
Nextmini: A New Research Testbed for Network

Emulation and Experimentation
Xindan Zhang, Shengwen Chang, Baochun Li

Department of Electrical and Computer Engineering

University of Toronto

Abstract—As large language models are trained on datacenters
with tens of thousands of compute nodes and are quickly
becoming parts of our daily routines, the need for a flexible,
easy-to-use, and high-performance research testbed for emulating
and experimenting with new network protocols has become
more pressing and relevant than ever. Conventional packet-level
simulators are, by their nature of discrete-event simulation, not
scalable enough; yet traditional network emulation testbeds,
such as Mininet, are also showing their age with respect to
the flexibility of implementing new algorithms, ability to run
arbitrary application workloads, scalability to a large number
of nodes, as well as the freedom of expanding beyond a single
cluster to span multiple geographically distributed regions.

In this paper, we present Nextmini, a modern, next-generation,
high-performance networking research testbed for network em-
ulation and experimentation. Implemented in Rust, it is designed
from scratch to be as flexible as possible, accommodating a
wider array of resource scheduling algorithms. It supports
running arbitrary workloads — such as distributed machine
learning training workloads — directly on the emulated network.
Its design strikes an excellent balance between flexibility and
performance, supporting both performant user-space emulation
for maximum flexibility, as well as much higher kernel-level
performance when users need such a performance boost. It is
scalable to a larger number of nodes with ease in the same cluster,
and can be easily expanded to span multiple geographically
distributed datacenters. We conducted an extensive array of
experiments to evaluate Nextmini’s tent-pole features, and to
compare it with Mininet. Our results show both Nextmini’s raw
power and its abundance of flexibility.

I. INTRODUCTION

With the prevalence of large-scale application workloads,

such as distributed training of large language models [1],

[2], it is increasingly important to design, implement, and

experiment with new network protocols and resource alloca-

tion mechanisms at scale [3], [4]. Indeed, there is a pressing

need for an experimental platform that serves as a playground

for evaluating new ideas in networking research over both

emulated and real-world networks, often spanning multiple

geographically distributed regions.

We argue that such a pressing demand for a new experi-

mental testbed cannot be satisfied by conventional discrete-

event network simulators over the past four decades (e.g.,

[5], [6]). The upshot of discrete-event simulations is that they

provide packet-level granularity when it comes to reproducible

experiments, but they are also well known to be lacking

on scalability: it may take hours, sometimes even days, to

simulate a second of real-world traffic as the network scales up

and the volume of events that need to be processed explodes.

In addition, network simulators also lack realism: the protocols

they offer to simulate may not be exact replicas of their

counterparts in a modern Linux kernel.

But what about conventional network emulation testbeds,

such as Mininet [7]? Designed more than a decade ago,

Mininet took advantage of some of the best technologies of

its time: by placing host processes in network namespaces and

connecting them with virtual Ethernet (veth) pairs, it supports

setting up virtual networks of arbitrary topologies, without

resorting to heavyweight OS virtualization alternatives, such as

virtual machines. With a command-line interface and a Python

API supported, Mininet’s foundation is the software-defined

networking architecture, where an OpenFlow controller is in

charge of making control-plane decisions, and Open vSwitch

[8] acts as a software switch in the Linux kernel to implement

these decisions in the dataplane. A SIGCOMM Test of Time

Award winner, Mininet’s design is simple and elegant, while

offering the best possible network performance.

That said, Mininet, along with its derivatives over the

past decade, may already be showing its age. Since Mininet

was introduced, Docker containers became the norm and the

foundation for modern cloud computing. Similar to Mininet,

these containers virtualize network namespaces; but different

from Mininet, they also allow arbitrary workloads to run with

minimal OS overhead. Though Docker containers may not be

as lightweight as virtualizing network namespaces only, they

are far lighter than virtual machines. As an even more enticing

characteristic, modern container orchestration technologies —

such as Docker swarm [9] and Kubernetes [10] — can be used

to deploy a large number of containers across an entire cluster.

These technologies may substantially simplify the deployment

of a container-based emulation testbed in a large cluster, as

compared to custom-tailored distributed solutions based on

Mininet [11], [12].

Beyond the ubiquity of Docker containers, a new technolog-

ical innovation has also emerged as the de facto standard of

high-performance networked systems, such as web services,

in the user space: asynchronous network programming with

coroutines. A coroutine is a lightweight thread of execution:

they are similar to OS kernel threads, can be suspended

at predefined points of execution, and resumed to a state

that they left off before suspension. Yet, with coroutines, a

context switch has much less overhead — equivalent to a

regular function call. Contemporary programming languages,

such as Go [13] and Rust, support coroutines natively. With

coroutines, network events can be processed asynchronously



and concurrently by thousands of coroutines, allowing for

much more performant and battle-tested user-space networking

frameworks, and making high-performance user-space net-

working a reality.

More than a decade since Mininet was designed, with the

advent of modern technologies such as Docker containers,

container orchestration, and asynchronous networking with

coroutines, and driven by the pressing need for running

distributed application workloads, we believe that it is the

right time to revisit the spectrum of design choices that should

power a modern network research testbed. While we are fans

of Mininet’s core design principles and its performance, we

advocate for a new architectural design — from the ground up

— to support better flexibility of evaluating new algorithms,

the ability to run arbitrary application workloads, better scala-

bility to a larger number of nodes across multiple physical or

virtual machines, as well as the freedom of expanding beyond

a single datacenter to span multiple geographically distributed

regions.

In this paper, we introduce Nextmini, a thoroughly modern

networking research testbed for evaluating new network pro-

tocols and resource scheduling algorithms under real-world

application workloads. Nextmini inherits Mininet’s fundamen-

tal design philosophy: its foundation is a software-defined

networking architecture, where actions taken by all dataplane

nodes are governed by a dedicated controller. Yet, despite

its name, Nextmini makes several decidedly different design

choices from Mininet:

♢ Nextmini focuses on a user-space design, without rely-

ing on technologies within the Linux kernel, such as

eBPF [14] and kernel modules. To maximize perfor-

mance, Nextmini’s user-space design takes full advan-

tage of asynchronous network programming, stackless

coroutines, and the Rust programming language. A major

advantage of such a user-space design is its flexibility: it

becomes much more straightforward to implement and

evaluate new and complex traffic engineering or resource

scheduling strategies, such as packet dropping, scheduling

disciplines, traffic shapers and policers, as well as multi-

path routing protocols.

