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ABSTRACT delay-sensitive media streaming applications, the typical streaming
p bit rates in modern streaming codecs must be accommodated for
all the peers in a streaming session, in order to ensure their uninter-
rupted streaming playback. Therefore, it is typical for a peer node

Due to the limitation of peer upload capacities and high bandwidt
demand of multimedia applications, optimal peer selection to con-
struct high-quality streaming topology represents a major challenge . .
in peer-to-peer streaming. In this paper, we propose a fully dis- to parallelly download ffo”_‘ multlpl_e upstream peers, in ord_e_r o
tributed algorithm to achieve optimal peer selection and streaming improve th(_e ovgrall ba_ndW|dth availability. In this case, a critical
rate allocation, which minimizes end-to-end latencies in the stream- duestion arises: What s the bestway for the peer nodes to select the
ing sessions. We design this efficient distributed algorithm based upstream peers and allq(_:ate the streaming ratgs among the sel_eqted
on the solution to a linear optimization model, which optimizes to- PE€rS. such that a specified aggregate streaming bit rate is satisfied

wards a latency-related objective to decide the best streaming rate@nd th‘? end-to-end Iatenc_les are ”?'”'m'zed at t_he receivers? Itis a
among peers. Combining this optimal peer selection algorithm with pontnwal problgm to obtain a.fea3|bpzeer selection and gtream-
our coding scheme based on rateless codes, we obtain a completé,ng rate a_xllocatlonstratc_egy Wh'Ch guarantees_ all requesting peers
fully decentralized minimum-delay peer-to-peer streaming scheme. canacquire t_he streaming bit rate OT the session, not to mention that
Our scheme s resilient to network dynamics that is characteristic WNich minimizes end-to-end latencies.

in peer-to-peer networks. The validity and effectiveness of our ap- When the streaming rates from selected upstream peers have

proach are demonstrated in extensive simulations been optimally allocated, the next question to answer is how to
' assign the media contents to be delivered along each link. In the

constructed mesh streaming topology featuring parallel retrievals,

Categorles and SUbJeCt Descrlptors there are always risks that the same contents may be unnecessar-
C.2.4 [Computer-Communication Networks]: Distributed Sys- ily supplied by multiple upstream peers. Therefore, the peer nodes
tems—Distributed ApplicationsH.3.5 [Information Storage and need to reconcile differences among the sets of content segments
Retrieval]: Online Information Services-Bata sharing they hold. Acontent assignmersicheme, which schedules which
content segment to retrieve from which upstream peer, needs to be
designed to minimize the delivery redundancy [7, 22].
General Terms This paper focuses on tackling the former problem: We first for-
Algorithms, Design, Performance mulate the optimal peer selection problem as a linear optimization
problem, which guarantees bandwidth availability and minimizes
Keywords streaming latencies; We then design an efficient and decentralized

. . . S algorithm to solve the problem, based on the Lagrangian relaxation
:Zizré?ézser’ Media Streaming, Peer Selection, Optimization, Ratet'echnique an_d the sul_:)gradier_n algorithm. Th_e main _contribut?on
of the paper is the derived optimal peer selection algorithm, which
computes the optimal streaming rates on the peer-to-peer links in
1. INTRODUCTION a fully decentralized and iterative fashion. Our algorithm is also
The limited bandwidth capacities in peer-to-peer networks pose reactive to network dynamics, including peer joins, departures and
a significant technical challenge in peer-to-peer media streaming. failures.
As nodes in peer-to-peer networks reside at the edge of the Inter- In our previous work [21], we have proposed an efficient cod-
net, they usually have limited availability of upload and download ing scheme based on rateless codes to address the later problem
capacities. In addition, due to peer heterogeneity, the available per-of delivery redundancy and reconciliation. Based on the loss re-
node bandwidth may differ by at least an order of magnitude. For silience and “ratelessness” properties of rateless codes, our scheme
provides excellent resilience to network dynamics, and guarantees
that no duplicated contents exist in the network. This completely
eliminates the need for set reconciliation and content assignment

Permission to make digital or hard copies of all or part of thakvfor on the links, which otherwise involves high computation and mes-
personal or classroom use is granted without fee providatidbpies are saging overhead [7].
not made or distributed for profit or commercial advantage aatidbpies Combining the optimal peer selection algorithm with the rateless-
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we formulate the minimum-delay optimal peer selection problem multiple peer-to-peer paths from the source to the receiver. Thus
as a linear optimization problem, and analyze its combination with it can be viewed as composing of multiple fractional flows, each
the rateless-code coding scheme. In Sec. 3, we present the efficiengoing along a different path. Notice that different paths may share
distributed algorithm to solve the problem and compute the optimal some peer-to-peer links and the streaming rate on each common
streaming rates over the links. We show the adaptation of the algo-link is the sum of the rates of all fractional flows that go through
rithm to peer dynamics in Sec. 4. Simulation results are presentedthe link. Fig. 2(b) illustrates the decomposition of the unit unicast
in Sec. 5. We discuss related work and conclude the paper in Sec. &low into three fractional flows, with the rates 0f2, 0.3 and0.5

and Sec. 7, respectively. respectively.

