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Feature Reconstruction Attacks and
Countermeasures of DNN Training in Vertical

Federated Learning
Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li, and Baochun Li

Abstract—Federated learning (FL) has increasingly been deployed, in its vertical form, among organizations to facilitate secure
collaborative training. In vertical FL (VFL), participants hold disjoint features of the same set of sample instances. The one with labels -
the active party, initiates training and interacts with other participants - the passive parties. It remains largely unknown whether and
how an active party can extract private feature data owned by passive parties, especially when training deep neural network (DNN)
models.
This work examines the feature security problem of DNN training in VFL. We consider a DNN model partitioned between active and
passive parties, where the passive party holds a subset of the input layer with some features of binary values. Though proved to be
NP-hard. we demonstrate that, unless the feature dimension is exceedingly large, it remains feasible, both theoretically and practically,
to launch a reconstruction attack with an efficient search-based algorithm that prevails over current feature protection. We propose a
novel feature protection scheme by perturbing intermediate results and fabricated input features, which effectively misleads
reconstruction attacks towards pre-specified random values. The evaluation shows it sustains feature reconstruction attack in various
VFL applications with negligible impact on model performance.

Index Terms—DNN, Vertical Federated Learning, Feature Recovery Attack, Feature Protection Scheme.

✦

1 INTRODUCTION

THE sustained technological advances in machine learn-
ing (ML) have transformed many industries in a pro-

found way. Companies in the internet, finance, retail, and
healthcare industries are now building advanced ML mod-
els to enable new AI-driven applications, service models,
and intelligent decision making. They require collecting a
large volume of training data from diverse sources, often
practically infeasible. In reality, data are usually dispersed in
siloed organizations and data sharing is strictly forbidden –
it raises serious privacy and security concerns, as well as po-
tentially violates government regulations, such as CCPA [1]
in America, GDPR [2] in Europe, and PIPEDA [3] in Canada.
Thus, ensuring data privacy is of paramount importance.

Federated learning (FL) has emerged as a new private-
preserving learning paradigm to break data silos [4]–[6]. It
enables multiple parties to collaboratively train a global ML
model over siloed data while preserving data privacy. FL
has been increasingly deployed among companies to form
a data federation. In this paper, we consider a typical ap-
plication scenario called vertical federated learning (VFL) [4],
[5], [7]–[9], in which participants own disjoint features (i.e.,
attributes) of the same set of sample instances, as illustrated
in Figure 1. Only one participant has labels, known as the
active party, and utilizes the joint feature data of its own and
from the others, known as the passive parties, to train an ML
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Fig. 1. An illustration of VFL. The two parties hold disjoint features of the
same set of sample instances. The active party (Party A) has labels and
interacts with the passive party (Party B) to train an ML model which
itself is partitioned between the two parties.

model. For example, an online retailer and a social network
company can have an overlapping user base. The former
has user browsing history (feature A) and item ordering
records (labels), while the latter has accumulated a rich
set of user profiles (feature B) through its social network
app. Together, they form a joint dataset with user features
vertically partitioned between the two participants. The
online retailer, being the active party, can partner with the
social network company to train a better recommendation
model over the joint dataset.

With its recent successes, deep neural networks (DNN)
become particularly appealing in VFL [10]–[12]. Depending
on how features are partitioned, a DNN model is split be-
tween different participants, where the passive party holds
a subset of a few bottom layers, and the active party holds
the rest of the neural network. Each model partition is main-
tained as a private local model. The active party initiates the
training and iteratively interacts with the passive party.

Clearly, raw data is not exposed in the training process;
yet the intermediate results exchanged between the two par-
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ties contain a rich set of information that may reveal private
information. Prior works show that private labels owned
by an active party can be possibly inferred by a passive
party from the received gradient updates, resulting in label
leakage [8], [13], [14]. In this paper, we study a dual security
problem concerning the feature reconstruction attack, where
an active party attempts to uncover the private features
owned by a passive party. Compared with label leakage,
feature reconstruction seems to be easier, as the active party
has a richer set of information to exploit. This turns out
to be not the case. As a matter of fact, in this paper, we
will show that in general it is impossible to launch feature
attack without extra knowledge on the feature characteris-
tics. There have been a few recent works addressing feature
attack in VFL [7], [9], [15], which either focus on non-DNN
models or require some strong assumptions. For instance,
it is assumed that the adversary knows the weights of the
entire model [15] or has some auxiliary feature data [9],
which are usually inaccessible in practice.

To the best of our knowledge, this paper makes the first
attempt to study the feature reconstruction attack of DNN
training in VFL. We consider a DNN model jointly trained
by two participants, where the passive party holds a subset
of the input layer, and the active party holds the remainder
of the model. This design has a number of benefits: (1)
for any DNN model, it achieves the same accuracy as
centralized training without structural adaptation or hyper-
parameter tuning; (2) it exposes minimum attack surface
for label inference [8]; (3) it provides native support of the
recently proposed privacy-preserving framework [16]. We
assume that the active party is an honest-but-curious adversary
with no additional knowledge beyond its own data (e.g.,
features and labels), local models, and the intermediate
results received from the passive party. We first show that
it is impossible for an active party to reconstruct general
features that can take arbitrary values.

