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Abstract—As large language models are trained on datacenters
with tens of thousands of compute nodes and are quickly
becoming parts of our daily routines, the need for a flexible,
easy-to-use, and high-performance research testbed for emulating
and experimenting with new network protocols has become
more pressing and relevant than ever. Conventional packet-level
simulators are, by their nature of discrete-event simulation, not
scalable enough; yet traditional network emulation testbeds,
such as Mininet, are also showing their age with respect to
the flexibility of implementing new algorithms, ability to run
arbitrary application workloads, scalability to a large number
of nodes, as well as the freedom of expanding beyond a single
cluster to span multiple geographically distributed regions.

In this paper, we present Nextmini, a modern, next-generation,
high-performance networking research testbed for network em-
ulation and experimentation. Implemented in Rust, it is designed
from scratch to be as flexible as possible, accommodating a
wider array of resource scheduling algorithms. It supports
running arbitrary workloads — such as distributed machine
learning training workloads — directly on the emulated network.
Its design strikes an excellent balance between flexibility and
performance, supporting both performant user-space emulation
for maximum flexibility, as well as much higher kernel-level
performance when users need such a performance boost. It is
scalable to a larger number of nodes with ease in the same cluster,
and can be easily expanded to span multiple geographically
distributed datacenters. We conducted an extensive array of
experiments to evaluate Nextmini’s tent-pole features, and to
compare it with Mininet. Our results show both Nextmini’s raw
power and its abundance of flexibility.

I. INTRODUCTION

With the prevalence of large-scale application workloads,
such as distributed training of large language models [1],
[2], it is increasingly important to design, implement, and
experiment with new network protocols and resource alloca-
tion mechanisms at scale [3], [4]. Indeed, there is a pressing
need for an experimental platform that serves as a playground
for evaluating new ideas in networking research over both
emulated and real-world networks, often spanning multiple
geographically distributed regions.

We argue that such a pressing demand for a new experi-
mental testbed cannot be satisfied by conventional discrete-
event network simulators over the past four decades (e.g.,
[51, [6]). The upshot of discrete-event simulations is that they
provide packet-level granularity when it comes to reproducible
experiments, but they are also well known to be lacking
on scalability: it may take hours, sometimes even days, to
simulate a second of real-world traffic as the network scales up
and the volume of events that need to be processed explodes.

In addition, network simulators also lack realism: the protocols
they offer to simulate may not be exact replicas of their
counterparts in a modern Linux kernel.

But what about conventional network emulation testbeds,
such as Mininet [7]? Designed more than a decade ago,
Mininet took advantage of some of the best technologies of
its time: by placing host processes in network namespaces and
connecting them with virtual Ethernet (veth) pairs, it supports
setting up virtual networks of arbitrary topologies, without
resorting to heavyweight OS virtualization alternatives, such as
virtual machines. With a command-line interface and a Python
API supported, Mininet’s foundation is the software-defined
networking architecture, where an OpenFlow controller is in
charge of making control-plane decisions, and Open vSwitch
[8] acts as a software switch in the Linux kernel to implement
these decisions in the dataplane. A SIGCOMM Test of Time
Award winner, Mininet’s design is simple and elegant, while
offering the best possible network performance.

That said, Mininet, along with its derivatives over the
past decade, may already be showing its age. Since Mininet
was introduced, Docker containers became the norm and the
foundation for modern cloud computing. Similar to Mininet,
these containers virtualize network namespaces; but different
from Mininet, they also allow arbitrary workloads to run with
minimal OS overhead. Though Docker containers may not be
as lightweight as virtualizing network namespaces only, they
are far lighter than virtual machines. As an even more enticing
characteristic, modern container orchestration technologies —
such as Docker swarm [9] and Kubernetes [10] — can be used
to deploy a large number of containers across an entire cluster.
These technologies may substantially simplify the deployment
of a container-based emulation testbed in a large cluster, as
compared to custom-tailored distributed solutions based on
Mininet [11], [12].

Beyond the ubiquity of Docker containers, a new technolog-
ical innovation has also emerged as the de facto standard of
high-performance networked systems, such as web services,
in the user space: asynchronous network programming with
coroutines. A coroutine is a lightweight thread of execution:
they are similar to OS kernel threads, can be suspended
at predefined points of execution, and resumed to a state
that they left off before suspension. Yet, with coroutines, a
context switch has much less overhead — equivalent to a
regular function call. Contemporary programming languages,
such as Go [13] and Rust, support coroutines natively. With
coroutines, network events can be processed asynchronously



and concurrently by thousands of coroutines, allowing for
much more performant and battle-tested user-space networking
frameworks, and making high-performance user-space net-
working a reality.

More than a decade since Mininet was designed, with the
advent of modern technologies such as Docker containers,
container orchestration, and asynchronous networking with
coroutines, and driven by the pressing need for running
distributed application workloads, we believe that it is the
right time to revisit the spectrum of design choices that should
power a modern network research testbed. While we are fans
of Mininet’s core design principles and its performance, we
advocate for a new architectural design — from the ground up
— to support better flexibility of evaluating new algorithms,
the ability to run arbitrary application workloads, better scala-
bility to a larger number of nodes across multiple physical or
virtual machines, as well as the freedom of expanding beyond
a single datacenter to span multiple geographically distributed
regions.