2. PROBLEM FORMULATION

In this paper, we consider a peer-to-peer streaming session with
one streamingourceand multiple participatingeceivers(Fig. 1).
A subset of the receivers retrieve the media contents directly from
the source, while the others stream from one or more receivers in
theupstream When a new peer joins the session, it is bootstrapped
with a list of known peers in the session, who may serve as the
initial set of upstream peers. This constructs the initiashover-
lay topology for the streaming session. Such a mesh topology can (a) a unicast flow (b) three fractional flows
be modeled as a directed graph= (N, A), whereN is the set
of vertices (peers) and is the set of directed arcs (directed over-  Figyre 2: An example of a unicast flow from S to ¢4 and its
|ay I|nkS) LetS be the Streaming source, and Etbe the set Of decomposition into three fractional flows.
receivers in the streaming session. We have- SU T

0.3

For the receiver of such a unicast flow, we calculate its average
s end-to-end latency, as the weighted average of the end-to-end la-
tencies of all the fractional flows. The weight for the delay of each
fractional flow is the portion of its flow rate in the aggregate unicast
flow rate. For the example shown in Fig. 2, the delays of the three
paths are3, 3 and2 respectively, and thus the average end-to-end
latency is0.2 x 3 + 0.3 x 3 4+ 0.5 x 2. We further notice that

t3
1

o " 02x(1414+1)4+03x(1+1+1)4+05x(1+1)
= 1x(02405)+1x03+1x02+1x054+1x0.3
Figure 1: An example of the peer-to-peer streaming network +1 x (0.2+0.3)
model: S - the streaming sourcet1,t2,t3, t4 - the receivers. = 1x07+1%x034+1x024+1x05+1x03+1x0.5
Our objective is to stream live multimedia contents, codedtoa = Z cij fig /-
constant bit rate bitstream with a current generation codec such as (i,j)EA

H.264/AVC, H.263 or MPEG-4. For such live media streaming ap-

plications, a minimized end-to-end latency at each receiver is sig- FOr the general case, we proyg,; ;. , ci; fi;/r also represents

nificant to guarantee the high liveness of the streaming media, asthe average end-to-end delay of a unicast flow, as in the following

also emphasized by existing work [20, 3]. Therefore, it is desirable Proposition.

to design an optimal peer selection strategy that constructs an op-Proposition. Letr be the end-to-end streaming rate of a unicast

timal streaming topology, on top of which the end-to-end latencies S€ssionc:; be the delay and;; be the streaming rate on the link

at all receivers are minimized. (,4), Vi, ) € A. 32, jyea Cis fij /7 represents the average end-
In the following, we set up linear programming models to ad- to-end delay of this unicast flow. _

dress the optimal peer selection problem. We formulate the objec- Proof: Let P be the set of paths from the streaming source to the

tive functions to reflect the minimization of streaming latencies at 'eceiver in the session. Lgt?) be the rate of the fractional flow

the receivers, and the constraints to reflect the capacity limitations 90ing along pattp € P. The average end-to-end latency at the

in the peer-to-peer network. We first formulate the linear program '€CeIVeris

for the single session streaming case, and then give its extension to F@
the multiple session streaming case. We motivate our LP formula- Z T( Z Cij)
tions by analyzing a unicast streaming session from the streaming pEP (i,5):(3,5) ONp
source to a receiver. 1
_ _ = X el S

2.1 LP for unicast streaming (L )EA  piing) ONp

The unicast flow from the streaming source to a receiver is a stan- _ 1 Z cijfii

- 15017

dard network flow following the nice property of flow conservation

at each intermediate node. Lebe the end-to-end streaming rate (aea

of this unicast flowg;; be the delay and;; be the streaming rate 1

on the link (¢, 7). Fig. 2(a) depicts an example of a unit unicast

flow from S to ¢4 in the network as shown in Fig. 1, with= 1, Based on this formulation of the average end-to-end latency, we

cij = 1,V(4,5) € A and the streaming rate§; labeled on the formulate the peer selection and streaming rate allocation problem
arcs. As shown in this example, a unicast flow may flow along for the unicast streaming into the following linear program. Here



u;; is the capacity of the linKs, 7). Sincer is a constant end-to-
end streaming rate, we omit it and use cij fi; to reflect
the average end-to-end latency.

min Z Cijfij

i,j)€A

@)

(i,j)EA
subject to
Zgeati = Xggmea fii = bi, VieN,
0 < fij < iy, V(i,j) € A,
where
r ifi=.S5,
bi = —r ifi= t,

0 otherwise

We can see this is a standard minimum cost flow problem. Practi-
cally, by minimizing the average end-to-end delay, we allocate the
streaming rates in such a way that high end-to-end latency links,
such as satellite and transcontinental links, are avoided as much

as possible. When;;'s (V(i,7) € A) are of similar magnitude,

we are minimizing the average hop count of the receiver from the

streaming source in the network.
We call the optimal unicast flow decided by this linear program a
minimum-delay flowThis minimum-delay flow is useful for mini-

mum delay multicast streaming in the peer-to-peer network, in that

bottlenecks usually occur on the “last-mile” links, and by limiting
the total upload and download capacities at each peer, we take this
into consideration.

