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ABSTRACT
Error estimating coding (EEC) has recently been established as an
important tool to estimate bit error rates in the transmission of pack-
ets over wireless links, with a number of potential applications in
wireless networks. In this paper, we present an in-depth study of
error estimating codes through the lens of Fisher information anal-
ysis and find that the original EEC estimator fails to exploit the
information contained in its code to the fullest extent. Motivated
by this discovery, we design a new estimator for the original EEC
algorithm, which significantly improves the estimation accuracy,
and is empirically very close to the Cramer-Rao bound. Following
this path, we generalize the EEC algorithm to a new family of al-
gorithms called gEEC (generalized EEC). These algorithms can be
tuned to hold 25-35% more information with the same overhead,
and hence deliver even better estimation accuracy—close to opti-
mal, as evidenced by the Cramer-Rao bound. Our theoretical anal-
ysis and assertions are supported by extensive experimental evalu-
ation.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Error control codes; C.2.1
[Computer-Communication Networks]: Network Architecture
and Design - Wireless communication

General Terms
Algorithms, Theory
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1. INTRODUCTION
Estimating the bit error rate (BER) in packets transmitted over

wireless networks has been established as an important research
problem in the seminal work of Chen et al. [3]. It was shown in [3]
that, if the BER in packets can be accurately estimated, important
operations in wireless networks such as packet re-scheduling, rout-
ing, and carrier selection can all be performed with greater effi-
ciency. A simple and elegant technique, called error estimating
codes (EEC), was hence proposed in [3] to estimate this BER. The
basic idea of EEC is to have the transmitter send a small error esti-
mating codeword along with each packet that will allow the number
of bits in the packet flipped during the (wireless) transmission (i.e.,
the BER) to be inferred at the receiver. Using an EEC of O(log n)
bits for a packet n bits long, their technique guarantees that the es-
timated BER falls within 1 ± ε of the actual BER with probability
at least 1 − δ, where ε and δ are tunable parameters that can be
made arbitrarily small at the cost of increased constant factor in
O(log n), the coding overhead.

A natural question to ask is whether EEC achieves the best trade-
off between space (O(log n)) and estimation accuracy ((ε, δ) guar-
antee) in solving the BER estimation problem. Our earlier work [6]
has answered this question definitively. In [6], we prove that at least
Ω(log n) bits are needed to achieve an (ε, δ)-approximation and
EEC is therefore asymptotically optimal. However, we also show
that EEC has not achieved the optimal tradeoff down to the con-
stant factor, by proposing a different coding algorithm, called the
Enhanced Tug-of-War (EToW) sketch, that can achieve the same
(ε, δ)-approximation with a code size 60% smaller than that used
by EEC.

In this work, we follow up with a deeper and more important
question of why EEC has not achieved the desired optimal space-
accuracy tradeoff. Is it because its encoding algorithm has not
packed as much information into the codewords as possible (i.e., in-
efficient encoding), or because its decoding algorithm has not made
full use of information packed into these codewords (i.e., inefficient
decoding), or both? This question is important because EEC is sim-
pler and “cleaner" (to be explained shortly) than EToW, and if we
can somehow bring its efficiency to be on par with or exceed that
of EToW, it will likely be the preferred solution to the BER estima-
tion problem. In an effort to thoroughly answer this question in this
work, we have made the following two major contributions.

First, we demonstrate that EEC decoding is inefficient by deriv-
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ing the amount of Fisher information contained in EEC codewords
and showing that the variance of the estimator used in EEC encod-
ing is much larger than the corresponding Cramer-Rao bound. We
then propose a new estimator that achieves a significantly higher
estimation accuracy and is provably near-optimal by almost match-
ing the Cramer-Rao bound. Our experiments show that this new
estimator allows us to reduce the coding overhead by as much as
two to three times while achieving the same BER estimation ac-
curacy. More importantly, EEC with this new estimator performs
almost as well as EToW, with the same coding overhead. Another
salient property of this new estimator is that its variance can be
approximated by a closed-form formula, making it much easier to
parameterize the EEC algorithm (i.e., to “tune") for optimal esti-
mation accuracies (i.e., minimum variance) under various bit error
models.

Second, we proceed to investigate whether there are inefficien-
cies with the encoding part of EEC. This question is, however,
much harder to answer definitively because existing lower-bound
techniques, rooted in the theory of communication complexity [7],
only allow us to establish asymptotic space lower bounds such as
the aforementioned Ω(log n) bound. We try instead to compare the
encoding efficiency, i.e., the amount of Fisher information per code
bit, of EEC with that of EToW. It turns out that we got more than
what we had bargained for. In an effort to derive the Fisher infor-
mation formula of EToW, we have discovered that EEC and EToW
can be viewed as different instances of a unified coding framework
that we call generalized EEC (gEEC). In other words, gEEC can be
parameterized into both EEC and EToW, and EEC can be viewed
as a “degenerate" case of gEEC.

This generalization makes it easier for us to analyze and improve
the designs of both EEC and EToW for two reasons. First, we need
only design a single optimal decoder (i.e., estimator) for gEEC,
which applies to both EEC and EToW, instead of one for each.
This decoder is a Maximum Likelihood Estimator (MLE) with the
Jeffreys prior, which in the case of EEC is the aforementioned es-
timator, and in the case of EToW performs better than a different
estimator we developed for EToW in [6]. Second, the Fisher in-
formation formula derived for gEEC, which is in a closed form of
matrix computations, applies to both EEC and EToW. However,
we still derive the Fisher information formula of EEC separately in
Section 3 because the derivations in this degenerate case are much
simpler than those of gEEC, resulting in a closed-form formula (as
the matrices degenerate into 1 × 1 scalars), and shed some insight
on the roles that key parameters play in the formula that can get
obscured in the general case. Through this unified framework of
gEEC, we found that some parameterization of gEEC (similar to
EToW, but not needing the extra error detection bits) can contain
around 25% more information than the pure EEC scheme. This in-
formation gain cannot be fully decoded through EToW’s decoder,
but is achievable by gEEC’s decoder.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss the related work most pertinent to this paper. In
Section 3 we provide the Fisher information analysis of the origi-
nal EEC algorithm. In Section 4, we propose the generalized EEC
scheme and provide the corresponding analysis and estimator de-
sign. We evaluate the performance numerically as well as experi-
mentally in Section 5. We give our conclusions in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we introduce some background on Fisher infor-

mation and the Cramer-Rao bound, and briefly survey their applica-
tions in network measurement studies. We also briefly describe two

prior approaches (EEC and EToW) for solving the BER estimation
problem.