In this paper, we introduce Nextmini, a thoroughly modern
networking research testbed for evaluating new network pro-
tocols and resource scheduling algorithms under real-world
application workloads. Nextmini inherits Mininet’s fundamen-
tal design philosophy: its foundation is a software-defined
networking architecture, where actions taken by all dataplane
nodes are governed by a dedicated controller. Yet, despite
its name, Nextmini makes several decidedly different design
choices from Mininet:

& Nextmini focuses on a user-space design, without rely-
ing on technologies within the Linux kernel, such as
eBPF [14] and kernel modules. To maximize perfor-
mance, Nextmini’s user-space design takes full advan-
tage of asynchronous network programming, stackless
coroutines, and the Rust programming language. A major
advantage of such a user-space design is its flexibility: it
becomes much more straightforward to implement and
evaluate new and complex traffic engineering or resource
scheduling strategies, such as packet dropping, scheduling
disciplines, traffic shapers and policers, as well as multi-
path routing protocols.

¢ In situations where the packet forwarding performance is
of utmost importance and a user-space design becomes
a performance bottleneck, Nextmini also supports a high-
performance operating mode, which we simply refer to as
the max mode. In its max mode, Nextmini trades off some
flexibility to support performance approaching kernel-
level packet forwarding, using the splice system call
in the Linux kernel.

¢ To run arbitrary application workloads without modifica-
tions — such as distributed training of machine learning
(ML) models — Nextmini is able to establish and expose
a virtual network to an application via TUN interfaces.
Used by virtual private networks (VPNs), a TUN interface
is a virtual network device that operates at the network
layer, allowing applications to send and receive network
traffic obliviously, without knowledge of the underlying
network topology.

¢ To scale up to a larger number of nodes in its data-
plane, Nextmini takes a two-pronged approach. Similar
to Mininet, it supports virtualizing only the network
namespaces, and connecting nodes using virtual Ethernet
(veth) pairs. This allows for a maximum degree of
scalability on a single machine. Yet, to span multiple
machines in the same datacenter — as well as multiple
geographically distributed datacenters around the world
— Nextmini also supports the deployment of dataplane
nodes using Docker containers and Docker swarm [9], a
modern container orchestration technology.

With respect to Nextmini’s implementation, one original and
unique design choice stands out and is worth highlighting.
Nextmini uses a simple yet elegant actor model [15], [16],
where each actor maintains its private states and can only
affect each other indirectly through message passing. Such
a design choice minimizes data locking due to concurrency,
which helps avoid a wide array of potential concurrency bugs
in Nextmini’s implementation.

Needless to say, we have devoted much of our attention
to evaluating Nextmini’s flexibility, scalability, and above
all, performance. Where applicable, we have compared the
performance of Nextmini with Mininet, and when operating
in the high-performance max mode, both exhibit excellent
packet forwarding performance on a single physical machine,
reaching 132 Gbps over two hops. Given its user-space design
without the need of any kernel modules, we are pleasantly
surprised by the raw performance that Nextmini is able to
achieve. With respect to scalability, we show that in Nextmini’s
lightweight namespace mode, the memory footprint is only
around 4.5 MB per dataplane node, allowing us to launch up
to 10,000 nodes on a single physical machine. Last but not the
least, we have also conducted a wide array of experiments to
showcase Nextmini’s capabilities, including its support for dis-
tributed ML training across multiple geographically distributed
datacenters.

II. NETWORK EMULATION: STATE OF THE UNION

Over the past four decades, the reproducibility of net-
working research is, in general, realized with any of three
alternative strategies: discrete-event network simulators, net-
work emulation environments, and real-world experimental
testbeds. On one extreme of the spectrum between control and
realism, discrete-event network simulation (DES) frameworks,
such as ns-3 [5], offer fine-granularity control and the best
reproducibility: with a fixed random seed, an entire simulation
can be repeated without variations. On the opposite end of the
spectrum, real-world experimental testbeds, such as PlanetLab
[17], support the deployment of overlay network protocols
over hundreds of servers that are geographically distributed
globally. It offers the best realism, as wide-area networks
provide the underlying foundation for real-world network
experiments.

Striking a balance between these two extremes, it has been
widely accepted that network emulation testbeds, dating back
to Emulab and Netbed [18] more than two decades ago,
are also indispensable for reproducible networking research.



Sacrificing some of the fine-granularity control from discrete-
event simulators, a network emulation testbed is inherently
designed to offer better scalability: as there is no need to
process discrete events in their timestamp order sequentially,
an emulated system makes progress in real-time regardless
of scale. In addition, an emulated system subjects real-world
applications, network protocols, and operating system kernels
to controlled and synthetic network topologies, and as a result
offers much better realism than discrete-event simulations.

Mininet. The epitome of such emulation environments over
the past decade is Mininet [7] (officially called Mininet-
Hifi, a high-fidelity release of the original Mininet). Dubbed
network in a laptop [19], Mininet was initially conceived
and implemented to emulate an entire virtual network in a
single physical machine. To build a virtual network among OS
processes, Mininet utilizes the capability of the Linux kernel
to assign virtualized network namespaces to each OS process,
and to connect them with virtual Ethernet (veth) pairs.

The architectural foundation of Mininet is software-defined
networking (SDN) [20], where concerns in the control plane,
such as routing algorithms, are separated from the data for-
warding plane, where packets are processed. With SDN, it
becomes feasible to add new features to the controller without
modifying the packet-forwarding switches. By using the Open
vSwitch [8] as a kernel module and forwarding packets
entirely within the kernel, it also offers stellar performance.
Completing the package with an extensible command-line
interface (CLI) and a Python API, Mininet offers a simple yet
highly customizable platform for creating emulated networks
with the best possible performance. It has been widely used
[21] and extended to multiple machines in a cluster [11] over
the past decade.

