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Abstract. Network coding has been recently proposed in information theory as
a new dimension of the information multicast problem that helps achieve optimal
transmission rate or cost. End hosts in overlay networks are natural candidates
to perform network coding, due to its available computational capabilities. In
this paper, we seek to bring theoretical advances in network coding to the prac-
tice of high-throughput multicast in overlay networks. We have completedthe
first real implementation of network coding in end hosts, as well as decentralized
algorithms to construct the routing strategies and to perform random codeas-
signment. Our experiences suggest that approaching maximum throughput with
network coding is not only theoretically sound, but also practically promising.
We also present a number of unique challenges in designing and realizingcoded
data dissemination, and corresponding solution techniques to address them.

1 Introduction
In recent years, application-layer overlay networks have emerged as important direc-
tions to evolve future network architectures, due to theflexibility of programming over-
lay nodes to execute any application-layer algorithm one has designed. This is in sharp
contrast with the lack of flexibility at the IP layer. Regardless of the approach taken,
most of the previous work in overlay or peer-to-peer networks focuses on accessing
or disseminating information more efficiently over the current-generation Internet. We
may attempt to find unicast paths with higher throughput or lower latency by pass-
ing through other overlay nodes, or to construct a high-quality overlay multicast tree
from one source to multiple receivers [1, 2]. Depending on the applications, we may be
disseminating bulk data, or streaming multimedia with stricter throughput and timing
constraints [3].

Despite the contributions of existing work, we have still not answered one fun-
damental question: what is the maximum throughput one can achieve using overlay
networks, given a single source with information to be disseminated, and a set of inter-
ested receivers? With the intuition of constructing an overlay multicast tree, it is easy
to show that we still have residual idle network capacities after the tree is formed. In
this paper, we consider the problem of distributing large volumes of data across overlay
networks, and seeks to design and implement the best strategy to disseminate data from
the source to the receivers with maximized throughput, evenwith the presence of the
dynamic nature of overlays.

One naturally starts with constructing multiple multicasttrees from the source to
the destinations with the best possible performance [4]. The fundamental advantage of
multicast over unicast is that multicast employs intermediate nodes toreplicatedata
packets to achieve higher transmission performance. It’s aunique property of informa-
tion flows to be replicable. In fact, we can do better than transmitting along multiple



trees, by also taking advantage of another fundamental property of information flows:
we cancodemultiple streams of information into one stream. In contrast, none of the
normal commodity flows may be coded.Network codingextends the capabilities of
network nodes in a communication session: from basic data forwarding (as in all uni-
cast) and data replication (as in IP or overlay multicast), to coding in finite fields. It has
been shown that, with linear codes, we may be able to achieve surprising results with
respect to optimizing throughput for both delay-sensitiveand delay-insensitive applica-
tions [5–7]. As overlay nodes can afford to code data flows computationally, they are
ideal candidates to execute network coding based algorithms and protocols.

In this paper, we bring theoretical advances in network coding to realistic implemen-
tations, and present a complete set of network infrastructure and distributed protocols
for coded data flow dissemination, which is ready to serve overlay applications that may
benefit from high end-to-end transmission rate without highcost. Towards a realistic
implementation of coded overlay flows, we present our algorithms for the construction
of a transmission topology for network coding, and for randomized code matrix gener-
ation. Based on observations and experiences from our prototype system, we argue that
network coding enables a more efficient way to compute the best transmission topolo-
gies to maximize session throughput and to utilize residualnetwork capacities. Overlay
multicast systems implemented in previous work generally employ a multicast tree or a
multicast mesh (multi-tree) as the transmission topology,with encoding at source node
only or no coding at all. To the best of our knowledge, our real-world implementa-
tion of multicast flows with network coding is the first in the research community. It
is also the first real multicast system that targets mathematically provable near-optimal
throughput, as contrasted to heuristically high throughput. We believe it is instrumen-
tal to develop additional insights of the practical implications of network coding and
high-throughput data networking.

The remainder of this paper is organized as follows. In Sec. 2, we review related
past research. In Sec. 3, we propose our decentralized algorithm to compute optimal
routing strategies with network coding. We present our real-world implementation of
both our algorithms and network coding itself in Sec. 4, followed by observations and
experiences with such an implementation (Sec. 5). We conclude the paper in Sec. 6.

