
1

RapidFlow: An Experimental Testbed for
Information Flows with Network Coding

Mea Wang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{mea,bli}@eecg.toronto.edu

Abstract— Network coding refers to the capability of coding
incoming information flows before transmitting to other nodes
in the network, beyond the traditional capabilities of message
forwarding and replication on a network node. It has been
envisioned that network coding is best applied to overlay net-
works, in which network nodes are computers at the edge of
the Internet and are sufficiently capable and flexible to perform
coding operations.

There exist a wide range of theoretical studies on the benefits
of network coding, especially with respect to throughput improve-
ments in the multicast case. However, there has been very little
published work on the empirical analysis regarding the benefits
and drawbacks of network coding in realistic overlay networks.
Towards this objective, we have designed and implemented
RapidFlow, a complete and easy-to-use experimental testbed for
studying information flows with network coding. In RapidFlow,
each node is equipped with a high-performance overlay message
switch and a randomized network coding mechanism. In this
paper, we present the design and implementation of RapidFlow
in an emulated overlay network running on a cluster of work-
stations, as well as our initial experimental observations with
respect to the performance of coded information flows.

I. I NTRODUCTION

In a peer-to-peer content dissemination session, all nodes,
except the content source, are interested in receiving the
content. To achieve scalable content dissemination, nodesin
the network are invited to contribute their upload bandwidth
to redistribute content, in an effort to alleviate the load on
dedicated content servers. In such a design, such as BitTorrent
[1], there does not exist any rigid topological structure among
peers. Peers connect with each other at will and are completely
flexible to network dynamics due to node failures and joins.
However, peers must communicate with each other in order to
avoid redundant data being sent to the same node, resulting in
excessive communication overhead and lack of flexibility to
network dynamics.

In recent work, Gkantsidiset al. [2] proposed the idea
of facilitating BitTorrent-like peer-to-peer content dissemina-
tion using network coding. It was noted that, with a small
communication overhead, the application of network coding
eliminates the need for reconciliation between peers. Network
coding refers to the capability of coding incoming information
flows before transmitting to other nodes in the network,
beyond the traditional capabilities of message forwardingand
replication on a network node. All pieces of information being
transmitted are linear combinations of the original pieces.
The coding operations are performed in Galois field that

preserves the size of the original pieces,i.e., they consume
no additional bandwidth, resulting in efficient utilization of
network bandwidth. As nodes in peer-to-peer communication
sessions are end systems at the edge of the Internet, they are
assumed to be computationally capable to perform such coding
operations. Therefore, it is feasible to implement such an idea
in real-world peer-to-peer communication sessions.

At present, however, the application of network coding in
peer-to-peer content dissemination has only been accompanied
with simulation-based studies. In this paper, we implement
RapidFlow, a peer-to-peer content dissemination system with
network coding, and use such an implementation to study
both advantages and disadvantages of using network coding in
peer-to-peer content dissemination. Among other algorithms,
RapidFlow implementsrandomized network coding, where all
coded blocks are linear combinations of the original blocks
with random coefficients. It eliminates any additional commu-
nication between peers to reconcile their differences.

With the RapidFlow implementation, we were able to con-
duct the first batch of empirical experiments to study the ef-
fects of network coding in peer-to-peer content dissemination
sessions. We have observed that network coding can conserve
up to 20% of bandwidth as compared to a vanilla peer-to-
peer protocol in which peers simply act as relays of received
content blocks. However, due to the computational overheadof
coding, the time to complete a content dissemination session
has actually increased, when to compared to our vanilla peer-
to-peer content dissemination protocol without using network
coding.

The remainder of this paper is organized as follows. Sec. II
reviews various architectures of peer-to-peer content dissemi-
nation systems and the benefit of network coding. In Sec. III,
we present the implementation of RapidFlow, and our initial
set of empirical studies using RapidFlow to evaluate the
benefits and drawbacks of using network coding in peer-to-
peer content disseminations. Sec. IV concludes this paper.