Recent network emulators. In the decade after Mininet
was released, several of its derivatives have been proposed,
using similar container-based emulation strategies. Container-
lab [22], as an excellent example, is an actively maintained,
open-source network emulator that provides a custom-tailored
container orchestration tool to organize multiple containers
into a virtual network topology, supporting many custom
network OS images such as the Free Range Routing (FRR)
router [23]. Containernet [24], on the other hand, is a fork
of Mininet that allows the use of Docker containers as hosts
in emulated network topologies. As another recent example,
Kubernetes Network Emulation [25] is a network emulator
that is designed to extend basic Kubernetes [10] networking
to support virtual connections between nodes in an arbitrary
network topology. All of these recent network emulators are
designed to use Docker containers as the foundation, and
to organize them into virtual network topologies. Nextmini
shares such a design philosophy and can be used with Docker
containers; but as we shall elaborate, comes with a twist that
focuses solely on user-space packet forwarding, eliminating
the complexity that comes with custom network OS kernels.

IIT. NEXTMINI: TECHNOLOGICAL FOUNDATION

Mininet’s heritage. As fans of Mininet’s simplicity and
elegance, we conceive Nextmini to inherit much of Mininet’s

excellent design. To begin with, both Nextmini and Mininet are
built on the widely recognized principles of software-defined
networking [20], such that control-plane policies (e.g., routing
protocols) and dataplane packet-forwarding mechanisms (e.g.,
packet scheduling disciplines) are cleanly separated. To max-
imize the flexibility of implementing a wide array of resource
allocation and routing algorithms, Nextmini incorporates a
custom-tailored controller design, without adhering to the
OpenFlow standard.

As another heritage from Mininet, Nextmini is built upon
container-based emulation. Just like Mininet, we support
virtualizing network namespaces only and connecting nodes
using veth pairs. By assigning different network namespaces
to OS processes, our design maximizes scalability, with respect
to the number of dataplane nodes to be accommodated on a
single physical or virtual machine. In addition, just like more
recent network emulators such as Containerlab [22], Nextmini
comes with first-class support for Docker containers, a de
facto standard in modern cloud computing. By providing such
support from the ground up by design, Nextmini offers two
key advantages over Mininet: @ Users can tap into a variety
of modern container orchestration tools — such as Docker
compose, Docker swarm [9], and Kubernetes [10] — to deploy
these containers on the same machine, across multiple ma-
chines in the same cluster, or even across datacenters that span
geographically distributed regions. @ Arbitrary application
workloads — including distributed training of ML models
— can be executed within these Docker containers without
any modifications. As Docker containers incur much less
runtime overhead compared to virtual machines, it may even
be recommended to run these applications in a Dockerized
environment.

Asynchronous networking with coroutines in Rust. Con-
ventionally, the abstraction of concurrency in modern oper-
ating systems is achieved via kernel threads, which provides
a lightweight mechanism of realizing concurrency compared
to traditional OS processes. In the recent decade, however,
asynchronous programming becomes the norm, supported by
stack-based coroutines. With stack-based coroutines (e.g., in
the Go programming language), a context switch between
different coroutines becomes similar to regular function calls,
and incurs much less runtime overhead than kernel threads.
However, stack-based coroutines may still be less efficient due
to the presence of the local call stack, which can be further
optimized by implementing coroutines without using stacks at
all, in which case runtime overhead would “vanish entirely,”
as proclaimed by Weber et al. [26]. With such stackless
coroutines, local data is stored as fields in an active instance
of the coroutine, rather than in a stack frame. Suspending
execution in a stackless coroutine is, therefore, mapped to
an ordinary return statement, and a context switch becomes
precisely as fast as a function call.

Though stackless coroutines sound appealing at the high
level, it is too challenging to implement them manually. One
example of these challenges is that fields and the program
counter in the coroutine instance need to be captured in its
own structure, rather than the call stack. In addition, a runtime
executor needs to become an overarching driving force that



calls the next ready coroutine as soon as some progress can
be made. Such an executor is akin to a thread scheduler, but
with much less context-switching overhead as no per-thread
stack is involved.

The good news is that stackless coroutines are officially
supported by Rust since async/await entered Rust 1.39 in
2019 [27], when the Rust compiler natively supported captur-
ing local fields and the program counter in a special struct
called Future, and runtime executors are provided by third-
party libraries. One of the most widely used runtime executors
is tokio [28], which implements, by default, a multi-threaded
executor: each CPU core corresponds to a kernel thread,
and each kernel thread executes a large number of stackless
coroutines, called rasks, concurrently. Each task requires only
an allocation of 64 bytes to maintain, and tasks are managed
by tokio in the user space. The combination of Rust’s native
support for stackless coroutines and runtime executors such
as tokio offers drastically improved networking performance,
and has quickly become the foundation of production web
services.

IV. NEXTMINI: DESIGN AND IMPLEMENTATION
A. Kernel vs. User Space: The Queen’s Gambit

We started with an overarching design philosophy when
Nextmini was initially conceived: we wished to take full ad-
vantage of modern advances in concurrent programming, with
the powerful combination of multi-threaded runtime executors,
stackless coroutines, and fearless concurrency [29] offered by
Rust, and to implement the dataplane entirely in the user
space. This is a substantial deviation from Mininet, where
packet forwarding is conducted in the kernel with OpenFlow
switches!, such as the Open vSwitch [8]. Switching from a
(predominantly) kernel-space design to the user space will —
without doubt and by a substantial margin — degrade packet-
forwarding performance. Yet, on the flip side of the coin,
implementing Nextmini in the user space intuitively offers
the best possible flexibility of emulating user-space flows,
and designing new traffic engineering and resource scheduling
algorithms. When extreme performance is needed, our design
trades off some flexibility so that Nextmini’s packet-forwarding
performance can ideally reach around the same level as — or
only slightly inferior to — kernel-space packet processing.