♢ In situations where the packet forwarding performance is

of utmost importance and a user-space design becomes

a performance bottleneck, Nextmini also supports a high-

performance operating mode, which we simply refer to as

the max mode. In its max mode, Nextmini trades off some

flexibility to support performance approaching kernel-

level packet forwarding, using the splice system call

in the Linux kernel.

♢ To run arbitrary application workloads without modifica-

tions — such as distributed training of machine learning

(ML) models — Nextmini is able to establish and expose

a virtual network to an application via TUN interfaces.

Used by virtual private networks (VPNs), a TUN interface

is a virtual network device that operates at the network

layer, allowing applications to send and receive network

traffic obliviously, without knowledge of the underlying

network topology.

♢ To scale up to a larger number of nodes in its data-

plane, Nextmini takes a two-pronged approach. Similar

to Mininet, it supports virtualizing only the network

namespaces, and connecting nodes using virtual Ethernet

(veth) pairs. This allows for a maximum degree of

scalability on a single machine. Yet, to span multiple

machines in the same datacenter — as well as multiple

geographically distributed datacenters around the world

— Nextmini also supports the deployment of dataplane

nodes using Docker containers and Docker swarm [9], a

modern container orchestration technology.

With respect to Nextmini’s implementation, one original and

unique design choice stands out and is worth highlighting.

Nextmini uses a simple yet elegant actor model [15], [16],

where each actor maintains its private states and can only

affect each other indirectly through message passing. Such

a design choice minimizes data locking due to concurrency,

which helps avoid a wide array of potential concurrency bugs

in Nextmini’s implementation.

Needless to say, we have devoted much of our attention

to evaluating Nextmini’s flexibility, scalability, and above

all, performance. Where applicable, we have compared the

performance of Nextmini with Mininet, and when operating

in the high-performance max mode, both exhibit excellent

packet forwarding performance on a single physical machine,

reaching 132 Gbps over two hops. Given its user-space design

without the need of any kernel modules, we are pleasantly

surprised by the raw performance that Nextmini is able to

achieve. With respect to scalability, we show that in Nextmini’s

lightweight namespace mode, the memory footprint is only

around 4.5 MB per dataplane node, allowing us to launch up

to 10,000 nodes on a single physical machine. Last but not the

least, we have also conducted a wide array of experiments to

showcase Nextmini’s capabilities, including its support for dis-

tributed ML training across multiple geographically distributed

datacenters.

II. NETWORK EMULATION: STATE OF THE UNION

Over the past four decades, the reproducibility of net-

working research is, in general, realized with any of three

alternative strategies: discrete-event network simulators, net-

work emulation environments, and real-world experimental

testbeds. On one extreme of the spectrum between control and

realism, discrete-event network simulation (DES) frameworks,

such as ns-3 [5], offer fine-granularity control and the best

reproducibility: with a fixed random seed, an entire simulation

can be repeated without variations. On the opposite end of the

spectrum, real-world experimental testbeds, such as PlanetLab

[17], support the deployment of overlay network protocols

over hundreds of servers that are geographically distributed

globally. It offers the best realism, as wide-area networks

provide the underlying foundation for real-world network

experiments.

Striking a balance between these two extremes, it has been

widely accepted that network emulation testbeds, dating back

to Emulab and Netbed [18] more than two decades ago,

are also indispensable for reproducible networking research.



Sacrificing some of the fine-granularity control from discrete-

event simulators, a network emulation testbed is inherently

designed to offer better scalability: as there is no need to

process discrete events in their timestamp order sequentially,

an emulated system makes progress in real-time regardless

of scale. In addition, an emulated system subjects real-world

applications, network protocols, and operating system kernels

to controlled and synthetic network topologies, and as a result

offers much better realism than discrete-event simulations.

Mininet. The epitome of such emulation environments over

the past decade is Mininet [7] (officially called Mininet-

Hifi, a high-fidelity release of the original Mininet). Dubbed

network in a laptop [19], Mininet was initially conceived

and implemented to emulate an entire virtual network in a

single physical machine. To build a virtual network among OS

processes, Mininet utilizes the capability of the Linux kernel

to assign virtualized network namespaces to each OS process,

and to connect them with virtual Ethernet (veth) pairs.

The architectural foundation of Mininet is software-defined

networking (SDN) [20], where concerns in the control plane,

such as routing algorithms, are separated from the data for-

warding plane, where packets are processed. With SDN, it

becomes feasible to add new features to the controller without

modifying the packet-forwarding switches. By using the Open

vSwitch [8] as a kernel module and forwarding packets

entirely within the kernel, it also offers stellar performance.

Completing the package with an extensible command-line

interface (CLI) and a Python API, Mininet offers a simple yet

highly customizable platform for creating emulated networks

with the best possible performance. It has been widely used

[21] and extended to multiple machines in a cluster [11] over

the past decade.

Recent network emulators. In the decade after Mininet

was released, several of its derivatives have been proposed,

using similar container-based emulation strategies. Container-

lab [22], as an excellent example, is an actively maintained,

open-source network emulator that provides a custom-tailored

container orchestration tool to organize multiple containers

into a virtual network topology, supporting many custom

network OS images such as the Free Range Routing (FRR)

router [23]. Containernet [24], on the other hand, is a fork

of Mininet that allows the use of Docker containers as hosts

in emulated network topologies. As another recent example,

Kubernetes Network Emulation [25] is a network emulator

that is designed to extend basic Kubernetes [10] networking

to support virtual connections between nodes in an arbitrary

network topology. All of these recent network emulators are

designed to use Docker containers as the foundation, and

to organize them into virtual network topologies. Nextmini

shares such a design philosophy and can be used with Docker

containers; but as we shall elaborate, comes with a twist that

focuses solely on user-space packet forwarding, eliminating

the complexity that comes with custom network OS kernels.

