
Chameleon: Adaptive Peer-to-Peer Streaming
with Network Coding

Anh Tuan Nguyen†, Baochun Li††, and Frank Eliassen†
† Department of Informatics, University of Oslo, Oslo, Norway

{anhtn,frank}@ifi.uio.no
†† Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

bli@eecg.toronto.edu

Abstract—Layered streaming can be used to adapt to the
available download capacity of an end-user, and such adaptation
is very much required in real world HTTP media streaming.
The multiple layer codec has become more refined, as SVC
(the scalable extension of the H.264/AVC standard) has been
standardized with a bit rate overhead of around 10% and an
indistinguishable visual quality, compared to the state of the
art single layer codec. Peer-to-peer streaming systems have also
become the reality. The important question is how such layered
coding can be used in real world peer-to-peer streaming systems.
This paper tries to explore the feasibility of using network coding
to make layered peer-to-peer streaming much more realistic,
by combining network coding and SVC in a fine granularity
manner. We presentChameleon, our new peer-to-peer streaming
algorithm designed to incorporate network coding seamlessly
with SVC. Key components with different design options of
Chameleon are presented and experimentally evaluated, with
the objective of investigating benefits of network coding in
combination with SVC. We carry out extensive experiments on
real stream data to (i) evaluate the performance of Chameleon
in terms of playback skips and delivered video quality, and (ii)
understand its insights. Our results demonstrate the feasibility
of the approach and bring us one step closer to real adaptive
peer-to-peer streaming.

I. I NTRODUCTION

As video streams are transferred across best-effort IP
networks, no Quality of Service guarantees can be made.
Therefore, it is much required to have some means for video
streaming to be able to adapt to network fluctuations. Layered
coding has emerged as one of the most promising solutions,
in which scalable video coding has been shown advantageous
in terms of coding efficiency over other alternatives, such
as Multiple Description Coding (MDC). The layered codec
has become more refined and practical. Recently, the scalable
extension of the H.264/AVC standard, referred to as SVC,
has been standardized as Amendment 3 of H.264/AVC [1].
Performance evaluations of SVC have shown that, a reasonable
degree of scalability can be supported with a bit rate overhead
of less than 10% and an indistinguishable visual quality,
compared to the state of the art single layer coding [2], [3].

The peer-to-peer (P2P) paradigm has been successfully used
in live multimedia streaming over the Internet [4], [5]. The
essential advantage of P2P systems is that the system capacity
scales up when more peers join, as peer upload capacity is
utilized. Although P2P streaming takes advantage of the P2P
paradigm to mitigate server load, peers still suffer degraded

This work is partially funded by the Research Council of Norway, grant
number 176756/S10.

video quality when bandwidth variations occur. The important
question here is how layered coding can be used in P2P
streaming to take advantage of both emerging technologies.
Many approaches have been proposed to use layered coding
in P2P streaming. However, a complete solution that can
be applied to real world systems has never existed for the
following reasons:

⊲ Peer coordination, while critical to utilize available up-
load bandwidth from each peer to maximize the delivered
quality under network fluctuations, is a complex problem.
For example, the layer allocation problem is proven to be
NP-hard [6], [7].

⊲ Generic layered data models are often used. Previous
studies [6]–[9] often do experiments with synthetic lay-
ered data. The use of unreal stream structures limits the
applicability of designed protocols in the real world.

Network coding[10] has been shown beneficial in P2P stream-
ing [5], [11]. Wang and Li present the current state-of-the-art
live P2P streaming using random network coding in single
layer streaming [5]. The key feature of network coding is that
it makes all pieces of data equally important, and every coded
packet is innovative to receivers with high probability. This
feature maximizes the potential of peer collaboration (referred
to asperfect collaborationin [5]).

Convinced that network coding is beneficial, we explore
the feasibility of using network coding to make layered P2P
streaming much more realistic, by combining network coding
and SVC in a fine-granularity manner. To fully evaluate
the approach, a complete adaptive P2P streaming protocol,
Chameleon, is designed. We expect to see benefits of network
coding in mitigating peer coordination problems. To be closer
to reality, we take into account the scalability structure spec-
ified by the SVC standard from the design to the evaluation
phase. We carry out extensive experiments with different
design options of the protocol on real stream data (a two-
hour video sequence) generated from the latest SVC reference
software, JSVM Software 9.17 [12]. Our results show that
Chameleon can adapt to bandwidth variations to provide the
best possible quality, while maintaining efficiency and scala-
bility of a P2P system. In summary, our main contributions
include:

⊲ An effective and complete P2P streaming protocol. The
core of Chameleon is studied, including neighbor selec-
tion, quality adaptation, receiver-driven peer coordination,
and sender selection with different design options. Our

investigation brings interesting findings that are useful
for building an adaptive P2P streaming system.

⊲ A segmentation method to use SVC in P2P streaming in
combination with network coding.

The remainder of this paper is organized as follows. Section
II discusses related work. The motivation for using network
coding is mentioned in Section III. Section IV presents the
combination of network coding and SVC. The design of
Chameleon is described in Section V. Performance evaluation
results are discussed in Section VI. We conclude the paper in
Section VII.

II. RELATED WORK

The work of Cui et al. [6] and Rejaieet al. [8] can be
considered as two of the first efforts in layered P2P streaming.
Cui et al. prove that the layer allocation problem is NP-
hard, and propose a greedy approach to assign layers to
senders. Later, Liuet al. [7] present another approach to the
problem. They formulate it as an optimization problem with
the constraints of available bandwidth capacity and layers, and
use an approximation algorithm, FABALAM, to simplify the
problem. Although FABALAM has been demonstrated to be
able to achieve better performance than the approach of Cui
et al., they both rely on static layer-to-sender mapping, and a
layer is provided by only one sender.