As we implement such an overarching design philosophy,
we are also strong believers in the importance of making
the best possible design choices in complex systems. Before
even the first line of code is written, we have several design
objectives in mind: @ Simplicity. Mininet was designed to be
simple to use: a virtual network experiment can be established
and run using CLI or Python scripts. With Nextmini’s design,
we aim to be even simpler for the users: in most cases, one
only needs to supply a configuration file. @ Separation of
concerns. Though hard to define and quantify, we wish to
separate the concerns shared by various components in our

'While Mininet also supports user-space OpenFlow switches, their perfor-
mance is so far below expectations that they are practically unusable [30],
offering around three orders of magnitude lower throughput than kernel
switches.
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design as much as possible. This is inspired by the design
philosophy of software-defined networking, which Nextmini
follows as well. @ Flexibility of supporting arbitrary work-
loads with Docker. We aim to utilize Docker containers and
Docker orchestration technologies to their full potential: with
Docker containers, we can run arbitrary application workloads
in our emulation testbed; and with Docker orchestration, we
can easily span multiple physical machines in the same cluster,
or even multiple virtual machines that are geographically
distributed globally.

B. Architectural Design: Openings

Fig. 1 illustrates a birds-eye view of Nextmini’s architectural
design, inspired by some of the same design decisions in
Mininet. Applying the same philosophy of software-defined
networking, Nextmini’s controller is designed and built as a
high-performance web server, communicating with dataplane
nodes using the industry-standard WebSocket protocol [31],
capable of bidirectional communication. To support the max-
imum degree of flexibility when it comes to accommodating
new data types to be transmitted between Nextmini’s controller
and dataplane nodes, we opt to deviate from the OpenFlow
protocol [32], and to allow messages of arbitrary data types
to be efficiently packed into binary form, and then exchanged
on these bidirectional connections.

The dataplane nodes are implemented in the user space, and
typically executed within Docker containers. Each node pro-
vides a virtual TUN network interface that allows for arbitrary
distributed application workloads to run without modifications,
an important feature not provided by Mininet. In addition,
upon receiving requests from the controller, dataplane nodes
can also initiate independent user-space TCP flows, which
can be processed and forwarded concurrently, along with
application traffic from TUN network interfaces. Clients and
servers of these TCP flows are launched and completed on-
demand, entirely in the user space within Nextmini’s dataplane
implementation.

Network topologies are also implemented in the user space,
with persistent TCP or QUIC connections connecting dat-
aplane nodes. This is a drastically different design choice
compared to Mininet, where topologies are determined at
the IP layer. Nextmini’s user-space topologies provide the
maximum flexibility: such topologies can even span across
geographically distributed datacenters, and serve as a valuable
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experimental testbed for real-world networking protocols at the
application layer, beyond conventional network emulation.

C. Control Plane: Exchanges

A Rust-powered asynchronous web server. A single
centralized controller serves as the “brain” and a focal point
in Nextmini’s design. It is far more capable and flexible
than a conventional OpenFlow controller in software-defined
networking: sophisticated traffic engineering and network re-
source optimization algorithms can be implemented in the
control plane, based on real-time performance monitoring
from all dataplane nodes. Such flexibility is made feasible
by exchanging control messages with dataplane nodes in
two-way communication channels, implemented as persistent
WebSocket connections. To maximize the performance of
establishing a large number of such connections and of sus-
taining substantial aggregate throughput between the control
and data plane, we choose to implement the controller entirely
in asynchronous Rust with the tokio runtime.

PostgreSQL database and real-time triggers. Following
the norm of designing modern web servers for production,
the controller stores all its states — including configurations,
routing policies, topologies, link rates, as well as perfor-
mance metrics reported by the dataplane — in a PostgreSQL
database, a state-of-the-art database engine.

A core responsibility of the controller is to analyze vari-
ations in performance metrics that dataplane nodes report in
real-time, and make potential updates to the routing, traffic
shaping, and scheduling policies in response to these varia-
tions. In Nextmini, control-plane decisions are programmat-
ically made at runtime by running simple Python scripts,
making it straightforward for users to implement new algo-
rithms. These Python-scripted control-plane algorithms depend
on real-time subscriptions to insertions and updates in the Post-
greSQL database, called triggers, which are special kinds of
stored procedures that automatically fire when certain events,
such as INSERT and UPDATE, occur on a database table. As an
example, whenever a measured throughput value is received by
the controller, a corresponding database table will be updated,
and control-plane algorithms will be notified in real-time to
make their resource scheduling or routing decisions.

Since the database is shared between the Rust-powered
controller and control-plane algorithms, the controller can also

respond, in real-time, to triggers whenever the database is
updated. This becomes useful when a control-plane algorithm
makes a decision, such as an update to the routing policy.
The algorithm simply needs to update the database, which
triggers the controller to promptly send control messages
to relevant nodes in the dataplane, installing or modifying
pertinent routes. The logical assumption that all updates to the
database will be implemented in real-time reflects a separation
of concerns: the algorithm only needs to interact with the
database as an intermediary, and is not tightly coupled with
the controller itself.

D. Data Plane: Fork

Actor model. As we alluded, one unique design choice
stands out and is worth highlighting: Nextmini uses the actor
model [15], [16] throughout its dataplane design. As a conven-
tional mechanism of communicating between threads, sharing
memory is widely known to be questionable. Synchronization
and locking mechanisms, such as semaphores and mutual
exclusion locks, must be used to prevent data races and
deadlocks when multiple threads write to a shared variable. As
challenges of ensuring thread safety made concurrent software
development more complex and error-prone, message passing
has again been promoted with the acfor model, where threads
avoid sharing any states and interact by passing messages only
using channels. As the tokio runtime in Rust supports high-
performance broadcast and multi-producer single-consumer
(MPSC) channels between tasks (a.k.a. stackless coroutines),
it is very well suited for the actor model [33], where each
actor is implemented as one or several tasks and spawned by
its handle upon its initialization. As Fig. 2(a) illustrates, actors
interact with each other by calling methods in their respective
handles, implemented by sending messages to each other via
MPSC channels.