III. NEXTMINI: TECHNOLOGICAL FOUNDATION

Mininet’s heritage. As fans of Mininet’s simplicity and

elegance, we conceive Nextmini to inherit much of Mininet’s

excellent design. To begin with, both Nextmini and Mininet are

built on the widely recognized principles of software-defined

networking [20], such that control-plane policies (e.g., routing

protocols) and dataplane packet-forwarding mechanisms (e.g.,

packet scheduling disciplines) are cleanly separated. To max-

imize the flexibility of implementing a wide array of resource

allocation and routing algorithms, Nextmini incorporates a

custom-tailored controller design, without adhering to the

OpenFlow standard.

As another heritage from Mininet, Nextmini is built upon

container-based emulation. Just like Mininet, we support

virtualizing network namespaces only and connecting nodes

using veth pairs. By assigning different network namespaces

to OS processes, our design maximizes scalability, with respect

to the number of dataplane nodes to be accommodated on a

single physical or virtual machine. In addition, just like more

recent network emulators such as Containerlab [22], Nextmini

comes with first-class support for Docker containers, a de

facto standard in modern cloud computing. By providing such

support from the ground up by design, Nextmini offers two

key advantages over Mininet: 1 Users can tap into a variety

of modern container orchestration tools — such as Docker

compose, Docker swarm [9], and Kubernetes [10] — to deploy

these containers on the same machine, across multiple ma-

chines in the same cluster, or even across datacenters that span

geographically distributed regions. 2 Arbitrary application

workloads — including distributed training of ML models

— can be executed within these Docker containers without

any modifications. As Docker containers incur much less

runtime overhead compared to virtual machines, it may even

be recommended to run these applications in a Dockerized

environment.

Asynchronous networking with coroutines in Rust. Con-

ventionally, the abstraction of concurrency in modern oper-

ating systems is achieved via kernel threads, which provides

a lightweight mechanism of realizing concurrency compared

to traditional OS processes. In the recent decade, however,

asynchronous programming becomes the norm, supported by

stack-based coroutines. With stack-based coroutines (e.g., in

the Go programming language), a context switch between

different coroutines becomes similar to regular function calls,

and incurs much less runtime overhead than kernel threads.

However, stack-based coroutines may still be less efficient due

to the presence of the local call stack, which can be further

optimized by implementing coroutines without using stacks at

all, in which case runtime overhead would “vanish entirely,”

as proclaimed by Weber et al. [26]. With such stackless

coroutines, local data is stored as fields in an active instance

of the coroutine, rather than in a stack frame. Suspending

execution in a stackless coroutine is, therefore, mapped to

an ordinary return statement, and a context switch becomes

precisely as fast as a function call.

Though stackless coroutines sound appealing at the high

level, it is too challenging to implement them manually. One

example of these challenges is that fields and the program

counter in the coroutine instance need to be captured in its

own structure, rather than the call stack. In addition, a runtime

executor needs to become an overarching driving force that



calls the next ready coroutine as soon as some progress can

be made. Such an executor is akin to a thread scheduler, but

with much less context-switching overhead as no per-thread

stack is involved.

The good news is that stackless coroutines are officially

supported by Rust since async/await entered Rust 1.39 in

2019 [27], when the Rust compiler natively supported captur-

ing local fields and the program counter in a special struct

called Future, and runtime executors are provided by third-

party libraries. One of the most widely used runtime executors

is tokio [28], which implements, by default, a multi-threaded

executor: each CPU core corresponds to a kernel thread,

and each kernel thread executes a large number of stackless

coroutines, called tasks, concurrently. Each task requires only

an allocation of 64 bytes to maintain, and tasks are managed

by tokio in the user space. The combination of Rust’s native

support for stackless coroutines and runtime executors such

as tokio offers drastically improved networking performance,

and has quickly become the foundation of production web

services.

IV. NEXTMINI: DESIGN AND IMPLEMENTATION

A. Kernel vs. User Space: The Queen’s Gambit

We started with an overarching design philosophy when

Nextmini was initially conceived: we wished to take full ad-

vantage of modern advances in concurrent programming, with

the powerful combination of multi-threaded runtime executors,

stackless coroutines, and fearless concurrency [29] offered by

Rust, and to implement the dataplane entirely in the user

space. This is a substantial deviation from Mininet, where

packet forwarding is conducted in the kernel with OpenFlow

switches1, such as the Open vSwitch [8]. Switching from a

(predominantly) kernel-space design to the user space will —

without doubt and by a substantial margin — degrade packet-

forwarding performance. Yet, on the flip side of the coin,

implementing Nextmini in the user space intuitively offers

the best possible flexibility of emulating user-space flows,

and designing new traffic engineering and resource scheduling

algorithms. When extreme performance is needed, our design

trades off some flexibility so that Nextmini’s packet-forwarding

performance can ideally reach around the same level as — or

only slightly inferior to — kernel-space packet processing.

As we implement such an overarching design philosophy,

we are also strong believers in the importance of making

the best possible design choices in complex systems. Before

even the first line of code is written, we have several design

objectives in mind: 1 Simplicity. Mininet was designed to be

simple to use: a virtual network experiment can be established

and run using CLI or Python scripts. With Nextmini’s design,

we aim to be even simpler for the users: in most cases, one

only needs to supply a configuration file. 2 Separation of

concerns. Though hard to define and quantify, we wish to

separate the concerns shared by various components in our

1While Mininet also supports user-space OpenFlow switches, their perfor-
mance is so far below expectations that they are practically unusable [30],
offering around three orders of magnitude lower throughput than kernel
switches.

Application Workload

TUN Interface
 Node

ControllerControl
 Plane

Data
Plane

  

OpenFlow
Controller

User
Space

Kernel

Control Plane
Algorithms

Mininet

Open VSwitch

Application
Workload

Nextmini

user-
space
flows

OpenFlow
Protocol

WebSocket

processor tasks

routing table

TUN interface

network interface network interface network interface

External Traffic

Database

Fig. 1: Comparing Mininet with Nextmini: a birds-eye view.

design as much as possible. This is inspired by the design

philosophy of software-defined networking, which Nextmini

follows as well. 3 Flexibility of supporting arbitrary work-

loads with Docker. We aim to utilize Docker containers and

Docker orchestration technologies to their full potential: with

Docker containers, we can run arbitrary application workloads

in our emulation testbed; and with Docker orchestration, we

can easily span multiple physical machines in the same cluster,

or even multiple virtual machines that are geographically

distributed globally.

