we assume that the output of CPU and network adaptors is
��� � � % and

� �����

76

KBytes/sec respectively. If we assume a unit of
� � � % for CPU load cpu and

�
KBytes/sec for

network throughput rate, this leads to an input cpu value of
��� �

and a rate value of
� � ���

.

From the definitions of membership functions specified in Figure 5.3, we note that the current

rate value is a member of the fuzzy set “moderate” to the full extent (membership value is
�
),

while the cpu value is a member of the fuzzy sets “moderate” and “high”, with membership values

of
� � � � and

� � � � , respectively. Their membership values of any other fuzzy sets are zero.

Once the above is acknowledged, each rule in the rule base is visited, and the minimum of

membership values of the inputs to the corresponding linguistic values are found according to the

Equation 5.3 and then the corresponding (for each rule) output linguistic value is scaled according

to Equation 5.2. To be more specific, with the membership values of input variables, only the

following two rules yield nonzero scaling factors and thus contribute to the calculation of the

output:

if (rate is moderate) and (cpu is moderate) then cpuaction := adjustregion
if (rate is moderate) and (cpu is high) then cpuaction := addtracker

After applying the inference process shown in Equation 5.3 and 5.2, these two rules yield
� � � �

and
� � � � , respectively, as visually illustrated in Figure 5.4. If we consider the first rule, according

to the linguistic rule, the output (cpuaction) is “adjustregion”, whose membership function is

adjusted by a value of min(
� � � � � �). Similarly, in the second rule, the output is “addtracker”, whose

membership function is scaled by a value of min(
��� � � � �). The results of membership function

adjustments are shown as shaded regions in the top two curves of the “calculation of the output”

section of the figure.

For the calculation of the actual output, we take the union of all scaled output fuzzy sets ac-

cording to the Equation 5.4, then by using the Center of Gravity defuzzification method shown

previously in this section, a numerical value for the output variable cpuaction is calculated as

� � �
in this example (with the unit being

� � � % of CPU load). This value is then mapped to the

actual parameter values to be tuned according to the Equation 5.9. According to the membership

function of “adjustregion”, � � �
corresponds to a membership value of

� � � �
. On the other hand, ac-

77

cording to the membership function of “addtracker”, the corresponding membership value is
�
. In

Equation 5.9, only “adjustregion” is activated since “addtracker” does not satisfy the condition that

 � � �
���

� � � �
. The result, as shown in the figure, is to activate the adaptation choice “adjustregion”

and tune each of the tracker region size of the SSD trackers in the application to
� � � � pixels.

5.3.6 The User Configurator

The user configurator is a completely application-specific component that is designed to inter-

act with the user, so that the user may participate in the decision-making process of application-

aware adaptation. Visual tuning and selection interfaces are provided for the user to directly ma-

nipulate and adapt the application.

The introduction of the user configurator complements the functionality of the quantitative and

functional configurators with the Fuzzy Control Model. The assumption is that, in most cases,

completely automatic adaptation control is not the optimal solution with respect to achieving the

highest possible degree of user satisfaction, since it deprives the user’s ability to participate in the

decision-making process when automatic adaptation is not sufficient to achieve the goals.

For the OmniTrack application, the user may interact with the user configurator to pan or tilt

the camera on the tracking server so that the object does not roam out of bounds. In other cases,

it may prefer to switch to a server with a different angle of view, in order to capture a better shape

of the object for tracking. Both adaptation activities enhance the quality of tracking and the user

satisfaction. However, since they involve interpretation of semantics that is not easily observable,

they can not be activated automatically by Agilos. In these cases, user interaction is critical to

achieve the overall satisfaction.

The implementation of such an user configurator is dependent on specific semantics of a par-

ticular application. Such implementation for the OmniTrack application is presented in Chapter 9.

The user configurator also interacts with the third tier of Agilos, since it may trigger negotiations

and server switching activities on user demand. Further details of such interactions are postponed

to Section 7.2.

78

5.4 Summary

In this chapter, we focused on flexible distributed multimedia applications that need to adapt

their behavior to variations of the resource availability and assure quality of critical QoS param-

eters. In this work we presented a Fuzzy Control Model, incorporated in the design of the mid-

dleware configurator. The configurator maps numerical values from the Agilos adaptors to actual

control actions of parameter tuning or reconfiguration choices. The design of the rule base and

membership functions within the Fuzzy Control Model was also shown in the context of a Omni-

Track. Chapter 9 will present a full spectrum of various characteristics of OmniTrack in details,

and experimental results are postponed to Chapter 10.

79

Chapter 6

The Design of QualProbes

6.1 Overview

As introduced in Section 1.2, the Agilos architecture is designed to be an active middleware

layer, in the sense that it exerts strict control of the adaptation behavior of QoS-aware applica-

tions, so that these applications adapt and reconfigure themselves under such control. The goal

is to provide the best possible QoS with the current resource availability in a swiftly changing

environment.

The first and second tier of Agilos consist of application-neutral adaptors and application-aware

configurators, which reflect the first two tiers of middleware control in Agilos. In the application-

neutral level, each adaptor corresponds to a single type of resource, e.g., CPU adaptors or network

bandwidth adaptors. Though the adaptors are specific to resources, they are not aware of the se-

mantics of individual applications. In contrast, the configurators in the application-specific level

are fully aware of the application-specific semantics, and thus each configurator only serves one

application. This hierarchical design of the Agilos architecture was illustrated in Figure 2.1. Chap-

ters 3 to 5 have presented the design of adaptors and configurators, and addressed the problem of

how to make such application-specific adaptation decisions in the Agilos middleware. However,

there is still an important open problem: how to appropriately define the application-specific rule

base and membership functions within the configurator, so that the best possible adaptation results

are achieved by such an architecture?

80

This question brings forth a fundamental problem of how to appropriately choose a criterion

that can assist the judgment of “What is best?”. Most applications have more than one QoS param-

eters that are application-specific, and any changes in these parameters contribute to an increase or

degradation of the delivered quality. In this chapter, we focus on the critical performance criterion,

which concentrates on the satisfaction of requirements related to the most critical application QoS

parameter. The quality of other non-critical parameters can be traded off. For example, in our case

study of OmniTrack, the tracking precision is the most critical QoS parameter in the tracking ap-

plication. The critical performance criterion, therefore, is to keep the tracking precision accurate

and stable. The ultimate objective of the Agilos architecture is to control the adaptation process

within the application so that it is steered towards the satisfaction of application-specific critical

performance criterion.

Even after the critical performance criterion is determined, an accurate mapping between ap-

plication QoS parameters and their resource demands still needs to be discovered in order to devise

the optimal adaptation strategy, and eventually the rule base and membership functions, which we

collectively refer to as the “fuel” in the configurator. In this chapter, we present QualProbes, a

set of middleware QoS probing and profiling services, that are uniquely designed to address the

following problems: (1) How do changes in non-critical application QoS parameters relate to the

critical QoS parameter, and thus the critical performance criterion? Frequently the critical QoS

parameter is not observable on the fly, and not directly controllable also. The relations between

non-critical and critical parameters need to be discovered in order to study the indirect effects of

critical parameters. In some occasions, more than two parameters will be involved in a multi-

dimensional relationship. (2) How do the changes in application QoS parameters relate to changes

in resource demands or consumption? (3) How do the solutions to the previous problems assist

making appropriate definitions of rules and membership functions in the middleware configura-

tor, so that the critical performance criterion, e.g., a stable tracking precision, are satisfied and

maintained? Once we have solved these problems, we are able to control the adaptation process

within the application from the middleware, so that under any circumstances in a best-effort en-

81

vironment and with fluctuating resource availability, the application is able to maintain the best

possible Quality of Service, in the sense that the critical performance criterion is always satisfied.

QualProbes are designed to assist controlling the applications so that control actions are gener-

ated with better awareness of application’s behavior and resource demands. To achieve this goal,

the results of QualProbes are utilized in configuring the “fuel” of the configurator. As detailed in

Chapter 5, the configurator is designed as a rule-based fuzzy control system. It can be partitioned

into three parts: the fuzzy inference engine, membership functions and rule base. While the fuzzy

inference engine is application-neutral, the “fuel”, namely the rule base and membership functions

of related linguistic values, are application-specific. Such a model guarantees that different adap-

tation choices and a wide variety of resource/application QoS mappings can be expressed easily

with a set of new rules and membership functions in the rule base.

Rules in the rule base are written using linguistic variables and values. In OmniTrack, examples

of variables are cpuaction and rateaction, and examples of values are compress and

addtracker. These values are uniquely characterized by membership functions, so that the

inference engine can have exact definitions of these values. The design of the rule base involves

the generation of a set of conditional statements in the form of if-then rules, such as if (cpu is high)

and (rate is low) then rateaction := compress.

Apparently, the role of QualProbes is to capture the run-time relationships between application

QoS and their resource demands, so that the above rules are activated with appropriate timing.

The key contributions of QualProbes [25] are the following. First, via on-the-fly measurements in

benchmarking runs, they are able to precisely discover and profile the relationship between changes

in non-critical application QoS parameters, such as the image quality or frame rate in OmniTrack,

and changes in the critical parameter, such as the tracking precision on the client. The results

of such discovery are important to the satisfaction of the critical performance criterion. Second,

via similar probing mechanisms, they are also able to obtain and profile the relationship between

changes in controllable application QoS parameters and related changes in resource demands or

consumption. Finally, we present a series of solutions so that these profiles obtained by Qual-

82

Probes may assist defining the appropriate rule base and membership functions to properly adapt

the application.

6.2 QualProbes: Investigating Application-Specific Behavior

Since the ultimate objective is to steer adaptations towards satisfaction of the critical perfor-

mance criterion, the primary goal of QualProbes services is to devise mechanisms that best facili-

tate such optimal steering of adaptation decisions. To achieve this goal, QualProbes need to address

the following issues. First, QualProbes need to accurately capture the relationships between the

most critical application QoS parameter, such as the tracking precision, and other non-critical ones.

This is crucial to perform tradeoffs of non-critical parameters. Second, QualProbes need to cap-

ture the resource demands of each non-critical QoS parameters. Both of the above are achieved via

run-time probing and profiling mechanisms. Finally, such profiling results should be used to assist

the generation of application-specific control rules, which are integrated in the configurator.

We address the above issues in the following sections. We illustrate our solutions with actual

examples derived from OmniTrack.

6.2.1 Relations Among QoS Parameters and Resources: The Dependency

Tree Model

As previously noted, the application-specific QoS parameters can be classified as critical (usu-

ally one parameter such as the tracking precision) and non-critical. In addition, the changes of

each parameter in the non-critical collection may cause and be dependent on the changes of zero,

one, or multiple types of resources.

Assume that we study
�

different resource types, and the current observation of consumed

resources are � �
� � �

� ����� � � � , measured with their respective units. Typically in OmniTrack,
�

�
, and � 	 � � is measured with the CPU load percentage, while � ��� � is measured with bytes per

second.

83

In addition, assume that there are
�

unique non-critical QoS parameters that may influence the

critical parameter, � 	 , in the application. These parameters are � � , � ��� ����� ��� . For � � � ��� , there

are
�

of resource types related to � � , where
� � �

. In the OmniTrack example, if � � is frame rate,

its changes correspond to � � � � and � 	 � � . In contrast, if � � is the object velocity, it does not directly

correspond to any resources, though � 	 , the tracking precision, depends on its variations.

A Dependency Tree for Application QoS Parameters

Although each � � corresponds to resources � � , � � � ����� � � , we observe that such dependencies

are generally hard to capture directly. We take the parameter frame rate in OmniTrack as an

example. Naturally, the frame rate of video streaming depends on network bandwidth availability.

However, the nature of such dependence is non-deterministic: For the same available bandwidth,

the frame rate varies diversely for compressed video versus uncompressed video; different CPU

load may limit the capacity that trackers can consume the frames, thus limiting the frame rate.

Similar situation applies to other parameters.

Such observations illustrate that each � � , in addition to being directly dependent on resource

types, depends directly on a subset of � � , 	 � �
, and via its dependence with this subset of parame-

ters � � , indirectly corresponds to resources. We define that if � � is dependent on � � , then changes in

� � can cause changes in � � . Ideally, a generic model for capturing the dependencies is by using an

acyclic directed dependency graph, with the critical parameter � 	 as the source, and resources � � ,
� ��� ����� ��� as the sink. For simplicity reasons, we only consider a special case that all but the

bottom levels of such a dependency graph is a directed binary tree, with � 	 as the root of the tree,

and resources as the leaves. Each � � depends on zero, one or two other parameters or resources.

There are two key characteristics in such a dependency tree1. First, the resource types � � ,
� � � ����� � � are always leaf nodes of the tree. This is based on a simplified assumption that the

changes of each resource type never depend on any other resources, i.e., that resource types are

1To be exact, it is only a binary tree without considering the bottom level related to resources. Otherwise, it is more
of a lattice.

84

independent with each other. Second, we note that in addition to demanding resources of certain

types, the changes of an application QoS parameter may change the resource availability of some

other resource types, without demanding them. For example, while changing the compression ra-

tio in OmniTrack demands CPU resources, its changes will have significant effects on available

network bandwidth also, since less data is necessary to be transmitted. This case is presented by

a directed arrow from the resource node � � to the QoS parameter node � � , showing that the avail-

ability of � � relies on � � , rather than the usual case that � � demands and relies on � � . The direction

of such a directed arrow is dependent on specific application QoS parameters, and specified by

the user or application developer. An illustration of our directed dependency tree model and an

real-world example with OmniTrack is given in Figure 6.1.

Dependency Tree of OmniTrack

c

1
R R

2

nil

p p

ppp

1 2

3 4 5

Tracking Precision

Object Velocity Tracking Frequency

Frame Rate

Number of
 Trackers

Property of
One Tracker

Size of
Region

Tracker
Type

Weighted Quantity of Trackers

Image
Properties

Codec
Type

Compression
Ratio

Dependency Tree
A Generic

nil

Resource

Image Size

Size
in pixelsCodec

Parameters

Color
depth

CPU Load Network Throughput

p

Figure 6.1: The Dependency Tree for Application QoS Parameters

Characterizing the Relationship Between Dependent Nodes

Once we have established the dependency tree of QoS parameters for an application 2, the

relationship between dependent nodes needs to be characterized appropriately. We assume that for
����� � �

, there exist
� � � � � � � and

� � � � ��� � such that
� � � � � � � � � � ��� � � � � � � ��� � , any values beyond

2Such establishment is application-specific, and may be derived based on knowledge of a specific application.

85

this range is either not possible or not meaningful. For example, the frame rate may vary in

between
� � � ��� �

fps. Assume the parent node � � depends on two descendant nodes � � and � � . The

dependency can thus be characterized by a function � � � � � � , defined as:

� � � � � � � � � � � � � � � � � �
� �

 � � �
� � �
�
� � � � , with

�
 � ��� � � � �
� � � � �

� � � � � ��� � � � � � � � � � (6.1)

where
� � � is a normalized value of � � based on

� � � � � � � . Function � � � � � � defines the dependence

relationship between the parent node � � and its descendant nodes � � and � � . If � � only depends on

one node � � , then � � � � � � is equivalent to � � � � , where
� � � � � � � � � � � � .

Similarly, we may define
�
� � as

�
� � � � � � � � � � � � . If one or two of the descendant nodes

are resource types � � and � � , then we define � � � � � � ��� so that
� � � � � � � � � ��� � � � ��� � � � � . Note that

for the special case that the availability of resource type � � depends on changes in � � , i.e., there

is a directed link from � � to � � , we define �
����
�
�

such that
�
� � �

�� �
�
� � � � � � . Figure 6.2 visually

shows the above characterization.

∆ CPU Load
0

0

Weighted Quantity of Trackers

Frame Rate

f

f

One parent - one descendant case: One parent - two descendants case:
Two-Dimensional Characterization Three-Dimensional Characterization

Number
of Active
Trackers

Frequency
Tracking∆ ∆

∆

∆

Figure 6.2: Characterization of Dependencies among QoS Parameters

If we obtained all � � � � � � in the dependency tree via probing and profiling services, the relation-

ship of any application QoS parameter � � and its related resources can be characterized by a series

86

of substitutions. As an example, for the generic dependency tree in Figure 6.1, we have

� � 	
 � 	 � � � �

� � � �
� � � �

�

 � 	 � � � �
� � � � � � � � � � � � � ��� � � � �

� � � �
� �

 � 	 � � � �
� � � � � � � � � �

�
�
� � � �

��� � � � �
� � � �

� ��� � � � �
� � � �
�
�
� � � �

� �
(6.2)

and

�
� �

 �
��
� � �

� � � �
�

(6.3)

which characterizes the relationship between � 	 and resources � � and � � . Note that the probing

algorithm illustrated in the next section provides point-wise estimation of the functions � 	 � � � � , �
��
� � � ,

and others.

6.2.2 QualProbes Services Kernel: The QoS Profiling Algorithm

QualProbes services are responsible for run-time capturing of the relationships � and �
�

be-

tween dependent nodes in an application-specific dependency tree, and for properly storing the

results in profiles. QualProbes services are middleware components, and implement a QoS Prob-

ing and Profiling algorithm as the kernel in each component. While the probing and profiling

services provided by QualProbes are application-specific, the kernel algorithm is designed to be

application-neutral, thus we require that all related application QoS parameters should present the

following properties:

1. Observable. Their run-time values at any instant can be obtained in a timely manner.

2. Tunable. They should be either directly or indirectly tunable from outside of the application.

Note that all the QoS parameters that are directly linked to the resource nodes (CPU and

throughput) in the dependency tree are directly tunable parameters.