2 Related Work
Recent work on high-bandwidth data dissemination in overlay networks has focused
on constructing multiple multicast trees or an overlay mesh, as exemplified bySplit-
Stream[4], Bullet [8], as well as Digital Fountain [9]. In SplitStream, the original data
is split into multiple stripes and is sent among interior-node-disjoint multicast trees to
improve the throughput, such that all nodes share the burdenof duplicating and forward-
ing data. Digital Fountain and Bullet uses source erasure codes and reconciles missing
data among peers. This effectively leads to a topological overlay mesh. The designs
depend on strong buffering capabilities to tradeoff end-to-end latency for achievable
throughput. They work well on bulk data downloading or delay-insensitive streaming
of media.

Another category of proposals have each overlay node establish k links to other
overlay peers. Links established may be shortest (smallestlatency), widest (highest
bandwidth), randomly chosen, or a combination of the above.Previous experiences



show that, always selecting thek best links may result in poor connectivity and a large
diameter in the resulting mesh. This problem may be resolvedby selecting some best
links mixed with a small number of random links [10]. Younget al. [11] proposed a
distributed algorithm to computek Minimum Spanning Trees (k-MST), where edge
weights correspond to the latency or loss rate. Thek-MST mesh ensures the existence
of k edge disjoint overlay paths between any pair of nodes.

If we assume an overlay node may encode and decode data using linear codes in
Galois fields, we may then take advantage of the recent theoretical advances innetwork
coding[12, 13]. As opposed to source coding, where data is encoded and decoded only
at the source and destinations, respectively, network coding allowseverynode in the
network to encode and decode data streams as necessary. The coding process useslinear
codesin the Galois field, and includes two basic operations: the+ and· operations in the
Galois field GF(2k). Since elements in a Galois field have a fixed-length representation,
bytes in flows do not increase in length after being encoded.

While information flows differ from normal commodity flows in that they may be
replicated and encoded, the transmission of information flows still exhibits an under-
lying network flow structure. Ahlswedeet al. [12] and Koetteret al. [13] prove that,
a multicast rateχ can be achieved for the entire multicast session if and only if it can
be achieved from the sender to each of the multicast receivers independently. With this
theorem, computing the routing strategy to maximize session throughput can be trans-
formed into a sequence of maximum flow computations, which isnot only polynomial-
time solvable, but also allows fully distributed solutions. If flows to different receivers
share some links in the network, the conflict may be resolved through network coding.

Recently, a number of multicast algorithms [6, 7, 14, 15] have been proposed to uti-
lize the underlying network flow structure of coded multicast to efficiently achieve high
transmission rate or low cost. Gkantsidiset al.[16] also propose to employ network cod-
ing in large-scale content distribution in peer-to-peer networks, to eliminate the need of
strategic peer reconciliation. Our work in this paper focuses instead on high-throughput
with controlled delay.

3 Computing the Optimal Routing Strategy
In this work, we achieve the objective of maximizing end-to-end session throughput
in two phases: constructing the transmission topology, anddesigning the suitable cod-
ing strategy for data dissemination using a randomized codeassignment algorithm. The
network coding theorem reviewed in Sec. 2 establishes the underlying connection be-
tween multicast flow routing and network flows. Consequently, the computation of the
multicast rate and the optimal multicast transmission topology is separable into a num-
ber of maximum flow computations. The maximum achievable throughput of a multi-
cast session is the smallest throughput among all source-destination pairs. Given such a
transmission topology, the final question is how data shouldbe disseminated and coded.
In this section, we present algorithms for all phases that may be realistically applied to
compute the optimal transmission topology for coded overlay flows.
3.1 The Maximum Flow Problem
Maximum flow is a well studied problem in the theory of networkflows. Given a di-
rected networkG = (V,A) and nodesu, v ∈ V , the maximum flow fromu to v is the
maximum rate at which flows can be shipped fromu to v along capacitied arcs inG. In



themin-cost flowproblem, which is a more general version of the max-flow problem, a
cost is associated with every unit flow shipped through an arc, and a given flow rate is
to be achieved while introducing minimum link costs. A min-cost flow algorithm may
be used to compute the maximum flow, by inserting a virtual arc(a feedback link) from
receiverv to senderu with cost−1, while setting other arc costs to zero. We employ
an ǫ-relaxation based algorithm [17] to compute the max-rate multicast topology with
minimum bandwidth consumption. Our algorithm is amenable to fully distributed and
fully asynchronous implementations.