As reconstructing general features is infeasible, in this
paper, we consider the attack on categorical features of
binary values1, which are commonly observed in training
data containing sensitive information (e.g., gender, marital
and employment status). We show that the problem of
binary feature reconstruction can be reduced from the Exact
Cover problem, which is NP-hard [17]. We propose a robust
search-based attack algorithm that can successfully recon-
struct the binary features. We further demonstrate that such
an attack cannot be effectively defended by conventional
random masking approaches, nor can it be guarded by the
recently proposed privacy-preserving framework for VFL
training [16]. To defend this attack, we propose an efficient
feature protection scheme, in which we first perturb the
intermediate output using a rank-reduction technique with
negligible impact on model performance. Then we insert
some fabricated (randomly generated) binary features to
masquerade as the input features. We show that this can ef-
fectively lead the attacker to recover the fabricated features
instead of the original input features.

We have evaluated the effectiveness of our feature re-
construction attack and defense scheme in training DNN

1. Our attack is not limited to the binary features but also effective to
general categorical features that take known values (Section 7).

models over six VFL datasets. Experimental results show
that our attack can completely recover all input binary
features, and our defense scheme effectively misleads the
reconstruction attack to the fabricated binary features, with
negligible model performance loss.

2 RELATED WORK

Data reconstruction attacks. Our proposed feature attack is
one type of general data reconstruction attacks, which seek to
recover the private input data. In VFL, there are two cat-
egories of data reconstruction attacks: (1) feature inference
attacks, where an active party attempts to recover a passive
party’s input features; and (2) label inference attacks, where
a passive party tries to discover the active party’s labels.

Feature attacks. This implies an attack on a passive party’s
input features. Since an active party possesses far more
information, thus, it is in a more advantageous position for
such attacks. In [7], Weng et al. devised a reverse multiplica-
tion attack method against logistic regression with the assis-
tance of a corrupted third-party coordinator and a reverse
sum attack method against XGBoost by encoding magic
numbers in the gradients. In [15], Luo et al. designed an
equality solving attack for linear regression models, a path
restriction attack for decision tree models, and a generative
regression network for attacking more complex models.
This work adopts a white-box setting, which requires an
active party to know the entire model weights including the
passive party’s local model. In [9], Jiang et al. proposed a
gradient-based inversion attack, which can recover a passive
party’s input under both white-box and black-box settings
with the assistance of a set of auxiliary data used in training.

Label attacks. In [8], Fu et al. proposed a label inference
attack based on the semi-supervised learning technique,
which can recover an active party’s labels using its local
bottom model and a small set of auxiliary data. In [14], Liu et
al. presented a gradient inversion attack, which can infer the
labels from batch-averaged gradients when the top model is
a softmax function on the sum of intermediate results and
the loss function is cross entropy. In [13], Li et al. considered
a two-party split learning scenario and designed two attack
mechanisms to extract labels from the norm and direction of
intermediate gradients.

3 THREAT MODEL AND FORMULATION

In this section, we formally describe the DNN model train-
ing in VFL and present the threat model. We show that it is
impossible for an active party to reconstruct general features
owned by the passive party that can take arbitrary values.

Throughout this paper, we use boldface upper case let-
ters (e.g., A) to denote matrices and boldface lower case
letters (e.g., x) to denote vectors. We use 0 to denote the
zero vector. Vectors are by default column vectors while row
vectors are denoted by the transpose of column vectors (e.g.,
x⊤). The i-th coordinate of vector x is denoted by xi. We
use [n] to represent the set {1, 2, . . . , n} for positive integer
n. The notation {0, 1}n denotes the set of all n-dimensional
binary vectors (i.e., {x ∈ Rn : xi ∈ {0, 1} for all i ∈ [n]}).
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3.1 Formalizing DNN Training Workflow

We now describe the overall workflow of DNN training in
VFL. In each iteration, VFL runs a forward pass to make
predictions and a backward pass to update parameters (only
a forward pass is needed in the inference phase). In the
forward pass, a passive party B computes the output of its
local model using its own data and sends the intermediate
results to an active party A. Then the active party A aggre-
gates the first layer output and runs the top model to obtain
the final output. In the backward pass, the active party A
computes the gradients using the labels and updates all the
local parameters. The passive party B receives intermediate
gradients from the active party A and computes the local
model gradients.

Formally, let dA and dB denote the number of input
features of party A and B, respectively. Consider a neural
network with a weight matrix W ∈ Rk×(dA+dB) in the
input layer, where dA + dB is the total input dimension
and k is the number of neurons in the second layer. In
each iteration, party A’s input is a vector xA ∈ RdA and
party B’s input is a vector xB ∈ RdB . The weight W is
vertically partitioned into two matrices WA ∈ Rk×dA and
WB ∈ Rk×dB , such that party A owns WA and party B
owns WB . The remaining parameters, denoted by θ, are
owned by the active party A.

In each iteration, party B sends an intermediate re-
sult zB = WBxB to party A. Then party A computes
zA = WAxA and z = zA + zB . After obtaining z, the
aggregated output of the first layer, party A completes the
forward pass by computing fθ(z), where fθ denotes the
remaining forward computation, which is done only by
party A.

In the backward pass, party A uses the label y to com-
pute the gradients of loss L w.r.t. θ and z. The gradient
∂L

∂WA
is obtained by ∂L

∂zx
⊤
A . Thus all parameters maintained

by party A can be updated by the gradient descent method.
To update WB , party A passes ∂L

∂z to party B. Party B can
then calculate ∂L

∂WB
= ∂L

∂zx
⊤
B .

3.2 Threat Model

In our threat model, we assume that the active party acts as
a semi-honest adversary. That is, the adversary strictly ad-
heres to the training protocol but attempts to extract private
information from its own perspective. The adversary’s view
(i.e., the active party) encompasses its own input data, local
model parameters, and the intermediate results received in
each iteration. The active party possesses no knowledge
beyond this information, including details about the passive
party such as its model weights. The goal of the adversary is
to perform a data reconstruction attack, whereby the active
party tries to reconstruct the passive party’s input data.

