
Quality- and Context-aware Neighbor Selection for
Layered Peer-to-Peer Streaming

Anh Tuan Nguyen†, Baochun Li††, and Frank Eliassen†
† Department of Informatics, University of Oslo, Oslo, Norway

{anhtn,frank}@ifi.uio.no
†† Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

bli@eecg.toronto.edu

Abstract—Layered streaming is being considered as the most
promising approach to adapt to bandwidth variations and hetero-
geneous end users in streaming applications. The goal of a layered
streaming protocol is not only to optimize the average playback
skip rate as in single-layer streaming, but also to maximize
possible quality level (quality satisfaction) based on the available
bandwidth capacity at the end user. In unstructured layered peer-
to-peer streaming, however, achieving high quality satisfaction
is challenging due to content and bandwidth bottlenecks. With
experiments, in this paper, we demonstrate the importance and
identify unique challenges of neighbor selection to the system
performance in terms of the average skip rate and quality
satisfaction. Then, we propose a new neighbor selection technique
that can offer good performance while keeping the scalability of
the mesh overlay under network fluctuations. The core of the
technique is apreemption rule that allows a higher capacity peer
to replace a lower capacity peer to be a neighbor of another
peer with a certain probability. This preemption rule gears high
capacity peers togood locations in the overlay to maximize the
use of their bandwidth capacity and available layers. Simulation
results demonstrate the efficiency of the method.

I. I NTRODUCTION

Layered streaming has been an attractive research topic
for years because it can adapt to bandwidth variations and
heterogeneous end users. The adaptability is very much re-
quired when video streams are transferred across best-effort IP
networks. Compared to traditional streaming systems, layered
streaming enables high capacity users to receive high quality
video, while low capacity peers still enjoy an acceptable
quality level. In addition, when bandwidth drops, instead of
suffering playback skips, users are able to perceive smooth
playback with reduced quality. With the reality of peer-to-peer
(P2P) streaming, the use of layered coding in P2P streaming is
beneficial to provide adaptive streaming to a large number of
users with low cost servers. However, layered P2P streaming
also poses unique challenges, of which one of the most difficult
problems is the overlay construction that needs to be designed
carefully to mitigate content and bandwidth bottlenecks.

P2P overlays can be structured or unstructured (mesh-
based). Structured overlays ease the data delivery. However,
since they are highly affected by peer dynamics, an additional
protocol is usually run to restore/reshape the overlay structure.
On the other hand, unstructured overlays make the system
more robust to network fluctuations without the need of a
global mechanism to maintain the overlay. Therefore, unstruc-
tured overlays are more suitable for P2P streaming in dynamic
environments, e.g. the Internet [1].

In an unstructured P2P overlay, connectivity between peers
is created by the neighbor selection method run at each peer.
Such neighbor selection forms a partial view of the system
from which a subset of peers is chosen to exchange video
data. Therefore, it is the neighbor selection that determines
the perceived quality at each peer.

Owing to its important role, there have been many studies
on neighbor selection in single-layer P2P streaming. However,
they are insufficient when applied to layered P2P streaming
because of the following reason. In single-layer P2P streaming,
peers receive the same video stream. Meanwhile, in layered
P2P streaming, the video stream is encoded into quality layers,
and peers aim to receive the maximum number of layers ac-
cording to their available bandwidth capacity. Therefore,while
the average playback skip rate is the main performance metric
in single-layer P2P streaming, the ratio of the experienced
quality level and the expected quality level determined by
the bandwidth capacity, calledquality satisfaction, is also an
important metric in layered P2P streaming. Some early studies
in layered unstructured P2P streaming focus on peer coordina-
tion to achieve high quality satisfaction by determining which
peers to communicate for data exchange, but the neighbor
selection has not received much attention. We believe that
quality- and context-awareneighbor selection will boost the
layered streaming protocol.