In the following linear programf* denotes the conceptual flow
from S to a receivet, vt € T. f!; denotes the rate of* flowing
through link(4, 7). x;; is the actual multicast streaming rate on link
(4,4) andc;; is the delay on linKi, 5), V(3, j) € A. For node, O;
is its upload capacity andl is its download capacity. We assume
all these variables are non-negative.

the multicast streaming flow with minimum delays from the source Where

to all receivers can be viewed as consisting of multiple minimum-
delay flows. Here we make use of the conceptarficeptual flow

introduced in [12]. A multicast flow is conceptually composed of
multiple unicast network flows from the sender to all receivers.
These conceptual flows co-exist in the network without contend-

mind Y cifi @)
teT (i,j)€A
subject to
Soofi- D> fla=b, VieNvteT (3
J:(i,5)€A j:(j,i)EA
f20, V(i,j)eAVteT (&)
fij S wij, V(i,j) € AvteT (5)
Z xij < Oy, Vie N (6)
J:(i,5)€A
> @i <l Vie N (7)
Ji(j.i)eA
ar ifi=5,
bi={ —ar ifi=t,

0 otherwise

We can see that in this linear program, each conceptual flow

ing for link capacities, and the multicast flow rate on a link is the is a valid network flow, subject to constraints (3)(4)(5) similar to
maximum of the rates of all the conceptual flows going along this those in the minimum-delay problem in Eqg. (1). The difference lies
link. For the peer-to-peer streaming example shown in Fig. 1, the in that on link(é, j), f/; is bounded by the multicast streaming rate
multicast streaming flow fron$ to t1, ta, t3 andts can be under- Tij in (5), which is further constrained by the upload and download
stood as consisting of four conceptual flows fréhto each of the ~ capacities at the incident nodes in (6) and (7).

receivers. When each conceptual flow is a minimum-delay flow, the ~ An optimal solution to this linear program provides an optimal
end-to-end delays of the multicast session are minimized. Based onrate f{;" for the conceptual flow* on the link(i, j), V(i, j) € A.

this notion, we formulate the linear optimization model for the opti- Let z be the optimal multicast streaming flow in the network. We
mal peer selection and rate allocation problem for our peer-to-peer compute the optimal streaming rate on lifk;), V(i, j) € A, as
streaming model. follows:

2.2 Single session case

We first consider the case of single session peer-to-peer stream-
ing. A linear program is formulated to obtain the optimal peer se-
lection strategy, with the objective of minimizing the overall end- the minimum-delay peer-to-peer streaming. This also provides the
to-end streaming delays from the source to all receivers. optimal peer selection strategy. For each recelvey 7', its set

Let r be the end-to-end streaming rate of the session. In order of selected upstream peers includes the ones with non-zero optimal
to cope with packet loss and the inherent unreliability of peers in Streaming rate from them to

®)

2i; = max fi;
Y er YT

Thus we obtain an optimal streaming rate allocation scheme for

a peer-to-peer network, we stream the media at an end-to-end rat

that is slightly higher tham. With a tolerance factory (o« > 1
and the actual streaming rate is set tocdhg, a receiver can still
receive at a rate at leastfor a continuous playback, even with
packet loss and peer failures. The valuexofan be dynamically

€

2.3 Multiple session case
In the general case, there may co-exist multiple streaming ses-

sions in the same network. Based on a generalization of our net-
work model, we extend the linear program in Eq. (2) to its multiple

adjusted based on the dynamics of the peer-to-peer network in prac-session form, with the similar objective of minimizing the overall

tice, which we will discuss in Sec. 4.

end-to-end streaming delays of all the sessions. Mdbe the set

In our linear program, we consider the upload and download ca- of sessions concurrently existing in the network. Each session
pacity constraints at each peer, rather than link capacity constraints.vm € M, has a streaming sourcs,, and a set of receiverg,, .