87

The online observation of application QoS parameter values (“reading” access to the parameter)

is achieved with the assistance of the CORBA Property Service in our implementation. Applica-

tions report values of their QoS parameters as CORBA properties to the Property Service when

initializing or when there are changes, while QualProbes services kernel retrieves these values

from the Property Service when necessary. In order to properly report parameter values in the

applications, they need to be instrumented at the source level with calls to member functions in

the Agilos C++ class TMetrics, which encapsulates all necessary mechanisms to communicate

with the CORBA Property Service. Implementation details related to the reporting and retrieval of

these values are further discussed in Section 8.2.2.

In order to tune application QoS parameters (“writing” access to the parameter), the applica-

tion needs to export an Application Control Interface to the Agilos quantitative configurator. Qual-

Probes services only need to reuse the functions in this interface to control directly tunable QoS

parameters in the application. Details about the definition of such an application control interface

is presented in Section 8.3.

Having ready “read/write” access to the application QoS parameters, QualProbes services exe-

cute a QoS Profiling algorithm in the kernel. The algorithm traverses the dependency tree starting

from the leaves, and upwards to the root, while attempting to discover the functions � and �
�

previously defined by tuning the values in descendant QoS parameters or resource types and mea-

suring those of the parent QoS parameter. If � is three-dimensional, a nested loop involving both

descendant parameters is executed. Figure 6.3 demonstrates the QoS profiling algorithm in the

pseudo-code form. In this algorithm, function tune executes recursively in order to tune an appli-

cation QoS parameter indirectly. The result of executing the function tune(� � , �) is to “write” the

value
�

to the parameter � � . If � � is directly tunable, then tune simply assign the value
�

to � � by

the application control interface; otherwise, it takes advantage of recursion to eventually tune the

parameter � � indirectly.

After the execution of this kernel algorithm, all functions � and �
�
, that represent the rela-

tionship between any non-leaf node � � and their descendant nodes, are profiled in the form of a

88

for each resource leaf node � � in the dependency tree:

if link(� � � � �) or link(� � � � �) exists
for

� � � � � � � � to
� � � � ��� � step

� � � � � � 	
�
�
�
� �
�

tune(� � , �);
log the tuple

� � � � � � � � � as
� ��� ;

for each non-leaf node � � in the dependency tree (nodes on descendant levels first):

if � � has one descendant parameter node � �
for

� � � � � � � � to
� � � � ��� � step

� � � � � � 	
�
�
�
� �
�

tune(� � , �);
log the tuple

� � � � � � � � � as
� ��� ;

else if � � has two descendant parameter node � � and � �
for

�
�
 � � � � � � � to

� � � � ��� � step
� � � � � � 	

�
�
�
� �
�

for
�

�
 � � � � � �

� to
� � � � ��� �

step
� � � � �

� 	
�
�
�
� �
�

tune(� � , � �); tune(� � ,
�

�);
log the tuple

� � � � � � � � � � � � � as
� �

�
� � � � � � � � � � �

��� � � � � �
�
� � � � � � � � � � � � ;

tune(� � , value)

if � � is directly tunable via exported interface
call the application control interface to set � � = value;
return;

else
assume descendant nodes of � � are � � and � �
for

�
�
 � � � � � � � to

� � � � ��� � step
� � � � � � 	

�
�
�
� �
�

for
�

�
 � � � � � �

� to
� � � � ��� �

step
� � � � �

� 	
�
�
�
� �
�

tune(� � , � �); tune(� � ,
�

�);
if ((observed � �) == value) return;

Figure 6.3: QualProbes Services Kernel Algorithm

series of tuples, with the variables in the function spanning the complete range of in between their

minimum and maximum possible values. Having these profiles in the form of tuples of values, we

may then utilize a two-dimensional or three-dimensional plotting tool to visualize the functions.

As an concrete example, Figure 6.4 illustrates the results of tuning the QoS parameters object

velocity and tracking frequency in order to measure the tracking precision. The output of the inner

loop (by only tuning tracking frequency) is shown as bold dotted lines.

89

min
1

max

0

Tracking Frequency (times/sec)

10 15

Tracking

2

Precision (pixels, smaller values shows better precision)
Object Velocity (pixels/sec)

Figure 6.4: QualProbes Services: An Example

6.2.3 Towards Better Middleware Control

The design of QualProbes services in previous sections addresses the problem of discovering

relationships between the application QoS parameters and resource demands of an application. In

order to complete the solutions provided by QualProbes, we need to address the issue of bridging

the obtained profiles (namely, functions � and �
�
) with actual membership functions and inference

rules in the configurator.

Towards Better Rule Bases

Based on our extensive experiences with the OmniTrack application, we believe that the infer-

ence rules inside the rule base cannot be generated automatically. Such rules need to be written

by the application developer for a specific application. The reasons are two-fold: First, a rule base

customized by the application developer is best in exploiting all available adaptation choices and

best optimizes the rich semantics of these choices, naturally integrating the relative priorities of

different application QoS parameters. In other words, the application developer should decide the

set of QoS parameters to be traded off in the event of quality degradation. Second, the rules are not

constant. It should be tuned towards the needs and user preferences in different occasions where

the application is executed.

That said, the dependency tree for application QoS parameters is able to provide important

knowledge on how the rule base should be specified, once it is appropriately established for an

90

application based on its semantics. The dependency tree and the profiles may facilitate the specifi-

cation of the rule base in many ways, enumerated as follows.

First, since each of the tunable QoS parameters found in the dependency tree corresponds to a

particular control action, the output linguistic values in the inference rules should have a one-to-

one mapping with these tunable parameters. For example, as shown in Figure 6.1, the parameter

“Codec Type” should be mapped to a linguistic value “compress”, which activates the control

action that changes the codec type from uncompressed video to Motion JPEG. The parameter

“Size in pixels” should be mapped to another linguistic value “size”, which changes the frame

size of the streamed video. Configuration files are used to specify the mappings among the control

interface functions, tunable parameters and linguistic variables. The details of these files are shown

in Section 8.3.2 and 9.3.4.

Second, the availability of the dependency tree and relationship profiles promotes more detailed

understanding with respect to application adaptive behavior. In other words, it illustrates how one

application QoS parameter will change if its descendant nodes change.

For the OmniTrack example whose dependency tree is shown in Figure 6.1, we examine the

behavior of the application starting from the CPU resource. Starting from the relationship between

compression ratio and the leaf node “CPU load”, after the execution of QualProbes services kernel

algorithm illustrated in Figure 6.3, we obtain a profile that characterizes the relationship between

compression ratio and CPU load. From the profiles, we learn that a lower compression ratio will

lead to a lower CPU load. Further up the tree, similarly to the above process, we learn that with the

same network throughput, the frame rate is lower if the compression ratio is lower. This by itself

will lead to a lower tracking frequency with the same quantity of trackers. Finally, we analyze from

the relationship profiles that a lower tracking frequency will eventually cause unstable tracking

precision.

From the above analysis, we learn that if any adaptation actions are to be taken, in order to

maintain the tracking precision, the goal is to maintain the tracking frequency. Without changing

the quantity of trackers, this translates to maintaining the frame rate. Let us now assume that the

91

output of the adaptors demands a higher value of cpu and a lower value of rate. Since the

adaptors dictate that the application should request less network bandwidth, the frame rate should

be lower. However, since the frame rate needs to be maintained, the compression ratio should be

higher, so that the frame rate may remain the same with less requests for network bandwidth. This

leads to the inference rule:

if (cpu is high) and (rate is low) then rateaction := compress

In the above rule, cpu is assigned to be “high” when the CPU adaptor suggests that the CPU

load should increase, i.e., that the current CPU utilization is low.

Finally, a careful examination of the dependency tree for application QoS parameters may

lead to more complex rule bases such as two or more rules organized hierarchically. We take the

OmniTrack example again to illustrate this concept. Assume that we wish to find an appropriate

inference rule to decrease the number of active trackers by the control action removetracker.

We first learn from the profiles that when the number of trackers decreases, the tracking frequency

will increase as a result. On the other hand, we find that with the same image properties, if the

CPU usage increases to a very high load (e.g., near 100%), and a significant number of trackers still

remain active, then the tracking frequency will decrease. The above analysis leads to the following

conceptual rules:

if (cpu is very_high) then tracking_frequency := low
if (tracking_frequency is low) then cpuaction := removetracker

Obviously, these are equivalent to if (cpu is very high) then cpuaction := removetracker, which

is actually used in the rule base. However, the two conceptual rules above are important to have,

since they are beneficial to the specification of membership functions with the assistance of profile

analysis, which is elaborated in the next section.

To conclude, the specification of inference rules in the rule base is still largely ad-hoc and

heuristic, with an analyzing process that cannot be done automatically. However, the availability

of the dependency tree and profiling results are of significant assistance in such a specification

process, so that iterations of trial-and-error runs are reduced to the minimum.

92

Thresholds: Towards Better Membership Functions

Even though the rules can not be generated automatically, the profiles discovered by Qual-

Probes services are of significant assistance in the process of determining the membership func-

tions of linguistic values in the inference rules. In order to demonstrate such assistance, we take

one inference rule in OmniTrack as an example:

if (cpu is high) and (rate is low) then rateaction := compress

This inference rule operates as follows. First, it takes the output of CPU adaptor and network

bandwidth adaptor in the application-neutral level as input. When the CPU is idle, the CPU adap-

tor will apply its application-neutral control algorithm and suggests that the application under its

control demands more CPU resources. This yields a high cpu value. Similarly, when the network

is congested and there is very low bandwidth available, the network bandwidth adaptor suggests

that the application demands less network bandwidth, thus yielding a low value in rate. Second,

the inference rule decides that if cpu is high and rate is low, the application should reconfig-

ure itself and add compression to its video streaming. Third, the actual definitions, made via the

membership functions, of linguistic values high and low decide the activation timing of such

reconfiguration choice.

The question is: How “high” is high for this specific rule? As we have observed in our

experiences with OmniTrack, very frequently the discovered profiles by QualProbes services are

non-linear, and contain certain threshold values. For example, by switch codec type from “uncom-

pressed” to “Motion JPEG”, we observe that
�
� 	 � � steps up abruptly by a certain amount, e.g.,

60%, while
�
� ��� � steps down by about 90% of the original value. The threshold, thus, can be

determined from the profiles obtained by QualProbes services. For example, high can be defined

as higher than 60%, while low can be defined as lower than 90% of
� � ��� � � ��� � .

As another example, let us examine the profiles obtained related to the top level of dependency

tree, the tracking precision. Such profiles are illustrated in Figure 6.4. One of the corresponding

inference rule is:

93

if tracking frequency is low then cpuaction := removetracker

As illustrated by Figure 6.4, QualProbes services have discovered an approximate threshold

value for tracking frequency at respective object speed levels. If the tracking frequency drops

below such threshold values, we could speculate that tracking precision may degrade. In order to

keep the tracking precision, which is the critical performance criterion for OmniTrack, we define

the membership function of linguistic value low to cover the values lower than the threshold value

that we have discovered, e.g., 10 iterations per second. When this definition is applied to the above

inference rule, the configuration choice of removetracker will be activated when the tracking

frequency falls below the critical threshold value. This ensures that the tracking precision is kept

stable at all times.

6.3 Summary

This chapter has presented new mechanisms with respect to investigating the behavior of the

application, for the purpose of generating best control actions for the application to adapt itself to

the environmental variations. A detailed analysis of QualProbes is presented, including the appli-

cation model, the dependency tree model for application QoS parameters, and the QoS profiling

algorithm implemented in the QualProbes services kernel. The key contribution of this chapter

is that we have provided a unique approach to ”see through” the behavior of the application, es-

pecially when environmental or requirement changes may occur. By generating the “fuel” of the

configurator, QualProbes indirectly contributes to the overall effectiveness of the configuration

process of steering applications towards maintaining its critical performance criterion.

94

Chapter 7

The Gateway and Negotiators

In previous chapters, we presented the first and second tier of the Agilos architecture, focusing

on a basic client-server based application. However, in recent years there has been a trend that

led to a paradigm shift in the types of applications being developed. As computing power gets

less expensive and more pervasive, complex distributed applications tend to distribute servers to

multiple hosts over a local or wide area network, serving multiple clients. This introduces a new

dimension of adaptation choices including on-the-fly switching among servers. We observe that in

an application involving multiple servers and clients, there may be instances when the best option

may be to switch to a new server which better suits the available resources. For example, con-

sider the OmniTrack application in which the client receives and displays an uncompressed video

stream from a server. When bandwidth becomes restricted, local adaptations such as reducing the

frame rate may be insufficient to provide an acceptable level of QoS with respect to the critical

application parameter. Rather, the best adaptation may be to switch to a compressed video format

which requires less bandwidth, such as Motion JPEG or MPEG. However, the current server may

not be able to provide video in Motion JPEG format, either due to a software or hardware insuffi-

ciency. If there were another server providing the equivalent video in MPEG format, the best client

adaptation strategy would be to switch to the compressed video server.

In this chapter, we examine the third tier of the Agilos architecture [26]. This tier allows

for performing adaptation by reconfiguring mappings between multiple clients and servers, by

switching off from one server to another which best suits the needs of the client. This tier of

95

adaptation is made possible by the introduction of a series of negotiators on the clients and servers,

as well as a gateway which facilitates the selecting and switching of servers on behalf of the client.

The third tier is designed to be generic to all applications involving multiple clients and servers,

with an open interface for application-specific extensions. Such an interface between the third tier

and the application is defined in Section 8.4.

7.1 Overview of A Gateway-Centric Architecture

Figure 7.1 shows a typical layout model of the Agilos middleware architecture working for a

single client. On one end, the model consists of a client with a single connection to the gateway. On

the other end, an array of servers are connected in a star topology to the gateway. We refer to such a

collection of servers and gateway as a facility. A facility consists of multiple servers and a gateway,

and collectively serves a single client. At any given time, the client is being serviced by one of the

servers in the facility. However, which server is servicing the client is dynamically chosen by the

gateway. The model can be extended to serve multiple clients by creating an additional connection

from each new client to the gateway. This gives the gateway a central role of the entire architecture,

mediating the mappings among multiple clients and servers at any time.

Gateway

Server

Server

Server

Server

Server

Server

ServerClient

Control Path
Data Path

Facility

Figure 7.1: A Facility Serving a Single Client

All of the arrows shown in Figure 7.1 represent control paths. The actual application data does

not follow the same paths as the control connections. All application-specific data is streamed

directly from the server and the client, bypassing the gateway, and thus reducing the performance

96

overhead introduced by the gateway-centric architecture. This is an important distinguishing char-

acteristic between a typical star network topology, such as a 10BaseT Ethernet, and our gateway-

centric architecture. Another advantage of such a design is that, although the gateway and the

servers are conceptually tightly grouped, this need not be the case geographically. The servers

may be either on the same subnet as the gateway or sparsely dispersed over a wide area network,

depending on the application’s needs.

The purpose of the facility is to merge multiple services from multiple servers into a single

interface. Entry into the facility and coordination between the clients and the servers is performed

through the gateway. An example facility is the set of multiple tracking servers in OmniTrack,

shown in Figure 7.2. In this application, each server is equipped with a video camera, and each

camera has a different view of a scene. Although a client may only receive video from one server

at a time, the client can dynamically switch cameras depending on the angle of view, the server

workload and the video format served.

Gateway

Server

SceneServer Server

Server

Figure 7.2: The Gateway-Centric Facility in OmniTrack

There are several objectives that the gateway-centric design of Agilos attempts to achieve.

These goals are the following:

1. Flexible. The facility should not be restricted to a predetermined static layout of servers.

Rather, the gateway should be able to handle a dynamic environment which can potentially

differ radically from one moment to the next. It should be able to handle dynamic additions

97

and removals of servers, as well as unexpected server failures, either due to a server host

failure or a network failure.

2. Responsive. The amount of time taken to switch servers for a client should be kept minimal.

Furthermore, the amount of time for the facility to service a client’s request should grow

no worse than linearly in the number of servers within the facility. The gateway should not

become a bottleneck in overall system performance.

3. Generic. The architecture should not incorporate any application-specific knowledge into

its protocols. Rather, it should be highly flexible to allow new applications to be easily

extended from the existing application-neutral design of the architecture. Any application-

specific information should be efficiently handled by the architecture and then interpreted

using an application-specific knowledge base.

4. Transparent to Application Development. There should be very little difference between

developing an application with a highly reconfigurable server and one with several non-

reconfigurable servers which can be dynamically switched by the facility. All of the client-

side server switching protocols should be performed within the middleware with only a min-

imum of code required by the application to switch servers, such as code to switch from

one active socket to another. For example, consider a facility with two types of servers: one

that provides uncompressed video and one that provides compressed video. When the client

switches between formats, the application developer should be able to program as though

there is only one single server at all times, regardless of the server switching taking place in

the middleware. From the developer’s perspective, there exists one server which is capable

of switching from one format to the other.

To demonstrate how the gateway-centric architecture works to incorporate these objectives, the

next three sections present the design of the client and server negotiators, as well as the internal

mechanisms in the gateway.

98

7.2 The Client Negotiator

The assumption made in the previous chapters was that a single client-server relationship is

capable of providing the adaptation choices that are required to meet the critical performance

criterion. However, as previously stated, this is not always a realistic assumption. To handle

reconfigurations which require switching servers, an additional component is added to the Agilos

middleware called the negotiator.