In this paper, with experiments on our new adaptive stream-
ing protocol, namedChameleon[2], we find out factors that
impact the quality satisfaction of each peer. In particular,
peers are classified into classes based on their bandwidth
capacity in which peers of classCi (class identifier) have
higher bandwidth capacity than peers of classCj , if i > j. The
quality level peers in a certain classC perceive is impacted
by (1) the join order of peers of different peer classes, and
(2) the percentage in population of classC in the system.
We then propose a new neighbor selection technique with
a sole objective of providing peers high quality satisfaction
regardless of their join time and the population of their class
in the system. The core of the technique is apreemption
rule that allows a higher capacity peer to replace a lower
capacity peer to be a neighbor of another peer with a certain
probability. This preemption rule gears high capacity peers to
good locations in the overlay to maximize the use of their
bandwidth capacity and available layers. For example, high
capacity peers stay closer to the server than low capacity
peers, and high capacity peers have more privilege to be
neighbors of other high capacity peers than low capacity peers.



Simulation results demonstrate that our simple but effective
approach is able to achieve high quality satisfaction for each
peer regardless of the two aforementioned factors.

The rest of this paper is organized as follows. Section II
discusses related work. Section III identifies the problems
of neighbor selection with different peer join patterns and
percentages of peer classes in the peer population. The pro-
posed neighbor selection method is described in section IV.
Simulation results are discussed in Section V. Finally, Section
VI concludes the paper.

II. RELATED WORK

There has been a substantial amount of research attention
on overlay construction in single-layer P2P streaming. Some
studies focus on structured overlays, e.g., tree-based overlays
[3]–[5], while others spend efforts on unstructured overlays
[6]–[8]. Magharei et. al. [1] and Seibert [9]et. al. present
comparisons of P2P streaming approaches, in which it is
demonstrated that mesh-based approaches consistently exhibit
a superior performance over tree-based approaches in dynamic
environments, while, in stable environments, tree-based sys-
tems are better in terms of delivery time. To take advantage
of both approaches, efforts have been spent on hybrid overlays,
such as [10].

In layered P2P streaming, [11]–[13] present multiple-tree
based systems using multiple description coding to provide
differentiated service. The general idea is that each video
description is delivered in one tree, and peers can receive more
than one description by being a node in more than one tree.
However, early work in unstructured layered P2P streaming
focuses on peer coordination, rather than overlay construction,
to maximize quality level each peer perceives [14], [15].

More related to our work, Zhaoet al. propose LION
[16], a layered overlay multicast system. LION progressively
organizes peers into layered meshes. Within each mesh, the
delivery of one quality layer is carried out with using network
coding. Each peer can subscribe to a proper number of meshes
to maximize its throughput by fully utilizing its available
bandwidth. Our approach is similar to theirs in the way that
we also explore mesh-based overlays and network coding in
layered streaming, but we use only one mesh for the delivery
of all layers. In addition, although each video layer is delivered
in a mesh which is unstructured, the whole overlay structureof
LION is quite well-organized and maintained by a distributed
heuristic algorithm, derived from a complicated optimization
problem in mathematical programming. Therefore, LION is
aimed to support small-scale application scenarios in stable
environments. On the other hand, our method is inherent
distributed and is geared towards the goal of building up an
adaptive and scalable P2P streaming system on a dynamic
overlay. The simplicity and efficiency are two most important
criteria in our design.

Another related work is OCals proposed by Xiaoet. al.[17].
Ocals constructs the overlay in two stages. The first stage is
to probe existing nodes to find a certain number of logical
partners, which are interested in the same set of layers. In
the second stage, it will select neighbors for each layer based
on RTT (Round Trip Time). Similar to OCals, we focus on

neighbor selection and agree that peers with similar interests
in terms of the number of quality layers should connect to each
other. However, there are two main differences between our
work and OCals. Firstly, in our approach, a peeri chooses
neighbors based on the current quality level candidates are
perceiving, not based on logical partners as in Ocals, whichis
similar to class-based selection mentioned in [2] when logical
partners are classified into the same class. We have shown
in [2] that quality-based selection is better than class-based
selection in terms of both important performance metrics, the
average playback skip rate and quality satisfaction. Secondly,
we choose a neighborj with a certain probability, while
Ocals makes a selection based on comparisons with exact
values (medium and minimum RTTs). As widely used in other
studies, e.g., [18], [19], we believe that adding some degree of
randomness (through probability) to neighbor selection creates
a more robust overlay with respect to network fluctuations.