Formally, suppose the training process runs for T
rounds. In the t-th iteration, an active party receives an
intermediate result zt

B from a passive party. It knows
its own private data xt

A, the label yt, and its local
model weights W t

A and θt. With these information (i.e.,
{xt

A, y
t,W t

A,θ
t, zt

B}t=1,...,T ), the goal of a data reconstruc-
tion attack is to recover the passive party’s private data
{xt

B}t=1,...,T .

Extracting input features turns out to be particularly
challenging. In practice, even reconstructing a single feature
can raise substantial security concerns. Thus, it is also criti-
cal to consider a data reconstruction attack, where the goal
is to reconstruct one feature, i.e., {(xt

B)i}t=1,...,T for some
i ∈ [dB ].

3.3 Privacy Leakage and Binary Assumption
During training (or inferencing), what an active party A re-
ceives is a matrix product zB = WBxB sent from a passive
party B. Since both WB and xB are unknown to party A.
Party A cannot recover the data by solving linear equations.
Indeed, one can show that even for a malicious active party
A (i.e., it can send some specially crafted values instead of
the true gradients to the passive party), it is impossible to
infer the passive party’s input data xB . Noticing what party
A receives is a matrix product zB = WBxB , there are an
infinite number of possible pairs (WB ,xB) that generate the
same zB . Since the active party only sees the intermediate
results zB , it is impossible for the active party to distinguish
them, let alone recover them. We now state this impossibility
result formally in the following theorem:

Theorem 1. Suppose {zt
B}t=1,...,T is the set of intermediate

results received by party A during training, which is generated by
some initial weight W 0

B and input data {xt
B}t=1,...,T . Suppose

xt
B ’s are not all zero. Then there are infinite possible input data

that can generate this set. Thus, party A cannot reconstruct party
B’s input.

Proof. In the t-th iteration (1 ≤ t ≤ T ), party B sends zt
B =

W t−1
B xt

B to party A. Then it receives gradient gt (w.r.t. zt
B)

from party A and update the weight by W t
B = W t−1

B −
ηtg

t(xt
B)

⊤, where ηt is the learning rate in t-th iteration (for
the inference phase, just set the learning rate to be 0).

Suppose W 0
B and {xt

B}t=1,...,T is a pair of initial weight
and input data that generates set {zt

B}t=1,...,T . Let U ∈
RdB×dB be an arbitrary unitary matrix. We prove that
adopting W 0

BU
⊤ and {Uxt

B}t=1,...,T as initial weight and
input data leads to the same set of intermediate output
{zt

B}t=1,...,T .
Consider the first iteration, the party B first computes

W 0
BU

⊤Ux1
B , which is exactly the same as z0

B = W 0
Bx

1
B .

Since it sends the same intermediate output to party B. It
receives the same gradient g1. It then computes W 0

BU
⊤ −

ηtg
t(Uxt

B)
⊤ = (W 0

B − ηtg
1(x1

B)
⊤)U⊤ = W 1

BU
⊤ to up-

date its local weight.
We can then prove by induction that in the t-th iteration,

the intermediate output sent to party A is exactly zt
B and

the local weight held by party B is W t
BU

⊤. We have shown
that this holds for t = 1.

Suppose this holds for iteration 1 to t−1. In t-th iteration
party B sends W t−1

B U⊤Uxt
B = W t−1

B xt
B = zt

B to party
A. Note that party A receives {z1

B , . . . ,z
t
B} until iteration t.

The gradient it sends back to party B must be gt. Therefore
the weight held by party B will be updated to W t−1

B U⊤ −
ηtg

t(Uxt
B)

⊤ = (W t−1
B − ηtg

t(xt
B)

⊤)U⊤ = W t
BU

⊤.
Thus W 0

BU
⊤ and {Uxt

B}t=1,...,T generate the same set
{zt

B}t=1,...,T . As there are infinite unitary matrices of size
dB × dB , also infinite pairs of initial weight and input data.

Since {zt
B}t=1,...,T is the only information that party A

receives, an attack algorithm will always output the same
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for these pairs. However, {Uxt
B}t=1,...,T varies for different

U . Thus, such an attack algorithm doesn’t exist.

Remark. In the above proof, we allow the intermediate gradient
gt to be generated arbitrarily. That is, party A doesn’t have to
follow protocol. This is called the malicious adversary setting. A
malicious adversary is more powerful than a semi-honest one at
attacking. Therefore, we actually prove a stronger result - even a
malicious adversary cannot reconstruct the passive party’s input.

Remark. We use vanilla stochastic gradient descent (SGD) in the
proof of Theorem 1. It can be directly extended to other popular
variants such as SGD with momentum [18], RMSprop [19],
and Adam [20] because the update only depends on historical
gradients. This theorem indicates that one cannot distinguish
between infinite possible inputs. Thus there is no way to recover
the data.

This illustrates that an attack is not possible when the
attacker has zero knowledge about the data. In practice,
however, the active party may know certain properties of
the passive party’s input. Noticing that the impossibility
result relies on the fact that performing a unitary transform
on the input doesn’t change the active party’s view. Thus,
an intermediate result corresponds to an infinite number of
possible inputs, which are indistinguishable to an attacker.
However, when an attacker knows certain properties of
the input features, the number of possible inputs could be
drastically reduced (even to only one), making it possible
for the attacker to perform attacks.

Taking this into account, in this work, we consider the
situation that some of the passive party’s input features are
discrete. Such discrete features are common in real-world
scenarios such as marital status, exam results, medical test
outcome, economic status, ethnicity, and citizenship, which
are usually sensitive.