Rejaie et al. introduce PALS, a receiver-driven approach
for quality adaptive playback. In PALS, a layer is divided
into packets and provided by multiple senders. Therefore, it
better utilizes the available bandwidth capacity of senders.
In addition, PALS addresses bandwidth variations and peer
dynamics in a timely manner. The receiver peer periodically
sends an ordered list of packets to each of its senders, and
each sender delivers the requested packets to the receiver in
the given order. Recently, Magharei and Rejaie present an
extended version of PALS with extensive simulations in ns-2
[9]. However, although PALS is motivated for P2P streaming,
its performance is currently evaluated for the case of streaming
from multiple senders to one receiver. Its performance in P2P
scenarios has not yet been shown. This is the reason that
we can not compare Chameleon with PALS in this paper. In
another direction, Magharei and Rejaie introduce PRIME with
the goal of minimizing content and bandwidth bottlenecks in
mesh-based streaming by deriving proper peer connectivity
and an efficient pattern of delivery [13]. However, PRIME
uses MDC while Chameleon uses SVC.

Annapureddyet al. [11] show that network coding helps
to provide high quality Video-on-Demand (VoD) services.
Network coding is applied over small time-windows (e.g.,
a segment with a few seconds worth of video frames) of a
single-layer stream. The coding prevents the occurrence ofrare
blocks within a segment. In addition, it ensures that bandwidth
is not wasted in distributing the same block multiple times,i.e.,
it minimizes the risk of making incorrect upload decisions.

In single layer P2P streaming, the work of Wang and Li [5]
is considered as the current state-of-the-art. They show that
random network coding with a simple data delivery scheme
not only reduces bandwidth costs and initial buffering delays,
but also makes the system resilient to peer dynamics and

bandwidth variations during streaming sessions. Their work
is evaluated by experiments on an actual implementation, real
network traffic, and emulated peer upload capacities.

Zhaoet al. [14] propose LION, a layered overlay multicast
system. Our approach is similar to theirs in the way that they
also explore the combination of layered coding and network
coding. However, they focus on overlay construction while we
focus on a complete streaming protocol. In addition, LION
has a well-structured overlay and is aimed to support small-
scale application scenarios in quite stable environments,while
Chameleon is proposed for unstructured overlays and geared
towards the goal of architecting a live, adaptive, and scalable
P2P streaming system.

III. M OTIVATION FOR USING NETWORK CODING

In addition to conventional challenges in P2P streaming,
e.g.,peer selection and packet scheduling, layered P2P stream-
ing poses unique and challenging problems, of which two of
the most important issues arepeer coordinationand quality
adaptation.

With respect topeer coordination, the bandwidth and data
availability of each peer are constrained and varied, which
further limit the data availability (content bottleneck) and
bandwidth (bandwidth bottleneck) of downstream peers. Peer
coordination is critical to the system performance becauseit
controls the collaboration of sending peers to utilize available
bandwidth from each sender to maximize the delivered quality
at the receiving peer. Two important questions are:

⊲ Is a layer supplied by one or more than one sender?If a
layer is delivered by only one sender, coordination may
be simpler, but the residual bandwidth of each peer may
not be fully utilized. On the other hand, assigning partial
layers to senders requires a proper division of a layer
across multiple senders.

⊲ How do we map packets to senders appropriately?Given
an ordered list of required packets and potential senders,
the problem is to determine which packets are to be
delivered from each sender.

The purpose ofquality adaptationis to avoid playback skips
and to maximize the video quality when bandwidth variations
occur. Challenges in quality adaptation are:

⊲ How does a peer choose layers to be requested at a
point of time?The selection should be based not only
on playback deadlines, but also on streaming quality (the
number of layers) the peer aims to deliver.

⊲ How and when is quality adaptation invoked?

We believe that network coding can help to solve the above
problems with ease. With network coding, a peer only needs
to check if it has received a sufficient number of linearly inde-
pendent coded blocks, without being concerned with who has
been sending them. The probability of receiving “duplicate”
blocks is so low that multiple senders can serve blocks to the
same receiver without the need of any explicit coordination.
In addition, since coded blocks are equally useful to the
receiver, the responsibilities of a particular sender can be easily
transferred to other senders if it leaves the system. Even the
computational complexity of network coding is no longer a

concern: Wang and Li [15] have implemented a decoding
process using Gauss-Jordan elimination, such that it can be
performed while coded blocks are progressively received.
Shojaniaet al. [16] propose an implementation that efficiently
takes advantage of multiple CPU cores and SIMD instruction
sets in modern CPUs. In a nutshell, network coding can be
efficiently implemented, and it maximizes the collaboration
potential among peers.

However, combining network coding with SVC is not
straightforward. SVC prioritizes video data to provide different
quality levels by allowing the extraction of substreams. Mean-
while, network coding makes data packets equally importantto
ease the data delivery, and the original data is only recovered
when enough linearly independent blocks are received (theall-
or-nothingproperty). How do we combine network coding and
SVC? How much can network coding help? In the remainder
of the paper, we present the design ofChameleonto address
these challenges with a seamless combination of network
coding and SVC.

IV. T HE COMBINATION OF NETWORK CODING AND SVC

Since SVC was included in the H.264/AVC Standard Ver-
sion 8 in July 2007 [17], we are not aware of any existing
work in the P2P streaming literature that focuses on using
SVC as the layered codec of choice. In this section, we take
the first step by presenting a segmentation method to use
SVC, seamlessly combining with network coding at a fine
granularity. We start with a brief description of important
features in SVC. For more details about SVC, interested
readers are referred to [1], [17]–[19].
A. Background: An Overview of SVC

SVC supports three modes of scalability:temporal, spatial,
and quality scalability. In spatial scalability and temporal
scalability, subsets of the bit stream represent the source
content with a reduced picture size (spatial resolution) or
frame rate (temporal resolution). With quality scalability, the
substream provides the same spatial-temporal resolution as
the complete bit stream, but with a lower fidelity (Signal-
to-Noise Ratio). The scalability structure is characterized by
three syntax elements:D ID, T ID, andQ ID for spatial,
temporal, and quality scalability respectively.