III. PROBLEM IDENTIFICATION

We consider a typical P2P streaming session with a number
of dedicated streaming servers, and a large number of peers.
Peers participate in and depart from a session in unpredictable
ways, and they are heterogeneous with different bandwidth
capacities. Peers can be classified into classes based on their
bandwidth capacity. A layered coding technique, e.g. SVC
[20], is used to encode raw video data into quality layers.
Peers are organized in an unstructured overlay, i.e., thereare
no global mechanisms to build and maintain the overlay. We
assume that every peer is willing to contribute its bandwidth
to upload data to other peers, i.e., no selfish or fraud peers in
the system.

Although we focus on neighbor selection, we need a com-
plete streaming protocol to evaluate the proposed method. We
use Chameleon, our adaptive streaming protocol, which has
been shown to be able to achieve good performance in terms
of the average playback skip rate and quality satisfaction [2].
We also use the quality-based neighbor selection in Chameleon
as a baseline method in this study, which is summarized as
follows. When a peer joins the system, or when it needs to
update the neighbor list for better quality, it creates neigh-
borships with other peers. A list of available peers can be
provided by a rendezvous peer or by exchanging membership
information, e.g. using SCAMP [21]. Each peer calculates the
average quality level it has perceived so far. When a peer
selects a neighbor, it will choose the peer(s) whose average
quality level is closest to its class identifier within a range τ .
If there are more peers than needed, a subset is selected based
on the peer class in the following order: peers in the same
class, peers in higher classes, and peers in lower classes.

With Chameleon, we have generated the join time and
the class of each peer randomly, and we have observed
notable performance differences between experiments with
significantly different patterns of peer join. Therefore, to reveal
the effect of the join order and the population percentage of
each peer class to the system performance, we consider two
extreme cases in the following experiments. Without any loss
of generality, we use the JSVM Software [22] to generate
a two-hour video sequence with two quality levels, and we



classify peers into two classes: high capacity (HC) and low
capacity (LC). The download and upload capacity are set so
that HC peers are able to receive two quality levels (the full
quality) while LC peers are only able to receive one quality
level (the base level). In particular, we set the download and
upload capacity of peers to 6-10% and 4-8% higher than the
stream rate of the quality level corresponding to each peer
class. There are no super peers in the system. We use only one
server, which can serve 8-10% of the total number of peers in
the system. We evaluate the performance of Chameleon with
the quality-based neighbor selection method in Case A: all HC
peers join the session before LC peers, and Case B: all HC
peers join after LC peers. In each case, the number of HC
peers is set to 10, 20, ..., and 90% of the peer population.

10 20 30 40 50 60 70 80 90
0.005
0.015
0.025

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (
%

)

 

 

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

(a) Case A

10 20 30 40 50 60 70 80 90
00.005

0.015
0.025

50
54
58
62
66
70

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (
%

)

 

 

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

(b) Case B

Fig. 1. Performance of Chameleon in the two cases.