This comes from the observations that overlay links in a peer-to-

Let f™t be the conceptual flow fror§,, to the receivet in ses-

peer network are usually correlated for sharing certain underlying sionm . z77 is the multicast streaming rate of sessiaron the link

physical links, and thus individual overlay link capacities are sub-

(4,7),V(i,7) € A. r, is the end-to-end streaming rate for session

jectto changes due to the traffic dynamics. Furthermore, bandwidth m and«.,, is its tolerance factor. We obtain the following LP:



min Z Z Z cijfiy® )

MEM tETm, (i,j)EA

subject to

S - X L e Ne Tutme M

j:(i,5)EA Ji(Jyi)€EA

fz’?t 207 V(i,j)EA,VtETm,VmEM,
fot <al, V(i,j) € AVt € Trn,Vm € M,
(10)
D jiigea 2amen Tij < O, Vi€N, an
Zj:(j,i)eA ZmeM w;ﬁ; < Ii: Vi € N7 (12) (a) Peer-to-peer streaming without rateless-code coding
where S
amTm  f1=5,, ngse
bt = —Qmrm i =1, 172737475 -}
0 otherwise 06" 778" 13
19 9@ 3040 1596° 7989
The LP in Eq. (9) is the result of extending the LP in Eq. (2) to o0 0 @ o
its multicommodity variant. Similar to the single session case, the i {19293%4757..

2 . o (1929394}
conceptual flows in each session don't contend for the capacities, !

and the multicast streaming rate for the session on each link is the (1727374757 .}
maximum of all the conceptual flow rates in the session, as shown
in constraint group (10). However, the multicast streaming flows
belonging to different sessions contend for the capacities, and thus
the summation of the per-session multicast streaming rates on the
incoming and outgoing links of a node should not exceed its down-
load and upload capacities, which are the constraints in (11) and
(12) respectively. (b) Peer-to-peer streaming with rateless-code encoding and recoding

Similarly, based on the optimal solution to the LP in Eq. (9), we
can obtain the optimal peer selection and streaming rate allocationFigure 3: A comparison of peer-to-peer streaming with or with-
strategy for the multiple sessions. L£¥ be the optimal multicast out the rateless-code coding scheme.
streaming flow of sessiom. We havez;; = maxier,, f;;* onthe
link (4,7),V(i,7) € A.

Because of the similarities between the linear programs in Eq. (2) transmitted over the peer-to-peer links. At each receiver, after re-
and Eq. (9), they can be solved in a similar fashion. Due to space ceiving all the encoded blocks belong to one segment, we decode
limitation, in the rest of the paper, we focus on the LP for the single and obtain the original segment. When this segment is further re-
session case. guested by some other peers, we encode its decoded blocks again

. . . and deliver the freshly encoded blocks.
2.4 EnCOdmg and reCOdmg with rateless codes As rateless codes ere naturally loss-resilient, our coding scheme

As the linear optimization model optimally decides the stream- provides excellent resilience to peer dynamics. Beiatgless
ing rates on each individual overlay link, the media contents to be there is potentially no limit with respect to the number of uniquely
delivered along each link still need to be carefully assigned to elim- encoded “blocks” generated for each segment, and a sufficient num
inate the delivery redundancy. To address this problem, we employ ber of encoded blocks from any set of upstream peers may be used
our coding scheme based on rateless codes, as presented in [21]. to recover the original segment. Therefore, by recoding the re-

We briefly introduce rateless codes and review the main idea of ceived blocks at the receivers with rateless codes before their fur-
our coding schemeRateless fountain codeare a recently devel-  ther transmission, our scheme guarantees the uniqueness and use-
oped category of erasure codes, including LT codes [13], Raptor fulness of all the delivered contents, and thus completely eliminates
codes [18] and online codes [14]. The “rate” of a traditional erasure the needs for set reconciliation and content assignment. We have
code is usually defined as the number of original symbols divided also shown that our coding scheme will not introduce much delay
by the number of different encoded symbols that can be generatedand computation overhead into the streaming session, due to the
from them. As for rateless codes, the number of encoded symbolshigh efficiency of rateless-code encoding and decoding [21].
that can be generated from the original symbols is potentially un-  We illustrate our coding scheme with a simple example given
limited, which explains the name. in Fig. 3. In this exampleS transmits a unit streaming flow to

In our coding scheme with rateless codes, we treat the multi- receiverst,, t2, ts andts. Assume the optimal streaming rates
media bit stream to be delivered from the source as a stream ofcomputed by the optimization model ate1, 0.5, 0.75, 0.5 and
symbols and partition it into consecutive segments. Each segment0.25 on link 1 to link 6 respectively. Each segment of the media
is further divided into a number of blocks, which are the input units stream is composed df blocks. Based on the optimal streaming
to rateless-code encoders. At the streaming source, the blocks ofrates,t; and¢s directly retrieved blocks fromS; ¢t parallelly re-
each media segment are coded with rateless codes before they artzieves2 blocks from¢; and2 blocks fromts, while ¢4 retrieves3