In our notation, each link(i, j) ∈ A is associated with bandwidth capacitybij . fij

is the flow rate from nodei to nodej, cij is the cost of transmitting a unit flow via link
(i, j), gi is the flow excess on nodei, andpi is the dual variable acting as unit price
charged for flow excess at nodei.

3.2 Computing the Transmission topology
The first step towards maximum-rate multicast transmissionis to compute a routing
topology indicating the amount of bandwidth required on each link in the network.
Given this topology, we assign flows on each link according tothe allocated bandwidth
and eventually transmit the data. In this section, we focus on computing the transmission
topology and bandwidth allocation.

Unicast sessions In the case of unicast sessions, each link(i, j) ∈ A is initialized with
flow fij = 0 and costcij = 0. We then add a feedback link withbds = fds = α, and
cds = −|D|, whereα is a constant with any value known to be larger than the achievable
maximum flow rate and|D| is the maximum diameter of the network (in number of
hops). For each nodei, the flow excessgi is calculated as

∑

(j,i)∈A fji −
∑

(i,j)∈A fij ,
and the pricepi is initialized to0. After initialization, each node with a positive flow
excess (gi > 0) executes the algorithm in the Table 1. The algorithm terminates when
every node has zero flow excess [17].

Multicast sessions We are now ready to generalize the algorithm to compute a trans-
mission topology that seeks to achieve maximized throughput for any communication
session. In a multicast session, data are sent from the source to a group of interested
receivers at the same rate in the overlay. To achieve maximized multicast throughput,
we first need to identify the maximum achievable throughput between each source-
destination pair, using the previously described algorithm for unicast sessions. Given
the maximum achievable throughput for each destination, the throughput of a multicast
session corresponds to the smallest throughput achievableto all destinations [12, 13].
Since the maximum throughput for each destination may be different from each other,
they need to be reduced to match the prevailing multicast flowrate.

We introduce a set of variables to maintain the status of eachlink with respect
to each destination. The cost and bandwidth capacity are still denoted bycij andbij

respectively on each directed link(i, j). We letfk
ij be the flow rate on arc(i, j) serv-

ing destinationk, gk
i be the flow excess on nodei in serving destinationk, andpk

i be
the price on nodei in serving destinationk. The min-cost flow algorithm remains un-
changed, except that we apply the algorithm independently for each source-destination
pair.

When the min-cost flow algorithm terminates for all destinations, the maximum
achievable throughputfk of a source-destination pair is the flow rate on the feedback



Each nodei maintains a price vector of its direct upstream and
downstream nodes and a capacity vector of incident links, and execute:

1 while (gi > 0)
2 Scan all links for an outgoing links(i, j) such that

pi = pj + cij + ǫ andfij < cij ,
or an incoming link(j, i) such that
pi = pj − cji + ǫ andfij > 0.

3 if (such outgoing link(i, j) is found)
Decrease excess by increasingfij

4 δ = min(gi, cij − fij);
5 fij = fij + δ;
6 gi = gi − δ;
7 gj = gj + δ;
8 else if (such incoming link(j, i) is found)

Decrease excess by reducingfji

9 δ = min(gi, fji);
10 fji = fji − δ;
11 gi = gi − δ;
12 gj = gj + δ;
13 else

Increase price of nodei
14 pi = minξ∈R+∪R− ξ,

where,
R+ = {pj + cij + ǫ}|(i, j) ∈ A andfij < bij},
R− = {pj − cji + ǫ}|(j, i) ∈ A andfij > 0},

Table 1. Theǫ-relaxation based min-cost max-flow algorithm

link. The maximum achievable throughput isfmax = min{fk}. To tune the transmis-
sion topology to conserve unnecessary bandwidth, we reducethe flow from the source
to destinationk by δ = fk − fmax. We initiate the flow reduction process by reducing
the flow on each feedback link byδ. The reduction algorithm is presented in Table 2.