Design: a first cut. Using the actor model, the starting
point in each dataplane node revolves around the processor
actor, which is responsible for forwarding inbound packets to
next-hop destinations using a routing table. As illustrated in
Fig. 3(a), upstream and downstream actors interact with the
processor by passing messages on MPSC channels.

Two possible upstream actors may feed packets into the pro-
cessor: @ the local interface reader, which receives packets
from the application via the local TUN interface; and @ the
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network interface, which establishes and maintains TCP or
QUIC connections with other dataplane nodes, as requested
by the controller according to the network topology. Packets
received from upstream nodes via these connections will be
sent to the processor.

Correspondingly, two potential downstream actors may han-
dle packets from the processor. @ the local interface writer,
which sends packets destined to the local host to the applica-
tion, again via the local TUN interface; and @ the scheduler,
which queues outbound packets and schedules them according
to a scheduling discipline (with First-Come-First-Served and
Weighted Round Robin supported by Nextmini). The scheduler
also incorporates packet dropping mechanisms (7ail Drop and
Random Early Detection), traffic shapers (Token Bucket), and
rate limiters. Ultimately, it sends outbound packets to the
network interface actor, which is in charge of sending them
out on the persistent TCP or QUIC connection it manages.

As multiple flows are routed through the processor, it
becomes crucial to spawn multiple independent tasks, each
maintaining its own local copy of the routing table and
processing its own share of flows. There are two modes
of mapping inbound flows to processor tasks: concurrent
or sequential. With concurrent mapping, each packet in an
inbound flow can be processed by any processor, which can be
implemented efficiently by a multi-producer multi-consumer
(MPMC) channel between the upstream actors and processor
tasks. With sequential mapping, in contrast, each flow is
mapped to only one processor, using a consistent hash function
(such as the jump hash algorithm [34]).

As we observe in Fig. 4, under sequential mapping,
controller-assigned lossless flows achieve substantially higher
aggregate throughput than smoltcp flows. Interestingly,
adding more processor tasks does not necessarily increase
throughput, and throughput even degrades as the number of
flows increases, suggesting that the performance bottleneck
may not be related to packet processing capacity. We shall
elaborate on this further in this paper when we seek to
maximize performance.

The controller interface actor is responsible for interacting
with the controller via a persistent WebSocket connection, and
upon receiving updated routing policies from the controller, it
broadcasts these updates to all processor tasks via a broadcast
channel. On the reverse path, the network interface sends
its live performance measurements to the controller reporter,
which computes the metrics necessary to be sent to the
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Fig. 4: The total aggregate throughput across all flows as
the number of processors scales up for controller-assigned
smoltcp and lossless synthetic flows.

controller.

Routing tables in the processor are designed to allow the
maximum flexibility in making routing decisions. Each flow,
defined by its flow identifier — a 4-tuple involving the
source and destination addresses and port numbers — can
be forwarded on its own route (which remains fixed once
selected). Different flows with the same source and destination
addresses can be forwarded on different routes, allowing multi-
path routing. To accommodate such levels of flexibility, two
hashmap lookups are required: the first maps a flow identifier
to its route, and the second maps the route to the next-hop
destination.

“Doubled pawns”. Beyond application traffic via the TUN
interface, users often require synthetic flows to be generated,
much as in discrete-event network simulators. Such synthetic
flows can, of course, be generated by benchmark applications
such as iperf, but it is much simpler — and more scalable
— to declare them in the controller configuration and have
Nextmini generate them automatically. To this end, Nextmini
supports two types of synthetic flows, our “doubled pawns”:
@ smoltcp flows, which run a full user-space TCP/IP stack;
and @ lossless flows, which use a lightweight session protocol
atop the existing TCP/QUIC overlay.

To shoehorn smoltcp into Nextmini’s dataplane is a non-
trivial exercise, since it is not designed to operate behind a
virtual network acting as a de facto “proxy” between its clients
and servers. Once integrated, smoltcp flows enjoy full TCP
semantics — connection handshakes, congestion control, and
retransmissions.

As a sweetener to this recipe, lossless flows take a decidedly
leaner approach. Since the persistent TCP/QUIC overlay links
already provide reliability, ordering, and congestion control,
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Fig. 5: User-space flows using lossless and smoltcp vs. the
TUN interface: achievable throughput.

Nextmini introduces no additional TCP stack; instead, loss-
less flows use a minimal sliding-window session protocol:
the sender streams fixed-size chunks and the receiver emits
cumulative acknowledgements to ensure deterministic transfer
completion. Losslessness follows from propagating backpres-
sure through the user-space pipeline: when a downstream hop
slows, upstream senders naturally throttle via transport-level
flow control, avoiding packet drops in the dataplane while
still allowing Nextmini to enforce per-flow shaping. As Fig. 5
illustrates, lossless flows reach nearly 12 Gbps for paths up to
10 hops on an Intel i7-13700K desktop (Intel), roughly twice
the throughput of smoltcp flows. smoltcp flows themselves
outperform the TUN interface for shorter paths, and are no
worse for longer paths.