{1(1) 2(1) 3(1) 1(7))
1

{l(e) 2(3) 4(|)5(|)}
1

() 52 ) (2
374957 ..}

( 1(4) 2(4) 3(4)4(4) 5(4) }

{192



blocks from¢; and1 block fromt,. In the case that no rateless- Here, the Lagrangian multipliexﬁj can be understood as the link
code coding scheme is applied as in Fig. 3(a), betAnd¢, need price on the link(z, j) for the conceptual flow from the source

to carefully reconcile the block difference between their upstream to the receivet. Such interpretation should be clear as we come to
peers and then decide which block to retrieve from which upstream the adjustment ofi;; in the subgradient algorithm.

peer. In Fig. 3(b) with our rateless-code coding scheshgener- We further observe that the Lagrangian subproblem in Eq. (14)
ates a potentially unlimited number of block¥”, 2(®, .. from can be decomposed into a maximization problem

the4 original blocks. After receiving (¥, 2(9, 3(® and4(® from

S, t1 decodes them to derive the original blocks2, 3 and4. maXZ Z 1135 (15)
Then it encodes the original blocks again inf®, 2, 3V, 4, teT (i,j)eA

., upon downloading requests from andts. The same recod-

; . : subject to

ing process is performed at the other receivers. As all the freshly

encoded blocks are uniqui, andt, can safely retrieve any new Zj:@,j)eA zij < O0;, VieN,
blocks from their upstream peers without reconciliation. Z] e Tii < Lo, VieN,

We combine the optimal peer selection strategy decided by the
linear optimization model with our coding scheme based on ratelessand multiple minimization problem&/{ € T')
codes. As they address the two fundamental peer-to-peer streaming

. . . 3 t t

problems of optimal peer selection and content assignment respec- min Z (cij + pij) fij (16)
tively, together we are able to achieve a complete minimum-delay (i,5)€A
peer-to-peer streaming scheme.

In the following section, we proceed to design a distributed al-
gorithm to solve the linear program given in Eq. (2). Combined Siiiyeatii = XjGiyea f1i = b, Vi€ N,
with our rateless-code coding scheme which is carried out in a dis-

subject to

¢ .
tributed manner, this completes our design for the fully-decentralized fiy 20, V(i 5) € A.
minimum-delay peer-to-peer streaming. We notice that the maximization problem in Eg. (15) is an in-
equality constrained transportation problem. For this class of trans-
3. DISTRIBUTED SOLUTION portation problems, there exist distributed algorithms, such as the

auction algorithm [4], to solve them in polynomial time. For the
minimization problem in Eq. (16), we make the substitutféﬁ =
ffj/ar and obtain the following shortest path problem:

We aim at designing an efficient distributed algorithm to solve
the linear program in Eq. (2). General LP algorithms, such as the
simplex, ellipsoid and interior point methods, are inherently cen-
tralized and costly, which are not appropriate for our purpose. Our min Z ar(es; + 1) a7
solution is based on the technique of Lagrangian relaxation and
subgradient algorithm, and can be naturally implemented in a dis-
tributed manner. subject to

(i,j)€EA

’ ’ / .

3.1 Lagrangian dualization Liapealii = Lpgmealii =0, VieN,

We start our solution by relaxing the constraint group (5) in fj/ >0, Y(i,7) € A,
Eqg. (2) to obtain its Lagrangian dual. We choose to relax this set
of constraints, since with such relaxation, the resulting Lagrangian
subproblem can be decomposed into classical LP problems, for 1 ifi=S,
each of which efficient algorithms exist. We associate Lagrangian b ={ -1 ifi=t,
multipliers u}; with the constraints in (5) and modify the objective 0 otherwise
function in (2) as follows:

where

The shortest path problem is a classical combinatorial optimiza-

Z Z Cijfitj + Z Z uﬁj(ffj — z45) tion problem_, and_efficient distributed algorit_hms exis_t to §o|ve
LT (i)eA teT (if)eA the problem in a directed network. The classical algorithm is the
Bellman-Ford algorithm, and there are other algorithms, such as
Z Z (cij + Nw fzy Z Z Mu$w label-correcting algorithms [2] and relaxation algorithms [6], that
teT (4,5)€A teT (i,j)€A are essentially the same as the Bellman-Ford algorithm. In our al-

gorithm, we employ the distributed Bellman-Ford algorithm [5, 6]

We thus derive the Lagrangian dual of the LP in Eq. (2):
grang a () to obtain the shortest path fro to the receivert with weight

max L) (13) ar(cij + pit;) onthe link(i, ). Then, by lettingf!," = 1 when the
= link (7,4) is on the shortest path arfd]-/ = 0 otherwise, we ob-
where tain an optimal solution to the LP in Eq. (17). Therefore, by taking

B fl; = arfl;’, which can be understood as the delivery of a concept
mmz Z (e + i) iy = Z Z wigzii (14) flow of ratear along the shortest path, we further obtain an optimal

teT (1,j)eA teT (i.)eA solution to the LP in Eq. (16).