3.3 Data Dissemination
Each transmission topology computed by the min-cost flow algorithm provides infor-
mation not only on the maximum achievable throughput of a multicast session, but also
on the amount of bandwidth to be reserved on each link. Noticethat these topologies are
computed independently based on the assumption that each topology has the privilege
to utilize up to 100% of the currently available link capacity. Bandwidth contention
problem occurs when two or more transmission topologies share links. For instance,
we requireb1 + b2 units of bandwidth on the link shared by two destinations, whereb1

andb2 are the amount of bandwidth required by each destination. Weare pushing the
limit of the link capacity ifb1 + b2 > bij . Fortunately, network coding resolves this
issue by allowing coexistence of multiple flows. The coded flow requires no more than
max{b1, b2} units of bandwidth on such link.

There are still a few remaining problems to be addressed. First, the transmission
topology specifies only the amount of flows to be assigned on each link, but not the
actual coded flows. We thus need an algorithm to perform flow assignment. Second,
if each node simply forwards all flows that it has received, with high probability the



for (each destinationk)
1 Ii = φ

2 Scan all incoming links(j, i) such that
link (j, i) serve flows for destinationk

3 Ii = Ii ∪ (j, i)
4 Itotal =

∑

j∈Ii

fji

5 Oi = φ

6 Scan all outgoing links(i, j) such that
link (i, j) serve flows for destinationk

7 Oi = Oi ∪ (i, j)
8 Ototal =

∑

j∈Oi

fij

9 D = Ototal − Itotal

10 while (D > 0)
11 Scan all links(j, i) in Oi such thatfij > 0
12 δ = min{fij , D}
13 fij = fij − δ

14 D = D − δ

Table 2. The flow reduction algorithm for multicast sessions

destinations are unable to successfully reconstruct the original data. Though there exist
centralized polynomial time algorithms that guarantee optimal code assignment [18], it
is not desirable in a realistic implementation of network coding due to their high com-
plexity. We propose a randomized and distributed algorithmto assign codes on each
overlay node, so that flows may be encoded and decoded appropriately, with signifi-
cantly less complexity.

Without loss of generality, we explain the algorithm with anexample shown in
Fig. 1. Each link is labeled with both its capacity and the reserved bandwidth, as com-
puted by algorithms proposed in Sec. 3.2. Before disseminating data, the source nodeA
needs to determine how manyoriginal flows(the maximum achievable throughput) the
transmission topology can handle. In our example, we have two original flows, labeled
a andb, since the intended throughput of this transmission topology is2.

[23a+4b]

[23a+4b]

[23a+4b][23a+4b]

[5a+97b]

[2a+30b][2a+30b]

[2a+30b]

[83a+122b]

[207a+205b]

0/1

0/1

1/1

1/1

1/1

1/1

1/11/1

1/1

1/1

1/1
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E

D 2

2

B

C

Fig. 1. Illustration of randomized code assignment.

First, each node generates a code matrix in a randomized fashion, which remains
static unless the network environment changes. The number of rows and columns cor-



respond to the number of incoming and outgoing flows at this node, respectively. Each
entry in the matrix is independently and uniformly taken fromGF (28). Next, the source
node initiates the computation of flow content on each link, which is determined by both
incoming flows and the code matrix at its tail node. Thereforeat each node, the outgo-
ing flows can be determined by taking a production of the incoming flow coefficient
matrix and the code matrix. For example, at nodeG we have:

MO = CD · MI =

(

27 173
112 85
98 164

)

(

23 4
5 97

)

=

(

207 205
2 30
83 122

)

Matrix operations are all computed over the Galois field GF(28). More detailed
discussions on performing finite field operations can be found in [19]. Note that such
matrix production needs to be performed only once upon session set-up, unless network
dynamics occur. After successful execution of the algorithm, each destination should
receive exactlyn flows if there aren original flows. The coefficient matrix of incoming
flows is then inverted at each receiver to serves as its decoding matrix. The product of
the decoding matrix with each incoming flow yields the original flow.