B. Architectural Design: Openings

Fig. 1 illustrates a birds-eye view of Nextmini’s architectural

design, inspired by some of the same design decisions in

Mininet. Applying the same philosophy of software-defined

networking, Nextmini’s controller is designed and built as a

high-performance web server, communicating with dataplane

nodes using the industry-standard WebSocket protocol [31],

capable of bidirectional communication. To support the max-

imum degree of flexibility when it comes to accommodating

new data types to be transmitted between Nextmini’s controller

and dataplane nodes, we opt to deviate from the OpenFlow

protocol [32], and to allow messages of arbitrary data types

to be efficiently packed into binary form, and then exchanged

on these bidirectional connections.

The dataplane nodes are implemented in the user space, and

typically executed within Docker containers. Each node pro-

vides a virtual TUN network interface that allows for arbitrary

distributed application workloads to run without modifications,

an important feature not provided by Mininet. In addition,

upon receiving requests from the controller, dataplane nodes

can also initiate independent user-space TCP flows, which

can be processed and forwarded concurrently, along with

application traffic from TUN network interfaces. Clients and

servers of these TCP flows are launched and completed on-

demand, entirely in the user space within Nextmini’s dataplane

implementation.

Network topologies are also implemented in the user space,

with persistent TCP or QUIC connections connecting dat-

aplane nodes. This is a drastically different design choice

compared to Mininet, where topologies are determined at

the IP layer. Nextmini’s user-space topologies provide the

maximum flexibility: such topologies can even span across

geographically distributed datacenters, and serve as a valuable



Actor Handle

spawns upon 
initialization

communication channels
for message passing

Task stackless coroutine
in tokio

mpsc channel

Packets received so far

retrieves packets

process packets
in batches

wakes up

Actor

Upstream
Actors

 Node Processor Tasks
User Space

Kernel

splice syscall

Socket
Buffer

Pipe Socket
Buffer

Upstream TCP connection

Downstream TCP connection

context switching

Network Hardware

splice syscall

(a) The actor model: each actor is
divided into a task and a handle.

other actors

method calls

(b) Processing all packets in the channel, in
batches, upon resuming execution.

(c) Implementing Nextmini's max mode using the
splice system call in Linux.

Fig. 2: Optimizing Nextmini’s dataplane: (a) The actor model, where actors do not share states and interact by passing messages

only. (b) To improve performance, packets are processed in batches. (c) Using the splice system call to “connect” two TCP

connections, drastically improving packet-forwarding performance by an order of magnitude.

experimental testbed for real-world networking protocols at the

application layer, beyond conventional network emulation.

C. Control Plane: Exchanges

A Rust-powered asynchronous web server. A single

centralized controller serves as the “brain” and a focal point

in Nextmini’s design. It is far more capable and flexible

than a conventional OpenFlow controller in software-defined

networking: sophisticated traffic engineering and network re-

source optimization algorithms can be implemented in the

control plane, based on real-time performance monitoring

from all dataplane nodes. Such flexibility is made feasible

by exchanging control messages with dataplane nodes in

two-way communication channels, implemented as persistent

WebSocket connections. To maximize the performance of

establishing a large number of such connections and of sus-

taining substantial aggregate throughput between the control

and data plane, we choose to implement the controller entirely

in asynchronous Rust with the tokio runtime.

PostgreSQL database and real-time triggers. Following

the norm of designing modern web servers for production,

the controller stores all its states — including configurations,

routing policies, topologies, link rates, as well as perfor-

mance metrics reported by the dataplane — in a PostgreSQL

database, a state-of-the-art database engine.

A core responsibility of the controller is to analyze vari-

ations in performance metrics that dataplane nodes report in

real-time, and make potential updates to the routing, traffic

shaping, and scheduling policies in response to these varia-

tions. In Nextmini, control-plane decisions are programmat-

ically made at runtime by running simple Python scripts,

making it straightforward for users to implement new algo-

rithms. These Python-scripted control-plane algorithms depend

on real-time subscriptions to insertions and updates in the Post-

greSQL database, called triggers, which are special kinds of

stored procedures that automatically fire when certain events,

such as INSERT and UPDATE, occur on a database table. As an

example, whenever a measured throughput value is received by

the controller, a corresponding database table will be updated,

and control-plane algorithms will be notified in real-time to

make their resource scheduling or routing decisions.

Since the database is shared between the Rust-powered

controller and control-plane algorithms, the controller can also

respond, in real-time, to triggers whenever the database is

updated. This becomes useful when a control-plane algorithm

makes a decision, such as an update to the routing policy.

The algorithm simply needs to update the database, which

triggers the controller to promptly send control messages

to relevant nodes in the dataplane, installing or modifying

pertinent routes. The logical assumption that all updates to the

database will be implemented in real-time reflects a separation

of concerns: the algorithm only needs to interact with the

database as an intermediary, and is not tightly coupled with

the controller itself.

D. Data Plane: Fork

Actor model. As we alluded, one unique design choice

stands out and is worth highlighting: Nextmini uses the actor

model [15], [16] throughout its dataplane design. As a conven-

tional mechanism of communicating between threads, sharing

memory is widely known to be questionable. Synchronization

and locking mechanisms, such as semaphores and mutual

exclusion locks, must be used to prevent data races and

deadlocks when multiple threads write to a shared variable. As

challenges of ensuring thread safety made concurrent software

development more complex and error-prone, message passing

has again been promoted with the actor model, where threads

avoid sharing any states and interact by passing messages only

using channels. As the tokio runtime in Rust supports high-

performance broadcast and multi-producer single-consumer

(MPSC) channels between tasks (a.k.a. stackless coroutines),

it is very well suited for the actor model [33], where each

actor is implemented as one or several tasks and spawned by

its handle upon its initialization. As Fig. 2(a) illustrates, actors

interact with each other by calling methods in their respective

handles, implemented by sending messages to each other via

MPSC channels.