and the polytopeP is defined by the following constraints: 3.2 Subgradient algorithm

Yiigyeatis = Xigiea fis = b, Vi€ NVteT, We now describe the subgradient algorithm, which we apply to
fh>0 V(i,j) € AVt €T, solve the Lagrangian dual problem in Eq. (13). We start with a

’ ) set of initial non-negative Lagrangian multiplie,néj [0]. During

Zj:(z’,j)eA ij < Os, VieN, each iteratiork, given current Lagrangian multiplier valugs; k],
2iGiyeaTii < 1, Vi€ N. we solve the transportation problem in (15) and the shortest path



problems in (16) to obtain new primal values [k] and f{; [k]. We L . . .
then update the Lagrangian multipliers by Table 1: The distributed algorithm on link (4, 5)

t = t EIEl —
pislhe 1) = max(0, pui; [k] + O[k](fis [k] = wis [K])), 1. Choose initial Lagrangian multiplier valugg [0], V(4, j) € A, Vt €
V(i,j) € AVLET, (18) T. !

whered is a prescribed sequence of step sizes that decides the conl- 2 Repeat the following iteration until the sequerfgeik]} converges to
vergence and the convergence speed of the subgradient algorithm|, #* and the sequencef[k]} converges t*: v(i, j) € A, vt € T
Whend satisfies the following conditions, the algorithm is guaran- 1) Computer;;[k] by the distributed auction algorithm;
teed to converge: 2) Computeffj [k] by the distributed Bellman-Ford algorithm;
oo 3) Computeff;[k] = k—;lj/”f\][k — 1)+ £ f[k);
6[k] > 0,limx oo 0[k] = 0, and ZQW = oo. 4) Update Lagrangian multiplien};[k + 1] = max(0, uf;[k] +
k=1 Olk](f1;[k] — wi;[k])), whered[k] = a/(b + ck).

Eq. (18) shows the adjustment of link prices for each conceptual
flow. If the rate of the conceptual flow exceeds the multicast flow
rate on the link, constraint (5) is violated, so the link price is raised.
Otherwise, the link price is reduced.

Since the primal values in the optimal solution of the Lagrangian
dual in Eq. (13) are not necessarily an optimal solution to the pri-

mal LP in Eq. (2), and even not a feasible solution to it, we use in . . L
. . g rates on the links, we achieve minimum-delay peer-to-peer stream-
the algorithm |ntrodl:ced by Sherait al. [17] to recover the op- ing. We further emphasize that this is actually achieved by applying

- - A tho o - . . .
timal primal valuesf;; . Atthe k™" iteration of the subgradient  our coding scheme with rateless codes, but without the complex set

3. Compute the optimal multicast streaming rae = max;cr ffj .

By delivering the media contents at the computed optimal stream-

algorithm, we also compose a primal itergg‘\;fa[k] via reconciliation and content assignment in the streaming session.
Tk = Zk:Akft D (19) 4. HANDLING PEER DYNAMICS
EA pt It In peer-to-peer streaming, peers may arbitrarily join a streaming
session at any time, and may depart or fail unexpectedly. By ap-
where 22:1 Ao = landAf > 0, forh = 1,...,k. Thus, plying rateless codes and introducing the tolerance faetorto
fE[k] is a convex combination of the primal values obtained in °Ur linear optimization model, our minimum-delay peer-to-peer
ihe earlier iterations. streaming scheme provides excellent resilience to peer dynamics.
In our algorithm, we choose the step length sequetike = 4.1 Peer jOiI’IS

a/(b+ ck),VYk,a > 0,b > 0,c > 0, and convex combination | is b d and admitted i
weights\Y = 1/k,Vh = 1,...,k,Vk. These guarantee the con- n our system, a new peer is bootstrapped and admitted into a

vergence of our subgradient algorithm: they also guarantee that anyStreaming session only if its download capacity can support the

accumulation poinff* of the sequencéf[lx]} generated via (19) _stre_aming rater of_the sessic_m. The new peer t_h_en starts stream-

is an optimal solution to the primal problem in Eq. (2) [17] ing immediately with the available upload gapagltles acquired from
— ) ) its known upstream peers. At the same time, it sends a request to

We can thus calculatg’; [k] by the streaming source, asking for re-computation of the new globally
B optimal streaming rates on the links. The source broadcasts such a
File = Z 1 n request, such that all the peers in the session activate a new round

— k7 of execution of the distributed algorithm in Table 1, while contin-
o1 uing with their own streaming at the original optimal rates. If the
_ k—1 1 FLIR] + lft k] distributed algorithm converges, all the peers adjust their download
k = k—1"" k' rates from their upstream peers to the new optimal values. If the
k1 B i algorithm fails to converge, it is evident that the upload capacities