Specifically for simplicity, in this work, we only consider
binary features, i.e., discrete features that take values of 0
or 1. This is partly because binary features are commonly
observed in real-world datasets. For example, in healthcare,
binary features are usually employed to represent whether a
person has some symptoms or diseases (e.g., the COVID-19
and monkey-pox dataset we used in Section 6).

The binary features can also come from feature engineer-
ing. In practice, it is common to convert a categorical feature
to a one-hot representation, which introduces many binary
features. One-hot encoding is frequently used when the raw
feature contains many categories but is nominal, i.e., there
is no quantitative relationship between different values. For
instance, blood types have four categories. Simply assigning
them with different numbers implicitly introduces an order
between them, which may hinder the model from learning
the true relationship. We will illustrate that our attack and
defense methods can be easily extended to handle discrete
features that take more than two values.

4 BINARY FEATURE INFERENCE ATTACKS

In this section, we present our approach that leverages the
existence of binary features to launch effective attacks. Then
we propose an algorithm that can effectively recover the
binary feature.

The intermediate results sent from the passive party B
can be represented as a matrix product ZB = XBW

⊤
B ∈

Rn×k, where XB is an n × dB matrix with each row
containing one input data record, and WB ∈ Rk×dB is the
first layer weights owned by party B. Here we consider that
the intermediate results are generated in one batch (during
training) or during the inference phase, thus the weights
won’t change.

As discussed in Section 3.3, it is infeasible for the active
party A to recover the passive party’s input data XB since
the weight matrix WB is unknown to party A. So we
assume that some of the passive party’s input features are
binary. Our goal is to recover those binary features.

Our approach is based on the observation that every
binary feature, which corresponds to a column of XB , also
lies in the column space of ZB . Thus, we aim to identify
a binary vector in the column span of ZB . This can be
achieved by enumerating all possible binary vectors (2n

vectors in total) and then verifying each vector by solving
linear equations. We will show how to reduce the number of
enumerations to 2d through linear algebraic manipulations.

4.1 Attack by Solving Linear Equations
Consider the problem of finding binary vectors in the col-
umn space of the intermediate results ZB . We can first
construct a matrix Z ∈ Rn×dB such that ZB and Z shares
the same column space by picking linearly independent
columns. Without loss of generality, we assume that Z has
full rank, because otherwise we can further remove some
columns while keeping the column space unchanged and
replace dB by the actual rank, which is always at most dB .

We now focus on matrix Z. We can find a dB × dB
submatrix Z ′ of Z with full rank. Now suppose x is a binary
vector that lies in the column space of Z. This means there
exists a vector w such that Zw = x. Since Z ′ is a submatrix
of Z, we have that Z ′w is also a binary vector. Conversely,
given a binary vector x′ ∈ RdB , there is a unique w such
that Z ′w = x′ since Z ′ is invertible. Therefore, to find all
binary vectors in the column span of Z, we only have to find
all binary vectors in the column span of Z ′. We describe the
details of such an algorithm in Algorithm 1.

Algorithm 1 Attack by Solving Linear Equations

Input: Matrix Z ∈ Rn×dB with rank(Z) = dB
1: Find a dB×dB submatrix Z ′ from Z, where rank(Z ′) =

dB
2: T ← ∅.
3: for x′ in {0, 1}dB \ {0} do
4: w ← Z ′−1x′

5: x← Zw
6: if x is binary then
7: T ← T ∪ {x}
8: end if
9: end for

10: return T
Output: A set T of binary vectors

4.2 NP-hardness
The above attack algorithm is equivalent to finding binary
vectors in the column span of a given matrix. We now prove
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Theorem 2, which shows this task is indeed NP-hard. The
basic idea is to transform an Exact Cover instance to some
matrix Z so that one can solve the Exact Cover instance
by finding a binary solution to Zw = x. Thus this above
problem is at least hard as the Exact Cover problem, which
is NP-hard.

Theorem 2. Given a matrix Z, deciding whether there is a
nonzero binary vector in the column span of Z is NP-hard.

Proof. Our proof relies on the fact that the Exact Cover prob-
lem is NP-hard. Given a set of n elements U = {u1, . . . , un}
and a collection C = {S1, . . . , Sm} of subsets of U . The
Exact Cover problem is to decide whether there is a sub-
collection C ′ ⊆ C that covers every element exactly once,
i.e. |{j|ui ∈ Sj and Sj ∈ C ′}| = 1 for all i ∈ [n].

Now consider an instance of the Exact Cover problem:
U = {u1, . . . , un} and C = {S1, . . . , Sm}. We construct
following three matrices. Let Z1 = Im+1 be an (m + 1)-
dimensional identity matrix, Z2 = (zij) ∈ Rn×(m+1) where

zij =


1 if j ∈ [m] and ui ∈ Sj

0 if j ∈ [m] and ui /∈ Sj

−1 if j = m+ 1

,

and Z3 = [2|S1|, . . . , 2|Sm|,−2n] ∈ R1×(m+1). Stacking the
three matrices we can obtain

Z =

Z1

Z2

Z3

 ∈ R(n+m+2)×(m+1).

We then show that if we could decide whether there
exists w ∈ Rm+1 such that x = Zw is nonzero and binary,
then we can decide whether there exists an exact cover.

Suppose there is a sub-collection C ′ that covers every
element exactly once. Let wm+1 = 1 and for j ∈ [m] let

wj =

{
1 if Sj ∈ C ′

0 if Sj /∈ C ′ .