Adaptor

and Transmission Network

Task 2

Task 3Task 4

Task 1Application
Tasks

User Configurator

Functional Configurator To Gateway

Agilos
Middleware
Architecture

User Level
Applications

Negotiator

Adaptor for CPU Adaptor for Bandwidth

Adaptor Observer Observer

Operating Systems

Figure 7.3: Client Architecture

The role of the negotiator in Agilos on the client side is shown in Figure 7.3. The negotiator

interacts with both the configurator in Agilos on the client side, and the centralized gateway. The

interaction between the configurator and the negotiator can be seen in the pseudocode in Figure

7.4a. This pseudocode represents the logic performed when the configurator needs to perform an

application reconfiguration that may involve interactions with the centralized gateway. Via the in-

ference engine, the configurator generates an control action to be performed within the application.

If the action can be performed locally, and upcall is made through the application control interface

via CORBA to perform such an action. If the action requires a switch of servers and thus involves

the gateway, it determines the conditions required by the new server to fulfill the action and sends

the action and conditions to the negotiator. For example, if the action is to switch to a server with

a particular video format, the condition would be the format the new server should provide.

99

Upon receipt of the configurator’s request, the negotiator performs the pseudocode in Figure

7.4b. The wrapping process converts the application-specific QoS request into a generic form

which can be transmitted by the negotiator to the gateway. Depending on the application, some

requests may not require a reply from the gateway. If the request does require a reply, the negotiator

waits for a reply from the gateway. When it arrives, the negotiator unwraps the reply to transform

it from a generic reply to an application-specific action. This action will include the server to

use and the precise QoS conditions met by the server. These conditions are necessary so that the

negotiator can perform the correct reconfiguration for the application. For example, if the client

requests compressed video, this may include any one of a number of acceptable formats, such as

MPEG and motion-JPEG. The gateway will reply with a server to use and the specific format with

which that server is transmitting. The negotiator performs the server switch and then reconfigures

the application to use the new server by an upcall through the application control interface.

(b)

if (IsLocal(action))
SendToApplication(action)

else

SendToNegotiator(action, conditions)
end if

action InferenceEngine(state)
state StateReportedFromAdaptors()

conditions ConditionsFor(action)

Send(gateway, request)
if (ReplyExpectedFor(action))

SendToApplication(action)
end if

request Wrap(action, conditions)

reply WaitForReply(request)
action Unwrap(reply)

(a)

Figure 7.4: Reconfigurations Assisted by the Client Negotiator

The negotiator and configurator are independent asynchronous components within the Agilos

architecture. Once the configurator sends the request to the negotiator it resumes execution without

blocking. This allows for the client to continue operating while the negotiation process takes place

in the background asynchronously. This is done because the negotiation process may require more

time than a single client-server interaction. By performing negotiation in the background, the QoS

degradation in data continuity caused by switching can be minimized.

All of the protocols described thus far fall into the category of functional configurations, which

is performed by the functional configurator. However, another level of reconfiguration is required

to handle a degraded degree of user satisfaction, which usually is related to the perceived QoS

100

from the user’s point of view. To this end, the configurator also includes the user configurator.

As introduced in Section 5.3.6, this component performs reconfigurations when perceived QoS is

degraded for reasons not detectable by the Agilos adaptors. For example, consider a facility which

is providing a live broadcast of a football game. Each server within the facility provides a different

view of the football field. At some time, the view from the client’s current server may be blocked,

thus giving the end user a poor view of the game. Although the video itself may be displayed at

peak quality, the user’s perceived QoS is degraded by the video content. In this scenario, the user

reports his dissatisfaction to the application which then sends a message to the user configurator.

The user configurator then determines what action to take and passes that along to the negotiator.

In this way, the configurator is capable of providing the best available QoS regardless of the cause

of degradation. Furthermore, the negotiator can perform equivalently for all requests whether the

request is triggered by a functional or user-initiated reconfiguration.

7.3 The Server Negotiator

As previously stated, each server can be designed as though it were the only server in the stan-

dard single client-server model. To make the server perform within a facility should require only a

minimal set of additions to the server. This is accomplished by including the server negotiator.

Unlike the client, even there are observers that actively monitors resources on the server side,

there are no server side adaptors. In addition, the server side configurators are functionally sim-

plified in the current implementation of Agilos, to the extent that they only receive adaptation

decisions from the client and execute these decisions. We label these server configurators as pas-

sive, since they do not implement internal mechanisms to actively make decisions to adapt the

application. Instead, they follow the decisions made on the client side and execute those control

actions on the server side of the application. This is so for two reasons. First, our model assumes a

smart client and a dumb server. Thus, the server may be incapable of performing dynamic recon-

figuration changes. Second, a single server may be serving multiple clients. An adaptation which

101

is optimal for one client may degrade the QoS for another client. Trying to find the optimal server

configuration over all clients leads to tractability issues. Thus, all application-specific adaptations

should be performed by the clients. An illustration of the simplified implementation of the Agilos

architecture on the server side is shown in Figure 7.5.

Application Server

Passive Configurator

Server Negotiator

Observer

Agilos

Operating Systems

Gateway

to client observer

from client configurator

periodic pings
control messages

server conditions

control
actions

monitoring

Figure 7.5: The Implementation of Agilos on the Server

The server negotiator performs a similar task as the client negotiator: to communicate between

the server and the gateway. The negotiator serves four purposes. First, when the server comes

online, it announces the server’s existence to the gateway and provides the gateway with a list of

all conditions this server meets. For example, a video server may tell the gateway the format with

which it is transmitting. Second, it keeps the gateway informed of dynamically changing server

conditions. For example, the server may periodically inform the gateway of the CPU load reported

by its observer. This would aid the gateway in performing load balancing. Third, the negotiator

responds to periodic pings from the gateway, with ten seconds as the interval between consecutive

pings in the current implementation. This is done so the gateway will know when a server has

unexpectedly terminated. Fourth, the negotiator handles control messages which arrive from the

gateway. These messages fall into one of two categories: client updates or client service requests.

Client updates are performed to provide and retract authentication of clients to the server. One

potential pitfall of our model is the ability for an application to circumvent the gateway to receive

service from one of the facility’s servers. For example, an application developer may discover

through experimentation that the gateway always assigns the application to a specific server. The

developer may then try to code his application to take advantage of this fact and bypass the gateway.

102

However, this leads to several problems. First, if the facility configuration should change, the client

would no longer be suited for using the facility. Second, bypassing the gateway circumvents the

facility-wide QoS configuration capabilities of the gateway. For this reason, the servers will only

service clients which have been authenticated in advance by the gateway. Similarly, servers will

discontinue service to a client which has been unauthenticated by the gateway. Authentication

removals typically occur as part of the server switching process. As a client is switching from

one server to another, the client must be authenticated on the new server and unauthenticated on

the old one. However, because the server switching process takes time, an unauthenticated client

is granted a short grace period during which it can still use the server. This allows the server

switching process time to complete while in parallel the client can still receive uninterrupted data

from the current server.

7.4 The Gateway

The gateway serves as the centerpiece in the connection between each client and the facility.

It is responsible for receiving client reconfiguration requests and processing the requests for the

client. These requests can be satisfied either through switching servers or through server reconfig-

uration as described in the previous section.

The gateway’s architecture can be seen in Figure 7.6. The gateway maintains two state tables,

one for the clients and one for the servers. Between these is a mapping table which maintains which

clients are being serviced by which servers. This table is updated by the client/server matching

reconfiguration component.

The matching reconfiguration component is invoked whenever the client requests a new server.

As described in Section 7.2, the gateway receives a request from the client when a server switch

is necessary. This request consists of an application specific action and a set of conditions. The

matching component assigns a ranking to each server based on the action, conditions, client state,

and server state. This is done by using an fuzzy inference engine identical to the one used by the

103

Client/Server Mapping Reconfiguration

Mappings
Client 2 State

Client 1 State

Client C State

Clients

Server 1 State

Server 2 State

Server S State

Servers

Gateway

Client/Server

Figure 7.6: The Architecture of the Gateway

configurators but with a different rule base. The fuzzy inference engine takes in a preprocessed

representation of the server state and returns a ranking for the server. For example, a rule for

moving left within an OmniTrack application may look like this:

if (server_direction is left) and (server_angle is close)
then server_ranking is high;

In this example, server direction and server angle are preprocessed values derived from the

actual location of client’s current view and the server’s view and the distance between them. The

better a server matches the criteria for the action, the higher the server’s ranking will be. Additional

information can be encoded into each rule to create a more robust rule base. For example, such

information may include the server’s workload and available bandwidth. Figure 7.7 shows the

logic performed by the gateway when switching servers for a client.

Conceptually, one can think of the gateway’s role in a server switch as follows: The client uses

a fuzzy inference engine to decide what action to take. The inference engine state is then sent to the

gateway which completes the inference engine logic where the client left off. This approach has

several advantages over performing all of the logic within the client. First, all state concerning the

facility need only be maintained in one place, the gateway. The client does not need to dynamically

keep track of what servers are available or how to best rank each server. Second, the client is spared

the burden of negotiating a connection with the new server since all of the server negotiation is

handled by the gateway. The client need only wait for a reply from the gateway then switch to

the server indicated by the reply. Third, it allows for smart reconfiguration by the server without

104

ranked_servers = {}
for each server S

state ProcessState(action, conditions, client state, S state)
ranking InferenceEngine(state)
ranked_servers InsertOrdered(S, ranking, ranked_servers)

end for

U CurrentServer(client)
accepted false
while (not accepted and ranked_servers <> {})

S First(ranked_servers)
accepted SendAuthenticationRequest(S, client)
if (accepted)

SendUnathentication(U, client)
conditions ConditionsForServer(S)
reply Wrap(S, conditions)
Send(client, reply)

else

end if
end while

<action, conditions> Unwrap(request)

ranked_servers RemoveFirst(ranked_servers)

Figure 7.7: Gateway Server Switching Protocol

client initiation. For example, if the client’s server should become overloaded or unexpectedly

shut down, the gateway can automatically move the client to a different server without waiting for

a switch request from the client.

7.5 End-to-End Negotiation Protocol

When a reconfiguration that requires switching servers is initiated, the negotiators on both the

server and the client side are used to negotiator the new server from the gateway. The end-to-end

negotiation protocol between the negotiators and the gateway is shown in Figure 7.8. This protocol

is described in the following six steps:

Client

New Server

Gateway

Old Server

4. Switch: <New Server,
 conditions>

2. Auth. Client

3. Accept Client

6. Shutdown service

7. Start service

1. <action, conditions>

5. Drop Client

Figure 7.8: End-to-End Negotiation Protocol

105

1. In the first step, the client negotiator sends the gateway the action it needs to perform and

a list of conditions the action must satisfy. Typically, the action requested may include the

selection of a new server from the facility. After the requests from the client negotiator are

received, the gateway then ranks available servers within the facility using a fuzzy inference

engine and a rule base, presented in the previous section.

2. In the second step, on behalf of the client, an authorization request is sent from the gateway

to the negotiator of the top ranked server. In the third step, this server immediately send a

reply to the gateway with either an acceptance or a denial of service. If a denial is received,

the gateway then cycles through steps 2 and 3 in decreasing order from the top ranked server

until a server accepts the client.

3. When the gateway returns the selected server in the fourth step, it must also provide a list of

conditions the server satisfies so that the client application can adjust itself to the conditions

met by the server. For example, the client’s action in step 1 could be to switch to a new

format and the conditions could include a list of acceptable formats. The gateway would

then return not only the new server but also the specific format from the list which the server

satisfies.

4. After sending the switch notification message to the client negotiator in the fourth step, the

gateway immediately proceed to send a “drop client” request to the original server that serves

the client, so that the server may release resources used for serving contents to this client.

This consists of the fifth step of the protocol.

5. Upon receiving the notification message from the gateway, the client negotiator immediately

executes the sixth step, which shuts down all network sockets and associated resources on

the client related to the original server.

6. Finally, the client establishes a new connection with the new server, with the assistance of

the negotiators on both sides.

106

7.6 Summary

In this chapter we presented a the design of the third tier of the Agilos architecture, namely, the

gateway and negotiators. We take a gateway-centric architecture, which consists of multiple server

negotiators and a centralized gateway. This facility provides the user with several points of entry

into a single composite service with each server satisfying a different set of QoS conditions. We

then proved that this architecture could be easily and effectively implemented to provide a base for

application-specific extensions. We will postpone experimental results to Chapter 10. We will also

discuss the actual interface to the application-specific extensions in Chapter 8.

107

Chapter 8

Application Deployment Interface

8.1 Overview

The previous chapters have presented various theoretical analysis and algorithmic designs

about the Agilos middleware architecture. These chapters may be summarized as follows: The

Agilos architecture is designed to support application-aware Quality of Service (QoS) adaptations

in distributed multimedia applications. Such applications are complex in nature, opening up a wide

variety of adaptation choices and configuration possibilities. Different from related work in mid-

dleware architectures, the Agilos architecture attempts to exert active control of these applications,

rather than transparently providing services by internal reconfigurations.

From this chapter, we progress to discuss implementation-related issues of both the Agilos ar-

chitecture and OmniTrack application. Implementation-wise, the Agilos architecture emphasizes

the following two objectives. First, Generic applicability. No application-specific knowledge

should be incorporated in the basic design of Agilos components, so that a wide variety of appli-

cations may be deployed under the control of the middleware. Second, Ease of deployment. The

interaction between the application and Agilos should be designed so that required modifications

to the application are minimized.

This chapter presents the design of the Application Deployment Interface (ADI) that seam-

lessly supports the two implementation objectives of the Agilos architecture. With respect to the

application to be deployed on top of Agilos, such an interface can be seen as a wide collection of

108

functional programming interfaces for applications (APIs), deployment strategy and procedures,

as well as required deployment tools and utilities. For an easy and rapid deployment, such an

interface should be designed to be simple and easy to carry out. For generic applicability require-

ments, such an interface should be designed to integrate only application-neutral elements into the

interface specifications. All application-specific components within the Agilos architecture should

be derived from an implementation of such an interface specification. A clearly defined division

line is thus drawn between application-neutral and application-specific parts of the middleware.

The rest of the chapter is organized as follows. Section 8.2 gives a step-by-step instruction on

the required deployment procedure and strategies, which are part of the Application Deployment

Interface. Section 8.3 defines the control interface exported by the application and examples of

its IDL specification. Section 8.4 discuss application deployment issues related to gateways in

order to facilitate wide-scale reconfigurations in multi-client multi-server mappings. Section 8.6

summaries the chapter.

8.2 Deployment Procedures and Strategies

In order for the Agilos middleware architecture to actively exert control of the applications,

there are several general steps that the applications should follow. These steps are outlined in

details in this section.

8.2.1 Preparation for Component-Oriented Interfaces

The goal of Agilos middleware architecture is to be able to deploy the widest range of applica-

tions possible under its control and support. Because of the heterogeneous manner that these ap-

plications are built, the first step before any actual deployment should be to prepare the application

for component-oriented interfaces. The actual procedures that to be followed for such preparation

vary from application to application, and can be classified into three categories depending on how

the application was originally implemented. We list these categories as follows.

109

Componentized Applications

Since the start, the Agilos architecture was exclusively designed and implemented with the

Common Object Request Broker Architecture (CORBA) [8] in mind, though the algorithmic de-

sign and theoretical results also apply to other component models, such as the Microsoft Compo-

nent Object Model [9]. This dictates the following: First, all interactions among internal middle-

ware components are designed to be carried via CORBA. Second, the control actions should be

delivered via CORBA to the applications. Third, the observation and monitoring of application-

specific QoS parameters are communicated via CORBA to the observers in Agilos. For these

reasons, if the applications have already been designed to implement any CORBA interfaces for

the purpose of remote procedure calls across process boundaries and application components,

the first step of preparing for component-oriented interfaces is automatically complete. We re-

fer to these applications CORBA-aware applications. The Agilos architecture naturally supports

CORBA-aware applications well.

Applications that may be CORBAfied

Most of the “legacy” applications, including some mission-critical complex multimedia appli-

cations such as the OmniTrack application, are not inherently CORBA-aware. However, it may be

quite straightforward to CORBAfy some applications by explicitly instrument these applications

at the source level, as long as they present some favorable properties. These properties include:

1. No major conflicts with the header files of a specific CORBA implementation1. This includes

redefinitions of function or constant names, as well as programming language incompatibil-

ities in order to include those files (namely languages except for C, C++ and Java). Most

applications conform to this requirement.

2. When a graphical user interface is required in the application, such an interface is message-

driven and implemented with a message processing loop. Examples of such message-driven
1In our implementation, we use ORBacus 3.1.3 as underlying CORBA support, thus the application should be

compatible with all header files and libraries in ORBacus 3.1.3.

110

GUI programming models are the X event loop or the Windows message loop. This is re-

quired to integrate the CORBA event handler, which is normally implemented within boa

-> impl is ready(...). In the OmniTrack application, we are able to CORBAfy the

application by adding asynchronous CORBA event handling calls inside the Windows mes-

sage loop. Similar methods may also be used in other applications with a message loop that

handles GUI messages. In details, we consider the following scenario.