Figure 1 shows the performance of Chameleon in Case A
and Case B. In general, the average skip rates are very low
in both cases, but the average quality satisfaction (AQS) is
very different. In Figure 1(a), when HC peers join the system
first, the average quality satisfaction for both classes is very
high (> 92%) regardless of the number of HC peers in the
system, which means each peer can perceive92% of its best
possible quality level according to its bandwidth capacity. On
the other hand, in Figure 1(b), when LC peers join first, the
average quality satisfaction of HC peers is low and increases

from 50% to 70% when the percentage of HC peers increases.
The reason is that, in Case B, LC peers join first, connect
and stay close to the server in terms of the number of hops
from the server. Since the number of connections the server
can create is limited, when HC peers join, they may be not
able to connect directly to the server and content bottlenecks
occur. For example, when there is only 10% HC peers in the
system, all HC peers receive only the base layer. Consequently,
the quality satisfaction is 50% (because they are expected to
be able to receive two quality levels). When the population
percentage of HC peers increases, the chance of connecting to
the server increases, and the top layer can be delivered to some
HC peers. In the other case, if HC peers join the session first
and connect to the server, they can receive the top quality layer
from the server and deliver it to other HC peers. In addition,
since they also have the base layer, LC peers are served well.

From the above experiment, we observe that the join order
and the percentage in population of different peer classes
may not affect the performance of single-layer P2P streaming
systems much, as the skip rates are low in the two cases, but
they do impact the average quality satisfaction of different peer
classes in layered P2P streaming systems. The question hereis:
How to provide high average quality satisfaction for different
peer classes regardless of their join time and population? We
answer this question in the next section with our scalable and
effective neighbor selection method.

IV. A QUALITY - AND CONTEXT-AWARE NEIGHBOR

SELECTION METHOD

The difficulty in designing a neighbor selection method is
that each peer only knows information of a certain number
(not all) of peers in the system. Although it is possible to
update information about the population of each peer class
in the system by tracking join requests at rendezvous peers,
it causes traffic overhead to transmit the information, which
changes frequently when peers join and leave. To keep the
system scalable, our proposed method is based only on local
information of candidates to choose neighbors.

As in single-layer streaming, it is reasonable that high
capacity peers should have higher priority than low capacity
peers in being located atgood positions in the overlay, e.g.,
close to the server or other high capacity peers because when
they can receive more, they will contribute more to other
peers in terms of bandwidth and layers. Based on this fact
and taking the effect of the peer join order into account, we
use apreemption ruleas follows: when a peerP in classCi

wants to connect to a peerQ which has reached its maximum
number of neighbors defined by the system, if one neighbor
K of Q belongs to classCj , Cj < Ci, thenP can replaceK
to be a neighbor ofQ. However, if the rule is applied strictly
everywhere in the overlay, peers in the lowest class (the lowest
bandwidth capacity) can only connect to each other and create
clusters of low quality peers, which will suffer high playback
skip rates. Therefore, a peerP in classCi should only be
able to replace another peerK in classCj , Ci > Cj , with a
probabilityP preemp, P preemp is higher whenK is closer
to the server. This rule guides high capacity peers closer tothe
server even if they join the system after low capacity peers,



and low capacity peers further from the server even if they
join the system before high capacity peers. We calculate the
distance between a peerP and the server by the minimum
number of peers (hops) betweenP and the server through
neighborship with the following algorithm:

⊲ The distance from the server to itself is0.
⊲ The distance from a peerP to the server is calculated by

the minimum distance of its neighbors to the server+1.

DP = min
i∈NLP

(Di) + 1

in which Di is the distance of peeri to the server, and
NLi is the neighbor list of peeri.

⊲ The distance of a peer is updated when its neighborship
changes, e.g., a neighbor is added or deleted.

It is noted from the above algorithm that it is not required
to update the distance of each peer in a timely manner,
e.g., when the distance from a peer to the server changes,
the distance from its neighbors to the server may also be
changed but is not updated. The update algorithm is only
invoked at a peer when its neighborship changes. The reason
for this relative calculation is that the timely update requires
message exchanges, which cause traffic overhead, between
peers to inform their distance has changed. In addition, as
being demonstrated later, the relative distance is good enough
to point out thevicinity of the peer location in the overlay.
When each peer maintains its distance to the server, the
preemption probabilityP preemp to replace a peerK is
calculated by the following formula.