1) SVC Structure:An SVC video is organized into Network
Abstraction Layer (NAL) units, which are packets that each
contains an integer number of bytes. NAL units are grouped
into logical entities. Alayer representation(LR) consists of
all NAL units representing an original picture and pertaining
to a combination ofD ID andQ ID. An access unit(AU)
consists of all LRs that represent an original picture. The
decoding of an AU results in exactly one decoded picture. A
group of pictures(GOP) is a group of successive pictures. The
GOP structure specified by picture types (I-, B-, P- pictures)
determines the temporal scalability of the stream. Acoded
video sequencerepresents an independently decodable part of
a NAL unit bit stream. It starts with an instantaneous decoding
refresh (IDR) AU, and following AUs can be decoded without
decoding any previous pictures of the bit stream. It ends before
the next IDR AU or at the end of the bit stream, whichever is
earlier. Figure 1 shows the structure.

LR 3 (D_ID = 1, Q_ID = 1)

LR 2 (D_ID = 1, Q_ID = 0)

LR 1 (D_ID = 0, Q_ID = 1)

LR 0 (D_ID = 0, Q_ID = 0)

(a)

group of pictures

T0 T0T1T2 T2T3 T3 T3 T3

(b)

IDR GOP1 GOP N

...

IDR GOP1

...

A coded video sequence

(c)

AU

1

AU

2

AU

3

AU

4

AU

5

AU

6

AU

7

AU

8

AU

9

...

0 4 3 5 2 7 6 8 1

Fig. 1. An example of the SVC structure. (a) An AU consisting offour LRs.
(b) A GOP consisting of eight pictures (AUs) and coded with hierarchical B-
pictures. The symbolsTk specify the temporal layers withk representing the
correspondingT ID. The numbers below specify the coding order. (c) A
coded video sequence.

2) Decoding Dependency:At any AU, an LR of a smaller
D ID may be used for decoding an LR with a greaterD ID;
and for a particularD ID, an LR with Q ID always uses
the LR with Q ID − 1. Finally, a givenT ID depends on
the smallerT ID.

3) BitStream Switching:SVC allows switching between
different scalable levels during streaming to provide adaptabil-
ity. However, switching operations can only occur at specific
points of a stream:
⊲ Switching between spatial layers can only occur at IDR

AUs.
⊲ Switching between quality layers within a spatial layer

can occur atany AU.
⊲ Switching between temporal layers within a spatial layer

can occur atany AU or only at temporal layer switching
points depending on encoding parameters.

B. Proposed Segmentation Method

To be transmitted across IP networks, an SVC stream needs
to be divided into segments. The segmentation method should
preserve the scalability of the stream so that (i) adaptation
can be operated on segments (adaptability), and (ii) the re-
generated stream is a valid stream (validity). In an SVC video
file, the video entities are arranged in the specific order: from
one GOP to another. Within a GOP, AUs are sorted on the
decoding order; and within an AU, LRs are sorted on (D ID,
Q ID). Figure 2 depicts this order.

Stream

Header

+

Paramet

er Sets

LR 0 LR1 LR 2 LR 3

 LR order in an access unit

IDR

AU1

AU

9

AU

5

AU

3

AU

2

AU

4

AU

7

AU

6

AU

8

GOP 1 GOP 2

...

0

Fig. 2. The store order of the entities in the video file

In P2P streaming, a peer does not receive a complete stream
to extract valid substreams for other peers; it, instead, receives

only pieces of video data to constitute a stream according to
its download capacity. Therefore, to maintain the adaptability
and validity, the video entities should be re-arranged, and
the segmentation method should be based on layer switching
enabled points to support particular scalability modes. We
segment an SVC stream based on the boundary of GOPs,
because switching between temporal and quality levels within
a GOP is independent from other GOPs, and spatial switching
is only allowed at IDR AUs (outside of any GOP).

In the following, we describe our proposed segmentation for
SVC with quality scalability, but it is clear that the methodcan
be applied to other scalability modes. An SVC stream is first
divided into segments, each of which consists of an integer
number of GOPs. Then, within each segment, NAL units are
grouped into packets based onQ ID from the lowest to the
highest value. Since each NAL unit header contains (D ID,
Q ID, T ID) of the scalable layer it belongs to, it is always
possible to recover the original order [19]. Figure 3 illustrates
the segmentation method.

AU 9

QL 0 QL 1 QL 2 QL 0 QL 1 QL 2... QL 0 QL 1 QL 2 QL 0 QL 1 QL 2...

one segment

GOP 2GOP 1

QL 0 QL 0 QL 0 QL 0

Packet 1 (QL = 0)

..

.

..

.

QL 1 QL 1 QL 1 QL 1

Packet 2 (QL = 1)

..

.

..

.

Packet 3 (QL = 2)

QL 2 QL 2 QL 2 QL 2..

.

..

.

AU 8 AU 9 AU 8

Fig. 3. An example of the segmentation method where the stream has three
quality levels and is divided into segments of two GOPs. The symbolsQL k
specifyQ ID = k.

During streaming, packets are exchanged among peers.
Packet 1 in each segment contains the base layer and is neces-
sary for every peer, while other packets can be received or not
depending on download capacity. Since each packet contains
all NAL units of one quality layer in the segment, streams that
are generated by dropping one or more packets (except the
base packet) are valid streams,i.e., the segmentation method
guarantees the adaptability and validity requirement.