II. PRELIMINARIES

We consider a peer-to-peer content dissemination session,
which consists of one source peer and a collection of receiving
peers (receivers). The objective of the receivers is to receive
the content to be disseminated in the shortest period of time,
whereas the objective of a source peer is the ability to serve
as many receivers as possible. In a conventional client-server



2

model, both of these objectives are limited by the upload
capacity of the source, and the throughput to the receivers
degrades as the number of peers in the session increases.

To be more scalable, recent peer-to-peer content dissemi-
nation protocols, such as BitTorrent [1], organize nodes into
a peer-to-peer network. In these protocols, the source divides
the content to be disseminated,e.g., a file in the file system,
into n blocks of a fixed size and send these blocks to the
receivers. A receiving peer receives these blocks from one or
more participating peers, referred to as itsupstream peers. In
return, they also contributes their uplink bandwidth to relay
certain received blocks to itsdownstream peers. A receiver
eventually reconstructs the original file once it receives all n

blocks.
In the ideal case of BitTorrent design, nodes receive disjoint

sets of blocks from their peers. In practice, without complete
knowledge of the available blocks on peers, a node may
receive redundant blocks, leading to a waste of bandwidth.
Content reconciliation algorithms have been proposed to im-
prove bandwidth utilization, with the cost of exchanging block
availability information between peers, or between a peer and
a dedicated “tracking” server.

To further improve the efficiency with respect to bandwidth
usage and to minimize the messaging overhead of exchanging
block availability information, it has been proposed that par-
ticipating peers not only relay and replicate received blocks of
content, but also code them. Such an idea has been recently
proposed by Gkantsidis and Rodriguez inAvalanche [2]. It
is in line with recent theoretical advances ofnetwork coding
[3], [4], which have been introduced to improve session
throughput in directed networks. Based on the principles of
network coding, Lunet al. [5] has also proposed decentralized
optimization algorithms to achieve minimum-cost multicast.
These proposals attempt to use network coding to either
minimize the cost on the links, or eliminate the needs for
content reconciliation between peers, the main source of the
communication overhead.

We considerAvalanche as an example. Similar to conven-
tional peer-to-peer content dissemination, such as BitTorrent,
the file of interest is also divided inton blocks of the
same size, referred to as the original blocks{b1, · · · , bn}. In
Avalanche, rather than transmitting or relaying these original
blocks, each peer generates and sends coded blocks, which are
linear combinations of original blocks. We consider each peer
in a peer-to-peer session. The blocks it has received from its
upstream peers are{b1, . . . , br}, and the blocks it sends to its
downstream peers are{b′

1
, . . . , b′t}. At the source,{b1, . . . , br}

represents the original blocks of the file to be disseminated.
A peer uses coding coefficients{ci,1, · · · , ci,r} to produce
an outgoing blockb′i =

∑r

k=1
ci,k · bk, using operations in

the Galois field GF(2k) (usually GF(28)). Since all coded
blocks bi(i = 1, . . . , r) that a peer has received are linear
combinations of the original blocks, the newly generated coded
blocksb′i are also linear combinations of the original blocks.

A set of coded blocks are linearly independent if none of
them can be expressed as a linear combination of others.
Intuitively, any coded block that is linearly dependent of
existing coded blocks is considered redundant, since this block

can be produced from the existing ones. Therefore, in order
to maximize the efficiency of using bandwidth, the set of
coefficients must be carefully chosen so that a receiving peer
is unlikely to receive linearly dependent blocks. Unless peers
cooperate to choose such coding coefficients, it is difficultto
design a decentralized and deterministic algorithm to ensure
the blocks are all linearly independent with each other. Forthis
reason,randomized network coding [6] has been proposed, in
which each peer independently generates randomized coding
coefficients.Avalanche adopts the idea of randomized network
coding to produce the coding coefficients.

After a peer has received at leastn coded blocks that are
linearly independent, it can recover the original blocks by
taking the inverse of the coding matrix (which is full rank).
The coding matrix is the combination of coefficients used
to generate each coded block from a set of original blocks.
They are easy to compute in the coding process, and are
embedded in each coded block to be sent as one self-contained
application-layer message to a downstream peer.