P preemp =
1

1 + α(DK − 1)
∗ 100

in which α is a tunable parameter. From this formula, we can
see that if low capacity peers connect directly or stay close
to the server (because they join the session first), they are
likely replaced by high capacity peers. For example, if a low
capacity peer connects directly to the server, i.e. its distance
is 1, then theP preemp = 100%, so it will be replaced by
a high capacity peer. However, if low capacity peers are far
from the server, they can keep their connections to high quality
peers to maintain their quality, as the preemption probability
is low. The value ofα determines howP preemp reduces
on the way far from the server, e.g., ifα = 1, P preemp for
D = 1, 2, 3, 4, ... is 100%, 50%, 33.33%, 25%, ... respectively.
Currently, we chooseα by experiments. However, how to
choose a goodα in general cases is an important issue, and
we leave it as our future work.

We now are ready to present the complete neighbor selection
method. A peer will create neighborships when it joins the
system or when it wants to improve the video quality, e.g., a
neighbor leaves the system, or the current quality level drops
below a threshold for a period of time. When a peerP needs
one or more neighbors, it:

⊲ contacts a rendezvous peer with necessary information
such as its estimated bandwidth capacity. The rendezvous
peer will return a list of available peers in the system and
the class identifierP belongs to.

⊲ sends requests containing its class identifier to all can-
didates, who are selected by the quality-based neighbor

selection method in [2].
⊲ on receiving notifications from the candidates, creates

connections and stores neighbor information to the neigh-
bor list, or waits for a period of time and tries again.

Algorithm 1 Neighbor Selection - Request
AL: the peers list returned by the rendezvous peer.
CL: the candidate list.
NL: the neighbor list.
CL ← QualityBasedSelect(AL);
SendRequest(CL);
while (active) do

if (accept(Q)) then
Insert(Q, NL);

end if
end while
if (too few neighbors) then

Wait();
Request();

end if

For each candidate, on receiving a request:
⊲ if the current number of neighbors is below its maximum

number of neighbors, accepts the request.
⊲ otherwise, selects the neighbor whose class identifier is

lowest, calculates itsP preemp and decides to accept
the request with the probabilityP preemp.

Algorithm 2 Neighbor Selection - Respond
N: the current number of neighbors.
MAX N: the maximum number of neighbors.
NL: the neighbor list.
ReceiveRequest(P);
if (N < MAX N) then

SendReply(P, ACCEPT);
Insert(P, NL);

else
R ← SelectLowestCapacityPeer(NL);
if (P.class > R.class) then

P preemp ← 1/(1 + α ∗ (R.distance− 1));
if (Rand() < P preemp) then

SendReply(P, ACCEPT);
Insert(P, NL);

else
SendReply(P, REJECT);

end if
end if

end if

V. SIMULATION RESULTS

In this section, we revise the two extreme cases in Section
III with the proposed selection method, and demonstrates
its efficiency in more general cases with different network
sizes to check the system scalability. Finally, we consider
features of the topology formed by the method. We implement
the proposed neighbor selection method in Chameleon and



evaluate its performance in terms of the average playback
skip rate and the average quality satisfaction. The bandwidth
settings are the same with the settings in Section III.

A. The proposed method offers adaptability and scalability

Figure 2 shows the performance of Chameleon in Case B
(the graph for Case A is similar) when LC peers join the
session before HC peers. It is clearly observed that the quality
satisfaction of HC peers is significantly improved compared
to Figure 1(b). Thanks to the preemption rule, HC peers can
gradually be located in good positions. This not only enables
HC peers achieving high quality video, but also minimizes the
skip rate of LC peers.