C. SVC with Random Network Coding

Our approach inChameleonis to apply random network
coding to scalable layers, based on which scalability mode
the system aims to support. For example, if an SVC stream
with a certain number,Ns, of scalable layers is divided into
segments as previously proposed, each segment would now
contain Ns packets. Each packet is further divided intoN

blocks [b1, b2, ..., bN], all blocks of a packet have the same
number of bytesk (referred to as theblock sizeof that packet).
When a peer performs network coding for layerl, it randomly
chooses a set of coding coefficients[c1, c2, ..., cM] (M ≤ N)
in GF(28). It then randomly choosesM blocks of layerl —
[bl

1
, bl

2
, ..., bl

M] — out of all the blocks of the layer it has
received so far, and produces the coded blockx of k bytes:

x =
M∑

i=1

ci · b
l
i

With Gauss-Jordan elimination implemented in the decoding
process, a peer starts to progressively decode a packet, as soon

as it receives the first coded block of this packet. As a total
of N linearly independent coded blocksX = [x1, x2, ..., xN]
has been received, the original blocks can be immediately re-
covered as Gauss-Jordan elimination computesB = A−1XT ,
whereA is the matrix formed by coding coefficients ofX.
Figure 4 shows the combination of network coding and SVC
for the stream in Figure 3.

...

Packet 1 (QL = 0) Packet 2 (QL = 1) Packet 3 (QL = 2)

one segment

n blocks m blocks k blocks

NC 1 NC 2 NC 3

Fig. 4. An example of the combination of network coding and SVC.Packet
1, 2, and 3 are divided inton, m, andk blocks, respectively. Network coding
with different number of unknowns (n, m, andk) is used for different quality
levels.

V. CHAMELEON: ADAPTIVE P2P STREAMING

WITH NETWORK CODING

In this section, we present the design ofChameleon, our
new adaptive P2P streaming protocol that seamlessly integrates
SVC with network coding. We consider a typical P2P stream-
ing session with a number of dedicated streaming servers, and
a large number of peers. Peers participate in and depart from
a session in unpredictable ways, and they are heterogeneous
with different bandwidth capacities.

A. System Overview

The primary design goal of Chameleon is to effectively
utilize available bandwidth capacity of each peer to maximize
delivered quality under bandwidth variations. Figure 5 shows
the internal architecture of Chameleon with key components
and their relations. When a peer joins the system or when it
needs to update the neighbor list for better quality, it creates
neighboring relationships with other peers. A list of available
peers can be provided by a rendezvous peer or by exchanging
membership information,e.g., using SCAMP [20]. Theneigh-
bor selectioncomponent chooses a number of peers to be
neighbors. Information about each neighbor,e.g., IP address,
average experienced quality, current number of neighbors,etc.
is stored in the neighbor list. During streaming, a peer needs
to decide how many quality levels it aims to receive according
to its current bandwidth capacity. Thequality adaptation
component will make decisions on keeping, increasing, or
decreasing the current quality level, based on the status ofthe
playback buffer and the available download capacity. When
adaptation occurs, thesender selectioncomponent will select
potential senders from the neighbor list, based on the decision
from the adaptation process. Thepeer coordinationcomponent
will send layer requests to the selected senders. The senders
are expected to collaboratively send coded blocks of the
requested layer to the receiver. When the playback deadline
is reached, one segment in the playback buffer is sent to the
player.

In addition to the above components,buffer mapsare used
to exchange necessary information among peers. In traditional

Peer

Peer

Peer

Peer

Chameleon

Peer

Coordination

Sender

Selection

Neighbor Selection

Quality

Adaptation

Internet

Player

N
e
ig
h
b
o
r
L
is
t

P
la
y
b
a
c
k
 b
u
f

Fig. 5. Architecture of Chameleon with key components.

systems, only one bit is used to represent the availability
information of video data. With Chameleon, we use 2 bits
to represent the following four meanings: (1) the peer has
received enough linearly independent blocks to decode the
packet; (2) the peer has not received enough linearly inde-
pendent blocks; (3) the peer has not received enough linearly
independent blocks to decode but enough to serve other peers;
and (4) the peer does not need to receive the packet (quality
adaptation). For a layer, aready-to-servepeer is the peer that
has receivedα ·N coded blocks from other peers (0 < α ≤ 1)
for that layer, in which the tunable parameterα is referred
to as aggressiveness[5]. A peer sends out its buffer map
to its neighbors when the status of the buffer map changes.
Using one more bit causes slightly more overhead. However,
as pointed out forR2 [5], this overhead is still acceptable and
less than traditional protocols, since much larger segments are
used with network coding.

B. Design Space of Key Components

We now turn our attention to the details of each key
component. Different design options for each component are
presented and experimentally compared. For the simulation
setting used in this section, please refer to Section VI.

1) Class-based vs. Quality-based Neighbor Selection:It is
likely that peers with similar capacity should be connectedto
each other to maximize collaboration potential because they
are supposed to receive the same quality. As in some previous
studies, we first try a class-based selection method. Peers can
be classified into classes based on the highest quality levelthey
can achieve. We say that a peer belongs to classC when its
best possible quality level according to its download capacity
is C. A peer connects to other peers in the following priority:
peers of the same class, peers of higher classes, and peers
of lower classes. If there are more peers than needed, choose
randomly. However, as we will see, class-based selection does
not work very well. In Chameleon, we propose quality-based
selection as follows. Each peer calculates the average quality
level it has perceived so far. When a peer selects a neighbor,
it will choose the candidate whose average quality level is
closest to its class. If there are more than one peer, choose
one randomly.