3.4 Coding Challenges

So far, we have implicitly assumed links selected by the optimal routing strategy form
a directed acyclic graph. However, a cycle in the routing topology may introduce a
deadlock for code generation. An simple example is shown in Fig. 2(a), in which nodes
B andC each expects a flow description from the other.

To address this problem, we label each link with a list of receivers it is serving,
during the max-flow computation phase. Consequently, each node constructs a0, 1-
matrix representing the input-output dependence relationamong its incident flows. Only
entries with value1 will then be replaced by a uniform random symbol taken from
GF (28). The new solution applied to the previous example is shown inFig. 2(b) and
(c).

A 

B C

(a) (b)

(a)

(b)

A 

B C

[23a+4b]

[23a+4b]

[5a+97b]

[5a+97b]

A 

B C?

?

(a) (b)
randomized coding

(a) (b) (c)

Fig. 2. An example of avoiding coding cycles.

3.5 Adapting to dynamic variations

Our algorithms are based on the knowledge of link capacity. Any realistically measured
link capacities, however, may not reflect the actual link capacities between two nodes
in the underlying physical network. For example, if two overlay links share the same
physical link in the IP network, results from independent available bandwidth probes
will not be accurate when both links are utilized by the overlay mesh. Furthermore,
even if all overlay link capacities are independent, they may still fluctuate over time,
due to cross traffic beyond the control of the overlay.



We highlight the fact that our algorithms naturally adapt tosuch uncertainty and
network dynamics very well. If a certain link capacity turnsout to be different than what
was expected, theǫ-relaxation algorithm may resume with cached states, including flow
rates and node prices. Since the new optimal state is usuallynot far from the old one,
convergence speed is much higher than re-computing the new multicast topology.

4 Implementation
we have experimentally implemented all the algorithms proposed in Sec. 3. To the best
of our knowledge, this work represents the first work on a realistic implementation
of network coding. In this section, we discuss our observations, experiences and chal-
lenges encountered during this implementation. We have implemented two main com-
ponents, as illustrated in Fig. 3: (1) a generic application-layer message switch, with
the multi-threaded capability of handling and switching multiple incoming and out-
going flows; and (2) an implementation of the architectural design supporting coded
overlay flows.



Architecture for coded flows

   Generic application-layer message switch

incoming 
messages

send

Galois field library

C++ class wrapper

receive

coded
messages

Galois field
operations

TCP-based stream sockets

Fig. 3. The overlay network infrastructure.

4.1 Infrastructure

To simplify the implementation of both the algorithms for routing strategy and network
coding, we have developed an infrastructure to reduce the mundane work. These in-
clude multi-threaded programming for message forwarding engines, failure detection
and reaction, measurement of delay and throughput, as well as monitoring and deploy-
ing facilities.

To facilitate the switching of application-layer messagesfrom multiple incoming
connections to multiple outgoing connections, we have designed a high-performance
application-layer message processing facility in UNIX, tosupport live data sessions
from the source to the receivers.

The salient capabilities of the application-layer switch are three-fold: (1)Message
processing. The application-layer message switch is able to efficiently switch data from
upstream nodes to downstream nodes, and process each of themusing algorithm-specific
implementations. (2)Measurements of performance metrics. Important performance
metrics such as per-link throughput and latency are measured by the switch. (3)Emula-
tion of bandwidth availability.To verify correctness of the algorithm implementations,
we sometimes prefer to perform preliminary tests of the algorithm under controlled en-
vironments, in which node and link characteristics are morepredictable. The switch
supports precise emulations of bandwidth availability on each overlay link. For detailed



discussions on the switch design and implementation, we refer the readers to our recent
work on ioverlay[20].