10 20 30 40 50 60 70 80 90
00.005

0.015
0.025
0.035

92
96

100

Percent of HC Peers (%)

P
er

ce
nt

 (
%

)

 

 

Skip Rate of LC Peers
Skip Rate of HC Peers
AQS of LC Peers
AQS of HC Peers

Fig. 2. The system performance with the proposed protocol in Case B

In practice, peers can join and leave the system at any time.
Therefore, we now come back to a more general case. We
generate another video sequence with four quality layers and
use four classes of peers corresponding to the four quality
layers. The join time and class identifier of each peer is
generated randomly, and the peer life time is generated by the
Weibull distribution – Weibull(k, 2) – as shown in [23] that
the peer session lengths are fit by the Weibull distribution.
Figure 3 shows the average skip rate and quality satisfaction
of each peer class. It demonstrates that the neighbor selection
method helps to achieve best possible quality for each peer
class in the system, while keeping the system scalable under
peer dynamics.

B. Features of the topology

An interesting question here is that:what does the topology
actually look like under the neighbor selection method?To
answer the question, for every peer in classC, we calculate
the percentage of its neighbors which belong to classCk,
k = 1, 2, 3, 4. In this experiment, the network size is 700,
every peer has an average of 55 neighbors. The population
percentage of class 1, 2, 3, and 4 in the system is25.71%,
24.29%, 16.99%, and33.01%, respectively. Table I shows the
neighboring relationships between the peer classes. The value
at element(i, j), T (i, j), is the average percentage of peers of
classj in the neighbor list of peers of classi.

100 200 300 400 500 600 700
0.02
0.06
0.10
0.14
0.18
0.22

88
92
96

100

Network Size (Peers)

P
er

ce
nt

 (
%

)

 

 

Skip Rate of Class 1
Skip Rate of Class 2
Skip Rate of Class 3
Skip Rate of Class 4
AQS of Class 1
AQS of Class 2
AQS of Class 3
AQS of Class 4

Fig. 3. Performance of Chameleon with different network sizes
TABLE I

TOPOLOGY

Peer class 1 2 3 4 Avg. Distance
1 73.51 22.42 3.96 0.11 4.14
2 22.22 54.25 16.99 6.54 3.47
3 7.07 29.30 42.42 21.21 2.73
4 3.29 11.93 12.35 72.43 1.92

As shown in Table I, the neighbor selection method creates
clusters of peers that belong to the same class:T (i, i) ≥
T (i, j),∀i, j, i.e., peers of the same class tend to connect to
each other. In addition, we also calculate the average distance
of peers of each class to the server. The result is presented
in the right most column of Table I, which shows that the
higher the class identifier is, the closer to the server the class
is. In summary, with the proposed neighbor selection method,
peers are grouped into clusters based on their peer class, and
clusters of higher capacity peers stay closer to the server than
those of lower capacity peers. This can be considered as an
emergent propertyof the method, because each peer selects
its neighbors with partial knowledge about the network.

VI. CONCLUSION

In this paper, we point out that, different from single-layer
P2P streaming, the join order of peers and the population per-
centage of different peer classes in the system may impact the
system performance in layered P2P streaming. We then pro-
pose a new neighbor selection method that uses the perceived
quality level and location information of candidates to choose
neighbors. Simulation results demonstrate the adaptability and
scalability of the proposed method. Supported by our results
in [2], we can indirectly infer that Chameleon with this new
neighbor selection method offers even better performance
when compared with the related work. We are following
two directions for future work. Firstly, we are interested in
the ‘evolution’ of the overlay over time. In particular, when
many peers with different peer classes join the system or
when a severe network congestion occurs, when will each
peer (again) receive its best possible quality? Secondly, we
are studying combinations of the preemption rule with other
network metrics, e.g. RTT, to achieve a more efficient and
practical method. Then, we are able to evaluate Chameleon
at network level to demonstrate is performance in real world
settings.



REFERENCES

[1] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live p2p streaming approaches,” inProc. of IEEE
INFOCOM, May 2007, pp. 1424–1432.

[2] A. T. Nguyen, B. Li, and F. Eliassen, “Chameleon: AdaptivePeer-to-
Peer Streaming with Network Coding,”To be appeared in Proc. of IEEE
INFOCOM 2010, July 2009.