To experimentally evaluate the neighbor selection methods,
consider a generic method as follows. We denoteCi and
AQi as the class and the average quality level of peerPi,
respectively. When a peerPk chooses a new neighbor from

its candidate listLk, it will choose peerPq that satisfies the
following condition:

|Ck −AQq| − min
j∈Lk

(|Ck −AQj |) ≤ τ

If more than one peer satisfies the condition, class-based
selection is applied. The above condition is designed to choose
peers whose average quality level is closest to the peer class
of Pk within the rangeτ . If τ is equal to0, we have pure
quality-based selection. Ifτ is equal to the highest quality
level of the stream, we have pure class-based selection because
all peers inLk satisfy the condition. Otherwise, we have a
hybrid approach. By experimenting with different values ofτ ,
we explore how different neighbor selection methods affect
Chameleon. Figure 6 plots the skip rates and the average
quality satisfaction withτ ranging from 0 to 2.6 (the skip
rates and the average quality satisfaction withτ ≥ 2.6 are the
same). Note that the stream has four quality layers.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.52.6
0

1

30

40

50

60

70

80

90

100

τ

P
er

ce
nt

 (
%

)

Average Skip Rate
Average Quality Satisfaction

Class−based
Selection

Quality−based
Selection

Fig. 6. The effect of the neighbor selection methods on Chameleon.

Figure 6 shows two important insights regarding the se-
lection methods.First, quality-based selection is better than
class-based selection, and the hybrid approach is the best.
The reason is that the quality-based method reflects the peer
situation better than the class-based method. A peer who
has average qualityQ likely belongs to class⌈Q⌉ or above,
while a peer who belongs to classC may not perceive an
average quality level up toC, due to the content or bandwidth
bottleneck of its neighbors. However, the average quality
level only reflects the quality level a peer has experienced
so far, and it may be very low compared to the peer class.
Consequently, a strict quality-based selection with very small
value ofτ may “trap” a high capacity peer within an area of
low capacity peers. By using a largerτ , high capacity peers
that are currently experiencing low quality have opportunities
to connect to other high capacity peers, thanks to the class-
based selection. Therefore, the hybrid approach offers better
performance.Second, there is a sweet spot for the value ofτ

that should be set appropriately to achieve best performance,
e.g., τ = 0.7, 0.8, or 0.9 in Figure 6.

Finally, in an unstructured overlay, the topology is formed
by the neighbor selection at each peer. There are no global
mechanisms to create and maintain the overlay structure. An
interesting question here is:what does the topology look like

under the neighbor selection method?To answer the question,
for every peer of classC, we calculate the percentage of its
neighbors of classCk, k = 1, 2, 3, 4. In this experiment, the
network size is 700, every peer has an average of 50 neighbors.
The hybrid neighbor selection withτ = 0.7 is used. Table I
shows the neighboring relationships between peer classes in
Chameleon. The value at element(i, j), T (i, j), is the average
percentage of peers of classj in the neighbor lists of peers of
classi. The value in the parentheses at(i, i) is the percentage
of peers of classi in the network. As shown in Table I,
the neighbor selection method creates clusters of peers that
belong to the same class:T (i, i) ≥ T (i, j),∀i, j. This can be
considered as anemergent propertyof Chameleon, because
each peer selects its neighbors with partial knowledge about
the network.

TABLE I
PEER CLUSTERING INCHAMELEON.

Peer class 1 2 3 4
1 74(21) 23 2.5 0.5
2 24 31(20) 28 17
3 2 26 48(24) 24
4 0.5 10 17 72.5(35)

2) Quality Adaptation:In Chameleon, adaptation is mainly
based on the current status of the playback buffer. In our
first design, we divide the playback buffer into two regions
by a thresholddrop threshold. The adaptation process is
invoked when the status of the buffer changes,i.e., when the
downloading of one segment is finished, or when a segment
is played. A peer updates the current quality level, which
is the target level for the next segment as follows. If the
number of playable segments in the playback buffer (the
buffer level) is belowdrop threshold, the current quality
level is decreased by one. Otherwise it is increased by one, but
limited by the highest quality level for that peer’s class. The
intuition of increasing the quality level here is that we expect
a peer will achieve its best possible quality as fast as possible.
However, we have experienced fluctuations of the perceived
quality because the number of segments in the buffer may
vary around the threshold. To stabilize the perceived quality,
we use another threshold,add threshold. If the number of
segments is greater thanadd threshold, the current quality
level is increased by one. Otherwise, it is unchanged. The
algorithm of the adaptation process is shown in Algorithm 1,
and the playback buffer with the two thresholds is illustrated
in Figure 7.

current

playback segment

add_thresholddrop_threshold

current

receive segment

buffer level

0 δ

Fig. 7. The playback buffer in Chameleon: The dark shade indicates the
receiving status of each segment.

To understand the effect of the two thresholds on
Chameleon, we carry out two experiments with different
values ofdrop threshold andadd threshold. In both cases,

Algorithm 1 Quality Adaptation
CL: current quality level.
plb seg: the segment ID of the current playback segment.
rec seg: the segment ID of the segment being downloaded.
if (rec seg − plb seg < drop threshold) then

if (received(QL0, rec seg)) then
CL ← CL − 1;
rec seg ← rec seg + 1;

end if
else if (rec seg − plb seg > add threshold) then

if (received(CL, rec seg) ∧ CL < QL MAX) then
CL ← CL + 1;
rec seg ← rec seg + 1;

end if
end if

the buffer size is set to20. First, we varydrop threshold from
2 to 20, and add threshold is set to (drop threshold+6).
Figure 8(a) shows the performance of Chameleon with dif-
ferent values ofdrop threshold. We observe a tradeoff
between skip rates and quality satisfaction when increasing
drop threshold: both skip rates and quality satisfaction are
reduced. This can be explained as follows. On one hand, a
peer may try to maintain/increase the current video qualityby
using a lowdrop threshold. However, the risk is that the skip
rate may be increased because the playback buffer is exhausted
rapidly when the buffer level reaches the lowdrop threshold.
On the other hand, if the peer is more “conservative” by using
a higherdrop threshold, it is willing to drop the current layer
and moves to the next segment to minimize the skip rate. As
a result, the experienced quality may be lower than expected.
When drop threshold = 20 (the buffer size), all peers are
very conservative, and they receive only the base layer.