2.1 Fisher Information and Cramer-Rao
Bound

In information theory and mathematical statistics, Fisher infor-
mation quantifies the amount of information an observable param-
eterized random variable X(θ) carries about its unknown param-
eter θ. (Our description closely follows [4]; please consult it for
more background on this topic.) In our context, the error estimating
codewords and sketches correspond to random variable X(θ) and
θ corresponds to the BER we would like to estimate in a received
packet. The probability function of X(θ) takes the form f(x; θ).
When θ is viewed as a constant and x as a variable, f(x; θ) is the
probability density (or mass) of the random variable X conditional
on the value of θ; When θ is viewed as a variable and x as a con-
stant on the other hand, f(x; θ) is the likelihood function of θ, that
is, the likelihood of the parameter taking value θ when the observed
value of X is x. Fisher information of X(θ), which is a function
of θ, is defined as

J(θ) ! Eθ

[
∂
∂θ

log f(X; θ))

]2
. (1)

Fisher information J(θ) is an important quantity because it deter-
mines the minimum variance achievable by any unbiased estimator
of θ given an observation of X(θ), through the Cramer-Rao lower
bound (CRLB):

MSE[θ̂] = Var[θ̂] ≥ 1
J(θ)

. (2)

If a biased estimator of θ with bias b(θ) is used instead, we have
a slightly different inequality:

MSE[θ̂] ≥ (1 + b′(θ))2

J(θ)
+ b(θ)2. (3)

While it is possible for a biased estimator to “beat" the Cramer-
Rao bound for unbiased estimators (Formula (2)) when θ takes cer-
tain values (over which b′(θ) takes negative values), that biased
estimator is not a clear winner since bias comes at a cost and may
not be desirable to many applications.

In the context of this work, where the goal is to measure the
“scale" of the bit error rate θ, the statistics of the relative error θ̂−θ

θ

and the log-difference log θ̂ − log θ are more important. In partic-
ular, we prefer to use the statistics of the log-difference rather than
the relative ratio to evaluate the performance of an estimator, since
it assigns higher penalty to large deviations, making the compar-
ison fairer for this application setting. For example, suppose the
real value of θ is 0.1, and three large-deviation estimates are 0.05,
0.19 and 0.01, then the penalty for the last one will be much larger
if measured by log θ̂’s statistics. However, when measured by the
relative error, the penalties of the latter two are the same and just
around twice of the first.

The C-R bound for both θ̂−θ
θ and log θ̂ − log θ can be derived

from (2) and the results are as follows:

Var

[
θ̂ − θ
θ

]
= Var

[
θ̂
θ

]
≥ 1

θ2J(θ)
. (4)

Var
[
log θ̂ − log θ

]
= Var

[
log θ̂

]
≥ 1

θ2J(θ)
. (5)

126



Interestingly, they are bounded by the same value, θ2J(θ). The
second inequality (5) is derived by a transformation from (2). In
other words, θ2J(θ) is the Fisher information of log θ. We will
use θ2J(θ) frequently throughout the paper since it will directly
determine the bound of the relative error/log difference.1

The maximum likelihood estimator (MLE) of θ, defined as
θ̂MLE ! argmaxθ{f(x; θ)}, is known to be asymptotically nor-
mal (denoted as N(∗, ∗)) under certain regularity conditions [8]
and has the following distribution:

θ̂MLE ∼ N

(
θ,

1
tJ(θ)

)
, (6)

where t here denotes the number of repeated independent exper-
iments and J(θ) denotes the Fisher information contributed from
each experiment. Hence the Cramer-Rao lower bound is (asymp-
totically) reached by the MLE.

Fisher information and Cramer-Rao bound analysis has been
used in a few previous works on network measurement in the liter-
ature. It has been used by Ribeiro et al. [9] to derive the minimum
number of samples needed for accurately estimating flow size dis-
tributions from outputs of a packet sampling process (e.g., sampled
Cisco NetFlow). They also proposed an unbiased MLE estimator
for this estimation problem that empirically matches the Cramer-
Rao bound. This work was followed up in [10] by Tune et al. who
demonstrated through Fisher information analysis that samples col-
lected by flow sampling, which is much more expensive computa-
tionally, are more information-rich, in terms of Fisher information
per bit, than packet sampling. They then proposed a new hybrid
sampling technique called dual sampling that combines the advan-
tages of both flow and packet sampling. Fisher information anal-
ysis is also used in recent work [11] to compare the information-
richness of the samples collected by a few packet sampling and
sketching techniques for the purpose of estimating flow size distri-
butions.

2.2 Error Estimating Codes (EEC)
In EEC [3], the codeword for a packet consists of a set

of m = ab parity bits z1, z2, ..., zm. They form a
groups of size b each, {z1, z2, ..., zb}, {zb+1, zb+2, ..., z2b}, ...,
{z(a−1)b+1, z(a−1)b+2, ..., zab}. Each parity bit zi that belongs to
group j (i.e., (j−1)∗b+1 ≤ i ≤ jb) is calculated as the XOR of a
set of li = 2j − 1 bits uniformly (pseudo-)randomly sampled with
replacement from the packet (viewed as a bit array). For example,
in [3], a typical configuration of EEC scheme uses 9 groups (i.e.,
a = 9) of 32 parity bits (i.e., b = 32) each. In the following, we
refer to each such group as a level to be consistent with the terms
used in [3]. The codeword thus computed will be sent along with
the packet to the receiver. Note the encoding scheme of EEC has
some flavor of Low Density Parity Check (LDPC) codes although
its parity check matrix is not strictly sparse as some of the rows can
have as many as 2a (including the parity check bit itself) ones in it,
and in LDPC, no bit will be sampled more than once, which may
happen in EEC due to its sampling with replacement nature.

Upon the receipt of a packet and its codeword (possibly with one
or more bits flipped during transmission), the receiver will multi-
ply them (viewed as a vector) by the same parity check matrix2

and infer the BER from the outcome of this multiplication, which
is often referred to as a syndrome vector in coding theory litera-
ture. From the syndrome vector, the inference algorithm (i.e., the
decoder) used in [3] first decides on the group (i.e., level) of parity
1There is another concept called relative Fisher information estab-
lished in information theory which is not related to anything here.
2Both the sender and the receiver know this matrix.

check bits that are expected to provide the best estimation accuracy.
Then BER will be estimated only from the corresponding syndrome
bits within that group. Such a commonsensical decoding procedure
is however not optimal because other layers (groups) of parity bits,
especially the neighboring layers, can provide much additional in-
formation to BER estimation, but are ignored by the decoder used
in [3], as we will show shortly.