[3] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling conferencing
applications on the internet using an overlay muilticast architecture,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 55–67, 2001.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Applica-
tion Layer Multicast,” inProc. of SIGCOMM. New York, NY, USA:
ACM, 2002, pp. 205–217.

[5] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: an efficient peer-to-peer
scheme for media streaming,” inProc. of INFOCOM, vol. 2, 3 April
2003, pp. 1283–1292.

[6] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drIven
MEsh-Based Streaming,” inProc. of IEEE INFOCOM, May 2007, pp.
1415–1423.

[7] F. Pianese, D. Perino, J. Keller, and E. W. Biersack, “PULSE: An
Adaptive, Incentive-Based, Unstructured P2P Live Streaming System,”
IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1645–1660, Dec.
2007.

[8] X. Zhang, J. Liu, B. Li, and T.-S. Yum, “CoolStreaming/DONet: a data-
driven overlay network for peer-to-peer live media streaming,” in Proc.
of IEEE INFOCOM, vol. 3, March 2005, pp. 2102–2111.

[9] J. Seibert, D. Zage, S. Fahmy, and C. Nita-Rotaru, “Experimental com-
parison of peer-to-peer streaming overlays: An applicationperspective,”
in LCN 2008, Oct. 2008, pp. 20–27.

[10] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid Tree/Mesh Over-
lay for Application-Layer Live Video Multicast,” inProc. of ICDCS,
June 2007, pp. 49–49.

[11] J. D. Mol, D. H. P. Epema, and H. J. Sips, “The Orchard Algorithm:
Building Multicast Trees for P2P Video Multicasting Without Free-
Riding,” IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1593–1604,
Dec. 2007.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: high-bandwidth multicast in cooperative envi-
ronments,” inSOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles. New York, NY, USA: ACM, 2003,
pp. 298–313.

[13] N. P. Venkata, H. J. Wang, and P. A. Chou, “Resilient Peer-to-Peer
Streaming,” inICNP, 2003, pp. 16–27.

[14] R. Rejaie and A. Ortega, “PALS: peer-to-peer adaptive layered stream-
ing,” in Proc. of NOSSDAV, Monterey, CA, USA, jun 2003, pp. 153–161.

[15] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming,” in Proc. of
NOSSDAV, Monterey, CA, USA, jun 2003, pp. 162–171.

[16] J. Zhao, F. Yang, Q. Zhang, Z. Zhang, and F. Zhang, “LION:Layered
Overlay Multicast With Network Coding,”IEEE Transactions on Mul-
timedia, vol. 8, no. 5, pp. 1021–1032, October 2006.

[17] X. Xiao, Y. Shi, B. Zhang, and Y. Gao, “OCals: A Novel Overlay
Construction Approach for Layered Streaming,” inProc. of ICC, May
2008, pp. 1807–1812.

[18] D. Hales, S. Arteconi, and O. Babaoglu, “SLACER: Randomness
to Cooperation in Peer-to-Peer Networks,” inProc. of Collaborative
Computing Networking, Applications and Worksharing, 2005.

[19] F. E. Bustamante and Y. Qiao, “Friendships that Last: Peer Lifespan and
its Role in P2P Protocols,” inWeb Content Caching and Distribution.
Springer Netherlands, 2007, pp. 233–246.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard,”IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–
1120, September 2007.

[21] A. Ganesh, A.-M. Kermarrec, and L. Massoulie, “Peer-to-peer mem-
bership management for gossip-based protocols,”IEEE Transactions on
Computers, vol. 52, no. 2, pp. 139–149, Feb. 2003.

[22] ITU-T and I. JTC1. (2008) JSVM Software version JSVM 9.17.
[Online]. Available: http://ip.hhi.de/imagecomG1/savce/downloads/
SVC-Reference-Software.htm

[23] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” inProc. of ACM SIGCOMM IMC. New York, NY, USA:
ACM, 2006, pp. 189–202.