III. E XPERIMENTAL STUDIES OFNETWORK CODING

USING RapidFlow

Though the use of network coding in peer-to-peer content
dissemination applications seems promising, to the best of
our knowledge, there have not been any experimental studies
on the advantages and drawbacks of network coding, us-
ing real-world implementations of network coding and data
transmissions with actual TCP connections. In this paper,
we present our initial experiences and preliminary results
with RapidFlow, our implementation of a peer-to-peer content
dissemination application using network coding. The purpose
of implementingRapidFlow is to evaluate network coding in
realistic peer-to-peer environments.

The RapidFlow testbed is based on a scalable engine of
switching application-layer messages from multiple incoming
message flows from upstream peers, to multiple outgoing
message flows to downstream peers. These message flows
can be either stream socket (TCP) or datagram socket (UDP)
connections. Our application-layer message switch is designed
to consume minimal memory footprint and CPU cycles, and
to be flexible to accept a wide variety of message-processing
“plug-in” algorithms. The engine is based on our earlier
work on iOverlay [7], a lightweight middleware framework
to facilitate the distributed implementation of overlay algo-
rithms. In addition to the application-layer message switch,
we have implemented all the software components required to
perform network coding on GF(28). All our experiments are
conducted on a cluster of dual-CPU servers. We now discuss
some additional technical challenges in the implementation of
RapidFlow, as well as our initial experiences with RapidFlow.

In the design of RapidFlow, we first need to convey the
coding coefficients used in each of the coded blocks to the
receiver. As a coded block is a linear combination of the
original blocks, it can be uniquely identified by its coding
coefficients, referred to as thesignature of the coded block.
A signature can be represented as an array ofn coding coef-
ficientsck, (k = 1, . . . , n), such that if the original blocks are



3

bk(k = 1, . . . , n), then any coded blockb′i =
∑n

k=1
ck · bk. In

the implementation of RapidFlow, every time a peer transmits
a coded block to its downstream peer, it embeds the signature
in the application-level header of a coded block, making it
self-contained. The overhead introduced by embedding the
signature is small, as long as the number of original blocks
n is much smaller than the number of bytess in an original
block.

When the size of the content to be disseminated increases,
we need to either consequently increase the block sizes, or
alternatively increase the number of blocksn. Intuitively, if
we increasen with the same block sizes, the overhead of
embedding the signature will be larger. If we increases with
the same number of blocksn, the overhead of embedding
the signature will be smaller, but the coding process may be
slower. What is the bestn ands to be used in RapidFlow in
order to achieve the best coding performance?

To answer this question, we performed two simple experi-
ments. We first setn = 10 and varys from 1 KB to 1 MB, and
measure the time needed to code. The encoding time is the
time taken by a peer to generate a set of randomized coding
coefficients and to produce one coded block. The decoding
time is the time taken by the receiver to reconstruct the original
file from n coded blocks received. Each peer is allocated a
dedicated CPU (Intel Pentium IV Xeon 3.6GHz). We observe
from the experimental results (Table I) that both encoding and
decoding times grow linearly with respect to the block size.

TABLE I

AVERAGE CODING TIMES WITH10 BLOCKS.

File size (MB) 0.01 0.5 1 2.5 5 7.5 10
Block size (KB) 1 50 100 250 500 750 1000
Encoding time (sec) 0.002 0.051 0.098 0.25 0.491 0.769 0.982
Decoding time (sec) 0.01 0.5 1 2.5 4.9 7.5 10.3

In the second experiment, we set the block size to be50
KB, and vary the number of blocks from1 to 10000. The
results are shown in Table II. We observe that, when the
original file is segmented into more than100 blocks, the
decoding time on a receiver grows rapidly, even with modern
processors. Though the growth of encoding times is not as
dramatic, it still introduces a considerable amount of delay in
the transmission of coded blocks, since they are accumulative
from hop to hop. These results have suggested that it may
be best for the number of blocks to be very small (around
10) to avoid introducing excessive latencies in peer-to-peer
content dissemination sessions. From these two experiments,
we conclude that, compared to the block sizes, the number of
blocksn plays a much more significant role on the encoding
and decoding times.