Arbitrary application workloads with Docker. A high-
light in Nextmini’s design is its flexibility: due to its user-space
design, it natively supports execution within Docker contain-
ers, and exposes a TUN interface for distributed applications
to run without changes. As we show in Fig. 3(b), with a single
docker compose command, multiple dataplane nodes can be
started in seconds within the same virtual or physical machine,
without the need for Mininet’s proprietary CLI. With modern
container orchestration technologies such as Docker swarm or
Kubernetes, it is also straightforward to scale to multiple VMs
in the same datacenter, or across multiple datacenters that are
globally distributed. Regardless of where a dataplane node is
situated, they connect with each other in a virtual topology via
persistent TCP or QUIC connections. In this sense, Nextmini’s
design punches above its weight: it is a network emulation
testbed, but can serve as a real-world network testbed as well,
running applications in a geographically distributed fashion.

E. Performance and Scalability: End Game

While our first-cut design emphasized flexibility, the Rust-
powered tokio asynchronous runtime, used routinely in pro-
duction web services, has already offered solid user-space
performance. In addition, Docker containers are also widely
known to be lightweight, offering an excellent memory foot-
print and scalability. But our objectives are more ambitious:
we wish to offer extreme levels of scalability and performance,
ideally approaching kernel-space solutions in Mininet.

Maximizing performance in the user space. To maximize
the performance of Nextmini’s dataplane, we painstakingly
revisit every design choice and implementation detail —

from thread-safe MPMC queues to production-quality QUIC
frameworks — leaving no stone unturned. Two noteworthy
examples stand out as highlights.

First, to maximize the throughput of application traffic via
the TUN interface, we take full advantage of (a) multi-queue
support since Linux kernel 3.8 [35], which uses multiple file
descriptors to parallelize reading and writing when multiple
flows co-exist; and (b) TCP Segmentation Offload (TSO),
which improves throughput by offloading the segmentation of
large TCP packets to the network interface card, reducing CPU
overhead and allowing more efficient data transmission [36].
By supporting both multi-queue and TSO, experiments using
Docker containers in the Intel desktop and a MacBook Pro
M3 Pro notebook (M3) show that throughput improves from
5.3 to 6.9 Gbps, corresponding to an improvement of up to
1.3%, as illustrated in Fig. 6(a).

Second, to maximize the overall packet-forwarding perfor-
mance, we also fine-tuned how actors process inbound packets
throughout the dataplane design. Rather than processing pack-
ets one by one in each actor task, every time a task resumes
execution, we make non-blocking calls — try_recv() — to
process all outstanding packets queued in an inbound channel
in a batch, as illustrated in Fig. 2(b). When applied to all actor
tasks and coupled with vectored I/O support in tokio when
sending to network connections, we show our experimental
results on our Intel desktop in Fig. 6(b): batching improves
throughput by up to 186%, and reaching a throughput of 3.9
Gbps for a single flow on the Intel desktop.

Bypassing the user space with splice system calls. As
we target extreme levels of packet-forwarding performance,
we refactored the dataplane to support two different operating
modes: normal and max. In normal mode, packets are pro-
cessed and forwarded entirely in the user space to maximize
the flexibility of implementing new algorithms, with routing
policies governed by the controller, and with a repertoire of
scheduling, packet dropping, and traffic shaping disciplines. In
contrast, in the max mode that seeks to maximize performance,
packets are directly forwarded to the next hop by “connecting”
two TCP connections in the Linux kernel, using the splice
syscall. As we illustrate in Fig. 2(c), the splice syscall is
designed to move data between two file descriptors without
copying between kernel and user address spaces. By setting
up a pipe within the kernel space, two splice syscalls
can be made to connect two TCP connections via such a
pipe, eliminating context switching all together during packet
forwarding.

But how does such a TCP splicing strategy perform?
Cloudflare studied the performance of using splice syscalls,
and made the surprising observation that TCP splicing out-
performed the use of eBPF and SOCKMAP [37], known for
kernel-level performance. Inspired, we conducted our own
experiments and our results are shown in Fig. 6(c). It is
evident that extreme levels of performance can be achieved
using TCP splicing: on our consumer-grade M3 notebook,
132.1 Gbps can be achieved with two hops only, which even
slightly outperformed Mininet with kernel packet switches.
With more hops on the path, TCP splicing offers slightly
lower throughput than Mininet, with the exception of cases
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Fig. 6: Towards maximizing Nextmini’s performance: several noteworthy highlights.

where more than 16 hops are involved — the default Mininet
switch supports a maximum of 16 hops only. As we ex-
pected, operating in the max mode with TCP splicing offers
performance improvements by an order of magnitude, but
trades off some flexibility: as two TCP connections must be
“connected” within the kernel, our repertoire of scheduling,
packet dropping, and traffic shaping disciplines is no longer
applicable. To mitigate the negative impact of such a tradeoff,
our design allows normal-mode and max-mode flows to co-
exist in the dataplane.

Supporting the max mode in Nextmini brought us an in-
triguing inspiration: can we support real-world external TCP
traffic, in addition to application workloads and synthetic user-
space flows? As an encore to our end game on performance,
we turned the Nextmini dataplane into a SOCKS5 proxy server:
any real-world distributed application — such as a web client
and server — can send its traffic through Nextmini’s dataplane,
by obliviously treating it as any other SOCKS5 proxy. When
coupled with the max mode, we are no longer bound by the
achievable throughput of a TUN interface, and can achieve
well north of 100 Gbps in throughput. In fact, this is how we
conducted our benchmarking experiments in Fig. 6(c).