Then Z1w = w is nonzero and binary. The i-th element of
Z2w is

∑m
j=1 zijwj − 1 = |{j|ui ∈ Sj and Sj ∈ C ′}| − 1 =

0. And Z3w = 2(
∑

Sj∈C′ |Sj | − n) = 0. Therefore Zw is
nonzero and binary.

Now, suppose there exists w ∈ Rm+1 that x = Zw
is nonzero and binary. From Z1w = w, we know that
w is also binary. Since Z3w = 2

∑m
j=1 |Sj |wj − 2nwm+1

is a multiple of 2, it must be 0. Thus wm+1 must be 1
otherwise we will have w = 0, contradicting that Zw is
nonzero. So if we let C ′ = {Sj |wj = 1, j ∈ [m]}, we
have

∑
Sj∈C′ |Sj | =

∑m
j=1 |Sj |wj = nwm+1 = n. The i-th

element of Z2w is
∑m

j=1 zijwj − 1 = |{j|ui ∈ Sj and Sj ∈
C ′}| − 1, which is either 0 or 1, indicating that |{j|ui ∈
Sj and Sj ∈ C ′}| should be 1 or 2 for each i ∈ [n]. But we
have

∑n
i=1 |{j|ui ∈ Sj and Sj ∈ C ′}| =

∑
Sj∈C′ |Sj | = n.

Thus |{j|ui ∈ Sj and Sj ∈ C ′}| must be 1, namely, each
element is covered exactly once. Therefore C ′ is an exact
cover.

We have shown that there is a nonzero binary vector
in the column span of Z if and only if there is an exact
cover. Thus if we could decide the existence of a nonzero
binary vector in the column span, then we can solve the

Exact Cover problem. Applying the NP-hardness of the
Exact Cover problem completes the proof.

Remark. In Theorem 2 we add one restriction that x should be
a nonzero vector, i.e. x ̸= 0. Since A0 = 0, the zero vector
0 is always a trivial solution. Thus, it reveals no information
about the actual input. Also, an input feature that contains only
0 contributes nothing to the training process and is impossible to
be detected by the attacker.

4.3 Attack by Solving Linear Regression
While we have an algorithm that effectively launches at-
tacks, its success relies on solving linear equations during
the verification step. However, this approach may be sus-
ceptible to small perturbations, such as numerical errors
or noise introduced by the passive party. To enhance the
robustness of the attack algorithm, we replace the linear
equation solving process with linear regression. To avoid
enumerating all 2n binary vectors, we adopt a Leverage
Score Sampling technique [21]. Algorithm 2 gives the de-
tails.

Algorithm 2 Attack by solving Linear Regression

Input: Matrix Z ∈ Rn×dB with rank(Z) = dB
1: Use leverage score sampling to randomly sample and

rescale r rows and obtain Z ′ = DSZ, where S ∈
Rr×n is a sampling matrix that samples r rows R =
{i1, . . . , ir} and D ∈ Rr×r is a diagonal matrix that
rescales the values in each row

2: T ← {e} where e = [1, 0, . . . , 0]⊤ ∈ Rn

3: for x′ in {0, 1}r \ {0} do
4: w′ ← argminw ∥Z ′w −Dx′∥22
5: Create an n-dimensional vector x, set

xi ←


x′
j if i = ijfor some j

0 if i /∈ R and (Zw′)i < 0.5

1 otherwise
6: T ← T ∪ {x}
7: end for
8: x∗ ← argminx∈T minw ∥Zw − x∥22

Output: Vector x∗ ∈ Rn

The correctness of the algorithm is established through
the following theorem, showing that it finds a good approx-
imate solution to the linear regression problem.

Theorem 3. Given an n × dB matrix Z and ϵ > 0, let
xopt = argminx∈{0,1}n\{0} minw ∥Zw − x∥22. By choosing
r = O(dB log dB/ϵ

2), Algorithm 2 outputs a vector x∗ such
that

min
w
∥Zw − x∗∥22 ≤ (1 + ϵ)min

w
∥Zw − xopt∥22

with constant probability. Moreover, Algorithm 2 runs in time
O(nr · 2r).

Our proof relies on the following lemma, which states
the error bound provided by Leverage Score Sampling.

Lemma 4 (Leverage Score Sampling [21]). Given an n × dB
matrix A, an n-dimensional vector b, and ϵ > 0. Let pi =
∥U(i)∥22/d be normalized leverage scores, where U is the matrix
containing left singular vectors of A and U(i) is the i-th row of U .
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Let S ∈ Rr×n and D ∈ Rr×r be the sampling and rescaling ma-
trix generated from distribution p, where r = O(dB log dB/ϵ

2).
With constant probability we have

∥Ax̃− b∥22 ≤ (1 + ϵ)min
x
∥Ax− b∥22,

where x̃ = argminx ∥DSAx−DSb∥22.

With this lemma in hand, we can then prove Theorem 3
as follows.

Proof. By Lemma 4, we have

∥Zw′ − xopt∥22 ≤ (1 + ϵ)min
w
∥Zw − xopt∥22,

where w′ = argminw ∥DSZw −DSxopt∥22, with constant
probability.