Design: a first cut. Using the actor model, the starting

point in each dataplane node revolves around the processor

actor, which is responsible for forwarding inbound packets to

next-hop destinations using a routing table. As illustrated in

Fig. 3(a), upstream and downstream actors interact with the

processor by passing messages on MPSC channels.

Two possible upstream actors may feed packets into the pro-

cessor: 1 the local interface reader, which receives packets

from the application via the local TUN interface; and 2 the



VM #1

Docker Container

Nextmini Nextmini

VM #2

Namespace #1

DC #1

Nextmini

DC #2

... ...

...

Nextmini

Docker Container

Nextmini

Namespace #2

Nextmini

Nextmini

...
Nextmini

DC #3

Network Interface

Local Interface

User Space Flows

Controller Interface
 Processor routing table

routing table Processor routing table

Scheduler Network Interface next hop

SchedulerReader Shared queuempsc channel mpsc channel SchedulerWriterSequential: mpsc channel
Concurrent: mpmc channel

...
... ... ...
... ... ...

(a) Designing Nextmini: a first-cut starting point. (b) Nextmini with container orchestration.

broadcast channel

Fig. 3: Designing Nextmini. (a) A first-cut starting point that revolves around processor tasks. (b) With container orchestration

technologies, Nextmini’s dataplane nodes can easily be deployed across virtual machines or even datacenters.

network interface, which establishes and maintains TCP or

QUIC connections with other dataplane nodes, as requested

by the controller according to the network topology. Packets

received from upstream nodes via these connections will be

sent to the processor.

Correspondingly, two potential downstream actors may han-

dle packets from the processor. 1 the local interface writer,

which sends packets destined to the local host to the applica-

tion, again via the local TUN interface; and 2 the scheduler,

which queues outbound packets and schedules them according

to a scheduling discipline (with First-Come-First-Served and

Weighted Round Robin supported by Nextmini). The scheduler

also incorporates packet dropping mechanisms (Tail Drop and

Random Early Detection), traffic shapers (Token Bucket), and

rate limiters. Ultimately, it sends outbound packets to the

network interface actor, which is in charge of sending them

out on the persistent TCP or QUIC connection it manages.

As multiple flows are routed through the processor, it

becomes crucial to spawn multiple independent tasks, each

maintaining its own local copy of the routing table and

processing its own share of flows. There are two modes

of mapping inbound flows to processor tasks: concurrent

or sequential. With concurrent mapping, each packet in an

inbound flow can be processed by any processor, which can be

implemented efficiently by a multi-producer multi-consumer

(MPMC) channel between the upstream actors and processor

tasks. With sequential mapping, in contrast, each flow is

mapped to only one processor, using a consistent hash function

(such as the jump hash algorithm [34]).

As we observe in Fig. 4, under sequential mapping,

controller-assigned lossless flows achieve substantially higher

aggregate throughput than smoltcp flows. Interestingly,

adding more processor tasks does not necessarily increase

throughput, and throughput even degrades as the number of

flows increases, suggesting that the performance bottleneck

may not be related to packet processing capacity. We shall

elaborate on this further in this paper when we seek to

maximize performance.

The controller interface actor is responsible for interacting

with the controller via a persistent WebSocket connection, and

upon receiving updated routing policies from the controller, it

broadcasts these updates to all processor tasks via a broadcast

channel. On the reverse path, the network interface sends

its live performance measurements to the controller reporter,

which computes the metrics necessary to be sent to the

0

5

10

15

1 3 5 7 10

Number of Processors

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

5 flows 10 flows 15 flows smoltcp flows lossless flows

Fig. 4: The total aggregate throughput across all flows as

the number of processors scales up for controller-assigned

smoltcp and lossless synthetic flows.

controller.

Routing tables in the processor are designed to allow the

maximum flexibility in making routing decisions. Each flow,

defined by its flow identifier — a 4-tuple involving the

source and destination addresses and port numbers — can

be forwarded on its own route (which remains fixed once

selected). Different flows with the same source and destination

addresses can be forwarded on different routes, allowing multi-

path routing. To accommodate such levels of flexibility, two

hashmap lookups are required: the first maps a flow identifier

to its route, and the second maps the route to the next-hop

destination.

“Doubled pawns”. Beyond application traffic via the TUN

interface, users often require synthetic flows to be generated,

much as in discrete-event network simulators. Such synthetic

flows can, of course, be generated by benchmark applications

such as iperf, but it is much simpler — and more scalable

— to declare them in the controller configuration and have

Nextmini generate them automatically. To this end, Nextmini

supports two types of synthetic flows, our “doubled pawns”:

1 smoltcp flows, which run a full user-space TCP/IP stack;

and 2 lossless flows, which use a lightweight session protocol

atop the existing TCP/QUIC overlay.

To shoehorn smoltcp into Nextmini’s dataplane is a non-

trivial exercise, since it is not designed to operate behind a

virtual network acting as a de facto “proxy” between its clients

and servers. Once integrated, smoltcp flows enjoy full TCP

semantics — connection handshakes, congestion control, and

retransmissions.

As a sweetener to this recipe, lossless flows take a decidedly

leaner approach. Since the persistent TCP/QUIC overlay links

already provide reliability, ordering, and congestion control,



0.0

2.5

5.0

7.5

10.0

12.5

2 3 4 7 10 13 16 19 21

Hops

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

lossless flows smoltcp flows TUN

Fig. 5: User-space flows using lossless and smoltcp vs. the

TUN interface: achievable throughput.

Nextmini introduces no additional TCP stack; instead, loss-

less flows use a minimal sliding-window session protocol:

the sender streams fixed-size chunks and the receiver emits

cumulative acknowledgements to ensure deterministic transfer

completion. Losslessness follows from propagating backpres-

sure through the user-space pipeline: when a downstream hop

slows, upstream senders naturally throttle via transport-level

flow control, avoiding packet drops in the dataplane while

still allowing Nextmini to enforce per-flow shaping. As Fig. 5

illustrates, lossless flows reach nearly 12 Gbps for paths up to

10 hops on an Intel i7-13700K desktop (Intel), roughly twice

the throughput of smoltcp flows. smoltcp flows themselves

outperform the TUN interface for shorter paths, and are no

worse for longer paths.