Without loss of generality, let us assume that the application to be CORBAfied is a GUI

application running under Windows, which is the case for OmniTrack. Generally, such an

application should include a Windows message loop, as in the following example of an

Multiple Document Interface (MDI) Windows application:

while (GetMessage(&msg, NULL, 0, 0))
{

if (!TranslateMDISysAccel (hWndMDIClient, &msg))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
}

Such an application can be augmented conveniently by inserting a function call to the CORBA

event handler, so that incoming CORBA events could be handled simultaneously.

while (GetMessage(&msg, NULL, 0, 0))
{

if (!TranslateMDISysAccel (hWndMDIClient, &msg))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
// query for any incoming CORBA events for ’timeout’ ms
TCorbaInstance -> react (timeout);

}

3. The source files for the application are required to be recompiled in order to link the def-

inition of a critical class TCorba, which implements actual details that handle CORBA

initialization, shutdown and incoming CORBA events. TCorbaInstance, in the code

111

shown previously, is an instance of class TCorba. The constructor and react functions of

this class are defined as follows.

// Initializing CORBA for the entire application

TCorba::TCorba()
{

int dummy = 0;

// Step 1: create ORB and BOA

orb = CORBA_ORB_init(dummy, 0);
boa = orb -> BOA_init(dummy, 0);

orb -> conc_model(CORBA_ORB::ConcModelReactive);
boa -> conc_model(CORBA_BOA::ConcModelReactive);

// Step 2: Locate CORBA reactor (default to SelectReactor)
// for reacting to CORBA messages in Windows message loop

reactor = OBReactor::instance();
boa -> init_servers();

// Step 3: Locate the CORBA Property Service

ifstream in("propserv.ref");
char str[1000];
in >> str;

CORBA_Object_var propservObj = orb -> string_to_object(str);
assert(!CORBA_is_nil(propservObj));

PropertySet = CosPropertyService_PropertySetDef::_narrow(propservObj);
assert(!CORBA_is_nil(PropertySet));

// CORBA initialization completed.
return;

}

// reacts to incoming CORBA events in the application
void TCorba::react (int WaitPeriod)
{

CORBA_Long timeout = (CORBA_Long) WaitPeriod;
reactor -> dispatchOneEvent (timeout);

}

112

8.2.2 Installing Probes for Application-Specific QoS Parameters

In order to appropriately observe all application-specific QoS parameters, instrumentation code,

which we refer to as probes, should be plugged into the application. These probes can only be im-

plemented by the application developer, since the Agilos middleware architecture does not have

any knowledge about specific methods of instrumentation with respect to QoS parameters in the

application. Thus, the installation of such probes must be done as part of the deployment proce-

dures for the application.

However, the implementation of application-specific probes may be designed to be not com-

pletely ad-hoc. For this purpose, a generic class TMetrics is defined as an abstract class and a

skeleton implementation of all application parameter probes, and any application-specific imple-

mentation may be derived from the TMetrics class. Instances of such a derived class can then

be statically linked in the application.

The implementation of TMetrics class takes advantage of the CORBA Property Service ex-

tensively. The CORBA Property Service is designed as place holder for an unlimited series of

name/value pairs, representing any CORBA properties. Both CORBAfied applications and Ag-

ilos middleware components can communicate with the CORBA Property Service via standard

CORBA events. The utilization of CORBA Property Service as a bridge completely detaches the

middleware from the application. On one hand, the applications, assisted by the TMetrics class, are

responsible of collecting important application-level parameters and reporting them to the CORBA

Property Service at predetermined constant intervals. On the other hand, the middleware compo-

nents are responsible to poll these observed values from the CORBA Property Service whenever

there are needs to do so. A prototype illustration of the TMetrics class definition is as follows.

class TMetrics
{

CORBA_String_var s;
CORBA_Any any;
char * MetricName[MaxMetrics];
long MetricValue[MaxMetrics];
int CurrentNumMetrics;

113

public:

TMetrics();

˜TMetrics();

void Add(char * name);
void Update(char * name, long value);
void Commit(void);
long Retrieve(char * name);

};

extern TMetrics * TMetricsInstance;

Whenever the application has observed values for a specific QoS parameter, it propagates the

values to the CORBA Property Service. For example, the next code segment communicates the

current frame size, tracking duration and number of active trackers to the CORBA Property Ser-

vice.

// Report to the CORBA Property Service
TMetricsInstance -> Update ("TrackingDuration", clock.measure());
TMetricsInstance -> Update ("FrameSize", v->width() * v->height());
TMetricsInstance -> Update ("NumOfActiveTrackers",

(long) TrackerManager -> activeList.n_trackers());
TMetricsInstance -> Commit ();

On the other hand, the observer polls these observed values from the CORBA Property Service

with a similar mechanism, as shown in the following implementation as the observer monitors the

frame size in the tracking client of OmniTrack:

// Collects the Frame Size data from the Property Service
try
{

s = CORBA_string_dup("FrameSize");
any = TCorbaInstance -> PropertySet -> get_property_value(s);

}
catch (const CosPropertyService_PropertyNotFound&)
{

assert(false);
}
CORBA_ULong value;
any >>= value;

// ’value’ is the observed value for the frame size
...

114

8.3 Application Control Interface

Once the application is prepared for deployment under the control of the Agilos middleware, a

key procedure for the deployment is to define the Application Control Interface within the appli-

cation, as well as properly register such an interface with the Agilos middleware.

8.3.1 Interface Definitions

The Application Control Interface is a set of functions that the Agilos middleware layer may

call in order to tune and reconfigure the applications on their behalf. This set of functions can be

divided into two groups:

1. Parameter-Tuning Interfaces: The functions exported in this group serve to fine tune individ-

ual application-level quantitative parameters. In the OmniTrack example, these parameters

include the frame rate, image quality, compression ratio, number of active trackers, etc.

These functions are used by the quantitative configurator to tune internal QoS parameters in

the application.

2. Reconfiguration Interfaces: The functions exported in this group are responsible for the ac-

tivation of reconfiguring actions, which could be the activation of compression for live video

or the switching of tracking servers in the OmniTrack example. In a complex web server

application, the reconfiguring action may be the switching from serving both dynamic and

static web pages to serving only static web pages, in order to reduce CPU overloading. The

functional configurator uses such interfaces to activate reconfigurations within the applica-

tion.

As an example, a simplified version of the Application Control Interface for OmniTrack may

be written as follows, in the form of CORBA IDL:

interface OmniTrack_Control
{

// For parameter-tuning controls

115

void DecreaseTrackedRegion();
void IncreaseTrackedRegion();
void AdjustImageSize(in unsigned short width, in unsigned short height);

// For reconfigurations with respect to tracking clients

void AddTracker();
void DropTracker();
void ReplaceTracker();
void MJpegCompress();
void RawVideo();
void BlacknWhiteImage();

// For reconfigurations with respect to gateways

short add_server(in string server);
short drop_server(in string server);
short switch_server(in string server, in string format);

};

8.3.2 Interface Registration with Agilos Middleware

Once the Application Control Interface is defined in the form of CORBA IDL, the Agilos mid-

dleware layer should be notified so that it is aware of such an interface definition. Such notification

is referred to as interface registration.

In order to complete the interface registration process, each Application Control Interface

should have its unique identifier. Each function within the interface should have its own asso-

ciated identifier, corresponding to a unique linguistic variable in the fuzzy linguistic rule base. In

the above example, the identifier for the Application Control Interface is OmniTrack Control.

The associated linguistic variable for the function AdjustImageSize is size, and for RawVideo

it is raw. Such an interface corresponds to the following linguistic rules:

if (cpu is low) and (rate is high) then rateaction:= raw;
if (cpu is low) and (rate is moderate) then rateaction:= size;
if (cpu is low) and (rate is low) then rateaction:= blacknwhite;
if (cpu is moderate) and (rate is high) then rateaction:= raw;
if (cpu is moderate) and (rate is moderate) then rateaction:= size;
if (cpu is moderate) and (rate is low) then rateaction:= blacknwhite;
if (cpu is high) and (rate is low) then rateaction:= compress;
if (cpu is high) and (rate is moderate) then rateaction:= size;
if (cpu is high) and (rate is high) then rateaction:= compress;

116

if (cpu is low) and (rate is moderate) then cpuaction:= droptracker;
if (cpu is low) and (rate is high) then cpuaction:= droptracker;
if (cpu is low) and (rate is low) then cpuaction:= droptracker;
if (cpu is moderate) and (rate is high) then cpuaction:= adjustregion;
if (cpu is moderate) and (rate is moderate) then cpuaction:= adjustregion;
if (cpu is moderate) and (rate is low) then cpuaction:= adjustregion;
if (cpu is high) and (rate is low) then cpuaction:= addtracker;
if (cpu is high) and (rate is moderate) then cpuaction:= addtracker;
if (cpu is high) and (rate is high) then cpuaction:= addtracker;

The correspondence between the linguistic variables, such as raw and size, and interface

functions, such as RawVideo, is listed in a plainly formatted specification file. Such a file is

thus read by a source code generator to automatically generate the required source files for the

middleware to appropriately access these functions when the corresponding control actions are

activated by the configurator. It is the application’s responsibility to initiate such a specification

file, along with the linguistic rules and IDL definitions for the application control interface. An

example of the specification file is listed as follows.

id function lingvar type min max

1 AddTracker addtracker config
2 DropTracker droptracker config
3 AdjustImageSize size tune 10000 76800
4 DecreaseTrackedRegion adjustregion tune
5 IncreaseTrackedRegion adjustregion tune
6 BlacknWhiteImage blacknwhite config
7 MJpegCompress compress config
8 RawVideo raw config

8.4 Deployment in the Third Tier

As Agilos middleware components, the gateway and negotiators are responsible to facilitate

wide-scale reconfigurations with respect to multi-client and multi-server relationships. Such re-

configurations include server switching capabilities according to relevant information such as the

server workload, video format or video properties. Before application deployment, we assume

that the application only includes an implementation of the basic client-server relationship, and all

functional enhancements are implemented in the Agilos middleware. In this section, we discuss

117

the required deployment procedures so that a basic client-server application may be extended to a

multi-client multi-server environment.

8.4.1 Gateway

If we examine the interface between the gateway and a client-server based application, we

will observe that some of the functionalities are application-specific, while the rest are generic to

all applications. We thus define a base class with virtual or pure virtual functions that define all

application-neutral functionalities within a gateway. When a new application is to be deployed,

an application-specific class is then defined to inherit this base class, with all virtual functions

redefined and all application-specific functions added.

Such solutions for Agilos are proposed based on a comparison study upon the advantages and

drawbacks of various alternative solutions. There are two primary concerns. First, how easy it is

for the application to be deployed? It is best if the efforts of such deployment is minimized. For

this purpose, the interface should be as generic as possible, and a runtime binding (late binding)

mechanism is preferable than a compile-time binding (early binding). Second, the performance

overhead should be minimized. Our solution is a balance and tradeoff between the two design

objectives. With a generic base class that all application-specific implementations inherit from,

we are able to build all internal mechanisms within the gateway so that only virtual functions in

the generic base class is called at compile time, while functions in the actual application-specific

implementation are called at runtime.

In our current implementation of Agilos, the base class that defines a generic interface is as

follows.

class Gw2app
{
public:

// Initialize the gateway-application interface
virtual void initialize() { };

// Inform the gateway of a new application client
virtual ClientHost *CreateClientHost(Host *, char *);

118

// Inform the gateway of a new application server
virtual ServerHost *CreateServerHost(Host *, char *);

// Process the requests sent from an existing client
virtual void ProcessRequest(ClientHost *, AssertionList *);

// Process the requests sent from an existing server
virtual void ProcessRequest(ServerHost *, AssertionList *);

// Relocate the client to another server
virtual void RelocateClient(ClientHost *);

// Request the best server based on application-specific criteria
virtual ServerHost *RequestBestServer(ClientHost *, AssertionList *) = 0;

};

As an example of how applications may extend such a generic interface, we look at the Omni-

Track application. In OmniTrack, a new class named Gw2vt is declared as a derived class inherited

from the base class Gw2app. In this class, all virtual functions in the base class are redefined to

implement functionalities specific to OmniTrack:

class Gw2vt : public Gw2app
{
public:

void initialize();
ClientHost *CreateClientHost(Host *, char *);
...
ServerHost *RequestBestServer(ClientHost *, AssertionList *);

int GetServerLoad(VTServerHost *, TrackedSubject *);
};

We notice that in addition to all virtual functions declared in the base class Gw2app, the class

Gw2vt defines a new function GetServerLoad, which is specific to OmniTrack. Generally,

the application is free to define any new functions in the class. This relaxed interface provides

additional flexibilities.

8.4.2 Negotiators

The application deployment interface for the negotiators is designed similarly as that for the

gateway. An application-specific base class, App2neg, is defined to provide a basic interface to

119

the application:

class App2neg
{
public:

virtual void ProcessReply(const char *) = 0;
virtual void ServerErrorOccurred() = 0;

};

The application then defines a derived class that provides additional functionalities and imple-

ments the basic interface in App2neg. In the OmniTrack example, such a derived class is named

Vt2neg, interfacing the tracking client and the negotiator on the client side:

class Vt2neg : public App2neg
{
public:

short RequestFormat(const char *);
short RequestTurn(const char *);
short RequestMove(const char *);
short RequestMoveWithFormat(const char *, const char *);
void RequestToken();
void ReleaseToken();
void SetTrackedSubject(const char *, const char *);
void ProcessReply(const char *);
void ServerErrorOccurred();

};

Similar to the gateway, once the generic base class and all virtual functions are installed, the

implementation of a application-neutral negotiator may simply call these virtual functions in the

base class, which will be bound to the application-specific implementations in the derived class at

run time.

8.5 An Example of Application Deployment

Having presented all the required steps and interfaces for application deployment in the pre-

vious section, we provide a detailed example explaining how these deployment strategies and

interfaces are used for deploying a simple video-on-demand application, how application QoS pa-

rameters are specified to the middleware components, and how control interfaces may be defined.

120

8.5.1 Identifying Application QoS Parameters

The initial task in the deployment process is to identify all tunable and observable application

QoS parameters, and all reconfiguration possibilities. In a basic video-on-demand (VOD) applica-

tion, there are at least two tunable parameters: frame rate and image resolution. There are at least

one important reconfiguration choice: media format (e.g., with or without audio track, MPEG,

Motion JPEG or ASF).

8.5.2 Preparing Component-oriented Interfaces

Following the deployment procedures outlined in Section 8.2, we consider our VOD applica-

tion as a “legacy” application, and not inherently CORBA-aware. Thus, it needs to be CORBAfied

with the following steps:

1. From the Agilos source collection, obtain the source files that contain definitions for the class

TCorba.

2. Create a new instance of class TCorba in the main program of our VOD application, and

export its controls interface to the Agilos middleware, as in:

#include "TCorba/TCorba.h"
...

TCorbaInstance = new TCorba;
TCorbaInstance -> ExportControlsInterface();

...

3. Instrument the main GUI event handling loop of the application and add the CORBA event

handling calls, as in the following example in a Windows-specific implementation of our

VOD application:

while (GetMessage(&msg, NULL, 0, 0))
{

...
TCorbaInstance -> react (timeout);

}

121

8.5.3 Installing Probes for Observable Parameters

Following the procedures outlined in Section 8.2.2, we can monitor internal QoS parameters

within the VOD application by following the steps below.

1. From the Agilos source collection, obtain the source files that contain definitions for the class

TMetrics.

2. Create a new instance of class TMetrics in the main program of our VOD application, and

register the names of all internal parameters to be monitored:

#include "TMetrics/TMetrics.h"
...
TMetricsInstance = new TMetrics;
TMetricsInstance -> Add("FrameRate");
TMetricsInstance -> Add("Resolution");
...

3. Instrument the appropriate source files of the VOD application, so that values of internal

parameters are reported to the CORBA Property Service via the TMetrics interface, as in:

TMetricsInstance -> Update ("FrameRate", CurrentFRate);

where CurrentFRate is the result of calculating the current frame rate.

8.5.4 Defining the Application Control Interface

As our simple VOD application has two parameters to tune and one reconfiguration choice, the

Application Control Interface, written in the Interface Definition Language (IDL) of CORBA, is

in the following form:

interface VOD_Control
{

// For parameter-tuning controls

void TuneResolution(in unsigned long resolution);
void TuneFrameRate(in unsigned short frate);

122

// For reconfigurations
void ActivateMPEG();
void ActivateASF();
void RemoveAudioTrack();
void AddAudioTrack();

}

8.5.5 Registering the Application Control Interface

As presented in Section 8.3.2, Agilos needs to be notified of the specific Application Control

Interface that the VOD application has defined. The specification file for such notification may be

defined as follows:

id function lingvar type min max

1 ActivateMPEG mpeg config
2 ActivateASF asf config
3 RemoveAudioTrack noaudio config
4 AddAudioTrack audio config
5 TuneResolution resolution tune 64000 786432
6 TuneFrameRate frate tune 5 30

Such a specification file links the actual functions in the control interface with the linguistic

values in the rule base. Having defined such a mapping, an appropriate rule base and associated

membership functions for the linguistic values should be defined for the quantitative and functional

configurators, in the form presented in Section 8.3.2. These steps complete the basic process of

deploying a new VOD application under the control of Agilos, if third-tier support for multiple

servers and clients is not necessary.

8.6 Summary

This chapter presents the interface between a complex distributed application and the Agilos

middleware architecture. The design objectives of such an interface is the following. First, we

focus on the easy deployment of a new application under the control of Agilos. Second, the Agilos

architecture should be generic enough to meet the demands of any existing legacy application

123

in need of adaptation support. On one hand, we believe that the application-specific rule base is

similar with any flexible scripting languages that expresses functionalities, except that the rule base

reconfigures the behavior of a generic inference engine. On the other hand, the interface definition

method we have proposed is both specific to the application and pluggable into the middleware.