If Sxopt is nonzero, consider the vector x generated in
the algorithm with x′ = Sxopt, it is easy to see that Sx =
x′ = Sxopt. Thus w′ = argminw ∥DSZw−DSx∥22. Recall
that R is the set of rows sampled in the algorithm, we have

∥Zw′ − x∥22 =
∑
i∈R

[(Zw′)i − xi]
2 +

∑
i/∈R

[(Zw′)i − xi]
2

≤
∑
i∈R

[(Zw′)i − xopt
i ]2 +

∑
i/∈R

[(Zw′)i − xopt
i ]2

= ∥Zw′ − xopt∥22
because [(Zw′)i − xi]

2 = min([(Zw′)i − 0]2, [(Zw′)i −
1]2) ≤ [(Zw′)i − xopt

i ]2 for i /∈ R.
Since x ∈ T , by the definition of x∗, we have

min
w
∥Aw − x∗∥22 ≤ min

w
∥Aw − x∥22

≤ ∥Aw′ − x∥22
≤ ∥Aw′ − xopt∥22
≤ (1 + ϵ)min

w
∥Aw − xopt∥22.

If Sxopt is a zero vector, argminw ∥DSAw−DSxopt∥22
is also a zero vector. Thus we have

∥xopt∥22 ≤ (1 + ϵ)min
w
∥Aw − xopt∥22.

Since e ∈ T and xopt is nonzero, we have

min
w
∥Aw − x∗∥22 ≤ min

w
∥Aw − e∥22

≤ ∥e∥22
≤ ∥xopt∥22
≤ (1 + ϵ)min

w
∥Aw − xopt∥22.

The algorithm enumerates all binary vectors in Rr and
for each vector it solves a least square problem, which can be
done in O(nr) time because the pseudo inverse of A′ can
be precomputed. Thus the total time complexity is O(nr ·
2r).

Note that Algorithm 2 is presented in a way that it
outputs a unique binary vector. In scenarios where multiple
binary features exist, a small threshold can be set, enabling
the algorithm to output all binary vectors with errors be-
low the threshold. Also note that the value of r critically
determines the complexity of Algorithm 2. However, our
evaluation in Section 6 shows that, for the purpose of our
attack, choosing r = dB + 1 is sufficient, without the need
of matching the theoretical bound. This allows Algorithm 2
to recover the input binary features efficiently.

5 DEFENSE

In this section, we describe a novel masquerade mechanism
designed to safeguard the binary features of the passive
party from reconstruction attempts by the active party. Our
key idea is to inject random binary vectors into the column
space of ZB . By incorporating these fabricated random
binary vectors, the attacking party will encounter difficulty
in distinguishing between the true binary features and the
decoy vectors, thus ensuring the effective protection of the
authentic binary feature data.

We now describe the details. We introduce two matrices
P ∈ Rk×(dB−1) and Q ∈ R(dB−1)×dB . In the forward pass,
the passive party generates a random bit a for each input
data point xB , which is set to either 0 or 1 with equal
probability. The passive party then sends

zB =
[
P |u

] [QxB

a

]
to the active party. In the backward pass, the passive party
receives ∂L

∂z and updates P , Q, and u through gradient
descent.

However, adding only one fabricated feature can be still
vulnerable. The attacker can adaptively adjust the strategy
by first recovering the fabricated feature and then picking
out those data points with values 0 on this feature (data
points with values 1 can also be attacked in a similar way).
We demonstrate this through experiments in Section 6.

To address this issue, we introduce additional fabricated
features. Since the adaptive attack relies on picking data
points that have the same fabricated features, by including
m fabricated binary features, the number of data points
sharing the same values on the fabricated features will be
less than n/2m, where n is the total number of data points.
Therefore, we can effectively invalidate the attack as long
as 2m ≥ n. In Section 6, we show that as the number of
fabricated features increases, the model accuracy degrades.
We thus set m = ⌈log2 n⌉, the minimum value that ensures
data security.

Note that implementing the masquerade method does
not affect the communication cost, as the sizes of the tensors
transmitted remain the same. However, it does introduce
additional computation in the first layer. Nevertheless, our
experiments in Section 6 demonstrate that the extra training
cost is minimal since other layers remain unchanged.

Algorithm 3 Masquerade Defense with Multiple Fabricated
Features
Input: Input data xB ∈ RdB , random binary values ai ∈
{0, 1} for i ∈ [m]

1: zB ←
[
P |u1| · · · |um

]

QxB

a1
...

am


2: Send zB to the active party
3: Receive ∂L

∂z from the active party
4: Update P , u, and Q by gradient descent
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6 EVALUATION

In this section, we evaluate the effectiveness of the proposed
attacks and defense approaches through experiments.

6.1 Experimental Setup

We implement the FL algorithm with our attack and defense
methods in PyTorch [22]. The experiments were conducted
on a computer equipped with Intel(R) Xeon(R) CPU @
2.20GHz and 16GB RAM, running Ubuntu 20.04.4 LTS.

For each dataset, we randomly split it so that 90% of the
data records are used for training and the remaining 10% are
for testing. We optimize the neural network for 100 epochs
using SGD with momentum, where the momentum is set as
0.9. The base learning rate is 0.1 and we reduce the learning
rate by a factor of 10 after 30, 60, and 90 epochs, respectively.

We adopt cross-entropy loss with a 10−4 weight decay as
the objective function. Such a hyper-parameter setting is
commonly used in training neural networks (e.g., [23], [24]).
Each experiment is repeated 20 times.

6.2 Datasets and Models
In our experiments, we use the following six public datasets
from the UCI machine learning repository [25] and Kaggle2.

• Bank [26] is a dataset that contains information about
a bank’s 41188 clients with 20 attributes. The goal
is to predict whether the client will subscribe to a
term deposit. We split the input features so that the
passive party owns 8 features including a binary
feature “contact”.

2. https://www.kaggle.com
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• Credit [27] is a dataset that consists of 30000 con-
sumers’ credit information where each consumer
has 23 attributes. The task is to predict whether a
cardholder will have a default payment. We split
the features so that the passive party has 10 input
features, among which “gender” is a binary attribute.