Arbitrary application workloads with Docker. A high-

light in Nextmini’s design is its flexibility: due to its user-space

design, it natively supports execution within Docker contain-

ers, and exposes a TUN interface for distributed applications

to run without changes. As we show in Fig. 3(b), with a single

docker compose command, multiple dataplane nodes can be

started in seconds within the same virtual or physical machine,

without the need for Mininet’s proprietary CLI. With modern

container orchestration technologies such as Docker swarm or

Kubernetes, it is also straightforward to scale to multiple VMs

in the same datacenter, or across multiple datacenters that are

globally distributed. Regardless of where a dataplane node is

situated, they connect with each other in a virtual topology via

persistent TCP or QUIC connections. In this sense, Nextmini’s

design punches above its weight: it is a network emulation

testbed, but can serve as a real-world network testbed as well,

running applications in a geographically distributed fashion.

E. Performance and Scalability: End Game

While our first-cut design emphasized flexibility, the Rust-

powered tokio asynchronous runtime, used routinely in pro-

duction web services, has already offered solid user-space

performance. In addition, Docker containers are also widely

known to be lightweight, offering an excellent memory foot-

print and scalability. But our objectives are more ambitious:

we wish to offer extreme levels of scalability and performance,

ideally approaching kernel-space solutions in Mininet.

Maximizing performance in the user space. To maximize

the performance of Nextmini’s dataplane, we painstakingly

revisit every design choice and implementation detail —

from thread-safe MPMC queues to production-quality QUIC

frameworks — leaving no stone unturned. Two noteworthy

examples stand out as highlights.

First, to maximize the throughput of application traffic via

the TUN interface, we take full advantage of (a) multi-queue

support since Linux kernel 3.8 [35], which uses multiple file

descriptors to parallelize reading and writing when multiple

flows co-exist; and (b) TCP Segmentation Offload (TSO),

which improves throughput by offloading the segmentation of

large TCP packets to the network interface card, reducing CPU

overhead and allowing more efficient data transmission [36].

By supporting both multi-queue and TSO, experiments using

Docker containers in the Intel desktop and a MacBook Pro

M3 Pro notebook (M3) show that throughput improves from

5.3 to 6.9 Gbps, corresponding to an improvement of up to

1.3×, as illustrated in Fig. 6(a).

Second, to maximize the overall packet-forwarding perfor-

mance, we also fine-tuned how actors process inbound packets

throughout the dataplane design. Rather than processing pack-

ets one by one in each actor task, every time a task resumes

execution, we make non-blocking calls — try_recv() — to

process all outstanding packets queued in an inbound channel

in a batch, as illustrated in Fig. 2(b). When applied to all actor

tasks and coupled with vectored I/O support in tokio when

sending to network connections, we show our experimental

results on our Intel desktop in Fig. 6(b): batching improves

throughput by up to 186%, and reaching a throughput of 3.9

Gbps for a single flow on the Intel desktop.

Bypassing the user space with splice system calls. As

we target extreme levels of packet-forwarding performance,

we refactored the dataplane to support two different operating

modes: normal and max. In normal mode, packets are pro-

cessed and forwarded entirely in the user space to maximize

the flexibility of implementing new algorithms, with routing

policies governed by the controller, and with a repertoire of

scheduling, packet dropping, and traffic shaping disciplines. In

contrast, in the max mode that seeks to maximize performance,

packets are directly forwarded to the next hop by “connecting”

two TCP connections in the Linux kernel, using the splice

syscall. As we illustrate in Fig. 2(c), the splice syscall is

designed to move data between two file descriptors without

copying between kernel and user address spaces. By setting

up a pipe within the kernel space, two splice syscalls

can be made to connect two TCP connections via such a

pipe, eliminating context switching all together during packet

forwarding.

But how does such a TCP splicing strategy perform?

Cloudflare studied the performance of using splice syscalls,

and made the surprising observation that TCP splicing out-

performed the use of eBPF and SOCKMAP [37], known for

kernel-level performance. Inspired, we conducted our own

experiments and our results are shown in Fig. 6(c). It is

evident that extreme levels of performance can be achieved

using TCP splicing: on our consumer-grade M3 notebook,

132.1 Gbps can be achieved with two hops only, which even

slightly outperformed Mininet with kernel packet switches.

With more hops on the path, TCP splicing offers slightly

lower throughput than Mininet, with the exception of cases



5.3
6.4

0

2

4

6

Baseline TSO Multi−queue TSO + MQ
TUN Features in Linux

Th
ro

ug
hp

ut
 (G

bp
s)

Intel M3
6.3 6.9

5.2 5.6 5.9 6.0

(a) TUN interface: maximizing performance.

1.43.6

0

1

2

3

4

2 3 4 7 10 13 16 19 21
Hops

Th
ro

ug
hp

ut
 (G

bp
s)

batching no batching
1.43.9 1.43.8

(b) Processing packets in batches.

132.1

1

10

100

2 3 4 7 10 13 16 19 21
Hops

Th
ro

ug
hp

ut
 (G

bp
s)

Mininet Max Mode Normal Mode

(c) Bypassing the user space using splice.

Fig. 6: Towards maximizing Nextmini’s performance: several noteworthy highlights.

where more than 16 hops are involved — the default Mininet

switch supports a maximum of 16 hops only. As we ex-

pected, operating in the max mode with TCP splicing offers

performance improvements by an order of magnitude, but

trades off some flexibility: as two TCP connections must be

“connected” within the kernel, our repertoire of scheduling,

packet dropping, and traffic shaping disciplines is no longer

applicable. To mitigate the negative impact of such a tradeoff,

our design allows normal-mode and max-mode flows to co-

exist in the dataplane.

Supporting the max mode in Nextmini brought us an in-

triguing inspiration: can we support real-world external TCP

traffic, in addition to application workloads and synthetic user-

space flows? As an encore to our end game on performance,

we turned the Nextmini dataplane into a SOCKS5 proxy server:

any real-world distributed application — such as a web client

and server — can send its traffic through Nextmini’s dataplane,

by obliviously treating it as any other SOCKS5 proxy. When

coupled with the max mode, we are no longer bound by the

achievable throughput of a TUN interface, and can achieve

well north of 100 Gbps in throughput. In fact, this is how we

conducted our benchmarking experiments in Fig. 6(c).