124

Chapter 9

Implementation in Windows NT

To continue the discussion in Chapter 8 with respect to the application deployment interfaces,

in this chapter, we present detailed implementation issues of both the OmniTrack application and

the Agilos Architecture. Section 9.1 gives an overview of implementation choices, Section 9.2

presents issues in the process of implementing OmniTrack and deploying the application on top of

Agilos, and Section 9.3 presents issues in the implementation of Agilos architecture itself.

9.1 Overview

The Agilos middleware architecture and OmniTrack application are both implemented in Win-

dows NT 4.0, using Visual C++ 6.0. We use CORBA as our component object model to facilitate

interactions among middleware components and applications. The specific implementation we use

is ORBacus 3.1.3 [27] from Object Oriented Concepts, Inc.

The OmniTrack application, an omni-directional visual tracking system, is a fully distributed,

client-server based multi-threaded application. Since the tracking server needs to serve multiple

clients simultaneously, each client connection is created in its own thread within Windows NT.

Similarly, the tracking client needs to receive video frames from the network, while executing

multiple computationally intensive tracking algorithms at the same time. This demands that the

tracking algorithms are executed in a separate NT thread, while implementing close inter-thread

synchronization to keep a typical consumer-producer relationship with the thread that receives

125

video frames from the communication channel. The tracking server can serve either live video

captured by a video camera via the Matrox Meteor frame grabber card, or artificially generated

animations.

The implementation of the Agilos architecture consists of implementation of all middleware

components, including the observer, the adaptors, the configurators, the QualProbes, the client and

server negotiators, and the gateway. Except for the communication between the negotiators and the

gateway, which is through standard network sockets, all other interactions among components are

via CORBA as well. The observer monitors the system resource availability via the Performance

Data Helper library, which is a dynamic linked library available in Windows NT to assist probing

various metrics in the operating system kernel through the Windows registry.

9.2 Implementation of OmniTrack Application

9.2.1 Migration from Unix to Windows NT

As a first step of implementing the OmniTrack application, we have taken XVision [11], a

standalone visual tracking application originally developed on the Unix platform, and migrated

the implementation to Windows NT 4.0. The original XVision implements various tracking algo-

rithms, including the SSD (Sum of Squared Difference), line and corner algorithm. The imple-

mentation of these algorithms are platform neutral and straightforward to migrate. Therefore, in

the migration process, we focus on migrating the graphical user interface and the video capture

device drivers to Windows NT, while inheriting all platform-neutral tracking algorithms with only

slight modifications.

There are two major challenges in the migrating process. First, for the purpose of live video

capturing, the original XVision system uses various types of frame grabber or digitizer devices, and

the device driver interfaces are only available on specific Unix platforms (Solaris and SGI IRIX).

Most of these hardware devices are proprietary and not available under Windows NT. Second,

126

all source code within XVision that deals with user interface are X Windows specific, including

live video display and mouse interactions. With these challenges, two solutions exist towards a

successful migration. First, retain most of the original source code, and use porting layers (e.g.

Interix from Softway Systems [28] or Cygwin from Cygnus Solutions [29], among others) to

rapidly migrate code to Windows NT with minor modifications. Second, rewrite the source and

migrate to native SDKs, in both Win32 SDK for user interface and device driver SDKs for hardware

support.

Considering future extensions and the difficulty level of deployment under the control of the

Agilos middleware architecture, we chose the latter alternative and rewrote relevant source code

in order to migrate from X Windows specific code to the native Win32 SDK, as well as from

proprietary hardware specific drivers in Unix to a Windows NT based interface SDK available for

the Matrox Meteor frame digitizer card, our hardware of choice. Because of the relative simplicity

of user interface, this approach was proved to be preferable and allowed much more flexibility with

respect to future interface extensions or upgrades (for example, from Win32 SDK to DirectDraw

SDK to enhance the video performance).

9.2.2 Extension to a Client-Server Based Application

Since the original XVision performs all of its features on the same end system, our next step

of implementing the OmniTrack application is to extend the application to a client-server based

model. With respect to the design choices, we adopted a Thin Server approach, where the role of

server is to capture live video and to send them through the network to one or multiple clients,

while the client performs all CPU-intensive tracking calculations on multiple objects. With respect

to implementation, we have encapsulated all network related implementation within the Net-

workDevice class, which serves as a replacement to the original classes that provide interfaces

to the frame grabbing hardware, for example the ColorMeteor class. The new NetworkDe-

vice class is designed to export identical interfaces to the tracking kernel compared with original

hardware interface classes, so that only minor modifications are needed on the client. We used

127

Windows Socket 2 Interface as a basis for network programming, and utilized datagram (UDP)

sockets for video transmission. We show the definition of the class NetworkDevice as the

following.

class NetworkDevice : public ColorVideo, public JTCMonitor
{

// Window handle
static HWND hwnd;
// The video buffer to be displayed
static long * videoBuffer;
int info_type;
int map_color(Color x);
void set_color(Color x);

protected:

// Communication thread
static TComm *comm;

public:

void ReturnOnError(void);

long * getVideoBuffer(void);
virtual void prepareNextFrame();
void grabNextFrame();

NetworkDevice ();
virtual ˜NetworkDevice()
void close();
...

}

Since the video stream received by the client via the NetworkDevice class may have differ-

ent codec formats, we defined specific C++ classes for each codec format in order to meet specific

handling requirements. These classes are derived from the generic NetworkDevice class, and

thus inherit all basic functionalities related to socket communications. Each derived class imple-

ment an important virtual function prepareNextFrame defined in NetworkDevice, which

handles the decoding process of video frames based on specific image formats and quality for each

frame. As an example, we have implement the classes RawDevice and MJpegDevice, that are

derived from NetworkDevice:

128

class MJpegDevice : public NetworkDevice
{

public:

virtual void prepareNextFrame();

MJpegDevice ();
virtual ˜MJpegDevice();
...

}

9.2.3 Extension to a Multi-threaded Application

We notice that in the definition of the NetworkDevice class, there are no member functions

that are responsible for interacting with network sockets. Rather, a static instance of the class

TComm is defined. This is the result of an enhancement to a multi-threaded client implementation,

which is implemented with the assistance of the JThreads/C++ package available with ORBacus.

There are two main threads of execution in the tracking client, as follows.

1. Communication thread. This thread is primarily implemented in the class TComm. It is

responsible for maintaining a circular ring buffer that holds received video frames from

the communication channel. It is also responsible for handling all network sockets and

connection setup and teardowns.

2. Computation thread. This thread is the main thread of the tracking client application. It is

responsible for executing all tracking algorithms in a round robin fashion, as well as all user

interactions and graphical user interfaces. During each iteration that the tracking algorithms

run, no other events are processed in the same thread. The tracking algorithms are executed

at a fixed time interval. This is demonstrated in the following code in the implementation of

the window procedure:

// Message ’WM_TIMER’ is received every fixed interval
case WM_TIMER:

// Prepares the next frame
v -> prepareNextFrame();

129

// Actually executes all trackers
if (TrackerManager -> TrackerGroup -> hasChild())

TrackerManager -> TrackerGroup -> track();

// Display to a window
w.show (v -> image());

break;

The separation of functionalities between the two threads has a major advantage: It allows the

tracking algorithms to be executed asynchronously along with the communication tasks, such as

receiving video frames. This dramatically increases the tracking frequency, which is no longer tied

to the frame rate that the client is able to receive from the network.

Having this advantage, the tradeoff is that the complexities of implementation is significantly

increased, due to the strict synchronization requirement imposed by the shared circular ring buffer

between the two threads. Obviously, the communication thread serves as a producer to inject new

frames into the shared buffer, while the computation thread acts as a consumer, executes tracking

algorithms and consumes existing frames in the buffer. Such a producer-consumer relationship

requires extra mutexes and conditions so that the two threads are properly synchronized and critical

sections are protected against concurrent access. For example, the class TComm is defined as

follows:

class TComm : public JTCThread
{

// the socket connection with the server
SOCKET soc;
bool abort;

// The monitors
JTCMonitor IncomingFrame_, ConsumedFrame_, NewSocket_, SwitchSocket_;

// The receiving buffer
char * rBuffer;

int err, iBindType;
char szBuffer [MaxPathLength];
bool fShutDownServer;

public:
JTCMutex CriticalSection;

130

int nrows, ncols;

TComm(): iBindType(GET_PORT_AND_REMOTE_ADDR);

˜TComm();

virtual void run();
void initialize(void);
void terminate(void);
void WaitForConsumption(void);
void FrameConsumed(void);
void WaitForIncomingFrames(int timeout);
void FramesIncoming(void);
void WaitForNewSocket(void);
void NewSocket(void);
bool hasSocket(void);
void switchSocket(SOCKET, bool);
void clearSocket();
SOCKET getActiveSocket();

};

// pointer to TComm, handle is required by JThreads/C++
typedef JTCHandleT<TComm> TCommHandle;

As we may notice, four monitors and a mutex are introduced to ensure that the complex be-

havior of both the communication thread and the computation thread are properly synchronized,

especially when the tracking client is in the process of switching from one server to another. These

monitors and mutexes significantly increase the complexity of implementation.

The graphical user interface of the tracking client is shown in Figure 9.1.

9.2.4 Deployment with the Agilos Architecture

Once the basic client-server based OmniTrack application is developed, we attempt to deploy

the application under the control of the Agilos middleware architecture. Following the steps de-

tailed in Chapter 8, we have CORBAfied our OmniTrack implementation by inserting the CORBA

event handler in the Windows message handling loop, exactly as shown in Section 8.2.

Similarly, the basic client-server based application is extended to multiple clients and servers

by extending the interfaces of negotiators, as illustrated in Chapter 8. The specific criteria that the

gateway uses to select the best server include the server workload in terms of CPU load, the angle

131

Figure 9.1: The Tracking Client in OmniTrack

of view to the objects, as well as the codec format video is served.

Finally, we have implemented an user configurator specific to the OmniTrack application. The

user configurator is responsible for accepting user preferences with respect to three types of recon-

figuration choices. First, the panable camera on the server can be turned to the left or right on user

commands. Second, the user may explicitly switch from the current server to the server on the

left or right. Third, the user may specify advanced options such as the type of objects so that the

information may be used to select the best server available for specific objects. Figure 9.2 shows

the graphical user interface of the user configurator.

132

Figure 9.2: The User Configurator of OmniTrack

9.3 Implementation of Agilos Architecture

9.3.1 Adaptor

We have implemented two types of adaptors in the Agilos architecture: the CPU adaptor and

the bandwidth adaptor. These adaptors implement the customized control algorithm presented in

Chapter 3. The observer, presented in the next section, provides observed values as input to the

adaptors. The communication between the adaptors and observers is facilitated by the CORBA

Property Service. Furthermore, the output of both adaptors are also propagated to the CORBA

Property Service as a set of CORBA properties, which are retrieved by the functional configurator.

The mechanisms used for the propagation and retrieval to and from the CORBA Property Service

are identical to those presented in Section 8.2 for delivering application QoS parameters from the

application to the observer.

9.3.2 Observer

The observer has three distinct responsibilities. First, it retrieves the application-specific QoS

parameters from the CORBA Property Service. Second, the observer observes system resource

133

availability, such as CPU load and throughput from client to the server, via the Performance Data

Helper library provided by Windows NT as a service to peek the system parameters in the NT ker-

nel. The optimal estimation algorithm presented in Chapter 4 is also implemented in the observer

to estimate the end-to-end network throughput between the client and the server. Third, the ob-

server visualizes all observed values, including system resources and application QoS parameters,

in an animated illustration window similar to the Windows NT Task Manager. Figure 9.3 shows

the results of such a visualization process of six different observed parameters.

Figure 9.3: The Observer in Agilos

9.3.3 Configurator

The functional configurator includes the implementation of a fuzzy inference engine. We have

adopted the C-FLIE inference engine implementation [24] as well as its rule specification format

for specifying the rule base and membership functions. Since the original C-FLIE engine is im-

plemented in C, we have implemented a set of wrapper functions in C++. The most important

functions are defined as follows:

134

// The main entry point of the Inference Engine
void loadInferenceRuleFile(const char *rule_file_name = NULL);
void inferenceEngine(LingValList &LINK, const char * rule_file_name =
NULL);

These wrapper functions provide simplified interfaces to the rest of the configurator implemen-

tation to activate the inference engine with minimal required parameters. As we notice, the only

parameters they need are an instance of the class LingValList, as well as a file name for the

rule base itself. The class LingValList defines an array that encapsulates all linguistic variables

used in the rule base.

After the output is generated from the fuzzy inference engine, the configurator needs to con-

vert the generated results to the corresponding control actions in the application. The conversion

process is mathematically modeled in Section 5.3.4 as part of the defuzzification process. In or-

der to implement this conversion process, we introduce a configuration file that only defines the

membership functions of all linguistic values. Such a file is complimentary to the actual file that

defines the rule base. For example, in the OmniTrack implementation with the rule base defined as

in Section 8.3.2, such a configuration file is as follows:

lingvar rateaction
class bandw 0 0 200 500
class compress 400 500 800 1200
class chopped 800 1200 1500 1700
class uncompress 1600 1800 2000 2000
lingvar cpuaction
class droptracker 0 0 30 40
class replacetracker 30 40 50 60
class adjustregion 50 60 70 80
class addtracker 70 80 100 100
end

After such a configuration file is defined, the conversion process may be encapsulated in a

series of functions, as shown in the following:

// Load the configuration file
void loadLinguisticValueDef(const char *def_file_name);

// Retrieves the next string token from the configuration file that
// contains membership functions
void RetrieveToken(const char * token);

135

// Parse the configuration file to retrieve all definitions of membership
// functions for linguistic values
void ParseDefinitions(void);

// Convert the output from the inference engine into actual control actions
int ReverseMapping(const char * lingvar, int metric, float & value);

9.3.4 QualProbes

The implementation of QualProbes strictly follows the QualProbes services kernel algorithm

presented in Figure 6.3. Before the algorithm is executed, the dependency tree of application QoS

parameters needs to be explicitly specified in a file by the application developer. As an example,

for the dependency tree illustrated in Figure 6.1, such a specification file is formated as follows:

id | observe | tune | left child | right child
1 precision -1 2 3
2 velocity -1 -1 -1
3 tfrequency -1 4 5
4 framerate 1 6 1001
5 tquantity -1 7 8
6 iproperty -1 9 10
7 numtrackers 2 1000 -1
8 proptracker -1 11 12
9 ratio -1 13 14

10 imagesize -1 15 16
11 regionsize 3 1000 -1
12 ttype 4 1000 -1
13 codect 5 1000 1001
14 codecp 6 1000 1001
15 pixels 7 1001 -1
16 depth 8 1001 -1

The first column of the specification represents the identification number of an application

QoS parameter. The second column specifies the name of the parameter, such a name is used for

propagation to and retrieval from the CORBA Property Service for current values of the associated

QoS parameter. The third column is the index to an array of function pointers that refers to the

application control interface. Such an index specifies the particular function to use so that the

parameter can be tuned, or reconfiguration choices can be activated in the application. The last

two columns specify the parameter ID of the descendants in the dependency tree. Two special IDs

136

are used for system resources and are defined in related header files: 1000 for the CPU capacity,

and 1001 for network throughput.

Once such a specification is established, the algorithm shown in Figure 6.3 can be executed

while the application is activated for benchmark runs. In the OmniTrack application, we have

used an artificially generated animation video, which is streamed from the server to the client.

Once such an animation video is utilized, exact coordinates of tracked objects are known, and

the tracking precision (with a name of precision in the CORBA Property Service) could be

measured.

9.3.5 Negotiators and Gateway

The implementation of negotiators and the gateway strictly follow the design outlined in Chap-

ter 7, as well as the application extension interfaces presented in Section 8.4. Client and server side

negotiators are implemented to be tightly coupled with the application at compile time, while the

gateway is implemented as a separate middleware component. For the purpose of making decisions

on which server to switch to, the gateway shares the fuzzy inference engine with the configurator,

and uses a different application-specific rule base. For example, one rule in the rule base for the

OmniTrack application is shown as follows:

if (action is request_move) and ((angle_difference is veryclose) and
((format_difference is same) and (server_load is verylight))) then
server_ranking:= high ;

Such a rule base is evaluated against the input by the fuzzy inference engine for each server

that the gateway manages. The output from the inference engine is the ranking for that particular

server with respect to how its capabilities fits the requesting client’s needs. The server with the

highest ranking is selected by the gateway for the new server to switch to.

The graphical user interface for the gateway is shown in Figure 9.4.

137

Figure 9.4: The Gateway in Agilos

9.4 Summary

This chapter discusses important issues in the process of implementing the Agilos middleware

architecture and OmniTrack application in Windows NT 4.0 with C++. The current implemen-

tation of Agilos strictly follows our architectural and algorithmic design presented in previous

chapters, and this chapter complements previous discussions with implementation choices and de-

tails that actually make Agilos work effectively with real-world applications, such as OmniTrack.

The current source tree for the entire implementation (including both Agilos and OmniTrack con-

tains over 60000 lines of C++ and supplementary code, which brings rich experimental results

shown in Chapter 10, and demonstrates our strong commitment to verifying our theoretical work

by large-scale implementation-driven experiences.

138

Chapter 10

Experimental Results

In this chapter, we evaluate the Agilos middleware architecture by executing the OmniTrack ap-

plication under the control of Agilos. We present a series of scenarios to evaluate respective aspects

of Agilos, including its effectiveness with respect to meeting the critical performance criterion, as

well as the performance overhead Agilos introduces to the application, especially with respect to

its gateway-centric approach in the third tier.