2 4 6 8 10 12 14 16 18 20
0

0.05
0.10
0.15
0.20
0.25

45
50
55
60
65
70
75
80
85
90
95

100

drop_threshold

P
er

ce
nt

 (
%

)

Average Skip Rate
Average Quality Satisfaction

2 3 4 5 6 7 8 9 10 11 12
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35

75
80
85
90
95

100

δ

P
er

ce
nt

 (
%

)

Average Skip Rate
Average Quality Satisfaction

(a) The effect ofdrop threshold (b) The effect ofadd threshold

Fig. 8. The effect of the quality adaptation parameters on Chameleon.

Second, we setdrop threshold = 6, and add threshold
=drop threshold+δ, δ = 2, ..., 12. In Figure 8(b), we also
observe a tradeoff between the skip rate and the quality
satisfaction whenδ is greater than8. Intuitively, if the current
buffer level is between the two thresholds, the peer keeps
its current quality level. In other words, the largerδ is, the
more conservative the peer is. Consequently, the skip rate and
quality satisfaction are decreased with a largeδ. However,
the relation between the two performance metrics is not very
clear in the range from2 to 8. The performance fluctuation
can be explained as follows. Since high capacity peers often
fill up the buffer faster than low capacity peers, it is likely

that δ should be smaller for high capacity peers so that they
can quickly achieve their best possible quality. On the other
hand, low capacity peers should use largerδ to keep the skip
rate low. However, we currently use the sameδ for all peers.
The performance could be improved if different values ofδ

are used appropriately for different peer classes. We leavethis
feature to our future work.

To observe the quality adaptation process, we vary the
download capacity of a typical peerP (not connected to the
server) and examine its playback graph, which shows the
quality level of all video segments that have been played.
The download capacity can be varied slightly (±10% of the
streaming rate of the current quality level) or extremely (to
another quality level). We randomly generateC points of
time when the download capacity is varied extremely within
the period of 10 minutes in the middle of the streaming
session. The playback graph of peerP for C = 15 is shown
in Figure 9, which demonstrates that Chameleon adapts to
the bandwidth variations well. Minor variations are covered
by buffering, while major variations are adapted accordingly.
There is only one playback skip, which occurred when the
download capacity drops below the streaming rate of the base
layer (point 1). The figure also shows that adaptation takes
effect few seconds after a significant variation occurs (point
2), i.e., the perceived quality graph is a little shifted to the
right of the available download capacity graph at the changing
points. This is also because of the buffering effect. When the
bandwidth capacity changes, there may be segments in the
buffer which have been received before; and the bandwidth
variation only takes effect when the buffer level reaches the
thresholds.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600

1

2

3

4

Time (second)

Q
ua

lit
y

Le
ve

l

Available Download Capacity
Perceived Quality

(2)

(1)

Fig. 9. An example of the playback graph of a typical peer.

3) Receiver-Driven Peer Coordination:Chameleon follows
a receiver-driven approach to coordinate peers. A peer actively
sends requests to senders. However, the requests are sent at
the layer level (not at the block/packet level as in traditional
approaches). In addition, all senders receive the same requests,
and serve the receiver collaboratively. The receiver does not
need to assign packets to each sender separately. The coordi-
nation mechanism at the receiver side and the sender side is
as follows:

Each receiver:
⊲ sends requests for the lowest unavailable layer to all

senders.
⊲ progressively decodes arrived blocks.
⊲ when having received enough linearly independent

blocks, sends a stop notification (via buffer maps) to the
senders, and finishes the decoding process.

Algorithm 2 Receiver-side
PS: list of potential senders.
N: number of NC blocks necessary for decoding.
NumberOfReceivedBlocks ← 0;
L ← getLowestUnavailableLayerID();
newPS ← chooseSenders(PS, L);
sendRequest(newPS, L);
while (NumberOfReceivedBlocks ≤ N − 1) do

receive(B);
decode(B);
if (linearlyIndependent()) then

NumberOfReceivedBlocks++;
end if

end while
sendStopNotification(newPS);

Each sender:

⊲ on receiving a request, performs network coding on
available blocks of the requested layer, and sends newly
coded blocks to the requesting peers automatically and
continuously as soon as possible.

⊲ on receiving a stop notification, stops sending.

Algorithm 3 Sender-side
R: buffer map message.
RL: requested layer (fromR).
while (active) do

receive(R);
if (isStopNotification(R)) then

break;
else

encodedBlock ← encodeAvailableBlocks(RL);
sendToReceiver(encodedBlock);

end if
end while

4) Random-based vs. Heuristic-based Sender Selection:
In the above peer coordination mechanism, a peer chooses
senders from its neighbors to send layer requests. The first
criterion for choosing a sender is that if it can provide
coded blocks for the requested layer. This information is
available in the buffer maps. If the number of potential peers
is greater than the number of connections the peer can create,
it needs to choose a subset. The simplest way is to choose
a subset randomly. However, choosing senders randomly may
not optimally utilize available bandwidth capacity and layers
of the senders. For example, the download capacity of a peer
is 150 Kbps. Two potential sendersS1 andS2 who are able
to create only one more connection have the upload capacity
of 150 Kbps and200 Kbps, respectively. Therandom-based
method may chooseS2 and render50 Kbps unused, while
choosingS1 is obviously a better utilization of bandwidth. A
similar rationale is also applied to choose senders based on
available layers. Intuitively, we use the following heuristics
when choosing senders for a peerP : (H1) prefer potential
senders whose available upload capacity is closest to the

currently available download capacity ofP , and (H2) prefer
potential senders who have the smallest number of layers.