TABLE II

AVERAGE CODING TIMES WITH50 KB IN EACH BLOCK.

File size (MB) 0.05 0.5 5 50 500
Number of blocks 1 10 100 1000 10000
Encoding time (sec) 0.005 0.05 0.5 10.8 113
Decoding time (sec) 0.005 0.5 59 1330 113000

Next, we consider technical challenges with respect to the
generation of coded blocks on each peer. In RapidFlow, the
source generates code blocks based on alln original blocks.
Each peer generates new coded blocks for their downstream
peers as coded blocks are received (and cached locally). A
peer may generate coded blocks for each downstream peer
using only recently received blocks; it may also choose to
code recently received blocks with cached blocks to further
reduce the probability of producing linearly dependent blocks.
In RapidFlow, we propose to code recently received blocks
with a random subset of cached blocks, to maintain reasonable
encoding times.

When should a peer start to generate new coded blocks, and
how many new blocks should it generate for each downstream
peer? LetRi be the set of coding coefficients of blocks that
peer i has received so far. LetSi,j be the set of coding
coefficients of linearly independent blocks thati has sent
to its downstream peerj. Upon receiving a block, a peer
caches it and adds its coding coefficients toRi if it is linearly
independent to the existing ones inRi. In RapidFlow, a peer
i generates one new coded block for each downstream peer
j every time it receives a new linearly independent block. In
addition, to ensure that all blocks sent fromi to j are linearly
independent (so that bandwidth is not wasted),i caches coding
coefficients of the blocks that it has sent toj in Si,j . Peeri
then uses its cache as a reference when producing the next
coded block forj.

Although each peer never receives linearly dependent blocks
from the same upstream peer, it might receive linearly depen-
dent blocks that are sent by different upstream peers. From
our experiments, we found that the more upstream peers a
peer has, the higher probability a linearly dependent block
is received and discarded. Such an observation is due to
the shared path from the source to the upstream peers of
a particular peer. An example this observation is shown in
Fig. 1, where dotted lines represent an overlay path and solid
lines represent an overlay link. SinceT2 and T3 share the
same upstream peerT1, the two coded blocksc1

1,1 · b′
1

and
c2

1,1 ·b
′

1
produced byT1 for T2 andT3, respectively, are linearly

dependent. Consequently, the coded blocks delivered toT4

are different linear combinations of the same blockb′
1
, i.e.,

they are linearly dependent. The same logic applies to the
second batch of blocks arriving atT4. Therefore, RapidFlow
is more bandwidth efficient with a small number of incoming
connections on each peer, since upstream peers of a peer are
less likely to share a path from the source.

This problem is coupled with our particular implementation
of randomized network coding. It can be eliminated by post-
poning encoding of new blocks until alln blocks are received,
which significantly prolongs the downloading time, especially
for peers farther away from the source. For this reason, we
trade the bandwidth for better download speed since network
coding already introduces a considerable amount of delay.

For the purpose of comparisons, we also implement a simple
BitTorrent-like file dissemination algorithm, in which a peer
randomly forwards received blocks to its downstream peers.
For a fair comparison, this algorithm is tested on the same
topologies used by RapidFlow.



4

b'1

S

T1

c1,1 •
b'1c2,1• b'2+c2,2 •

b'1

1 1

1

b'2

T2 T3

T4

b'1c1,1 •
b'1c2,1• b'2+c2,2 •2 2

2

b'1λ1,1 •
b'1λ2,1• b'2+λ2,2 •1 1

1 b'1λ1,1 •
b'1λ2,1• b'2+λ2,2 •2 2

2

Fig. 1. An example in which linearly dependent blocks arrive at a peer.