10.1 Experimental Testbed

We use the OmniTrack application, an omni-directional visual tracking system, as an example

of the applications deployed under the control of the Agilos middleware architecture. The ap-

plication, along with Agilos, is implemented to execute on two dual Pentium Pro 200 Mhz PCs,

one Pentium MMX 200Mhz PC, and one Pentium II 400Mhz PC. All PCs runs Windows NT 4.0

Service Pack 5 as their operating system. We use Visual C++ 6.0 Service Pack 3 as the primary

development platform for all our C++ source code. We use ORBacus 3.1.3 [27] as our primary

choice of CORBA implementation. We have deployed all tracking clients and servers over 10Mbps

standard Ethernet.

With respect to CPU load measurements, we perform both application-specific source-level

instrumentation to obtain measurements on application QoS parameters such as the tracking du-

ration, as well as system-level probes to measure system resources such as the CPU load. The

139

application-specific probing results are communicated to the observer by the CORBA property

service, while the system-level probes are implemented with the Performance Data Helper Li-

brary included in the Platform SDK of Windows NT. In order to simulate the network bandwidth

fluctuations, we plug in a throughput simulator to simulate a network through three routers with

FIFO packet scheduling and cross traffic. This setup will simulate network fluctuations similar

to what occur in the Internet. In addition, in order to measure the tracking precision and repeat

experiments, we carry out all our experiments based on animated moving objects served from the

tracking server, rather than live video from the camera. Finally, we obtain the tracking precision

of one tracker by measuring the distance between the position of the tracker and the actual object

it tracks, and we evaluate the overall tracking precision by calculating the average of the precision

of all trackers. In OmniTrack, the critical performance criterion is to maintain the stability of its

overall tracking precision.

10.2 Adaptation Choices in OmniTrack

In Section 5.3.2, we gave a brief overview of the tunable application QoS parameters and

reconfiguration choices in the OmniTrack application. In Section 6.2.1, we again discussed the

relationships among application QoS parameters, taking OmniTrack as an example. As we have

noted, OmniTrack is rich in its various options for adaptation. In this section, we present impor-

tant adaptation choices for OmniTrack in details, divided into two categories: parameter-tuning

adaptations and reconfigurations.

10.2.1 Parameter-Tuning Adaptations

Parameter-tuning adaptation choices refer to those control actions that tune application tunable

QoS parameters for the purpose of adaptation. There are six important parameter-tuning adaptation

choices in the current reference implementation of OmniTrack, enumerated as follows.

140

1. Image size in pixels. This is the total number of pixels in each frame in the video being

streamed from server to client. It may be tuned by (1) chopping the edges of frames; (2)

scaling the frames; (3) switching to a server with a different image size. Tuning this pa-

rameter affects the bandwidth requirement in OmniTrack. In addition, we note that this is a

representative of the parameter content size in any client-server based applications that feeds

contents from the server to the client. For example, a web server may reduce the size of

images embedded in the web pages being served.

2. Image color depth. The color depth of each frame, which affects the bits allocated for each

pixel before any compression. This parameter is also related to bandwidth requirements of

the application.

3. Compression ratio. If the video is compressed with a specific codec type in OmniTrack, this

is a relative criterion with regards to the internal parameters within the codec process. If the

ratio is high, more CPU resources are used and less network bandwidth is required, and vice

versa.

4. Frame rate. This is the rate that the server serves video frames to the client, in terms of

frames per second. The server is able to vary the rate in order to adapt its bandwidth require-

ments between the server and the client.

5. Number of active trackers. By adding and removing trackers on-the-fly on the tracking client,

the CPU requirement of the client is effectively changed.

6. Size of tracked region. This is a parameter that characterizes the computational complexity

of one tracker. If the size of the tracked region is smaller, less CPU capacity is used, and

vice versa.

141

10.2.2 Reconfigurations

There are three effective reconfiguration choices in the current reference implementation of

OmniTrack.

1. Codec type. The type of codec format used for the video. In our reference implementa-

tion, we have implemented Motion JPEG as the alternative codec other than uncompressed

video. Similarly, more choices could be provided, such as MPEG, in order to increase the

adaptiveness of the application. The codec type may be reconfigured by one of the follow-

ing alternatives: (1) On-the-fly switching between servers providing different codec types;

(2) Changing the codec type on the same server. After reconfiguring OmniTrack to use a

different codec, both CPU and bandwidth requirements may be affected.

2. Type of tracker. The type of each tracker may be one of the following in the reference

implementation of OmniTrack: SSD tracker, line tracker and corner tracker. Each poses a

different load on the CPU. Changing the type of the tracker is accomplished on the tracking

client alone, no servers need to be involved.

3. Server switching. If the user needs a different angle of view on the tracked object or a

different codec type, server switching may be requested from the client side, and the server

switching protocol will be accomplished with the assistance of the gateway. The switching

of servers is decided by three factors in the current implementation: server workload, angle

of view, and codec type being served.

10.3 Experimental Scenarios and Results

The primary purpose of all the experiments conducted with OmniTrack is to evaluate the ef-

fectiveness and the performance of Agilos, our middleware control architecture. Since we wish

to study all aspects of Agilos, we divide the experiments into ten different scenarios. In this sec-

142

tion, we present the context and experimental setup of each scenario, followed immediately by the

experimental results measured by such a scenario, and the conclusions that we have drawn.

10.3.1 Scenario 1: Testing the First Tier

In this scenario, we test the effects of Agilos in a client-server based setup consisting of a single

tracking server in OmniTrack, which eliminates any influences from the gateway-centric approach

in the third tier. We first start with the following basic rule base that focus on only simple parameter

tuning parameters, the image size in pixels, discussed in the previous section:

if (rate is moderate) then rateaction:= size;
if (rate is low) then rateaction:= size;
if (rate is high) then rateaction:= size;

This rule base introduces the effects of “bypassing” the configurator in our tests, so that only

the first tier, including the adaptor and the observer, is tested in the a basic client-server setting

of OmniTrack. Since the output of CPU adaptor is not used in any way in this particular rule

base, only the output of the throughput adaptor affects the tunable parameter image size in the

application. In the adaptors, we have defined
�

as
� � � � , and

�
as
� � � � .

The results we have obtained are shown in Figure 10.1, divided in four parts. Figure 10.1(a)

shows the observed variations in network throughput for the video being streamed from the track-

ing server to the client. Figure 10.1(b) shows the tracking precision for one tracker when the Om-

niTrack application is not supported by Agilos. After Agilos support is activated, Figure 10.1(c)

shows the corresponding reactions generated by the configurator of Agilos with the simplified rule

base introduced previously. Such results reflect the capabilities of the bandwidth adaptor and ob-

server in the first tier. Figure 10.1(d) shows the resulting tracking precision for one tracker with

adaptation activated. The results show that the tracking precision for one tracker improves signif-

icantly compared with Figure 10.1(b), and is kept stable for the entire duration of measurements.

Figure 10.1(e) shows the collective tracking precision for 30 concurrent active trackers by calcu-

lating the average of each tracker’s precision. We note that as time proceeds, the tracking precision

143

0

300000

600000

900000

1200000

1500000
Observed throughput (bytes/sec)

0 100 200
Time (seconds)

(a) Observed Throughput

0 100 200
Time (seconds)

(lost track, measurement suspended)

Tracking precision for one tracker (pixels in distance)
100

80

60

40

20

0

(b) Tracking Precision for One Tracker (without
Agilos)

Image size in pixels (pixels)

0 100 200
Time (seconds)

0

50000

100000

150000

200000

250000

300000

350000

(c) Image Size in Pixels After
Adaptation

Tracking precision for one tracker (pixels of distance)

0 100 200
Time (seconds)

0

10

20

30

40

50

(d) Tracking Precision for One
Tracker (with Agilos)

Tracking precision for 30 trackers (average pixels of distance)

0 100 200
Time (seconds)

0

10

20

30

40

50

60

(e) Tracking Precision for 30
Trackers (with Agilos)

Figure 10.1: Experimental Results for Scenario 1

incrementally increases, illustrated as an upward curve. The tracking precision is measured by the

distance between the coordinates of the tracker and the coordinates of the object it tracks, which

leads to the conclusion that if the average value increases, a small portion in the collection of

trackers drift away from the object and eventually lose track, while the rest of them are stable.

The conclusion we have drawn from the above experimental results is as follows. First, the first

tier of Agilos, including the adaptor and observer, is effective in maintaining the stability of tracking

precision for one tracker, even with the simplified rule base that we have used in the configurator.

This demonstrates the validity of our approach with respect to the Task Control Model for the

adaptors and the optimal estimation algorithms implemented in the observers. Second, the tracking

144

precision for 30 concurrent trackers is not properly preserved, mainly because of the reason that

more trackers will saturate the CPU load, which is not taken into account in the experimental setup

of this particular scenario.

10.3.2 Scenario 2: Testing the Second Tier under Fluctuating CPU Load

In order to experiment with a hybrid combination of application-specific parameter-tuning and

reconfiguration choices, which emphasizes the effects of the Configurator, we deploy the config-

urator in Agilos using a full-fledged rule base based on the results of profiling services provided

by QualProbes. The experiments in Scenario 2 and 3 emphasize testing the effectiveness of the

Fuzzy Control Model supported by both CPU and network bandwidth adaptors. Similar to the first

scenario, we focus on the basic client-server setup in OmniTrack in this scenario, and will proceed

to the omni-directional facilities in Scenario 4.

Having experimented with the effects of adaptation under network bandwidth fluctuations in

the previous scenario, in Scenario 2, we focus on a particular situation where only the CPU resource

availability fluctuates over time. In this situation, only the CPU adaptor will be effective in the

actual decision-making process in the configurator. Figure 10.2 shows the results we have obtained.

As illustrated in Figure 10.2(c), the adaptation choice we have used to react to CPU load variations

is to adjust the number of active trackers by adding and removing them on the fly.

Since we wish to focus only on CPU load variations, the experiments are carried out over a sin-

gle Ethernet segment with almost constant network bandwidth. In order to introduce variations on

CPU load,
� �

seconds after the beginning of the experiment, we start the Windows Media Player to

play a MPEG-1 video from a local file on the same end system. Such a media player will consume

about
� �

% of CPU if being executed as a standalone application without any other applications

concurrently running. In order to study the effects when CPU load decreases dramatically, we stop

the media player at
�
� � seconds into the experiment.

In Figures 10.2(a) and 10.2(b), we show observations with respect to network throughput and

end-system CPU load. We may observe that the network throughput remains constant since we

145

Observed throughput (bytes/sec)

0 100 200
Time (seconds)

0

200000

400000

600000

800000

1000000

(a) Network Throughput

CPU Load (percentage)

0 100 200
Time (seconds)

Mpeg player
starts

Mpeg player
stops

droptracker

addtracker

addtracker

0

20

40

60

80

100

(b) CPU Load

Number of active concurrent trackers

0 100 200
Time (seconds)

0

5

10

15

20

25

30

(c) Number of Active Concurrent Trackers

Tracking precision for all active trackers (average, in pixels)

0 100 200
Time (seconds)

0

10

20

30

40

50

(d) Average Tracking Precision for All Trackers

Figure 10.2: Experimental Results for Scenario 2

place the server and the client on the same Ethernet segment. From Figure 10.2(b) and 10.2(c), we

may notice that during the initial phase of the experiment, new trackers are being added in order

to take advantage of idle CPU time, up to a maximum of
� �

trackers. However, in the second

phase when the Windows Media Player starts the playback process, trackers are being dropped

down to a minimum of
� �

trackers in order to prevent the CPU from overloading. At
� � � seconds

into the experiments. when the Windows Media Player stops playing the MPEG-1 file, CPU load

dramatically decreases to around � � %, and more trackers are being added to utilize the idle CPU

time. The most critical QoS parameter, tracking precision, is measured and illustrated in Figure

146

10.2(d), where we have shown that the average tracking precision for all active trackers is stable in

all phases of the experiments.

To conclude, we note that the tracking precision is kept stable by adapting the number of

active trackers based on observed variations in CPU load. In this experiment, such variations are

introduced by another CPU-intensive application executing in the same end system.

10.3.3 Scenario 3: Testing the Second Tier under Fluctuating Bandwidth

and CPU Load

Similarly to Scenario 2, in this scenario, we deploy the configurator in Agilos using a full-

fledged rule base, and emphasize testing the effectiveness of the Fuzzy Control Model. However,

rather than testing under one fluctuating resource types, we examine the adaptation results when

both CPU and network bandwidth are fluctuating. In this case, both CPU and network adaptors are

actively in effect to support the decision-making process in the configurator.

Figure 10.3 shows the results we have obtained. Table 10.1 shows the control actions generated

by the configurator at their respective starting times. The timing of these control actions are also

visually embedded in Figure 10.3(b).

Start Time (sec) Control Action from Configurator
4-40 addtracker
56 compress
62-120 droptracker
139 uncompress
145-178 addtracker

Table 10.1: Control Actions generated by the Configurator

Our analysis on these experimental results is as follows. In Figures 10.3(a) and 10.3(b), we

show observations with respect to network throughput and end-system CPU load. These obser-

vations drive the first tier adaptors, whose output drives the behavior of functional configurators

in the second tier. In the case of this scenario, a hybrid combination of parameter-tuning and re-

147

Observed throughput (bytes/sec)

0 100 200
Time (seconds)

0

200000

400000

600000

800000

1000000

(a) Network Throughput

CPU Load (percentage)

0 100 200
Time (seconds)

0

20

40

60

80

100

compress

uncompress

droptracker

addtracker

addtracker

(b) CPU Load

Number of active concurrent trackers

0 100 200
Time (seconds)

0

5

10

15

20

25

30

35

40

(c) Number of Active Concurrent Trackers

Tracking precision for all active trackers (average, in pixels)

0 100 200
Time (seconds)

0

10

20

30

40

50

(d) Average Tracking Precision for All Trackers

Figure 10.3: Experimental Results for Scenario 3

configuration choices is activated by Agilos. The specific reconfiguration choices being used are

compress and uncompress, which activates and deactivates the Motion JPEG video codec in

both the tracking server and client. The tunable parameter is the number of active trackers. Since

the trackers are executed in a round-robin fashion in the computation thread introduced in Sec-

tion 9.2, the duration of executing all trackers in each iteration is increased when there are more

active trackers present. This may impose a heavier CPU load on the end system. Figure 10.3(c)

shows the number of active trackers, which is the result of the control actions droptracker

and addtracker generated by the configurator. The reconfigurations compress and uncom-

148

press significantly reduces the network throughput from the server to the client, and increases

the CPU load to near 100%. This leads to another round of parameter tuning adaptations related

to droptracker. As illustrated in Figure 10.3(d), this combination of parameter-tuning and

reconfiguration choices, activated with appropriate timing determined by the configurator, leads to

a stable collective tracking precision for all trackers. Such measurement of tracking precision is

obtained by calculating the average of the precision of individual trackers.

To conclude the analysis of this scenario, we note that a combination of application-specific

parameter-tuning and reconfiguration choices, made by the configurator, is crucial to maintaining

the stability of the critical performance criterion. This is manifested by a comparison between Fig-

ure 10.3(d) in this scenario and Figure 10.1(e) in Scenario 1. Since Scenario 1 only tests the effects

of tuning a single parameter, in this case the image size, it does not have the capability of main-

taining the tracking precision for all trackers under any resource variations. On the contrary, this

scenario shows that the collective tracking precision can be maintained by adding more adaptation

choices in the rule base for the configurator, since the application is more versatile and adaptive

with a rule base that precisely captures the various adaptation possibilities within the application.

10.3.4 Scenario 4: Testing the Third Tier

After testing the capabilities of the first and second tier in Agilos, we proceed to evaluate our

gateway-centric design presented in Chapter 7. In this scenario, we have designed three experi-

ments to demonstrate the capabilities of the third tier of Agilos, particularly with respect to the

gateway’s ability to provide each client with a QoS-satisfactory server. We evaluate the gateway’s

server decision using two criteria: how well the selected server matches the client’s reconfiguration

request, and while satisfying these requests, how well the gateway performs load balancing based

on server’s workload.

Each experiment was performed using six clients and three servers. The clients were placed on

hosts of varying speed, one client per host. The servers were placed on three hosts, one server per

host, in descending order or host processor speed: an MJPEG server on a Pentium II 400 (PII 400),

149

another MJPEG server on a dual processor Pentium Pro 200 (PPro 200), and an uncompressed

server on a Pentium 200 MMX (P 200). The gateway was placed on “PII 400”.

For the first experiment, we have manually selected the server for each client to balance best

the overall server load. This experiment was performed as a control for evaluating the second and

third experiments. The results of this experiment are shown in (a, b, c) of Figure 10.4. The jumps

in execution levels indicate when each server begins servicing another client.

For the second experiment, we repeated the first experiment, this time allowing the gateway to

select the server for each client. The results of this experiment are shown in (d, e, f) of Figure 10.4.

As expected, the gateway satisfied all client requests while performing an equivalent level of load

balancing which had been performed manually in the first experiment.

In the second experiment, the relative load on each server was close enough such that a random

or round robin placement of the clients would have performed an adequate job of load balancing.

To prove that the gateway would respond equally well within a biased service facility configuration,

we switched the fastest server, “PII 400”, from MJPEG to uncompressed video. This change

greatly reduced the processor overhead for this server. For the third experiment, we allowed the

gateway to select servers with the new configuration. This time, the gateway placed every client

on “PII 400”. Even with one server executing, the gateway executing, and all six clients being

serviced, the CPU load on this host was still lower than the load on the other servers, each of which

executing one server with no connections. Thus, the gateway have successfully demonstrated that

it could meet a client’s QoS needs while maintaining optimal utilization across the facility.