Maximizing scalability on a single physical machine.

Mininet was originally conceived to work as a “network in

a laptop” [19], which offered outstanding convenience and

usability. It also achieves excellent scalability by virtualizing

network namespaces only, rather than virtualizing all re-

sources, including CPU cores (cgroups) and storage volumes

(chroot), as in the case of using Docker containers. The use

of container orchestration tools, such as the docker compose

command, is convenient on a single machine, but not necessar-

ily scalable with respect to the memory footprint it takes to run

all the containers concurrently. To inherit Mininet’s excellent

design on single-machine scalability, we have implemented the

support for virtualizing network namespaces only in Nextmini

as an alternative to its users. Similar to Mininet, in such a

namespace mode — shown in Fig. 3(b) — Nextmini creates

isolated network namespaces for each dataplane node (running

in its own process), as well as a network bridge and virtual

Ethernet (veth) pairs to enable communication between these

namespaces.

To evaluate the scalability of operating in such a namespace

mode, we conducted a series of experiments on our Intel

desktop with both Mininet and Nextmini, measuring achiev-

able throughput between a curl web client and a Python-

powered web server, while varying the number of hops on

the path in between. From the perspective of throughput, as

Fig. 7: Achieved throughput as measured by the curl client.

0

10000

20000

30000

40000

0

1000

2000

3000

100 2000 5000 10000

Number of Nodes

M
e

m
o

ry
 (

M
B

)

T
im

e
 (s

)

Memory (MB) Memory / node (MB)
Time (s)

Fig. 8: Total memory footprint, per-node memory, and startup

time as we scale up the number of dataplane nodes in

Nextmini’s namespace mode.

we show in Fig. 7, both Mininet and Nextmini achieved very

similar throughput of around 12 Gbps, and no performance

degradation occurred as we scale up the number of hops on

the path. However, much to Nextmini’s advantage, Mininet’s

default kernel-space packet switch can only support up to 16

hops, whereas Nextmini can scale all the way up to 40 hops

without performance degradation.

From the perspective of the memory footprint and initializa-

tion time, we show in Fig. 8 that, much to our surprise, both

scale predictably as the number of dataplane nodes increases in

Nextmini’s namespace mode. These results are obtained on a

dual-socket server with two AMD EPYC 9554 processors (64

cores / 128 threads each). Total memory scales linearly, while

the per-node footprint remains nearly constant between 4.2

and 4.7 MB. As a result, a single machine can accommodate

up to 10,000 namespace-based nodes with less than 45 GB

of memory. Startup time also grows roughly linearly, taking

166 s for 1,000 nodes and 3,332 s for 10,000 nodes (about

0.33 s per node), offering a practical single-command way to

construct very large topologies on one machine.

V. DEPLOYING NEXTMINI IN PRACTICE

Thus far, we have evaluated several design highlights in

Nextmini, predominantly in the same physical machine. In



173
162

180
275

371
284

87.9
97118

108
173
162

Fig. 9: Deploying Nextmini across geographically distributed

datacenters.

0.0

2.5

5.0

7.5

0

30

60

90

120

20 40 60 80 100

Number of Nodes across 5 VMs

S
ta

rt
 T

im
e
 (

s
)

T
h

ro
u

g
h

p
u

t (M
b

p
s
)

Start Time TUN User Space TCP

Fig. 10: Deploying Nextmini using Docker swarm across 5

VMs in the same cluster.

practice, however, thanks to its use of Docker containers and

container orchestration such as Docker swarm, Nextmini can

be deployed, without much fanfare, across multiple physical

or virtual machines in the same datacenter, or even across

multiple geographically distributed datacenters. Fig. 9, for

example, shows a live deployment of Nextmini using Docker

swarm across four datacenters around the world, as well as the

achievable throughput between these datacenters, as measured

live.

Deploying Nextmini across VMs in the same datacenter.

The most straightforward way of deploying Nextmini across

multiple VMs in a datacenter is to use Docker swarm, a part of

the Docker engine. A swarm cluster can easily be constructed

by assigning one VM as the swarm manager, and additional

VMs as worker nodes. An immediate benefit of initializing

a swarm cluster is that it supports multi-host networking,

which implies that an overlay network is constructed across all

containers in the swarm, and the swarm manager automatically

assigns private IP addresses to containers on the network. This

eliminates the need for Nextmini to manually configure these

addresses for a large number of nodes.

Fig. 10 shows our measurement results of running a series of

experiments with an increasing number of dataplane nodes —

from 20 up to 100 — across a cluster of 5 VMs, each with 16

CPU cores, in a datacenter located in Victoria, BC. Quite sur-

prisingly, it takes less than 10 seconds to start all these nodes

using Docker swarm. As expected, the throughput achieved in

a simple chain topology involving all the nodes degrades as the

number of nodes in the topology increases. Similar throughput

can be achieved whether traffic comes from the TUN interface

or synthetic user-space TCP flows, showing that the inter-VM

bandwidth has been the performance bottleneck.

Deploying Nextmini across geographically distributed

datacenters. Thanks to Nextmini’s user-space design and the

0

20

40

60

LeNet5 ResNet18 ResNet34 ResNet50 VGG16

Models Trained across 4 Datacenters

T
ra

in
in

g
 T

im
e
 (

s
)

Fig. 11: Running a simple distributed machine learning work-

load in Nextmini, using a Docker swarm across 4 datacenters.

power of Docker swarm for container orchestration, it is

straightforward to deploy Nextmini across multiple datacenters

that are globally distributed, as we have shown in Fig. 9, with

an overlay topology consisting of persistent TCP or QUIC

connections. As each dataplane node exposes a TUN interface

that supports arbitrary application workloads, distributed appli-

cations can run without any changes using the virtual network

that Nextmini exposes, as if it is just a private network within

the same cluster.

To show evidence that this is the case, we borrowed a

simple Python example on training deep learning models

with distributed data parallelism from the PyTorch tutorial,

without any modifications to the script. We then executed the

script directly within the Docker containers where Nextmini’s

dataplane nodes are running, and the script ran without a hitch.