28 32 36 40 44 48 52 56 60 64 68

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Average Number of Neighbors

P
er

ce
nt

 (
%

)

Random
Heuristic_BW_QL
Heuristic_QL_BW

28 32 36 40 44 48 52 56 60 64 68

87
88
89
90
91
92
93
94
95
96
97
98
99

100

Average Number of Neighbors
P

er
ce

nt
 (

%
)

Random
Heuristic_BW_QL
Heuristic_QL_BW

(a) Average playback skip rate (b) Average quality satisfaction

Fig. 10. The performance of Chameleon with different sender selection
methods.

To investigate benefits of the heuristics, we compare the
random-based method (Random) with two heuristic-based
methods (Heuristic BW QL and Heuristic QL BW). Both
Heuristic BW QL and Heuristic QL BW use the afore-
mentioned heuristic rules but in different order.Heuris-
tic BW QL uses the priority order H1, H2, and random;
while Heuristic QL BW uses H2, H1 and random. We plot
the playback skip rate and the average quality satisfaction
of the selection methods in Figure 10. The average number
of neighbors (ν) each peer maintains is varied from28 to
68, and the network size is set to400. It is reasonable that
the performance gets better whenν increases because it is
more likely that a peer can choose good senders in a big
neighbor list than in a small one. The performance is stable
when ν is greater than a specific value,e.g., 48. However,
it is quite surprising that Chameleon achieves impressive
performance with the random-based method. There are no
significant differences between the three methods, especially
when ν varies from48 to 64. Heuristic BW QL seems to
be the best one with respect to both the skip rate and quality
satisfaction.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of Chameleon
by comparing it with FABALAM [7], used as a bench-
mark. We implement Chameleon and FABALAM in our own
discrete-event flow-based simulator developed from scratch.
To make the simulator more realistic, we propose and imple-
ment an extended version of the max-min fair rate allocation
described in [21]. The original version models the network as
an undirected graph and only works with generic links without
distinguishing uplinks and downlinks. Our extended version
calculates the allocated rates for every uplink and downlink
of a peer. The latest JSVM Software, Version 9.17, is used
to generate a real two-hour video sequence with four quality
levels. The average bit rate of the (sub-)stream with quality
level up to 1, 2, 3, and 4 is 620, 825, 945, and 1065 Kbps
respectively.

The main configuration parameters related to the quality
scalability used in this paper are presented in Table II. The
download and upload capacity of each peer are determined
based on the stream rate at different quality levels of the test
sequence. This setting is to reveal the benefit of SVC: different

TABLE II
MAIN CONFIGURATION PARAMETERS USED IN THE SIMULATION.

Configuration File Parameter Value

main.cfg
BaseLayerMode 2

MGSControl 2
NumLayers 2

layer0.cfg
MGSVectorMode 0

QP 34
MeQP0-MeQP5 32

layer1.cfg
MGSVectorMode 1

MGSVector0 4
MGSVector1 4
MGSVector2 8

QP 30
MeQP0-MeQP5 30

bandwidth capacities perceive different quality levels. With the
test sequence above, we use four peer classes (corresponding
to the four quality levels) in which the download and upload
capacity of each peer of classQ are set to 8-12% and 6-10%
higher than the stream rate at quality levelQ, respectively.
Each peer is randomly assigned to a peer class. The server
upload capacity is set so that it can serve 8-10% of the
total number of peers, and we use only one server in our
experiments. There are no super peers in the system. We use
the following metrics to evaluate Chameleon:

⊲ Playback skip rate: the percentage of segments skipped
during playback.

⊲ Average quality satisfaction: the average quality satisfac-
tion of the system. The quality satisfaction of a peer is
the ratio of the average quality level of played segments
to its expected quality level (corresponding to its class).

A. Scalability

We first compare Chameleon with FABALAM on the sys-
tem scalability and performance in stable environments by
varying the number of peers from 70 to 700. Peers join the
network randomly, and stay connected until the session ends.
Figure 11(a) shows that Chameleon achieves very low skip
rates: 70-80% lower compared to the benchmark and less than
or about 0.5% for various network sizes. Regarding quality
satisfaction, Chameleon offers very good and stable quality
satisfaction when the network size increases. In Figure 11(b),
the quality satisfaction of Chameleon is always greater than
90% which means that peers can enjoy 90% of the best
possible quality according to their download capacity. The
system scalability is demonstrated by the stable performance
when increasing the network size.

70 140 210 280 350 420 490 560 630 700
0

0.5

1

1.5

2

2.5

3

Network Size (peers)

P
er

ce
nt

 (
%

)

Chameleon FABALAM

70 140 210 280 350 420 490 560 630 700
0

10

30

50

70

90

100

Network Size (peers)

P
er

ce
nt

 (
%

)

Chameleon
FABALAM

(a) Average playback skip rate (b) Average quality satisfaction

Fig. 11. The performance of Chameleon and FABALAM in differentnetwork
sizes.

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5
x 10

−4

Time Duration (seconds)

P
D

F
 V

al
ue

Weibull(2000,2)
Weibull(4000,2)
Weibull(6000,2)

2000 4000 6000
0

2

4

6

8

10

12

14

k

P
er

ce
nt

 (
%

)

Chameleon FABALAM

1.53
0.92

9.03
8.20

0.76

14.30

2000 4000 6000
0

10

30

50

70

90

100

k

P
er

ce
nt

 (
%

)

Chameleon FABALAM

91.12

73.10

93.99

79.65

95.74

83.02

(a) Weibull distribution for peer lifetime (b) Average playback skip rate (c) Average quality satisfaction

Fig. 12. The effects of peer dynamics on Chameleon.

B. Coping with Peer Dynamics

To evaluate the performance of the protocols under peer
dynamics, we use the Weibull distribution — Weibull(k, 2)
— to randomly generate the lifetime of peers, as shown in
[22] that the peer session lengths are best captured by the
Weibull distribution. With a two-hour streaming session, we
use three different values ofk = 2000, 4000, and 6000 to
generate different mean lifetimes. The lower the value ofk

is, the more volatile the session becomes. The plot of each
distribution is shown in Figure 12 for clarity, together with
the skip rate and quality satisfaction of the protocols. In this
experiment, the network size is 350.