In addition, we also wish to measure the time necessary to start a minimal omni-directional

tracking server in this scenario. The Gateway is started first, immediately followed by the server.

The server initialization time is the period between starting time of Gateway and finishing time of

server registration at the Gateway. Figure 10.5(a) illustrates the server initialization time.

Once the tracking server is established, the client connects to the tracking server and start

receiving video. The client initialization time, shown in Figure 10.5(b), is the time it takes from

starting time of the client till the display of video.

150

0

20

40

60

80

100

0 50 100 150 200 250 300

C
P

U
 L

oa
d

(%
)

Time (s)

(a) PII 400

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 L

oa
d

(%
)

Time (s)

(b) PPro 200

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 L

oa
d

(%
)

Time (s)

(c) P 200

0

20

40

60

80

100

0 50 100 150 200 250 300

C
P

U
 L

oa
d

(%
)

Time (s)

(d) PII 400

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 L

oa
d

(%
)

Time (s)

(e) PPro 200

0

20

40

60

80

100

0 50 100 150 200 250

C
P

U
 L

oa
d

(%
)

Time (s)

(f) P 200

Figure 10.4: Experiments with the Gateway

Figure 10.5(c) shows the server switching time, which is the length of duration to execute the

server switching protocol illustrated in Figure 7.7. To measure the server switching time, two

servers serve live video with different video formats, e.g., uncompressed and MJPEG compressed.

The user requests to switch from one server to the other by clicking on the move button on the User

Configurator. The switching time is the period between the time when a user clicks the button on

the User Configurator and the time when the client retrieves the video stream from the new server.

To summarize, we have concluded the following: First, the gateway is able to correctly select a

suitable server to meet the client’s QoS needs, while maintaining optimal utilization across the fa-

cility. Such a selection is the basis of the server switching protocol presented in Figure 7.7, which

facilitates all reconfigurations that demands switching among servers on the fly. The gateway made

the selections with its own rule base, and with the same fuzzy inference engine being used in the

configurators. Second, the gateway is able to initialize the servers and clients within a reasonable

time frame, and perform the server switching protocol with some reasonable performance over-

151

0

200

400

600

800

1000

2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Trial

Omni-Directional Camera Initialization Time

(a) Server Initialization Time

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Trial

Client Initialization Time

(b) Client Initialization Time

0

200

400

600

800

1000

5 10 15 20 25 30 35 40 45 50

T
im

e
(m

s)

Trial

Server Switching Time

(c) Server Switching Time

Figure 10.5: The Performance of Gateway Protocols

head. While the server switching protocol is executed, the client may still receive video as usual

from the previous server. The network socket to the previous server is only closed when a new

socket is established with the new server.

10.4 Conclusions

In this chapter, we have presented our experimental results with respect to running the Omni-

Track application under the control of the Agilos middleware control architecture. We have divided

our experiments into three major scenarios, each focusing on a specific tier of the Agilos architec-

ture. Our experimental results show that we are able to preserve the tracking precision, the critical

performance criterion for OmniTrack, in various cases of resource variations. These experiments

validate our design of Agilos introduced in previous chapters, and demonstrate the effectiveness

of its control actions. We have also shown that there are some reasonable performance overhead

introduced by the gateway-centric design, however this is the tradeoff for introducing the load

balancing and server switching capabilities as a new domain of reconfiguration choices.

152

Chapter 11

Related Work

It has been widely recognized that many QoS-constrained distributed applications need to be

adaptive in heterogeneous environments. Many research problems relevant to our work in the area

of QoS adaptations have been studied. We briefly review each of these in the following sections,

divided into several areas of focus.

11.1 Communication Protocols

System level adaptive mechanisms in communication and networking protocols have been ex-

tensively studied in the past decade. Particularly, the problem of flow control at the packet or cell

level has been examined with great interests. Flow control refers to the set of techniques that en-

able a data source to match its transmission rate to the currently available service rate at a receiver

and in the network. In this sense, the objective of the application-aware QoS adaptation with re-

spect to network bandwidth resources is largely identical to the goal of the flow control, except

that QoS adaptation is performed at the application level, and most mechanisms developed in the

past decade related to the flow control are implemented at the datalink, network or transport layers

of a protocol stack. We review some of the previous work related to our approach.

Many previous packet or cell level flow control approaches were proposed with the assistance

of control theory. Earlier work [30, 31, 14] showed that a control-theoretic way of analyzing

flow control problems is both valid and feasible. Notably, Keshav in [14] proposes a packet-pair

153

flow control algorithm and uses control theory to analyze its stability and performance, under the

assumption that a round-robin like scheduling discipline referred to as the Rate Allocation Server is

deployed in the bottleneck node. In this work it was shown that the flow control algorithm is stable,

which implies that if a new source becomes active, existing active sources adjust their transmission

rates so that after a brief transient period, the system settles down to a new equilibrium. More recent

work [32, 33, 34, 15] has continued the pursuit in this domain, mainly focusing on the flow and

congestion control issues for ATM switches, particularly under ABR (Available Bit Rate) service.

Notably, in [32], the control laws for congestion control, in the case of a single congested node,

were derived and stability properties proved. In [15], the stability and sensitivity properties are

analyzed in the case of the rate-based flow control for ABR service. In this work, stability is

described as the ability of the control system to steer the target system back to equilibrium state

after a disturbance has occurred. In addition, sensitivity is described as the change in performance

variables with respect to an infinitestimal change in a parameter variable, while the rest of the

parameter variables remains unchanged.

Another noteworthy example of previous work is in the area of fuzzy logic and fuzzy control

systems, which are previously studied and applied to solutions for flow control. In [14] fuzzy

logic was applied to solve state estimation problems. Pitsillides et al. [24] present a fuzzy control

approach used for the purpose of flow control in ATM networks, with linguistic variables being the

queue length and the change rate of queue length in each ATM switch. In contrast, our approach

focuses on generating control actions to control distributed multimedia applications themselves,

with the primary goal being the satisfaction of the critical performance criterion.

Our work focuses on the study of adaptations in the application domain with a focus on the crit-

ical performance criterion, as well as adaptations with respect to more than one type of resources.

While the mechanisms are certainly different in the application domain, the general approach of

utilizing the control theory and the definitions for stability and other transient properties are sim-

ilar to the previous work. Furthermore, we focus on global fairness properties of the adaptation

behavior with respect to observable resources in the same end system, which was not studied in

154

most of the previous work on packet or cell-level flow control based on control theory.

11.2 Resource Management

Recent research work on resource management mechanisms at the systems level also expressed

much interests in studying various kinds of adaptive capabilities. Particularly, in wireless network-

ing and mobile computing research, because of resource scarcity and bursty channel errors in

wireless links, QoS adaptations are necessary in many occasions. These adaptation mechanisms

are frequently accompanied by new QoS parameters unique to the mobile environment, for exam-

ple seamless user mobility. For instance, in the work presented in [35, 36, 37], a series of adaptive

resource management mechanisms were proposed that apply to the unique characteristics of a mo-

bile environment. These adaptive mechanisms include the division of services into several service

classes, predictive advanced resource reservation, and the notion of cost-effective adaptation by

associating each adaptation action with a minimal lost of network revenue. Another example is

the work of Noble et al. in [6], who investigated an application-aware adaptation scheme, focus-

ing on two characteristics: fidelity of data and agility of adaptation. The work adopts a different

mindset: based on the coordination between the system and individual applications, the system is

responsible of monitoring resource changes and notifying the application, while the applications

decide how best to adapt when notified. Similarly to the functional separation between the first and

second tier in our Agilos architecture, this work was also built on the separation principle between

adaptation algorithms controlled by the system and application-specific mechanisms addressed by

the application. The key idea was to balance and tradeoff between performance and data fidelity.

However, a fundamental difference in our work is that we have introduces a second tier in Agilos,

so that the middleware is well aware of all application-specific adaptation choices through the rule

base. This design is in line with the separation principle, but grants more power for the middleware

to control the adaptive behavior in the application. In other words, rather than leaving the decision

to the applications with respect to which adaptation option to select on resource variations, we

155

perform such a decision-making process within the Agilos middleware itself. The Fuzzy Control

Model is applied in order to rigorously model such a process.

Another related category of work studies the problem of dynamic resource allocations, often

at the operating systems level [38, 39, 40]. The work in [39] focuses on maximizing the overall

system utility functions, while keeping QoS received by each application within a feasible range

(e.g., above a minimum bound). In [38], a global resource management system was proposed,

which relies on middleware services as agents to assist resource management and negotiations. In

[40], the work focuses on a multi-machine environment running a single complex application, and

the objective is to promptly adjust resource allocation to adapt to changes in application’s resource

needs, whenever there is a risk of failing to satisfy the application’s timing constraints.

The Darwin project [41] from Carnegie Mellon University studies the introduction of value-

added services, referred to as service brokers, in order to cope with the requirements presented by

complex distributed applications that connect many endpoints. The service brokers have application-

specific knowledge, and are responsible to identify the computation, storage and communication

resources in the network that will satisfy a request from the application, in a way that optimizes a

quality or cost metric. The service brokers may be separate entities residing in the network, or they

can be components of either an application or a service provider in the end system. These brokers

may also be hierarchically concatenated to provide more complex services. The key contribution

of the work is that service brokers serve as an application-aware ”proxy” between applications

and resource management mechanisms, so that resources are optimally allocated globally across

multiple network nodes and end points. In contrast, our Agilos architecture emphasizes on control-

ling the applications themselves, so that they optimally adapt to the variations in the environment.

Such optimality is measured by the degree of satisfaction of the critical performance criterion in

the application.

Rich features in the theory of fuzzy logic were also utilized in the area of dynamic adaptive

resource control. As an example, in the AutoPilot [42] project, a fuzzy logic approach is adopted

to design actuators that process sensory data observed from high-performance parallel programs,

156

so that optimal performance can be achieved by adjusting system parameters, such as those in a

parallel I/O file system. The actuators and sensors are functionally similar to the adaptors and ob-

servers in the first tier of our Agilos architecture. However, the objectives and domain of operations

are notably different.

In contrast to the above related work, our work distinguishes in its domain, focus and solu-

tions. First, our work on the Task Control Model focuses on the analysis of the actual adaptation

dynamics, which is more natural for modeling with a control-theoretic approach, rather than over-

all system utility factors. Second, rather than focusing on a multi-machine environment running a

single complex application, our work focus on an environment with multiple applications compet-

ing for a limited amount of shared resources, which we believe is a common scenario easily found

in many actual systems. The end systems in our model are loosely, rather than tightly, coupled with

heterogeneous networking environment. Third, our work focuses on proposing various schemes

for the middleware components to actively control the application, rather than providing resource

allocation and management services in the execution environment to meet the application’s needs.

In other words, we focus on assisting to adapt applications, rather than on resource allocations in

the system.

11.3 Middleware Services

Recently, in addition to studies in the networking and resource management levels, many active

research efforts are also dedicated to various adaptive functionalities provided by middleware ser-

vices. For example, [43] proposes real-time extensions to CORBA which enables end-to-end QoS

specification and enforcement. [2] proposes various extensions to standard CORBA components

and services, in order to support adaptation, delegation and renegotiation services to shield QoS

variations. The work applies particularly in the case of remote method invocations to objects over

a wide-area network. Similarly, the Da CaPo++ project by Stiller et al. [3] supports a range of mul-

timedia applications by a layer of middleware that integrates various functionalities, e.g., security

157

and multicasting capabilities, and that automatically configures itself to provide suitable commu-

nication protocols and multimedia-oriented services that are adaptable to application needs. The
� ���

project [44] [45] in University of Illinois proposes a resource-aware service configuration

model for heterogeneous environments. Similarly, The 2K project [46] proposes a dynamically

reconfigurable middleware framework to support resource management of dynamically changing

distributed resources within rapidly changing user environments. The work noted in [47] builds

on a series of middleware-level agent based services, collectively referred to as the Dynamic QoS

Resource Manager, that dynamically monitors system and application states and switches execu-

tion levels within a computationally intensive application. These switching capabilities maximize

the user-specified benefits, or promote fairness properties, depending on different algorithms im-

plemented in the middleware.

In contrast to the above mentioned related work, our work is orthogonal to the these approaches,

since the middleware control architecture is based on underlying service enabling platforms, which

is CORBA in our experimental testbed. In addition, we attempt to provide adaptation support to

the applications proactively, rather than integrating adaptation mechanisms in CORBA services

so that they are provided transparently to the applications. Furthermore, we attempt to develop

mechanisms that are as generic as possible, applicable to applications with various demands and

behavior. Finally, we attempt to provide support in the middleware control architecture with respect

to multiple resources, notably CPU and network bandwidth.

11.4 Application-Specific Mechanisms

Recent research efforts are also particularly interested in adaptation problems in the applica-

tion level. For example, the work presented in [5] and [48] uses software feedback mechanisms

that enhance system adaptiveness by adjusting video sending rate according to on-the-fly network

variations. In [49], Hafid et al. proposed application adaptation at the configuration level, which

carries out transparent transition from primary components to alternative components, as well as

158

at the component level, which redistributes resources in different components so that a QoS trade-

off can be made. In [50], a software framework was proposed for network-aware applications to

adequately adapt to network variations. [51] and [52] proposed adaptive filtering mechanisms to

reshape video streams, performed in either end systems or intermediate nodes in a multipeer dis-

tributed environment. In the work of Goktas et al. [53], the time variations along the transmission

path of a telerobotics system are modeled as disturbances in the proposed perturbed plant model,

in which the mobile robot is the target to be controlled. This is similar to our work that attempts to

apply control theory to analyze the adaptation dynamics in a broader range of applications, and in

a more rigorous fashion. In [54], a control model is proposed for adaptive QoS specification in an

end-to-end scenario. In the work of Bolot et al. [55], rate and error control schemes are proposed

at the application level for a video conferencing application in best-effort networks, also utilizing

a scheme similar to rate-based feedback control.

Similarly to the above, our approach models applications as a series of tasks, assisted by the

feedback loop. However, we differ in the view of the middleware components, which control the

adaptation behavior of applications. Furthermore, we propose a separation of control and esti-

mation algorithms: With respect to control, proper choices for adaptation are made on adaptation

timing, scale and methods used, which balance between the frequency and adaptation agility of

adaptation actions within the application; With respect to estimation, optimal predictions are being

made to obtain the best possible estimate of actual states. In addition, the algorithms proposed

to determine timing of adaptation in most previous work are heuristic in nature, and the analysis

of various adaptive transient properties such as stability, steady-state fairness and agility are not

addressed.

Similar to the objectives throughout the architectural design process of Agilos, other frame-

works and mechanisms have also been brought forth to deal with application-specific adaptation

choices and criteria related to the user satisfaction. In the work of Witana et al. [21], a software

framework is proposed that facilitates the development of adaptive applications. Much similar to

the rule base and configurators in Agilos, such a framework allows the installation of application

159

dependent policies which govern the adaptive behavior of the application. Similar to the critical

performance criterion, these policies are defined by the user, and reflect the user’s relative satisfac-

tion of QoS. Although with similar goals, our work with Agilos takes a more systematic and less

ad-hoc approach, which is applicable to the needs of a wider range of applications. As another ex-

ample, in the work of Abdelzaher et al. [4], a web server QoS provisioning architecture is proposed

for the purpose of adapting web contents to provide overload protection of web servers. A load

monitoring mechanism is introduced to monitor the server utilization, a content adaptor is used for

adapting web contents being served, and a utilization controller, which utilizes the standard PID

algorithm, is integrated to control such adaptation in a feedback loop. Similar to our work, the

key elements of such an adaptation mechanism are the closed feedback loop and a controller run-

ning control algorithms. The difference between this work and Agilos is that this work focuses on

adapting web server contents, while Agilos focus on generic applicability and ease of deployment

of various complex applications, rather than specific to the needs of any single application.

11.5 Visual Tracking Systems

We have used the OmniTrack application, an omni-directional visual tracking system as a

proof-of-concept application in all of our experiments. The tracking algorithms we have used is de-

rived from the previous XVision project [11] from Yale University. We have adopted the SSD, edge

and line tracking algorithms from XVision. There are also a vast quantity of literature related to the

tracking problem itself. However, since tracking itself is not the primary focus of this dissertation,

most of them are not directly related to this work. A notable exception is the work by Neumann,

et al. [56], which presents an architecture for robust detection and tracking of naturally occurring

features in unprepared environments. Such an architecture benefits vision-based augmented-reality

tracking systems. Significant insights into tracking systems have been obtained thanks to this work,

especially with respect to motion estimation equations and tracking error measurement schemes

(RMS error and angle error measures). The implementation of tracking precision measurement in

160

our work is derived from these tracking error measurement schemes.

161

Chapter 12

Concluding Remarks

12.1 Conclusions

In this dissertation, we presented the Agilos middleware control architecture as a viable ap-

proach to control the adaptive behavior of applications so that the best possible application-level

Quality of Service is achieved under any resource conditions during the lifetime of the applications.