In Fig. 11, we show the amount of time needed to run one

iteration of the training workload, across 5 different convolu-

tional neural network models. The per-iteration training time

is inevitably longer due to the limited amount of bandwidth

available between datacenters. As an example with the LeNet-

5 model, it took 0.08 seconds on average to train one iteration

if all four nodes are co-located on the same physical machine

(no GPUs were used). In stark contrast, it took 2.24 seconds

on average to run the same training workload across our

four geographically distributed datacenters, a 28× decrease

in performance due to the lack of inter-datacenter bandwidth.

VI. CONCLUDING REMARKS

One year in the making of Nextmini, it has evolved into a

thoroughly modern network emulation testbed that is custom-

tailored for the user space, fueled by Rust’s state-of-the-

art support for stackless coroutines, multi-threaded runtime

executors, and asynchronous programming with the actor

model. Its core design — going for user-space flexibility first

and then strong performance using the splice system call in

Linux — worked out surprisingly well, a pleasant surprise

of ”having your cake and eating it too.” While delivering

stellar performance, excellent single-machine scalability, and

flexibility due to its user-space design, Nextmini’s architecture

based on the actor model is also conceptually simple: with

only around 9000 lines for its dataplane, 3200 lines for its

controller, and a few dozens of megabytes for its memory

footprint. We hope that it will become a strong candidate in

the community as an emulation and experimentation testbed

for new networking research — much needed in the era of

artificial intelligence.



REFERENCES

[1] x.ai, “Announcing Grok,” https://x.ai/, Nov. 2023.

[2] J. Pezzone, “Zuckerberg and Meta set to purchase 350,000 Nvidia
H100 GPUs by the end of 2024,” https://www.techspot.com/news/
101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html,
Jan. 2024.

[3] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated
Systems for Large-model Training at Scale,” in Proc. IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 283–294.

[4] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “TACCL: Guiding
Collective Algorithm Synthesis using Communication Sketches,” in
Proc. 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI). USENIX, 2023, pp. 593–612.

[5] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15–
34.

[6] A. Varga, “A Practical Introduction to the OMNeT++ Simulation Frame-
work,” in Recent Advances in Network Simulation: The OMNeT++

Environment and its Ecosystem. Springer International Publishing,
2019, pp. 3–51.

[7] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments using Container-based Emulation,”
in Proc. 8th International Conference on Emerging Networking Exper-

iments and Technologies (CoNeXT). ACM, 2012, pp. 253–264.

[8] “Open vSwitch: An Open Virtual Switch,” http://openvswitch.org/, Jul.
2025.

[9] “Swarm mode | Docker Docs,” https://docs.docker.com/engine/swarm/,
Jul. 2025.

[10] “Kubernetes: Production-Grade Container Orchestration,” https://
kubernetes.io/, Jul. 2025.

[11] B. Lantz and B. O’Connor, “A Mininet-based Virtual Testbed for
Distributed SDN Development,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 365–366, Aug. 2015.

[12] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “MaxiNet: Distributed emulation of software-defined networks,”
in Proc. 2014 IFIP Networking Conference. IEEE, 2014, pp. 1–9.

[13] “The Go Programming Language,” https://go.dev/, Jan. 2024.

[14] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, “Fast Packet Processing with
eBPF and XDP: Concepts, Code, Challenges, and Applications,” ACM

Comput. Surv., vol. 53, no. 1, pp. 1–36, 2020.

[15] Wikipedia, “Actor Model,” https://en.wikipedia.org/wiki/Actor_model,
Jan. 2022.

[16] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR
Formalism for Artificial Intelligence,” in Proc. the 3rd International

Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann
Publishers Inc., 1973, p. 235–245.

[17] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage
Services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, p. 3–12,
Jul. 2003.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in Proc. 5th

Symposium on Operating Systems Design and Implementation (OSDI),
Dec. 2002, pp. 255–270.

[19] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in Proc. 9th ACM

Workshop on Hot Topics in Networks (HotNets), Oct. 2010.

[20] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[21] L. Yan and N. McKeown, “Learning Networking by Reproducing
Research Results,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 2,
p. 19–26, May 2017.

[22] “Containerlab,” https://containerlab.dev/, Jul. 2025.

[23] “FRRouting Project,” https://frrouting.org/, Jul. 2025.

[24] “Containernet,” https://containernet.github.io/, Jul. 2025.

[25] “Kubernetes Network Emulation,” https://github.com/openconfig/kne/,
Jul. 2025.

[26] D. Weber and J. Fischer, “Process-Based Simulation with Stackless
Coroutines,” in Proc. 12th System Analysis and Modelling Conference.
ACM, 2020, p. 84–93.

[27] N. Matsakis, “Async-await on Stable Rust! ,” https://blog.rust-lang.org/
2019/11/07/Async-await-stable.html, Nov. 2019.

[28] Tokio, “Tokio: Build Reliable Network Applications without Compro-
mising Speed.” https://tokio.rs/, Jan. 2024.

[29] S. Klabnik, C. Nichols, C. Krycho, and Rust Community, “Fearless
Concurrency,” https://doc.rust-lang.org/book/ch16-00-concurrency.html,
Jul. 2025.

[30] B. Lantz, “Bad TCP SYN packets generated on veth interfaces in Ubuntu
16.04,” https://github.com/mininet/mininet/issues/653, Aug. 2016.

[31] I. Fette and A. Melnikov, “The WebSocket Protocol,” Tech. Rep., 2011.
[32] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[33] A. Ryhl, “Actors with Tokio,” https://ryhl.io/blog/actors-with-tokio/,
Feb. 2021.

[34] J. Lamping and E. Veach, “A Fast, Minimal Memory, Consistent Hash
Algorithm,” 2014. [Online]. Available: http://arxiv.org/abs/1406.2294

[35] M. Krasnyansky, M. Yevmenkin, and F. Thiel, “Universal TUN/TAP
device driver,” https://docs.kernel.org/networking/tuntap.html, Jul. 2025.

[36] “Segmentation Offloads,” https://docs.kernel.org/networking/
segmentation-offloads.html, Jul. 2025.

[37] M. Majkowski, “SOCKMAP - TCP splicing of the future,” https://blog.
cloudflare.com/sockmap-tcp-splicing-of-the-future/, Feb. 2019.