= ;7[1@ — 1]+ 7ffj [k]. provided by the peers in the session now are not able to support
all the receivers at the session raterofin this case, the original

and obtain/f; [k] from the current primal valug; [k] and the pri- streaming rate allocation is not to be adjusted.

mal iterateff; [k — 1] of the last iteration. In this way, we do not 4.2 Peer departures and failures
need to keep all the primal values calculated since the very first  The departures and failures of peers may lead to interrupted play-

iteration, which are needed by Eq. (19). back at the remaining receivers. To compensate the rate loss, we
_ . trade off some of the optimality, and always deliver slightly more
3.3 Distributed algorithm than the end-to-end rate of controlled by the tolerance factor

Based on the subgradient algorithm and primal solution recovery Thus, when a peer detects the departure of its upstream peer(s),
algorithm, we design our distributed algorithm to solve the linear it first estimates whether its remaining aggregate streaming rate is
program in Eqg. (2) and achieve the optimal streaming rates on thestill no less thanr. If so, it is not affected and keeps its current
links by Eq. (8). The distributed algorithm to be executed by link streaming rates; otherwise, it attempts to acquire more upload ca-
(4,4) is summarized in Table 1. In practice, we have each(link) pacities from its remaining upstream peers. Only when the peer still
in the peer-to-peer network delegated by the recegivand thus the fails to receive at the adequate aggregate streaming rate, it sends a
computation tasks on all the incoming links of one peer is carried re-calculation request to the source for the new globally optimal
out by the peer. rates. Similarly, the remaining peers adjust their streaming rates to



the new values if the distributed algorithm converges. Otherwise, 200

they do not do so in order to keep the streaming optimality of unaf- - P .
fected peers. In this way, we only invoke the distributed algorithm [ 8N edges I

and adjust the rates when necessary, so as to minimize the compu- 150 e
tation and communication overhead.

The value of the tolerance factar (¢ > 1) in our optimiza-
tion model is adjustable based on the dynamics of the peer-to-peer
network. We start with an initial value ef based on an estima-
tion of the peer failure probability in the network. The peer failure
probability is continuously re-estimated by the streaming source,
according to the frequency of re-calculation requests due to peer
failures. When the source frequently receives requests to invoke
the distributed algorithm and thus the estimated peer failure prob- 50 100 150 200 250 300 350 400 450 500
ability increasesq is also increased, as long as the network can Number of peers i the network (N)
support the end-to-end streaming ratex@f When the estimated
peer failure probability is low and it occurs that the network fails Figure 4: Convergence speed in random networks.
to accommodate more freshly joined peers at the rate-pive re-
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end-to-end rate of at least The relationship between and the a0l e e T
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5. PERFORMANCE EVALUATION

We have carried out extensive simulations to investigate the per-
formance of our optimal peer selection algorithm over realistic net-
work topologies. To this end, we generate random networks with
power-law degree distributions with the BRITE topology generator

D
o
T

Number of iterations
(o]
o

N
o
T

[15]. We simulate a live streaming session of a high-qualiig sl | - geoizitgg%’mamy
Kbps multimedia bitstream from a streaming source WittMbps o optimality
of upload capacity. There are two classes of receivers: ADSL/cable 0 : : : : '
. 0 20 40 60 80 100
modem peers and Ethernet peers. In our general setting, ADSL/cable Percentage of Ethernet peers

modem peers taked% of the total population with.5 — 4.5 Mbps
of download capacity and.6 — 0.9 Mbps of upload capacity, and  Figure 5: Convergence speed to feasibility)0%-optimality and

Ethernet peers take the ott&#% with both upload and download  optimality in random networks of 300 peers and2400 edges.
capacities o8 — 12 Mbps.

5.1 Performance of the distributed algorithm We next compare our optimal peer selection algorithm with a

We first investigate the convergence speed of our distributed al- commonly used peer selection heuristic [11, 22]. In the heuristic, a
gorithm to obtain the optimal streaming topology. The result is receiver distributes the streaming rates among its upstream peers in
shown in Fig. 4. We compare the convergence speed in networksproportion to their upload capacities. We compare the end-to-end
of different network sizegnumbers of peers in the network) and latencies at receivers in the resulting streaming topologies. The
different edge densitiegthe ratio of the number of edges to the end-to-end latency at each receiver is calculated as the weighted
number of peers in the network). We can see that it takes arsund  average of the delays of flows from all its upstream peers, and the
iterations to converge to optimality in a network & peers, and weight for each flow is the portion of the assigned streaming rate
this number increases slowly to abolit0 for a network of500 from the upstream peer in the aggregate streaming rate.
peers. However, the convergence speed remains approximately the The results illustrated in Fig. 6 meet our expectations. In net-
same in a fixed-sized network with different edge densities. There- works of different network sizes and edge densities, our end-to-end
fore, the slow increase of iteration numbers with network sizes does latency minimization algorithm is able to achieve much lower la-
not affect the scalability of our algorithm. tencies than the heuristic, which does not take link delay into con-