Agilos is designed as a three-tier architecture: In the application-neutral first tier, the adaptors and

observers implements a closed control loop based on the Task Control Model. In the application-

specific second tier, the configurator takes output produced by the adaptors and makes decisions

on control actions based on the Fuzzy Control Model. In addition, QualProbes enhance the ef-

fectiveness of the configurator by probing and profiling the relationship among application QoS

parameters and resource demands. In the third tier, a gateway-centric design is introduced to fa-

cilitate reconfigurations that involve multiple servers and clients. With respect to implementation,

the Agilos architecture takes advantage of standard service enabling platforms such as CORBA

to facilitate communication among middleware components, as well as between Agilos and the

applications under control, via the application control interface.

The key contribution brought by the Agilos architecture is as follows. First, with the Task

Control Model implemented in the adaptors, we are now able to reason about and validate such

properties as stability, agility, system equilibrium and fairness for application-aware adaptive be-

havior and timing within distributed systems, which was not possible in previous work. Traditional

162

analytical models for distributed systems such as queuing theory, process algebra, petri nets and

other frameworks allow us to model and analyze properties such as deadlock, starvation or worst

case timing upper bounds, but do not allow easy and straightforward reasoning and proofs of

adaptive timing properties. Second, with the Fuzzy Control Model and QualProbes we are able

to specify application-specific rule bases so that the critical performance criterion for a particular

application is met. In addition, the modeling ability of the Fuzzy Control Model is powerful and

flexible, in the sense that it is able to capture any nonlinearity necessary for application-specific

tuning and reconfiguration actions. Third, with the gateway-centric design introduced by the third

tier of Agilos, a basic client-server application may be easily migrated to a scenario with multi-

ple clients and servers, thus enabling wide-scale reconfiguration options such as switching among

servers on-the-fly.

Our experimental results using an extensive experimental testbed, including the OmniTrack ap-

plication, show that the Agilos architecture improves the adaptation awareness and effectiveness of

flexible applications with respect to meeting the critical performance criterion, while the adaptive

actions are highly flexible and configurable according to the needs of individual applications. They

convincingly validate our theoretical analysis and show the feasibility and practicality of using the

Agilos middleware control architecture for application-aware QoS adaptations.

12.2 Future Work

Within the broad scope of this work, the following research problems are still open and further

enhancements to the Agilos architecture may assist to address these issues.

� Beyond the OmniTrack application, it is desirable to deploy more flexible and complex ap-

plications under the control of Agilos. These complex applications range from a MPEG-2

video streaming application to a complicated cluster of mission-critical web servers serving

dynamic web contents. A careful study of the behavior of Agilos after the deployment of new

applications will greatly facilitate a more thorough understanding of the interaction between

163

the middleware and the applications in multiple aspects. In addition, it is also an important

step towards an in-depth evaluation of application deployment interfaces (ADI) presented in

Chapter 8, with respect to the degree of modifications needed within the new applications

for such a deployment process.

� One of the advantages of adopting a Task Control Model in the adaptors is that it may be

seamlessly matched to the underlying network-level flow control protocols based on con-

trol theory. Even for standard window-based flow control protocols that are heuristic in

nature, it is desirable to study the possibilities of dynamically tune the parameters within

the adaptors, so that system-level flow control and application-aware adaptations coordinate

well with each other. A careful examination of this open problem may help the vertical in-

tegration of multiple adaptive algorithms in both the middleware and system layers, which

prevents the middleware layer to make application control decisions that are in conflict with

the underlying system layers such as the network protocol stack.

� The Agilos middleware architecture assumes that the end system and networking environ-

ments are best effort in nature, and that the applications adapt their behavior to comply to re-

strictions and variations with regards to resource availability. Such assumptions hold in most

of the scenarios for real-world applications. However, current state-of-the-art distributed sys-

tems have progressed to the point that some reservation mechanisms and protocols are built

in. For example, Microsoft Windows 2000 supports the RSVP protocol in its Windows Sock-

ets implementation, and some leading network routers from Cisco Systems feature built-in

support of the RSVP protocol as well. It is advantageous to integrate the adaptation-based

approach adopted by Agilos and the reservation-based mechanisms provided by emerging

operating systems and the network infrastructure. The result of such integration will be able

to bring together the level of QoS guarantees provided by reservation-based mechanisms and

the best possible adaptive QoS brought by adaptation-based middleware.

� The current design of Agilos architecture is static in nature. The performance overhead

164

caused by such an architecture may not be tuned according to the processing capacities of

the end systems. It is thus desirable to design and implement a more flexible framework,

one that may be reconfigured to be lightweight but with less features. This framework fea-

tures meta-adaptation, in the sense that the Agilos middleware itself may be reconfigured.

This will provide a new dimension of flexibility with respect to the deployment of applica-

tions. For example, a lightweight configuration of Agilos may be used on top of operating

systems running on handheld devices, such as the PalmOS, where computation and com-

munication resources are so limited that the performance overhead brought by Agilos itself

should be trimmed. On the other hand, a full-featured configuration of Agilos may be used

on mission-critical servers to drive complex applications such as a cluster of web servers

serving dynamic contents.

As illustrated, the research areas of adaptation-based middleware systems and application-

aware QoS adaptations continue to attract intensive research interests and present exciting open

research problems. The past achievements with the Agilos middleware architecture have led to

an extensive theoretical framework and experimental testbed, which may serve as a milestone for

future efforts to tackle these open research challenges.

165

References

[1] C. Aurrecoechea, A. Campbell, and L. Hauw, “A Survey of QoS Architectures,”

ACM/Springer Verlag Multimedia Systems Journal, vol. 6, no. 3, pp. 138–151, May 1998.

[2] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and D. Bakken, “QuO’s Runtime Support

for Quality of Service in Distributed Objects,” in Proceedings of the IFIP International

Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware

’98), The Lake District, England, September 1998.

[3] B. Stiller, C. Class, M. Waldvogel, G. Caronni, and D. Bauer, “A Flexible Middleware for

Multimedia Communication: Design, Implementation, and Experience,” IEEE Journal on

Selected Areas in Communications, vol. 17, no. 9, pp. 1580–1598, September 1999.

[4] T. Abdelzaher and N. Bhatti, “Web Server QoS Management by Adaptive Content Delivery,”

in Proceedings of Seventh International Workshop on Quality of Service, May 1999.

[5] S. Cen, C. Pu, R. Staehli, C. Cowan, and J. Walpole, “A Distributed Real-Time MPEG Video

Audio Player,” Lecture Notes in Computer Science, vol. 1018, pp. 151–162, 1995.

[6] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker, “Agile

Application-Aware Adaptation for Mobility,” in Proceedings of the 16th ACM Symposium

on Operating Systems and Principles, Saint-Malo, France, October 1997.

[7] M. Satyanarayanan, “Fundamental Challenges in Mobile Computing,” in Proceedings of the

Fifteenth ACM Symposium on Principles of Distributed Computing, May 1996.

166

[8] S. Vinoski, “CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments,” IEEE Communications Magazine, vol. 14, February 1997.

[9] D. Box, Essential COM, Addison-Wesley, Reading, MA, 1997.

[10] D. Hull, A. Shankar, K. Nahrstedt, and J. Liu, “An End-to-End QoS Model and Management

Architecture,” in Proceedings of IEEE Workshop on Middleware for Distributed Real-time

Systems and Services, December 1997, pp. 82–89.

[11] G. Hager and K. Toyama, “The XVision System: A General-Purpose Substrate for Portable

Real-Time Vision Applications,” Journal of Computer Vision and Image Understanding, vol.

69, no. 1, pp. 23–37, 1997.

[12] B. Li and K. Nahrstedt, “A Control-based Middleware Framework for Quality of Service

Adaptations,” IEEE Journal of Selected Areas in Communications, Special Issue on Service

Enabling Platforms, vol. 17, no. 9, pp. 1632–1650, September 1999.

[13] B. Li and K. Nahrstedt, “A Control Theoretical Model for Quality of Service Adaptations,”

in Proceedings of Sixth IEEE International Workshop on Quality of Service, Napa Valley,

California, May 1998, pp. 145–153.

[14] S. Keshav, “A Control-Theoretic Approach to Flow Control,” in Proceedings of ACM SIG-

COMM ’91, September 1991, pp. 3–15.

[15] W. Tsai, Y. Kim, and C-K Toh, “A Stability and Sensitivity Theory for Rate-based Max-Min

ABR Flow Control,” in Proceedings of 6th IEEE Singapore International Conference on

Networks, June 1998.

[16] G. Franklin and J. Powell, Digital Control of Dynamic Systems, Addison-Wesley, 1981.

[17] B. Li, D. Xu, and K. Nahrstedt, “Optimal State Prediction for Feedback-Based QoS Adap-

tations,” in Proceedings of Seventh IEEE International Workshop on Quality of Service,

London, UK, June 1999, pp. 37–46.

167

[18] J. Meditch, Stochastic Optimal Linear Estimation and Control, McGraw-Hill, 1969.

[19] R. Stengel, Optimal Control and Estimation, Dover Publications, 1994.

[20] B. Li and K. Nahrstedt, “Dynamic Reconfiguration for Complex Multimedia Applications,”

in Proceedings of IEEE International Conference on Multimedia Computing and Systems

1999, Vol. 1, Jun 1999, vol. 1, pp. 165–170.

[21] V. Witana, M. Fry, and M. Antoniades, “A Software Framework for Application Level QoS

Management,” in Proceedings of Seventh International Workshop on Quality of Service, May

1999.

[22] S. Servetto, “Compression and Reliable Transmission of Digital Image and Video Signals,”

Ph.D. Thesis, University of Illinois at Urbana-Champaign, June 1999.

[23] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control, Springer-

Verlag, 1996.

[24] A. Pitsillides, Y. A. Sekercioglu, and G. Ramamurthy, “Effective Control of Traffic Flow

in ATM Networks Using Fuzzy Explicit Rate Marking (FERM),” IEEE Journal of Selected

Areas in Communications, vol. 15, no. 2, pp. 209–225, February 1997.

[25] B. Li and K. Nahrstedt, “QualProbes: Middleware QoS Profiling Services for Configuring

Adaptive Applications,” in ACM Springer-Verlag Lecture Notes in Computer Science, also

Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware 2000), April 2000, vol. 1795, pp. 256–272.

[26] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J.-H. Seo, “Adaptive Middleware Architecture

for a Distributed Omnidirectional Visual Tracking System,” in Proceedings of SPIE Multi-

media Computing and Networking 2000, January 2000, pp. 101–112.

[27] Object Oriented Concepts Inc., “ORBacus for C++ and Java,”

ftp://ftp.ooc.com/pub/OB/3.1/OB-3.1.1.pdf, January 1999.

168

[28] S. Walli, “OpenNT: UNIX Application Portability to Windows NT via an Alternative En-

vironment Subsystem,” Proceedings of the 1st USENIX Windows NT Symposium, August

1997.

[29] G. Noer, “Cygwin32: A Free Win32 Porting Layer for UNIX Applications,” Proceedings of

2nd USENIX Windows NT Symposium, August 1998.

[30] R. Jain, Control-theoretic Formulation of Operating Systems Resource Management Policies,

Garland Publishing Company, 1979.

[31] D.-M. Chiu and R. Jain, “Analysis of Increase and Decrease Algorithms for Congestion

Avoidance in Computer Networks,” Computer Networks and ISDN Systems, vol. 17, pp.

1–14, 1989.

[32] L. Benmohamed and S. Meerkov, “Feedback Control of Congestion in Packet Switching

Networks: The Case of a Single Congested Node,” IEEE/ACM Transactions on Networking,

vol. 1, pp. 693–708, December 1993.

[33] S. Mascolo, D. Cavendish, and M. Gerla, “ATM Rate Based Congestion Control Using a

Smith Predictor: an EPRCA Implementation,” in Proceedings of IEEE INFOCOM ’96, San

Francisco, 1996.

[34] L. Benmohamed and Y.T. Wang, “A Control-Theoretic ABR Explicit Rate Algorithm for

ATM Switches with Per-VC Queueing,” in Proceedings of IEEE INFOCOM ’98, Session 2B,

1998.

[35] V. Bharghavan, K.-W. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer, “The TIMELY Adaptive

Resource Management Architecture,” IEEE Personal Communications Magazine, vol. 5, no.

4, August 1998.

[36] S. Lu and V. Bharghavan, “Adaptive Resource Management Algorithms for Indoor Mobile

Computing Environments,” in Proceedings of ACM SIGCOMM ’96, August 1996.

169

[37] S. Lu, K.-W. Lee, and V. Bharghavan, “Adaptive Service in Mobile Computing Environ-

ments,” in Proceedings of 5th International Workshop on Quality of Service ’97, May 1997.

[38] J. Huang, Y. Wang, and F. Cao, “On developing distributed middleware services for QoS- and

criticality-based resource negotiation and adaptation,” Journal of Real-Time Systems, Special

Issue on Operating System and Services, 1998.

[39] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource Allocation Model for QoS

Management,” in Proceedings of 18th IEEE Real-Time Systems Symposium, December 1997.

[40] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, “On Adaptive Resource Allocation for

Complex Real-Time Applications,” in Proceedings of 18th IEEE Real-Time Systems Sympo-

sium, December 1997.

[41] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste, E. Takahashi, and H. Zhang, “Darwin:

Resource Management for Value-Added Customizable Network Service,” in Proceedings of

Sixth IEEE International Conference on Network Protocols (ICNP 98), October 1998.

[42] R. Ribler, H. Simitci, and D. Reed, “The AutoPilot Performance-Directed Adaptive Control

System,” http://www-pablo.cs.uiuc.edu/Publications/publications.htm, November 1997.

[43] D. Schmidt, D. Levine, and S. Mungee, “The Design and Performance of Real-Time Object

Request Brokers,” Computer Communications Journal, vol. 21, no. 4, April 1998.

[44] D. Xu, D. Wichadakul, and K. Nahrstedt, “Resource-Aware Configuration of Ubiquitous

Multimedia Service,” in Proceedings of IEEE International Conference on Multimedia and

Expo 2000 (ICME 2000), July 2000.

[45] K. Nahrstedt, D. Wichadakul, and D. Xu, “Distributed QoS Compilation and Runtime In-

stantiation,” in Proceedings of IEEE/IFIP International Workshop on Quality of Service 2000

(IWQoS 2000), June 2000.

170

[46] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magalhaes, and R. Campbell, “Monitoring,

Security, and Dynamic Configuration with the dynamicTAO Reflective ORB,” in to appear

in IFIP International Conference on Distributed Systems Platforms and Open Distributed

Processing (Middleware 2000), April 2000.

[47] S. Brandt, G. Nutt, T. Berk, and J. Mankovich, “A Dynamic Quality of Service Middleware

Agent for Mediating Application Resource Usage,” in Proceedings of 19th IEEE Real-Time

Systems Symposium, December 1998, pp. 307–317.

[48] Z. Chen, S. M. Tan, R. H. Campbell, and Y. Li, “Real Time Video and Audio in the World

Wide Web,” World Wide Web Journal, vol. 1, January 1996.

[49] A. Hafid and G. Bochmann, “Quality of Service Adaptation in Distributed Multimedia Ap-

plications,” ACM Springer-Verlag Multimedia Systems Journal, vol. 6, no. 5, September

1998.

[50] J. Bolliger and T. Gross, “A Framework-Based Approach to the Development of Network-

Aware Applications,” IEEE Transactions on Software Engineering, Special Issue on Mobility

and Network-Aware Computing, vol. 24, no. 5, pp. 376–390, May 1998.

[51] A. Campbell and G. Coulson, “QoS Adaptive Transports: Delivering Scalable Media to the

Desk Top,” IEEE Network Magazine, vol. 11, no. 2, pp. 18–27, March 1997.

[52] N. Yeadon, F. Garcia, D. Hutchison, and D. Shepherd, “Filters: QoS Support Mechanisms for

Multipeer Communications,” IEEE Journal on Selected Areas in Communications, Special

Issue on Distributed Multimedia Systems and Technology, vol. 14, no. 7, pp. 1245–1262,

September 1996.

[53] F. Goktas, J. Smith, and R. Bajcsy, “Telerobotics over Communication Networks,” in Pro-

ceedings of 36th IEEE Conference on Decision and Control, San Diego, California, Decem-

ber 1997, pp. 2393–2399.

171

[54] J. DeMeer, “On the Specification of End-to-End QoS Control,” in Proceedings of the Fifth

International Workshop on Quality of Service, May 1997, pp. 195–198.

[55] J-C. Bolot and T. Turletti, “Experience with Rate Control Mechanisms for Packet Video in

the Internet,” Computer Communication Review, vol. 28, no. 1, January 1998.

[56] U. Neumann and S. You, “Natural Feature Tracking for Augmented Reality,” IEEE Transac-

tions on Multimedia, vol. 1, no. 1, pp. 53–64, March 1999.

172

Vita

Baochun Li was born in Beijing, People’s Republic of China in 1971. He received his Bachelor

of Engineering degree in Computer Science and Technology from Tsinghua University, Beijing, P.

R. China, in July 1995. In August 1995, he was admitted to the Department of Computer Science

in the University of Illinois at Urbana-Champaign. In summer 1996, he worked on component-

based software engineering as a summer intern in Anderson Consulting. He received his Master

of Science degree in Computer Science in May 1997. His Master’s thesis is entitled “Adaptive

Behavior of Quality of Service in Distributed Multimedia Systems”. His research interests include

application-aware Quality of Service adaptation, middleware-based platforms, and wireless net-

working. Since 1997, he has worked on the DARPA-funded EPIQ (End-to-end Quality of Service)

project in the MONET (Multimedia Operating Systems and Networking) research group, with a

primary focus on middleware adaptation-based QoS solutions, along with experiments on a proof-

of-concept distributed visual tracking system.

173