2.3 Enhanced Tug-of-war (EToW)
The Tug-of-war sketch (ToW) [1] is a sketch data structure (it

can be viewed as an exotic type of error-correction code) origi-
nally proposed for estimating the L2 norm of a single data stream.
ToW can be extended for solving the problem of estimating BER,
which is almost the same as that of measuring the Hamming dis-
tance and equivalently the L2 norm between two binary vectors. A
codeword in ToW, also referred to as a sketch, consists of a set of
sub-sketches. In the context of this problem, in which all data items
are binary, the value of each ToW sub-sketch is set to the number of
1’s minus the number of 0’s in the binary vector that results from
XOR-ing the packet %b, viewed as a binary vector, bitwise with a
pseudorandomly3 generated binary vector. This bitwise exclusive-
OR operation is mathematically equivalent to a projection of the
vector %b over a random direction (vector) %s, i.e. the inner product
of %b and %s. When comparing the Hamming distance between two
binary data vector%b and %b′, we can use the difference between their
random projections X = %b ·%s− %b′ ·%s to estimate the norm of%b− %b′.
Notice that the sketch (random projections) is much smaller in size
(O(log(n))) than the length of original data vector (n) and hence
is a succinct coding of data.

In the Enhanced ToW (EToW) scheme proposed in [6], this
sketch is sent along with the packet to the receiver. Upon the re-
ceipt of the packet, which may have one or more bits flipped dur-
ing transmission, the receiver will compute a new sketch from the
packet received by projecting it over the same set of random direc-
tions (vectors). Then a decoder extended from the inference algo-
rithm used in [1] will examine the differences between the sketch
computed by the sender (and sent along with the packet) and the
new sketch computed from the received packet, to arrive at a BER
estimate.

The Enhanced ToW proposed in [6] extended ToW to make it ap-
propriate and more space-efficient for BER estimation in the follow
three ways. First, each sub-sketch in the original ToW scheme is
encoded as a log2(n)-bit integer, where n is the maximum packet
size in bits, so that no “overflow" can happen. However, since this
difference (between the number of 1’s and the number of 0’s) is sta-
tistically much smaller than the maximum value n and in fact has
mean 0, it makes sense to use “just enough” bits instead of log2(n)
to encode it. After all, these sub-sketches (differences) need to
be sent along with the packet over wireless networks (the target
network applications of error estimating codes) and in wireless
communications, every bit counts! Therefore, in EToW, “barely
enough" bits are allocated for each sub-sketch so that there is a
very small probability (say 0.05) for overflows to happen. When an
overflow happens, the most significant bit(s) are truncated. While
this situation may sound disastrous to readers, it is in fact not that
bad for two reasons: (1) most other sub-sketches have no over-
flows and can help correct the situation, and (2) the overflow situ-
ation most likely also occurs in the sub-sketch computed from the
received packet and it is the difference between the sub-sketches

3Both the sender and the receiver know how to generate the pseu-
dorandom vectors. The pseudorandom vectors for computing dif-
ferent sub-sketches are mutually independent.
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(likely both truncated) that counts. Second, the sketch sent along
with the packet may itself be corrupted during transmission, which
is a situation that ToW needs not worry about in its data streaming
contexts. In EToW, lightweight error-detection codes are used to
provide special protection to the sketch so that the receiver knows
which sub-sketches are corrupted and can exclude them from BER
estimation. Third, unlike in ToW, where bits are sampled with
probability 1 (without replacement) to produce the random projec-
tion, in EToW, bits are sampled with probability less than 1 with
replacement and only those sampled bits are used to produce the
sub-sketch through the aforementioned random projection process.
While such a sampling process was adopted in the EToW paper [6]
purely for performance (i.e., BER estimation accuracy) considera-
tions, it has the following two unintended (and perhaps desirable)
consequences for this work: (1) While the Fisher information anal-
ysis of ToW is impossible due to its sampling without replacement
nature, that of EToW is mathematically manageable. (2) EToW’s
adoption of sampling with replacement makes it possible for us to
unify EToW with EEC, which samples bits also with replacement,
through our gEEC (generalized EEC) framework, to be described
in Section 4. With these three enhancements, EToW achieves 50-
70% reduction in coding overhead, compared with an EEC scheme
with similar BER estimation accuracy, as shown in [6].

3. FISHER INFORMATION ANALYSIS OF
EEC

In this section, we analyze the Fisher information contained in an
EEC codeword. Since each bit in an EEC codeword is generated in
the same way independent of each other, it suffices to analyze the
contribution from each bit. The Fisher information of the codeword
is simply the sum of the Fisher information contained in each bit.

Throughout this paper, we will use notation ži’s to denote the
codeword bits (sent along with the packet) received (hence sub-
jected to transmission errors), and use z′i’s to denote the codeword
bits calculated from the packet received. In the EEC scheme, zi
and z′i are the parity bits of the li bits on the same locations of the
original and the received packets. The receiver computes their dif-
ference Xi = ži ⊕ z′i, i = 1, 2, . . . ,m, and infers the error rate θ
from the Xi’s.

3.1 Fisher Information Contained in each
EEC bit

To simplify the exposition, we first perform the Fisher informa-
tion analysis under the unrealistic assumption that the codeword is
immune from corruption during transmission. In this case, ži’s, the
codeword bits received, are the same as zi’s, the codeword bits sent.
We will then handle the more realistic case, without immunity, at
the end of this section.

3.1.1 The case with “immunity"
Recall Xi defined above indicates whether or not the ith parity

equation holds. In the case with immunity, the likelihood function
of observing Xi = 1 (i.e., odd number of bits “flipped" during
transmission among the set of bits sampled) is as follows:

f(Xi = 1, θ) = Pr(Xi = 1|θ) (7)

=
2j+1≤li∑

j=0

(
li

2j + 1

)
θ2j+1(1− θ)li−2j−1

=
1− (1− 2θ)li

2
. (8)

The Fisher information contained in each Xi can be calculated

as follows:

JEEC
i (θ) = Eθ[(

∂
∂θ

log f(Xi; θ))
2] (9)

= Pr(Xi = 1|θ)( ∂
∂θ

log f(Xi = 1; θ))2

+Pr(Xi = 0|θ)( ∂
∂θ

log f(Xi = 0; θ))2

=
1− (1− 2θ)li

2

(
2li(1− 2θ)li−1

1− (1− 2θ)li

)2

+
1 + (1− 2θ)li

2

(
−2li(1− 2θ)li−1

1 + (1− 2θ)li

)2

=
4l2i (1− 2θ)2li−2

1− (1− 2θ)2li
. (10)

Before we aggregate Fisher information contributed by all the
codeword bits, we would like to highlight some nice properties of
the derived Fisher information for a single bit (10). For conve-
nience of comparisons, we define the Fisher information (of log θ)
of each bit as η(li, θ):

θ2JEEC
i (θ) =

4θ2l2i (1− 2θ)2li−2

1− (1− 2θ)2li
(11)

! η(li, θ). (12)

As we explained earlier, this is inversely proportional to the
Cramer-Rao bound of the relative variance. The larger η(l, θ), the
tighter the bound of the relative error (and the log-difference) that
can be achieved.