• Nursery [28] dataset consists of 12960 records of
nursery-school applications, where each record con-
tains 8 features. The target is the final evaluation
of every application, which is divided into 5 levels.
We split the features so that the passive party has
6 features including one binary feature about the
financial standing of the families.

• Covertype [29] is a dataset of 581012 data records
with each record contains 54 attributes extracted
from the observation of a certain area. The objec-
tive is to determine the forest cover type out of 7
types. We split the features so that the passive party
owns 10 features, including 4 binary features that
are converted from a categorical feature by one-hot
encoding.

• COVID [30] is a dataset that contains 5434 records
about whether a person has COVID or not along
with various symptoms presence. The target is to
predict whether a person has got COVID or not
based on the symptoms. We split the features so that
the passive party owns 12 features, all of which are
boolean features that represent the presence of some
symptoms.

• Monkey-pox [31] is a synthetic dataset generated
based on an article published by the BMJ [32]. It
contains features about the symptoms and infection
of other diseases of 25000 patients and the target is
to predict whether they have monkey-pox. We split
the dataset so that the passive party owns 8 features,
all of which are binary features.

Table 1 summarizes the information about the datasets.
We use d and dB to represent the total number of features
and the number of features owned by the passive party.
The number of classes is denoted by C . The column “NN
Structure” depicts the number of neurons in each hidden
layer of the neural network. Different model structures (i.e.,
number of neurons in hidden layers) are employed for
different datasets.

TABLE 1
Description of datasets and models used in our experiments.

Dataset #Instances d C dB NN Structure
Bank 41188 20 2 8 {60, 30, 10}
Credit 30000 23 2 10 {100, 50, 20}
Nursery 12960 8 5 6 {200, 100}
Covertype 581012 54 7 10 {200, 200, 200}
COVID 5434 20 2 12 {200, 100}
Monkey-pox 25000 9 2 8 {100, 50, 20}

6.3 Attacks

Effectiveness. We first conduct experiments on training neu-
ral networks without adding noise. After training, we first
extract intermediate results by feeding the entire dataset into

the model. Then we perform our attack algorithm to recover
the input binary features. Our experimental results show
that we can recover the input binary features with 100%
accuracy.

For the bank, credit, and nursery datasets, there is only
one input binary feature on the passive side. In our experi-
ments, our attack algorithm outputs the input binary feature
as expected. For the Covid and monkey-pox datasets, there
are more than one binary feature. Our attack can recover all
the input binary features.

For the covertype dataset, the passive party has a cate-
gorical feature, which is converted to 4 binary features by
one-hot encoding. The 4 binary vectors don’t overlap at any
coordinate. Thus, in this case, the element-wise sum of any
subset of the 4 binary vectors is also a binary vector in the
column space of the intermediate output. As a result, our
attack will be able to identify it as well. In our experiment,
the attack algorithm successfully finds the binary features
along with their combinations (totally 24 − 1 = 15 binary
vectors, corresponding to all non-empty subsets of the 4
binary features), from which we can reconstruct the input
categorical feature.

Effectiveness in the Presence of Gaussian Noise. If the passive
party adds some noise before transmitting the intermediate
results, an attack by solving linear equations becomes inef-
fective since the linear equations no longer hold. To handle
this, we propose Algorithm 2, which relies on solving linear
regression.

We test this attack over six datasets with Gaussian noise
added to the intermediate results. To measure the effective-
ness of our attack, we compare the output of our attack
algorithm with the true input features. We introduce the
concept of attack accuracy defined as,

max
x∈ input features

1

n

n∑
i=1

I(x∗
i = xi),

where x∗ is the output of Algorithm 2 and I is the indi-
cator function. That is, we consider all input features and
find the one that has the most coordinates that match the
algorithm’s output. For one-hot features, we also take their
combinations into account. Clearly, a high attack accuracy
indicates the effectiveness of the attack while a low attack
accuracy means the protection is successful.

In the experiments we set r = dB + 1 in Algorithm 2.
Since it is a randomized algorithm, we run it for 20 times
and choose the solution that has the minimum error. We
present the range of attack accuracy under different σ in
Figure 3. The error bars represent the maximum and mini-
mum attack accuracy in our experiments.

From the results, we can observe that the Gaussian noise
defense method cannot provide satisfactory protection. For
example, on the bank dataset, the lowest average attack
accuracy we can achieve is still over 60%. If we look at the
maximum attack accuracy, the security issue becomes more
serious. For the covertype dataset, even if the average attack
accuracy is lower than 70%, the maximum attack accuracy
can be more than 95%, which means most of the input
samples are leaked. Thus, it cannot guarantee that our data
is secure. Also, we can see that different datasets require
different σ to reach the lowest attack accuracy. It would be
hard to determine an appropriate value of σ.
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Performance. When Gaussian noise is introduced, the per-
formance of the neural network may be affected. In addition
to attack accuracy, we also evaluate the effect on model
accuracy when we add noise to the intermediate output. We
measure the model accuracy under different levels of noise
(i.e. different σ) on every dataset. The results are depicted
in Figure 2, which shows that the model accuracy drops as
σ increases. Therefore, although masking the intermediate
output with Gaussian noise can provide a certain level of
protection, it also sacrifices model quality.

6.4 Countermeasure

The masquerade defense method aims at misleading the
attacker to randomly generated binary features. Thus, the
attacker will only find the fabricated binary features after
performing the attack so that the true input features will be
properly protected.