We now present an initial set of experiments using Rapid-
Flow, showing the advantage and disadvantage of network cod-
ing, in comparison with dissemination without using network
coding. Our focus is on the performance of network coding
in terms of bandwidth efficiency and the time to complete
the downloading process. The experiments are conducted in
random topologies, scaled from10 peers to100 peers. In
order to ensure that every peer can receive the file to be
disseminated, we let each peer randomly choose peers that
have not received any data as downstream peers. In our
typical test runs, the file to be disseminated is of size5
MB and is divided into10 blocks, i.e., s = 500 KB. We
assume that a peer may leave the session once it completes
its download, which is the usual behavior of peers in peer-to-
peer networks. The source peer also leaves the session once its
direct downstream peers complete the downloading process.

One of the advantages of using network coding is to use
available bandwidth more efficiently. In Fig. 2, bandwidth ef-
ficiency is defined as the ratio between (1) the average number
of bytes received by a peer before it can completely reconstruct
the original file; and (2) the actual file size. The higher the
ratio, the less bandwidth-efficient the algorithm is. We observe
that network coding improves bandwidth efficiency by up to
20% (about10% on average).

20 40 60 80 100
1.2

1.3

1.4

1.5

1.6

1.7

Network size

B
an

dw
id

th
 e

ffi
ci

en
cy

 Without network coding
 RapidFlow

Fig. 2. Bandwidth efficiency of network coding.

However, we have observed that the encoding time intro-
duced at each hop during transmission has aversely affected
the total time to complete the download. Especially, peers
farther away from the source experience longer downloading
times than the ones close to the source. The downloading

time records the duration from the first coded block was sent
from the source, to the time the original file is completely
reconstructed at a receiving peer, assuming that the coded
blocks can be produced offline on the source. The average
download time of all peers in the peer-to-peer session is
presented in Fig. 3. It indicates that network coding leads to
100% longer download times in RapidFlow. We also observe
that coding times increase as the number of blocks increases.

20 40 60 80 100
0

20

40

60

80

100

120

140

160

Network size

A
ve

ra
ge

 d
ow

nl
oa

di
ng

 ti
m

e 
(s

ec
.)

 Without network coding
 RapidFlow

Fig. 3. Average times to complete the downloading process.

IV. CONCLUDING REMARKS

In this paper, we have presentedRapidFlow, an imple-
mentation of network coding in peer-to-peer content dissem-
ination sessions. RapidFlow represents our future research
direction towards evaluating the advantages and drawbacksof
network coding using a real-world implementation, rather than
simulation-based studies. Our first batch of experiments have
shown that, though network coding has led to more efficient
use of bandwidth, it has significantly affected the time to
complete the downloading process on each peer. We are still in
the process of investigating the cause to this observation,and
explore possibilities of improving our algorithms to mitigate
such negative effects of using network coding.

REFERENCES

[1] B. Cohen, “Incentives Build Robustness in BitTorrent,”in P2P Economics
Workshop, 2003.

[2] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” inProc. of the 24th Conference fo the IEEE
Communications Society (INFOCOM’05), March 2005.

[3] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transaction on Information Theory, vol. 46(4), pp. 1204–
1216, July 2000.

[4] R. Koetter and M. Ḿedard, “An Algebraic Approach to Network Coding,”
IEEE/ACM Transaction on Networking, vol. 11(5), pp. 782–795, October
2003.

[5] D. Lun, N. Ratnakar, R. Koetter, M. Ḿedard, E. Ahmed, and H. Lee,
“Achieving Minimum-Cost Multicast: A Decentralized Approach Based
on Network Coding,” inProc. of the 24th Conference fo the IEEE
Communications Society (INFOCOM’05), March 2005.

[6] T. Ho, R. Koetter, M. Ḿedard, D. R. Karger, and M. Effros, “The
Benefits of Coding over Routing in a Randomized Setting,” in2003
IEEE International Symposium on Information Theory (ISIT), 2003.

[7] B. Li, J. Guo, and M. Wang, “iOverlay: A Lightweight Middleware
Infrastructure for Overlay Application Implemenations,” inProc. of the
5th ACM/IFIP/USENIX International Middleware Conference (Middle-
ware’04), October 2004, pp. 135–154.