Values of η(li, θ) for various li (number of bits sampled) values
are plotted in Figure 1. We can see that the η(l, θ) curves cor-
responding to different l values are actually very similar in shape
to each other. A larger parity group size l is better for estimating
smaller θ values and vice versa. These curves also have similar
“heights" except when l gets really small (targeting extremely high
BER close to the maximum possible value of 0.5). This means
that the “peak estimation powers" of different parity bits are about
the same. The maximum (i.e., “height") of each curve is always
reached around θ = 0.4/l, which means the parity bit computed
from l sampled bits yields the best estimation for θ when θ is
around 0.4/l.

We can even quantify how much “information about θ" flows
into the whole estimation spectrum by the following integral for-
mula, which is the area covered by the FI(rel) curves in Figure 1:

SJ(l) =

∫ 0.5

0

θ2J(l, θ)d log θ (13)

In (13), the upper limit of the integral is 0.5 is because all formu-
las derived above (starting from (8)) are only valid when θ is less
than or equal to 0.5.

From a practical perspective, an integral over the full spectrum
might not be too useful since practical applications might be only
interested in a particular range of spectrum rather than a full spec-
trum, such as [10−3, 0.15] proposed in [3]. Moreover, maintaining
accuracy over a certain threshold might be even more practical than
an integral. However, we find SJ is still a very good indicator of
performance since it remains almost the same for EEC bits with
different parameter l, which is not surprising since the Fisher infor-
mation curves are similar to each other in shape and hence the “area
under" the curves are also close to one another. In Figure 1, we list
the values of SJ(l) of different l’s in the legend, where constant
C = 1

24π
2 ≈ 0.4112, which is a provable limit of SJ(l) when l

goes infinity. When l increases, SJ(l) gets closer to C. In other

128



10í4 10í3 10í2 10í1 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Error Rate (θ)

N
or

m
al

iz
ed

F
is

he
r

In
fo

rm
at

io
n(

F
I)

Each EEC bit’s FI (η(l, θ))

0.5

l=4 SJ = 1.10C

l=8 SJ = 1.05C

l=16 SJ = 1.02C

l=32 SJ = 1.01C

l=64 SJ = 1.01C

l=128 SJ = 1.00C

l=256 SJ = 1.00C

l=512 SJ = 1.00C

l=1024 SJ = 1.00C

l=2048 SJ = 1.00C

Figure 1: Fisher Information (of log θ) of each EEC bit in func-
tion of l and θ

words, the total information SJ contributed by each bit is all on the
same scale and almost invariant to parameter l. In Section 5.1, we
will see that this criteria SJ helps us to differentiate the strengths
of different schemes and guides us in selecting better schemes.

3.1.2 The case without “immunity"
We proceed to perform the Fisher information analysis of EEC

when the codeword sent along with the packet is no longer assumed
to be immune from corruptions during transmission. The amount
of Fisher information contained in each parity bit Xi can be derived
as in (14). We omit the details of this derivation since it is a spe-
cial case of the Fisher information analysis (without “immunity")
in the gEEC framework in Section 4.2. Note that, unlike the case
with “immunity" where the analysis rigorously holds, the analysis
for the case without “immunity" only rigorously holds when i.i.d.
random binary errors are assumed or random placement of bits are
assumed.

θ2JEEC
i (θ) =

4(li + 1)2(1− 2θ)2li

1− (1− 2θ)2li+2
(14)

Notice that the RHS of (14) is equal to η(li +1, θ), only slightly
different from (10).

3.2 Combining the contributions of the differ-
ent levels of bits

Since all parity bit are calculated from independent samples with
replacement and hence each of them is independent of every other,
the Fisher information of the codeword is simply the sum of their
Fisher information together:

JEEC(θ) =
m∑

i=1

JEEC
i (θ). (15)

In Figure 2, we plot the Cramer-Rao bound of the EEC scheme
with the typical configuration (9 levels, 32 bits per level) and we
also plot the Cramer-Rao bound of schemes with only one level of
32 bits. From Figure 2, we can see that after using the information
of all levels, the estimation accuracy has the potential to be con-
siderably improved. In other words, suppose there are two optimal
estimators, the first can use only the information contained in one
level of bits, while the second can use the information contained
in all levels. Then the variance of the first estimator will be four
times as large as compared to the second for most θ values. This

means the codeword size has to be four times as large for the first
estimator to match the second in estimation accuracy.

In the design of the original estimator in [3], they first identify
the level of bits likely to be the most accurate for estimating θ and
then only use that level of bits for estimation. Hence only one level
of information is used in the final estimate. In Section 3.5 of the
technical report [2], the authors have proposed an improved esti-
mator that can make use of two neighboring levels of parity bits.
In Figure 2, we use θ̂1 to denote the original one proposed in [3]
and use θ̂2 to denote the improved version proposed in [2]. We can
see that neither estimator is close to the Cramer-Rao bound cor-
responding to the amount of Fisher information contained in such
one or two levels of bits (In other words, their estimators have not
made full use of even the information contained in such one or two
levels of bits) and far from the Cramer-Rao bound corresponding to
the Fisher information of all the codeword bits. We note that when
θ is larger than 0.15, the relative MSE falls below the Cramer-Rao
bound; This is because the estimator is actually very biased in that
region. According to (3), this might lead to smaller MSE.

3.3 MLE estimator for EEC scheme
In this section, we present our MLE decoder that matches the

Cramer-Rao bound, shown in the following formula.

θ̂MLE = argmax
θ

{
m∑

i=1

log Pr(Xi|θ)} (16)

= argmax
θ

{
m∑

i=1

log
1− (1− 2θ)li

1 + (1− 2θ)li
Xi (17)

+ log(1 + (1− 2θ)li)} (18)

It has been discovered in [5] that the non-informative prior, Jef-
ferys invariant prior, can remove the O( 1

N ) component in bias for
the family of exponential models. Here, although the likelihood
function is not a closed-form distribution, we find that Jeffreys prior
will help the MLE estimator to achieve better results. The MLE
with the Jefferys prior, denoted as θ̂MLEj , is

θ̂MLEj = argmax
θ

{
m∑

i=1

log Pr(Xi|θ) +
1
2
log J(θ)}

= argmax
θ

{
m∑

i=1

log
1− (1− 2θ)li

1 + (1− 2θ)li
(Xi −

1
2
)

+ log(2li(1− 2θ)li−1)}.

Here p(θ) ∼
√

J(θ), where p(θ) is the a priori distribution of
the parameter θ and J(θ) is the Fisher information calculated in
(15). Note that the MLE with Jefferys prior will still asymptotically
reach the Cramer-Rao bound.