Maximizing scalability on a single physical machine.
Mininet was originally conceived to work as a “network in
a laptop” [19], which offered outstanding convenience and
usability. It also achieves excellent scalability by virtualizing
network namespaces only, rather than virtualizing all re-
sources, including CPU cores (cgroups) and storage volumes
(chroot), as in the case of using Docker containers. The use
of container orchestration tools, such as the docker compose
command, is convenient on a single machine, but not necessar-
ily scalable with respect to the memory footprint it takes to run
all the containers concurrently. To inherit Mininet’s excellent
design on single-machine scalability, we have implemented the
support for virtualizing network namespaces only in Nextmini
as an alternative to its users. Similar to Mininet, in such a
namespace mode — shown in Fig. 3(b) — Nextmini creates
isolated network namespaces for each dataplane node (running
in its own process), as well as a network bridge and virtual
Ethernet (veth) pairs to enable communication between these
namespaces.

To evaluate the scalability of operating in such a namespace
mode, we conducted a series of experiments on our Intel
desktop with both Mininet and Nextmini, measuring achiev-
able throughput between a curl web client and a Python-
powered web server, while varying the number of hops on
the path in between. From the perspective of throughput, as
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Fig. 8: Total memory footprint, per-node memory, and startup
time as we scale up the number of dataplane nodes in
Nextmini’s namespace mode.

we show in Fig. 7, both Mininet and Nextmini achieved very
similar throughput of around 12 Gbps, and no performance
degradation occurred as we scale up the number of hops on
the path. However, much to Nextmini’s advantage, Mininet’s
default kernel-space packet switch can only support up to 16
hops, whereas Nextmini can scale all the way up to 40 hops
without performance degradation.

From the perspective of the memory footprint and initializa-
tion time, we show in Fig. 8 that, much to our surprise, both
scale predictably as the number of dataplane nodes increases in
Nextmini’s namespace mode. These results are obtained on a
dual-socket server with two AMD EPYC 9554 processors (64
cores / 128 threads each). Total memory scales linearly, while
the per-node footprint remains nearly constant between 4.2
and 4.7 MB. As a result, a single machine can accommodate
up to 10,000 namespace-based nodes with less than 45 GB
of memory. Startup time also grows roughly linearly, taking
166 s for 1,000 nodes and 3,332 s for 10,000 nodes (about
0.33 s per node), offering a practical single-command way to
construct very large topologies on one machine.

V. DEPLOYING NEXTMINI IN PRACTICE

Thus far, we have evaluated several design highlights in
Nextmini, predominantly in the same physical machine. In
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Fig. 10: Deploying Nextmini using Docker swarm across 5
VMs in the same cluster.

practice, however, thanks to its use of Docker containers and
container orchestration such as Docker swarm, Nextmini can
be deployed, without much fanfare, across multiple physical
or virtual machines in the same datacenter, or even across
multiple geographically distributed datacenters. Fig. 9, for
example, shows a live deployment of Nextmini using Docker
swarm across four datacenters around the world, as well as the
achievable throughput between these datacenters, as measured
live.

Deploying Nextmini across VMs in the same datacenter.
The most straightforward way of deploying Nextmini across
multiple VMs in a datacenter is to use Docker swarm, a part of
the Docker engine. A swarm cluster can easily be constructed
by assigning one VM as the swarm manager, and additional
VMs as worker nodes. An immediate benefit of initializing
a swarm cluster is that it supports multi-host networking,
which implies that an overlay network is constructed across all
containers in the swarm, and the swarm manager automatically
assigns private IP addresses to containers on the network. This
eliminates the need for Nextmini to manually configure these
addresses for a large number of nodes.

Fig. 10 shows our measurement results of running a series of
experiments with an increasing number of dataplane nodes —
from 20 up to 100 — across a cluster of 5 VMs, each with 16
CPU cores, in a datacenter located in Victoria, BC. Quite sur-
prisingly, it takes less than 10 seconds to start all these nodes
using Docker swarm. As expected, the throughput achieved in
a simple chain topology involving all the nodes degrades as the
number of nodes in the topology increases. Similar throughput
can be achieved whether traffic comes from the TUN interface
or synthetic user-space TCP flows, showing that the inter-VM
bandwidth has been the performance bottleneck.

Deploying Nextmini across geographically distributed
datacenters. Thanks to Nextmini’s user-space design and the
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Fig. 11: Running a simple distributed machine learning work-
load in Nextmini, using a Docker swarm across 4 datacenters.

power of Docker swarm for container orchestration, it is
straightforward to deploy Nextmini across multiple datacenters
that are globally distributed, as we have shown in Fig. 9, with
an overlay topology consisting of persistent TCP or QUIC
connections. As each dataplane node exposes a TUN interface
that supports arbitrary application workloads, distributed appli-
cations can run without any changes using the virtual network
that Nextmini exposes, as if it is just a private network within
the same cluster.

To show evidence that this is the case, we borrowed a
simple Python example on training deep learning models
with distributed data parallelism from the PyTorch tutorial,
without any modifications to the script. We then executed the
script directly within the Docker containers where Nextmini’s
dataplane nodes are running, and the script ran without a hitch.
In Fig. 11, we show the amount of time needed to run one
iteration of the training workload, across 5 different convolu-
tional neural network models. The per-iteration training time
is inevitably longer due to the limited amount of bandwidth
available between datacenters. As an example with the LeNet-
5 model, it took 0.08 seconds on average to train one iteration
if all four nodes are co-located on the same physical machine
(no GPUs were used). In stark contrast, it took 2.24 seconds
on average to run the same training workload across our
four geographically distributed datacenters, a 28x decrease
in performance due to the lack of inter-datacenter bandwidth.