Figure 12 shows that Chameleon can adapt to peer dynamics
well to achieve stable performance, whereas the performance
of FABALAM is much impacted by peer dynamics. The
reason is that FABALAM suffers the “rarest piece” prob-
lem. Without network coding, when a sending peer leaves,
the receiver needs to receive exactly the blocks that were
assigned to that sender. However, with network coding, the
receiver can receive any blocks as long as they are linearly
independent with those that have been received so far. In other
words, thanks to network coding, Chameleon is robust to peer
dynamics. This is demonstrated in the casek = 2000 (highly
dynamic), the skip rate of Chameleon is only 1.53%, almost
ten times lower than that of FABALAM; while the quality
satisfaction is still high, up to 91.12%.

VII. C ONCLUSION

In this paper, we present the design and the performance
evaluation of Chameleon, our new adaptive P2P streaming
protocol that combines the advantages of network coding and
SVC. The objective of this paper is to design and preliminarily
test a practical adaptive P2P streaming protocol, by taking
advantage of network coding and SVC to mitigate the inher-
ent challenges in unstructured layered P2P streaming. With
Chameleon, we demonstrate that the combination of network
coding and SVC is feasible and beneficial. Network coding
helps to simplify the streaming protocol and improve the
system performance. Detailed studies in the design space of
Chameleon also bring interesting and useful results in building
an adaptive P2P streaming system in practice.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard,”IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, Sep. 2007.

[2] M. Wien, H. Schwarz, and T. Oelbaum, “Performance Analysisof SVC,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 17,
no. 9, pp. 1194–1203, Sep. 2007.

[3] T. Oelbaum, H. Schwarz, M. Wien, and T. Wiegand, “Subjective
Performance Evaluation of the SVC Extension of H.264/AVC,” in Proc.
of 15th IEEE International Conference on Image Processing (ICIP), Oct.
2008, pp. 2772–2775.

[4] X. Zhang, J. Liu, B. Li, and T.-S. Yum, “CoolStreaming/DONet: a Data-
Driven Overlay Network for Peer-to-Peer Live Media Streaming,” in
Proc. of IEEE INFOCOM, vol. 3, March 2005, pp. 2102–2111.

[5] M. Wang and B. Li, “R2: Random Push with Random Network Coding
in Live Peer-to-Peer Streaming,”IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, pp. 1655–1666, Dec. 2007.

[6] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming,” in Proc. of
NOSSDAV, Jun. 2003, pp. 162–171.

[7] Y. Liu, W. Dou, and Z. Liu, “Layer Allocation Algorithms inLayered
Peer-to-Peer Streaming,” inProc. of IFIP international conference on
network and parallel computing (NPC), Oct. 2004, pp. 167–174.

[8] R. Rejaie and A. Ortega, “PALS: Peer-to-Peer Adaptive Layered Stream-
ing,” in Proc. of NOSSDAV, Monterey, CA, USA, jun 2003, pp. 153–161.

[9] N. Magharei and R. Rejaie, “Adaptive Receiver-Driven Streaming from
Multiple Senders,”Multimedia Systems, vol. 11, no. 6, pp. 550–567,
Jun. 2006.

[10] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE
Trans. Info. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[11] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. R.
Rodriguez, “Is High-Quality VoD Feasible using P2P Swarming?” in
Proc. of the 16th international Conference on World Wide Web(WWW),
Aug. 2007, pp. 903–912.

[12] ITU-T and I. JTC1. (2008) Jsvm software version jsvm 9.17.
[Online]. Available: http://ip.hhi.de/imagecomG1/savce/downloads/
SVC-Reference-Software.htm

[13] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-Based Streaming,” inProc. of IEEE INFOCOM, May 2007, pp.
1415–1423.

[14] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang, “LION:Layered
Overlay Multicast With Network Coding,”IEEE Trans. on Multimedia,
vol. 8, no. 5, pp. 1021–1032, Oct. 2006.

[15] M. Wang and B. Li, “Lava: A Reality Check of Network Coding in
Peer-to-Peer Live Streaming,” inProc. of IEEE INFOCOM, May 2007,
pp. 1082–1090.

[16] H. Shojania and B. Li, “Parallelized Progressive Network Coding
With Hardware Acceleration,” inProc. of Fifteenth IEEE International
Workshop on Quality of Service, June 2007, pp. 47–55.

[17] I.-T. R. H.264, I.-T. ISO/IEC 14496-10 (MPEG-4 AVC), and V. .
ISO/IEC JTC. (2007, July) Advanced Video Coding for GenericAu-
diovisual Services.

[18] S. Wenger, Y.-K. Wang, and T. Schierl, “Transport and Signaling of
SVC in IP Networks,”IEEE Trans. on Circuits and Systems for Video
Technology, vol. 17, no. 9, pp. 1164–1173, Sep. 2007.

[19] Y. Wang, M. Hannuksela, S. Pateux, A. Eleftheriadis, and S. Wenger,
“System and Transport Interface of SVC,”IEEE Trans. on Circuits and
Systems for Video Technology, vol. 17, no. 9, pp. 1149–1163, Sep. 2007.

[20] A. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Peer-to-peer member-
ship management for gossip-based protocols,”IEEE Trans. on Comput-
ers, vol. 52, no. 2, pp. 139–149, Feb. 2003.

[21] F. L. Piccolo, G. Bianchi, and S. Cassella, “QRP03-4: Efficient Simula-
tion of Bandwidth Allocation Dynamics in P2P Networks,” inProc. of
Global Telecommunications Conference (GLOBECOM), Dec. 2006, pp.
1–6.

[22] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” inProc. of the 6th ACM SIGCOMM conference on Internet
measurement (IMC). New York, NY, USA: ACM, 2006, pp. 189–202.