4. DESIGN AND FISHER INFORMATION
ANALYSIS OF GENERALIZED EEC
(GEEC)

In the previous section, we showed through Fisher information
analysis that the original decoder for EEC used in [3] is far from
optimal and our new decoder is near-optimal (by almost match-
ing the Cramer-Rao bound) given the amount of Fisher informa-
tion contained in an EEC codeword. Now we would like to find
out whether the EEC encoding scheme is efficient enough by com-
paring its Fisher information (per bit) with that of EToW. How-
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Figure 2: the empirical performance of EEC’s original esti-
mators and the associated Cramer-Rao Bound (all levels, each
level, and the envelope of only one level/two levels). The EEC
scheme is composed by nine levels and 32 bits each level.

ever, when we were performing the Fisher information analysis
of EToW, we discovered a generalized EEC (gEEC) scheme that
can be parameterized into both EEC and EToW. Fisher informa-
tion analysis of EToW can thus be generalized to that of gEEC so
we shift our “target" for comparison to gEEC. Through this unified
framework of gEEC, we have found that some parameterizations
of the gEEC family contain 25% or more Fisher information per
bit in their codewords than EEC. In other words, the EEC encod-
ing scheme is not very efficient either. The discovery of gEEC is
important also for another reason: We have discovered a unified de-
coder (estimator) for gEEC that is near-optimal (by almost match-
ing the Cramer-Rao bound) and when parameterized into EToW,
is more accurate than the original EToW decoder proposed in [6].
Strictly speaking, it is not the clear winner however since the origi-
nal EToW decoder has much lower computational and storage com-
plexities.

The rest of the section is organized as follows. In Section 4.1,
we briefly describe the gEEC encoding scheme by highlighting its
differences from and connections to both EToW and EEC. In Sec-
tion 4.2, we proceed to perform the Fisher information analysis of
its codeword and design its estimator. We will see the gEEC de-
coder that almost matches the Cramer-Rao bound in Section 5.2.

4.1 The gEEC Encoding
A gEEC codeword (called sketch) of a packet (viewed as binary

vector %b) consists of m sub-sketches z1, z2, . . . , zm. The value of
sub-sketch zi is set to the number of 1’s contained in the binary
vector generated by sampling li bits from the packet with replace-

ment, which we refer to as %bi, and then XOR-ing it with a pseudo
random vector %si bitwise. This operation is the same as in EToW,
except that in EToW the value of zi is set to the half of the dif-
ference between the number of 1’s and the number of 0’s. It can
be shown that these two types of encodings can be made equally
efficient and statistically equivalent with respect to the truncation
operations (described shortly) with proper parameterizations.

The main difference between EToW and gEEC is that all l′is
have to take the same value in EToW. This is not an artificially
crafted difference because EToW’s decoder, inherited from ToW
and based on the method of moments, imposes this equal length
requirement, while the new decoder we propose for gEEC that we
will describe in Section 4.2.2, does not have such a requirement due
to its MLE nature. Like in EToW, we use barely enough bits to en-
code each sub-sketch and “overflows" are handled in the same way
through truncation. Moreover, different from EToW which needs
extra checking bits to detect corruption inside the sketch, we will
see that the estimators provided the gEEC’s framework have built-
in capability to decode the sketches which might suffer corruption
in the case without “immunity".

The precise definition of zi in gEEC scheme is as follows:

zi =
li∑

j=1

(bi,j ⊕
1 + si,j

2
) (mod Ki), (19)

where Ki = 2ki , ki is the number of bits allocated to sub-sketch zi.
Each si,j is a pre-computed pseudo-random number uniformly and
independently selected from {−1, 1}, the same as the definition in
the tug-of-war sketch [1, 6]. The function 1+si,j

2 maps si,j from
{−1, 1} to {0, 1}.

As shown below, the nature of the definition above is a random
projection of %si (only different from the %bi · %si by a pseudo-random
constant, i.e. a number that is the same in both sender and re-
ceiver):

zi =
li∑

j=1

(bi,j ⊕
1 + si,j

2
) (20)

=
li∑

j=1

1 + (2bi,j − 1)si,j
2

(21)

= !bi · !si −
1

2
!1 · !si +

li
2
. (22)

It can be shown that when we allocate only 1 bit for each sub-
sketch, the sketch becomes a parity array and in this case gEEC
“degenerates" into a scheme statistically equivalent to EEC with
the same li values. We can also see that gEEC becomes statis-
tically equivalent to EToW without sketch protection (explained
next) when l′is are set to the same value.

4.2 Fisher information analysis
In this section, we analyze the Fisher information contained in

each gEEC codeword. Recall from Sec. 2.3 that in EToW we need
to protect the sketch against corruptions during transmission using
lightweight error-detection codes. We will show no such protec-
tion is needed in gEEC because, unlike the EToW decoder, the pro-
posed MLE decoder for gEEC is robust against such corruptions.
In order to simplify the presentation of the analysis, we first ana-
lyze the Fisher information of a gEEC codeword assuming that the
codeword is immune from corruption during transmission in Sec-
tion 4.2.1 and then show how to remove this assumption in Sec-
tion 4.2.2.
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4.2.1 The case with “immunity"
Like in Section 3, we use %b′i to denote the set of bits sampled

with replacement from the packet received (subject to corruptions
during transmission) that are used to compute the ith sub-sketch
z′i at the receiver side, and use %bi to denote the corresponding set
of bits sampled from the packet sent (can be different from %b′i due
to corruptions during transmission) that are used to compute the
ith sub-sketch zi at the receiver side. In this section, we derive the
Fisher information of the sketch under the aforementioned immu-
nity assumption that these sub-sketches z1, z2, ..., zm will arrive
at the receiver without having any of their bits corrupted during
transmission.

The receiver can calculate the difference Xi between z′i and zi

Xi ! z′i − zi(mod K), i ∈ [m] (23)

Here K = 2k where k is the number of bits we allocate to each
sub-sketch. The effect of the aforementioned (possible) overflow
and resulting truncation is reflected in "modulo K". It can be shown
that this observation Xi is the following function of the error vec-
tor %ei (the difference vector between %bi and %b′i), where si is the
aforementioned pseudorandom vector over which the sampled bit
vectors %bi and %b′i are linearly projected:

Xi = %bi · %si − %b′i · %si(mod K), due to (22) (24)
= %ei · %si(mod K). (25)

Since observations X1, X2, ..., Xm are independent random
variables, the likelihood function of the random vector 〈X1, X2,
..., Xm〉 is the product of the likelihood functions of these random
variables. The likelihood function of Xi (for arbitrary i) can be
derived as follows.

For convenience, we drop the subscript from Xi and denote
it simply as X . In the following we will derive the probabil-
ity mass function (PMF) of X , which takes values from the set
of K = 2k integers {0, 1, ...,K − 1}. It can be shown that
its PMF can be determined by a K-dimensional vector %γ(θ, l) ≡
〈γ0(θ, l), γ1(θ, l), ..., γK(θ, l)〉 where γi(θ, l) ≡ Pr(X = i|θ, l),
i ∈ [0, 1, ...,K − 1]. Note that each scalar γi is a function of the
error rate θ and the number of bits sampled l (here the subscript i is
dropped from li). We show that %γ(θ, l) can be computed from the
following recurrence relation.