VI. CONCLUDING REMARKS

One year in the making of Nextmini, it has evolved into a
thoroughly modern network emulation testbed that is custom-
tailored for the user space, fueled by Rust’s state-of-the-
art support for stackless coroutines, multi-threaded runtime
executors, and asynchronous programming with the actor
model. Its core design — going for user-space flexibility first
and then strong performance using the splice system call in
Linux — worked out surprisingly well, a pleasant surprise
of “having your cake and eating it too.” While delivering
stellar performance, excellent single-machine scalability, and
flexibility due to its user-space design, Nextmini’s architecture
based on the actor model is also conceptually simple: with
only around 9000 lines for its dataplane, 3200 lines for its
controller, and a few dozens of megabytes for its memory
footprint. We hope that it will become a strong candidate in
the community as an emulation and experimentation testbed
for new networking research — much needed in the era of
artificial intelligence.



[1]
[2]

[3]

[4]

[5]

[7]

[8]
[9]
(10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

REFERENCES

x.ai, “Announcing Grok,” https://x.ai/, Nov. 2023.

J. Pezzone, ‘“Zuckerberg and Meta set to purchase 350,000 Nvidia
H100 GPUs by the end of 2024, https://www.techspot.com/news/
101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html,
Jan. 2024.

W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated
Systems for Large-model Training at Scale,” in Proc. IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 283-294.

A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “TACCL: Guiding
Collective Algorithm Synthesis using Communication Sketches,” in
Proc. 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX, 2023, pp. 593-612.

G. E Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15—
34.

A. Varga, “A Practical Introduction to the OMNeT++ Simulation Frame-
work,” in Recent Advances in Network Simulation: The OMNeT++
Environment and its Ecosystem.  Springer International Publishing,
2019, pp. 3-51.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments using Container-based Emulation,”
in Proc. 8th International Conference on Emerging Networking Exper-
iments and Technologies (CoNeXT). ACM, 2012, pp. 253-264.
“Open vSwitch: An Open Virtual Switch,” http://openvswitch.org/, Jul.
2025.

“Swarm mode | Docker Docs,” https://docs.docker.com/engine/swarm/,
Jul. 2025.

“Kubernetes: Production-Grade
kubernetes.io/, Jul. 2025.

B. Lantz and B. O’Connor, “A Mininet-based Virtual Testbed for
Distributed SDN Development,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 4, pp. 365-366, Aug. 2015.

P. Wette, M. Drixler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “MaxiNet: Distributed emulation of software-defined networks,”
in Proc. 2014 IFIP Networking Conference. 1EEE, 2014, pp. 1-9.
“The Go Programming Language,” https://go.dev/, Jan. 2024.

M. A. M. Vieira, M. S. Castanho, R. D. G. Pacifico, E. R. S. Santos,
E. P. M. C. Jtnior, and L. F. M. Vieira, “Fast Packet Processing with
eBPF and XDP: Concepts, Code, Challenges, and Applications,” ACM
Comput. Surv., vol. 53, no. 1, pp. 1-36, 2020.

Wikipedia, “Actor Model,” https://en.wikipedia.org/wiki/Actor_model,
Jan. 2022.

C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR
Formalism for Artificial Intelligence,” in Proc. the 3rd International
Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann
Publishers Inc., 1973, p. 235-245.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage
Services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, p. 3-12,
Jul. 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in Proc. 5th
Symposium on Operating Systems Design and Implementation (OSDI),
Dec. 2002, pp. 255-270.

B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in Proc. 9th ACM
Workshop on Hot Topics in Networks (HotNets), Oct. 2010.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2014.
L. Yan and N. McKeown, “Learning Networking by Reproducing
Research Results,” SIGCOMM Comput. Commun. Rev., vol. 47, no. 2,
p. 19-26, May 2017.

“Containerlab,” https://containerlab.dev/, Jul. 2025.

“FRRouting Project,” https://frrouting.org/, Jul. 2025.

“Containernet,” https://containernet.github.io/, Jul. 2025.

“Kubernetes Network Emulation,” https://github.com/openconfig/kne/,
Jul. 2025.

D. Weber and J. Fischer, “Process-Based Simulation with Stackless
Coroutines,” in Proc. 12th System Analysis and Modelling Conference.
ACM, 2020, p. 84-93.

Container Orchestration,”  https:/

[27]
[28]

[29]

[30]

[31]
(32]

(33]
[34]
[35]
[36]

(371

N. Matsakis, “Async-await on Stable Rust! ,” https://blog.rust-lang.org/
2019/11/07/Async-await-stable.html, Nov. 2019.

Tokio, “Tokio: Build Reliable Network Applications without Compro-
mising Speed.” https://tokio.rs/, Jan. 2024.

S. Klabnik, C. Nichols, C. Krycho, and Rust Community, “Fearless
Concurrency,” https://doc.rust-lang.org/book/ch16-00-concurrency.html,
Jul. 2025.

B. Lantz, “Bad TCP SYN packets generated on veth interfaces in Ubuntu
16.04,” https://github.com/mininet/mininet/issues/653, Aug. 2016.

I. Fette and A. Melnikov, “The WebSocket Protocol,” Tech. Rep., 2011.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, 2008.

A. Ryhl, “Actors with Tokio,” https://ryhl.io/blog/actors-with-tokio/,
Feb. 2021.

J. Lamping and E. Veach, “A Fast, Minimal Memory, Consistent Hash
Algorithm,” 2014. [Online]. Available: http://arxiv.org/abs/1406.2294
M. Krasnyansky, M. Yevmenkin, and F. Thiel, “Universal TUN/TAP
device driver,” https://docs.kernel.org/networking/tuntap.html, Jul. 2025.
“Segmentation Offloads,” https://docs.kernel.org/networking/
segmentation-offloads.html, Jul. 2025.

M. Majkowski, “SOCKMAP - TCP splicing of the future,” https://blog.
cloudflare.com/sockmap-tcp-splicing-of-the-future/, Feb. 2019.