We evaluate our masquerade defense over the six
datasets. In our experiments, we set the number of fabri-
cated features m to be 1 and compare the fabricated feature
and the solution produced by the attack algorithm. We find
that the solution that the attack algorithm outputs matches
one of the fabricated features as expected. This indicates
that our defense effectively misguides the attacker to the
randomly generated binary features, and therefore protects
true input features. We also plot the attack accuracy in Fig-
ure 3. The values are all around 50% because the fabricated
features are randomly set to be 0 or 1 with equal probability.

TABLE 2
Attack accuracy under adaptive attack

Dataset m Accuracy
Bank 1 93.8%
Bank 2 90.2%
Credit 1 97.7%
Credit 2 97.7%

As we analyzed in Section 5, the attacker can adaptively
change the way of attack to recover the true input under
masquerade defense. We train models on the bank and
credit datasets using masquerade with m = 1 and 2. Then
we perform adaptive attack on the intermediate results.
Table 2 shows it is still possible to attack with high accuracy.
Thus we have to set m large enough to prevent such a kind
of attack.

TABLE 3
Training time with and with out defense

Dataset Time w/o defense Time with defense
Bank 41.8 46.7
Credit 34.5 38.2
Nursery 18.1 19.9
Covertype 1560 1712.5
Covid 7.7 8.3
Monkey-pox 27.6 30.3

We also wonder how this masquerade method affects
model performance because the fabricated features may
introduce some noise in the training process. For each
dataset, we set m (the number of fabricated features) to be
large enough so that 2m is greater than the total number

of samples. As we showed in Section 5, such an m can
protect the input data against adaptive attack. We adopt
various m and measure the model performance. The results
are shown in Figure 4. We can see the accuracy degrades as
the number of fabricated features increases. Moreover, we
list the time usage of training a model with and without
defense in Table 3. The results show that the masquerade
method won’t increase the training time too much since it
only modifies the first layer.

7 DISCUSSION

The attack mechanisms proposed are applicable under a
variety of scenarios. For instance, one might think of simply
adding a bias term or representing a binary feature by other
values instead of 0 and 1 to invalidate the attack. However,
we can pick one row of ZB and subtract this row from other
rows to eliminate the bias term. Then we can apply our
attack to the resulting matrix.

Noticeably, in this work, we focus on the attack and
countermeasure only for two-party VFL. However, our at-
tack methods can be easily extended to the multi-party
scenario. More specifically, if the passive parties send their
intermediate results to the active party directly, we can per-
form the attack on the output sent from each passive party
exactly the same way as in the two-party scenario. When the
passive parties use secure aggregation to sum their interme-
diate results, our attack algorithm is still applicable, with
the dimension dB replaced by the total dimension of input
features owned by all passive parties. Even if they adopt the
protection proposed in [16], the sum of intermediate results
of all parties (including the active party) is still exposed
to the active party. Our proposed attack algorithm can be
applied to the sum to extract binary features as long as the
total dimension is still within reach.

Moving beyond binary features, for instance, categorical
features, a common way to do feature engineering is one-
hot encoding. In this case, our attack can find the converted
binary features (and their sums), from which we can recover
the categorical features. In the case that a categorical feature
is transformed into a single multi-valued feature, our attack
still works if the attacker knows what the values are.

A limitation is that our attack methods are based on the
fact that the cut layer is the input layer. If we cut at the
other layers (e.g., the second layer), our attack algorithms
cannot work because the linearity the algorithms rely on
no longer holds after the nonlinear activation functions are
introduced.

When the cut layer is not the input layer, our impossi-
bility and hardness results also hold, which means it is at
least hard as in the case that the cut layer is the input layer.
Also, the well-known universal approximation theorem [33]
suggests that the output can be arbitrary when the local
model contains two or more layers. Thus it will be much
more difficult for the attacker to recover the input - for
any input, there exist some model weights that generate a
specific output.

8 CONCLUSION

In this paper, we take the initiative to study the feature
security problem of DNN training in VFL. We first prove
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that feature attacks are not possible when the attacker has
zero knowledge of the dataset. We then focus on client
data with binary features, and show that unless the feature
space is exceedingly large, we can precisely reconstruct the
binary features in practice with a robust search-based attack
algorithm. We proceed to present a defense mechanism that
overcomes such binary feature vulnerabilities by mislead-
ing the adversary to search for fabricated features. Our
experiments show that our feature reconstruction attack is
extremely effective against VFL on realistic DNN training
tasks. Yet, the defense method proposed can effectively
thwart the attack with a negligible loss in model accuracy.
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datacenters.

9 CONCLUDING REMARKS
In this paper, we have conducted a theoretical study
of the task assignment problem among competing data
analytic jobs, whose input data are distributed across
geo-distributed datacenters. With tasks from multiple
jobs competing for the computing slots in each dat-
acenter, we have designed and implemented a new
optimal scheduler to assign tasks across these datacen-
ters, in order to better satisfy job requirements with
max-min fairness achieved across their job completion
times. To achieve this objective, we first formulated a
lexicographical minimization problem to optimize all the
job completion times, which is challenging due to the
inherent complexity of both multi-objective and discrete
optimizations. To address these challenges, we started
from the single-objective subproblem and transformed
it into an equivalent linear programming (LP) problem
to be efficiently solved in practice, based on an in-depth
investigation of the problem structure. An algorithm is
further designed to repeatedly solve an updated ver-
sion of the LP subproblems, which would eventually
optimize all the job performance with max-min fairness
achieved. Last but not the least, we have implemented
our performance-optimal scheduler in the popular Spark
framework, and demonstrated convincing evidence on
the effectiveness of our new algorithm using both real-
world experiments and large-scale simulations.
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