LEMMA 1.

%γ(θ, l)1×K = %γ(θ, l − 1)1×KM(θ)K×K , (26)

where

M(θ) =





1-θ θ/2 · · · 0 · · · θ/2
θ/2 1-θ θ/2 · · · 0 · · ·

θ/2 1-θ θ/2 · · · 0 · · ·
· · · · · ·

· · · 0 · · · θ/2 1-θ θ/2
θ/2 · · · 0 · · · θ/2 1-θ





K×K

(27)

The initial condition for the above is

%γ(θ, 0) = [1, 0 · · · , 0]1×K . (28)

PROOF. Let %e = 〈e1, e2, · · · , el〉 and %s = 〈s1, s2, · · · , sl〉. We
define the following interim random variables Yj , j = 0, · · · , l:

Yj =
j∑

k=1

eksk. (29)

Clearly, X = Yl(mod K). Due to the sampling with replacement
policy, the increment in each step ∆Yj = Yj+1−Yj = ej+1sj+1 is
independent of every other. Hence the random variables {Yj}0≤j≤l

make up a Markov chain. In each step, with probability 1 − θ an
unchanged bit is selected and hence ∆Yj = 0; with probability θ
a changed bit is selected, and half of these increments are +1 and
the other half −1 since sk is uniformly at random from {−1, 1}.

Hence the distribution of ∆Yj is:

∆Yj =






−1 with prob θ/2,

0 with prob 1− θ,

1 with prob θ/2.

(30)

Mapping {Yj}0≤j≤l into the finite field ZK , formula (30) be-
comes the transition matrix, which is the circular matrix M defined
in (27).

To allow for efficient matrix computation, M(θ) can be diago-
nalized as follows.

M(θ) =
1
K

Ω′Diag(d0, d1, . . . , dK−1)Ω (31)

where Ω = {ωik}, ωik = exp( 2πikj
K ), j is the imaginary unit, and

di = 1 − αiθ, αi = 2 sin2(iπ/K), which is actually the Fourier
transform matrix.

Considering that %γ(θ, 0) = [1, 0 · · · , 0]1×K , we have

%γ(θ, l) = [1, 0, · · · , 0]M(θ)l

=
1
K

[1, 0, · · · , 0]Ω′Diag(dl0, d
l
1, . . . , d

l
K−1)Ω

=
1
K

[dl0, d
l
1, . . . , d

l
K−1]Ω. (32)

The Fisher information of the gEEC sketch can be calculated as
follows:

J(θ, l) = Eθ(
∂
∂θ

log f(Xi; θ))
2

=
K−1∑

j=0

γj(θ)(
d
dθ

log(γj(θ)))
2

=
K−1∑

j=0

l2{[0,α1d
l−1
1 , . . . ,αKdl−1

K−1]Ω}2j
K{[dl0, dl1, . . . , dlK−1]Ω}j

, (33)

where γj denotes the jth item in vector %γ and {%v}j denotes the jth

item in vector %v.
It can be shown that when we set k to 1 (so that gEEC degen-

erates into EEC), formula (33), the Fisher information of gEEC
codeword is equal to formula (10), that of EEC.

4.2.2 The case without immunity
In the previous section, we have performed an Fisher informa-

tion analysis of gEEC under the assumption that the codewords
(sketches) sent along with the packets are not subject to corrup-
tions during transmission (i.e., “with immunity"). In reality, these
codewords are certainly not immune to bit errors. In this section,
we perform the Fisher information anaysis without this “immunity
assumption".

Suppose the sender sends out a sub-sketch zi and the receiver
receives ži. Now ži may differ from zi as the “immunity" has been
taken away. Having no knowledge of zi, the receiver has to use
ži and zi

′ computed from the received packet to infer the bit error
rate θ. The conditional (upon θ) joint probability mass function of
〈ži, zi′〉 is shown as follows. For ease of notation, we remove the
subscript i from the notations and get:
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Pr(ž, z′|θ) ∝
K−1∑

z=0

Pr(z, ž|θ) Pr(z′|θ, z)

∝
K−1∑

z=0

Pr(z) Pr(ž|θ, z) Pr(z′|θ, z). (34)

Note that the formula (34) above only holds under the assump-
tion that the binary error flips on sketch bits and the error flips on
data bits are independent, i.e., ž ⊥ z′|θ, z, which requires either
that the binary errors are i.i.d. distributed inside the sketch or that
the locations of all bits participating including the sketch bits are
all sampled with replacement from the packet, which is not possi-
ble to be strictly guaranteed in reality. Hence, we readily admit that,
different from the analysis for the case with “immunity" which is
rigorously held, the analysis for the case without “immunity" does
not model reality perfectly, though we believe that it should be very
close.

The matrix representation of (34) is as follows:

P(θ)final
K×K ∝ ΛM(θ)lT(θ)K×K , (35)

In (35), matrix M corresponds to Pr(z′|θ, z) and can be calcu-
lated using (31). Matrix Λ is a diagonal matrix and corresponds to
Pr(z). Its diagonal elements can also be calculated using (32) with
θ = 1. We acknowledge that an ulterior motive for us to define zi
as the number of 1’s, rather than the number of 1’s minus the num-
ber of 0’s, in the bitwise-XOR of %bi and %si, is that it makes these
formulae much “cleaner".

Matrix T is the transition matrix that corresponds to
Pr(ž, q̌|θ, z). Each of its entry Tij is defined as follows:

Ti,j = θdij (1− θ)k−dij , (36)

where dij is the Hamming distance between the binary representa-
tion of i and j.

All entries in (35) are differentiable and the Fisher information
can be derived in a way similar to (33). In the interest of space the
final Fisher information formula is omitted here.

Note that when k = 1, gEEC degenerates to EEC, and the final
Fisher information formula can be shown to be equivalent to EEC’s
Fisher information formula (14).

4.3 Our MLE Estimators
In this section, we derive the MLE decoder for gEEC that per-

form much better than both EEC and EToW decoders, as we will
show in Sec. 5.2. Again, we first derive it for the easier case with
“immunity" and then proceed to take the “immunity" away.