We further compare the convergence speeds of our algorithm sideration. We further notice that the denser the network is, the
to the first primal feasible solution, to the feasible solution which higher the average end-to-end latency is by the heuristic. In con-
achieve900% optimality as to the value of the objective function, trast, our optimal algorithm achieves lower latencies in denser net-
and to the optimal solution. From Fig. 5, we observe that the con- works. When the edge density4$V in a network of N peers, the
vergence speed to the first primal feasible solution is usually much average end-to-end latency of the heuristic is abditimes higher
faster than the convergence to optimality. It can also be seen that thethan that of our optimal algorithm, while this ratio becorn2ds a
number of iterations needed to converge to feasibility drops quickly network with8 N edges. For such an achievement of lower laten-
with the increase of the percentage of Ethernet peers in the net-cies in denser networks with our algorithm, we believe the reason
work, which bring more abundant upload capacities. Furthermore, is that there are more choices of upstream peers in a denser network
in order to converge to the feasible solution which achiex&% and our algorithm can always find the best set of upstream peers on
optimality, the algorithm takes only5% of the number of itera- low delay paths. Thus, in realistic peer-to-peer streaming networks
tions required for convergence to the optimal solution. Therefore, with high edge densities, the advantage of our algorithm is more
in practice, we can obtain a feasible solution to a certain degree of evident over the commonly used heuristic.
the optimality in a much shorter time, when it is not always neces-  The streaming topologies shown in Fig. 7(a) and Fig. 7(b) further
sary to achieve the optimal solution in a realistic streaming system. illustrate the superiority of our optimal algorithm. In these graphs,
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Figure 9: Average aggregate streaming rates in case of peer

) ] ) _failures in random networks, network size = 200 = 1.2.
distances between pairs of peers represent latencies, and the widths

of edges show the streaming rates along them. The dotted Iinesf i We beli that d work Kin t listi
represent links that are not used in the resulting streaming topolo- allures. Vve believe hat dense networks are more axin 1o realistic

gies. It can be seen that by our optimal peer selection, receivers areoeer-to-peer streaming networks, in Wh'Ch each peer knows qun_e
streaming from the best upstream peers with minimal end-to-end a number of upstream peers. Such satisfactory failure tolerance in

latencies, while with the peer selection heuristic, peers simply dis- dense networks achieved by small valuesroSuggests that our

tribute their download rates among the upstream peers, which maySChem.e may deliver good performance in practice, with respect to
lead to large end-to-end latencies ' tolerating peer departures and failures.

5.2 Resilience to peer failures 6. RELATED WORK

In this section, we examine the resilience of our complete peer-  Earlier work on peer-to-peer multimedia streaming has been based
to-peer streaming scheme in case of peer failures. We focus onon a single multicast tree [9, 19], rooted at the streaming source,
evaluating the effects af, the failure tolerance factor in our opti-  and constructed with a minimized height and a bounded node de-
mization model, on the tolerance to failures in the resulting stream- gree. The challenge, however, surfaces when interior peers in the
ing topologies. For this purpose, we randomly choose different tree do not have sufficient available capacities to upload to multiple
percentages of failed peers in the streaming session. At differ- children nodes, and when they depart or fail, which interrupts the
ent values ofn, we calculate the remaining aggregate streaming streaming session and requires expensive repair processes.
rates at the remaining peers. We seek to answer the question: at Streaming based on multiple multicast trees has been proposed to
what percentage of peer failures can we still maintain an end-to- address this problem, as in CoopNet [16] and SplitStream [8]. The
end streaming rate @00 Kbps at all receivers? media can be split into multiple sub-streams, each delivered along

From Fig. 8, besides the fact that higher failure percentages cana different multicast tree. As a result, these systems accommodate
be tolerated by larger values of in each network, we also ob-  peers with heterogeneous bandwidths by having each peer join dif-
serve that this failure tolerance improves quickly with the increase ferent numbers of trees. It also is more robust to peer departodes a
of edge densities in the network, under each fixed value.oA failures, as an affected receiving peer may still be able to continu-
setting ofa = 1.5 can tolerate peer failure percentage of up to ously display the media at a degraded quality, while waiting for the
60% in a dense network. The impact of edge densities is further tree to be repaired. These advantages come with a cost, however, as
illustrated in Fig. 9. In this simulation, when is set to a rela- all the trees need to be maintained in highly dynamic peer-to-peer
tively small value ofl.2, which means we stream at the end-to-end networks. Combined with rateless codes, our optimal peer selec-
rate of360 Kbps, the300 Kbps required aggregate rate can still be tion algorithm constructs mesh topologies to provide resilience and
guaranteed at the receivers in a dense network in cas@bfpeer flexibility, but without the costs of explicit tree maintenance.
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