In the case with “immunity", our observations are Xi, which is
the difference between each pair of ži and z′i, i = 1, 2, ...,m, and
our goal is to estimate θ. The maximum likelihood estimator is

θ̂MLE = argmax
θ

{
m∑

i=1

log{%γ(θ, li)}Xi} (37)

Here {%γ(θ, li)}Xi denotes the Xth
i scalar in %γ and %γ(θ, l) and

J(θ, l) have both been derived earlier. The MLE estimator with
Jeffreys prior (MLE-J) is

θ̂MLE−J = argmax
θ

{1
2
log J(θ) +

m∑

i=1

log{%γ(θ, li)}Xi} (38)

We introduce MLE−J because it performs better than the plain
vanilla MLE empirically, which will show in Section 5.2.
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Figure 3: gEEC’s Fisher information: Relationship to l and k
in the case with immunity assumption

Similar to (38), the MLE estimator with Jeffreys prior for the
case without immunity is

θ̂ = argmax
θ

{
1
2
log J(θ) +

m∑

i=1

log{P(θ, li)}ži,z′i

}
, (39)

where {P(θ, li)}ži,z′i denotes the (ži, z′i)th entry in the probability
matrix P.

This estimator will also be evaluated empirically in Section 5.2.

5. NUMERICAL AND EMPIRICAL RE-
SULTS

In this section, we present an extensive array of numerical results
for gEEC’s Fisher information, as well as an empirical evaluation
of gEEC’s estimators with different configurations. Note that both
EEC and EToW are just two of the sub-families in the gEEC family.

5.1 Fisher Information contained in the
gEEC Family

Fisher information contained in each gEEC’s sub-sketch is de-
termined by two factors: the sampling group size l and the bi-
nary width k. For convenience, this is denoted as gEEC(l, k),
and a sketch composed of m such sub-sketches is denoted by
gEEC(m, l, k).

In Figure 3, we show the impact of different l’s and k’s in the
case with immunity. We observe that, similar to Figure 1, the pa-
rameter l only “shifts" the curve. The larger l, the more resolution
on lower θ’s, while the total amount of “information flow" SJ re-
mains almost the same. The parameter k, on the other hand, ex-
pands the “span" of the curve, leading to a wider spread of the
estimation power on the spectrum.

To compare the total amount of “information flow" of different
parameterizations more conveniently, we also list the value SJ—
the area covered by each curve as defined in (13)—of each pa-
rameterization in the legend of the figure, where the constant C
is π2

24 ≈ 0.4112, the lower limit of the area covered by the EEC
bit’s Fisher information curve, as discussed in Section 3. Based on
the SJ values in Figure 3, we conclude that k = 2 is not able to
bring any additional benefit. In contrast, one sub-sketch with k = 4
can gain more information over 4 independently coded EEC bits.

The next question we ask is: How much information is lost due
to the contamination of the sketch? To measure this, we plot the
Fisher information curve with k = 4 or 6 and l = 2048, 512 or
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Case with immunity Case without immunity
k l=128 l=512 l=2048 l=128 l=512 l=2048
2 1.00 1.00 1.00 1.00 1.00 1.00
3 1.12 1.12 1.11 1.08 1.10 1.11
4 1.23 1.22 1.22 1.13 1.18 1.21
5 1.24 1.31 1.31 1.16 1.20 1.26
6 1.05 1.30 1.37 1.19 1.21 1.27
7 0.90 1.14 1.36 1.22 1.24 1.27

Table 1: The total information gain SJ

kC (C = 1
24π

2)

128 in Figure 4. We observe that the Fisher information curve is
impacted only when θ is not small and the loss of information is
also modest. For some cases, such as k = 6 and l = 128, the total
information is improved even when the sketch is subject to errors.

We summarize the impact of l and k’s on SJ by listing the 1
kCSJ

values of different parameterizations in Table 1. From the perspec-
tive of total information gain SJ , more bits per sub-sketch usually
improves the gain. We see that k = 5 gives around 25% more
information per bit in the contaminated case, which can be trans-
lated to a similar ratio of reduction of the sketch size to achieve the
same variance bound. It can be also shown that the performance of
one sub-sketch with k = 5 can dominate six one-bit sub-sketches
together.

However, a larger k is not always better. The larger k gets, the
wider the span of the resolution curve gets, which might cover more
range than needed. If l is small (for better resolution on large θ’s), k
should not need to be too large, otherwise it will be wasteful (such
as the k = 6 and l = 128 case in the table). For a typical EEC
application in wireless communications where the primary target
parameter range is [10−3, 0.15], the span of k = 5 (or 6) would be
sufficient. Moreover, a large k will mean a higher implementation
cost for a relatively modest gain, which will be discussed soon.

5.2 Empirical Evaluation of Estimators
We now present an empirical evaluation of gEEC’s estimators.

We aim to use the figures in Figures 5,6,7 to answer two questions:
(1) How far is the estimator’s real performance from the theoretical
results? and (2) How does this compare with previously proposed
solutions? Each value in igures 5,6,7 is obtained with 1000 runs in
our simulations, in the case without immunity.

The comparison metrics that we use are the relative mean
squared error (rMSE, defined as 1

θ (θ̂ − θ)2), the mean squared er-

ror of log θ̂ (defined as (log θ̂ − log θ)2)), the ratio of large errors
(the ratio of θ̂ that are larger than 2θ or smaller than θ/2), and

the relative bias ( θ̂θ − 1).As discussed in Section 2.1, although the
Cramer-Rao lower bound for the relative MSE of θ̂ (4) and the MSE
of log θ̂ (5) are the same, we prefer to use the statistics of log θ̂ for
comparison since it allocates larger penalty to large deviations.

In Figure 5, we compare the performance of the original 288-bit
EEC scheme with original estimators with two gEEC configura-
tions, gEEC(16, 768, 5) and gEEC(16, 768, 6), whose total trans-
mission costs are 80 and 96 bits, respectively. We see that our new
sketches perform very well in [0.001, 0.15] with much less trans-
mission overhead than the original EEC, while the performance of
the original EEC’s estimator varies, especially when measured by
harsher criteria such as the MSE of log θ̂ and the ratio of large er-
rors.

In Figure 6, we compare the performance of the four estimators
of two schemes, the original EEC and gEEC(56, 512, 5). All four

estimators are derived from the newly proposed gEEC framework,
two of which use the Jeffreys prior and the other two do not. We
can see that the estimators with Jeffreys prior are generally better in
the range where θ is relatively large and the inherent resolution of
the scheme is relatively weak, no matter if measured by MSE or by
bias. Since estimators with Jeffereys prior are usually empirically
better, we always use that version in other comparisons.

In Figure 7, we compare the performance of four schemes,
the original EEC, gEEC(56, 512, 5), gEEC(56, 768, 6) and
EToW(56, 768) with 5-bits per sub-sketch and 1-bit for detecting
corruption, the transmission cost of which are almost the same. The
first three use gEEC’s MLE estimator with Jeffreys prior, while the
last one uses EToW’s moment-based estimator. Comparing these
figures with Figure 5, we can see that, with the same transmission
cost, the estimation accuracy is substantially improved. Moreover,
we can see that the gEEC(56, 512, 5) and gEEC(56, 768, 6)’s per-
formance are generally better than the others. In a wide range they
can achieve around a 30-50% reduction of MSE, compared with
the EEC scheme with our new estimator. This is not surprising
since we have already seen that a larger k can bring a modest im-
provement of estimation accuracy. We also observe that EToW’s
performance is only slightly worse, except when θ is close to or
larger than 0.1.

Comparing the curves in Figure 5 and Figure 6, we can see that
when the total number of sketches is large, the MLE estimator’s
performance is nearly equal to the Cramer-Rao lower bound, and
its bias is also reduced as seen by comparing Figure 5(d) and Fig-
ure 5(d). Note that sometime the MSE of log θ or rMSE might be
below the Cramer-Rao bound when bias is high, which is possible
since all curves of Cramer-Rao bound presented in the figures are
for the unbiased estimator.

To summarize our comparisons above, our estimators, especially
the ones with Jeffreys prior, can almost achieve the Cramer-Rao
bound empirically. On one hand, gEEC(16, 768, 5) (which is also
EToW’s scheme, just without EToW’s extra error detection bit) can
achieve a similar level of performance as the original EEC scheme
with only one-fourth of the sketch size; on the other hand, with the
same budget of transmission cost, the estimation accuracy of the
original EEC scheme (288 bit design) can be greatly improved by
our new estimators, and our gEEC design can achieve around 30%
additional gain of estimation accuracy. Compared to the EToW’s
performance, the gEEC’s performance is still better, especially in
the range that θ is relatively large.

5.3 Implementation Cost of Estimators and
Selection of Parameters

All presentations thus far have focused on the estimation perfor-
mance. However, the implementation and the computation costs
should also be considered. In practice, the MLE estimator can be
implemented as table-based lookup. Whether or not it is enhanced
by the Jeffreys prior, the MLE estimator can be transformed in this
way:

θ̂MLE = argmax
θ

{A(θ)Y + B(θ)}, (40)

where each entry of Y indicates the count of one particular type
of sub-sketch equals to one particular value. A(θ) and B(θ) are
determined by

We can implement (40) as a linear transform of Y, i.e.
Ad1×d2Yd2×1 +Bd1×1 and then find the maximum of the result.
Here Ad1×d2 and Bd1×1 are both pre-calculated matrixes.

One of A’s dimensions, d1, is determined by the size of candi-
date θ’s. For most practical EEC applications, d1 in the order of
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Figure 4: gEEC’s Fisher information: Relationship to l and k in the cases with and without immunity (denoted as w.t.i. and w.o.i.
respectively in the legend)
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Figure 5: Empirical Results of Estimators: Compare the performance of original EEC (with original estimator) and two gEEC
schemes (with much smaller size, 80 and 96 bits respectively), in the case without “immunity".
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Figure 6: Empirical Results of Estimators: Compare the performance of two types of gEEC estimators (with or without Jeffrey’s
prior) on three schemes including the original EEC scheme, in the case without “immunity".
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Figure 7: Empirical Results of Estimators: Compare the performance of four schemes (original EEC,
gEEC(56,512,5),gEEC(48,768,6) and EToW), with almost the same size and using gEEC’s estimator with Jeffrey’s prior, in
the case without “immunity".
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hundreds is sufficient since it will be wasteful if it becomes more
fine-grained than the spectrum of estimation.
A’s other dimension, d2, corresponding to the length of Y,

depends on the design of the sketch. Suppose the codeword
is composed of c types of sub-sketches: m1 gEEC(l1, k1) sub-
sketches, m2 gEEC(l2, k2) sub-sketches, . . . ,mc gEEC(lc, kc)
sub-sketches. In the case of “immunity" where the estimator can
directly infer from the difference between ži and z′i, d2 equals
to

∑c
i=1 (2

ki − 1). In the case without “immunity," d2 equals to∑c
i=1 (2

2ki − 1), since in such a case the estimator should directly
infer from the pair of ži and z′i and hence the table size is squared.

On one hand, the MLE estimator above can be implemented with
an extremely low cost, when all sub-sketches’ k parameters equal 1,
which means the scheme degenerates to the original EEC scheme.
In this case, the matrix A can be as small as 9×100 (say, d2=100).
Moreover, some iterative methods similar to the bisection method
can be employed to further reduce the number of multiplication,
add and compare operations to about 90. Furthermore, since our
estimator has strong built-in capability to combine the information
from different levels, it can be shown that a 3-level, 96-bit-per-level
design performs very closely to a 9-level 32-bit design, which can
reduce the number of the sub-sketch types and hence even further
reduce the cost by two-thirds.

On the other hand, as shown by previous evaluation results,
larger values of k in the sub-sketch, such as 5 or 6, can generally
bring around 25% of additional improvement of estimation accu-
racy, at the cost of thousands times higher cost in the storage and
the lookups in tables A and B. The computation cost actually re-
mains almost the same since X is sparse, and we can implement the
linear transform by summing up only few rows. Hence, the appli-
cability of this improvement depends on the application scenario,
since a lookup table of several hundreds KB might be a very small
cost for some applications, but infeasible for others. Also, note that
as discussed in Sec. 5.1, a large k might not be necessary if the
target range of parameters is not so wide.

There are two middle paths between the cases above. One way
is to use the combinations of several sub-sketches with k = 3 or
4 and different l’s, the cost of which is much smaller than k = 5
since the table size increases exponentially (O(22k)) in the case
without immunity, while the scheme can still receive some gain on
estimation accuracy. Another way is to use the EToW’s scheme
and estimator proposed in [6], whose implementation cost is much
lower, though performance is also weaker, especially when the er-
ror rate θ is large.

In summary, the gEEC framework can be easily and flexibly
configured for different requirements of estimation accuracy. All
guidelines discussed in this section not only hold for θ in the range
[0.001, 0.15], but also for the other arbitrary ranges as needed.

6. CONCLUSION
The seminal work of Chen et al. [3] has opened the door for

the design of high-quality error estimating codes, with applications
towards improving wireless network performance. Chen et al. [3]
designed an exceedingly simple code for estimating bit error rates
in packets being transmitted, and it is an open—yet challenging—
question whether this code is optimal in practice.

In this paper, we have systematically investigated the design
space of error estimating codes, stemming from the natural ques-
tion whether EEC achieves the best tradeoff between the space
and estimation accuracy in estimating bit error rates. Along the
path of our exploration using Fisher information analysis, we have
demonstrated that EEC decoding is inefficient, and proposed a new
estimator (decoder) that achieves a significantly higher accuracy.

While investigating whether EEC encoding is efficient, we have de-
veloped a generalized coding framework, called generalized EEC,
in which existing designs, such as EEC and EToW, are just degen-
erate cases. Using this unified framework, we found that some pa-
rameterization of gEEC similar to EToW can contain around 25%
more information than the pure EEC scheme. To our knowledge,
our work represents the first systematic study of the non-asymptotic
optimality of error estimating codes.
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