We have further extended the message processing mechanism to support network
coding, by allowing both1-to-n andm-to-1 mappings between incoming and outgo-
ing flows. Each incoming or outgoing flow is associated with a buffer managed by our
customized FIFO queuing algorithm. Each flow consists of a continuous stream of mes-
sages. Messages belonging to the same flow reside in the same queue and are processed
in their arrival order. An architectural illustration is shown in Fig. 4, in which the de-
sign for coded flows introduced in Sec. 3.3 is referred to as the coding algorithmfor
simplicity. We discuss how to identify flows in Sec. 4.3.

receiver buffer1

receiver buffer

receiver buffer 2

receiver buffer

receiver buffer 3

receiver buffer

flow 1 
messages

flow 2
messages

flow 3
messages

From
 upstream

 nodes

sender buffer A

sender buffer

sender buffer B

sender buffer

sender buffer C

sender buffer

flow B
coded messages

flow C
coded messages

flow A
coded messages

To dow
nstream

 nodes

Coding Algorithm

m-to-1
mapping

1-to-n
mapping

Fig. 4. Switch design:m-to-m mapping among input and output coded flows.

4.2 Routing Strategy

In computing the routing topology, the minimum assumption is that each node is aware
of its one overlay-hop neighbors as well as the cost and capacity on its incident links.
For any multicast session withm destinations, each node maintainsm sets of local
information. These information include node pricepk

i , flow excessgk
i , and flow ratefk

ij

as defined in Sec. 3.
During the initialization phase of a multicast session, thesource nodes sends a

fInitiate message to each destinationdk directly. On receipt of thefInitiate
message, the nodedk adds to the source nodes an outgoing link withbds = fk

ds = α,
andcds = γ. In other words, the destination noded injects flows into the source to
start the min-cost flow algorithm. For each neighbor, the source node then computesδ
and sends the results in afPush message to the corresponding neighbor. When a node
receives thefPush message, it applies the min-cost flow algorithm to update allits
local variables, and sends the value ofδ in anfPush message to push flows on each
link. The destination nodes never push any flow away. The flowson each link converge
once the number of flows received by the destination and the number of flows sent by
the source are the same. Links that are not selected by the algorithm will havezeroflows
on them. Eventually, the links with a positive flow rate form the transmission topology
with the maximized throughput.

After determining the maximum flow between each source-destination pair, we need
to perform flow reduction if max-flow rates toward different receivers do not agree.
A few additional control messages are introduced into the implementation of our dis-
tributed algorithm. We explain the implementation with a representative example in
Fig. 5(a), in which each link is labeled with the flow rates it’s serving for destinationB,



C, andD respectively. The source collects the optimal throughput from each destina-
tion using thefReport message, and compute the maximum multicast throughput as
min(7, 10, 5) = 5.
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Fig. 5. Reducing flows.
The source node sends afReduce message along each network flow, with the

appropriate value for flow reduction (initially2 in the flow toB and5 in the flow toC).
If a nodei can not reduce the specified amount by reducing flow rate at a single outgoing
link, it reduces rates on more than one outgoing links, and relay afReduce message
along each of them, with the total flow reduction amount sum upto the amount being
reduced ati. Result of this reduction procedure is shown in Fig. 5(b). The numbers in
bold face indicate the amount of flows each link must serve. Again, the computation of
the optimal multicast transmission topology is based on theassumption that each node
can support network coding. In Fig. 5(b), the optimal throughput5 can be achieved for
each of the destinations.

4.3 Network Coding
The randomized network coding algorithm presented in Sec. 3.3 is almost ready for
direct implementation. Several challenges are still worthmentioning, though. We con-
tinue to use our network coding example, as shown in Fig. 1. The first problem is flow
identification at each node. Recall that each flow in the transmission topology is a lin-
ear combination of the original flows, in the form of

∑

i λifi. Hence, each flow can be
uniquely identified by the coefficient vectorλ, referred to as theflow description. The
flows are designed to beself-explanatory, in that the flow description of the flows are
stored in the application-layer header of data messages, asan array of bytes, each byte
representing one coefficient. In our example, the flow23a + 4b can be represented by
an array of two bytes[23, 4].

Each data message may be coded with several other messages, from the same queue
or other queues, to produce a message of an outgoing flow. Our second challenge is to
keep the message in the queue long enough for each outgoing flow, while controlling
the size of the queue as small as possible at all time. To this end, we modify the message
buffer by attaching a reference counter, initialized ton, to each message as it is queued
into the appropriate buffer. Every time a message is used to code a new outgoing mes-
sage, its reference counter is decremented by1. A message is deleted as soon as the its
reference counter reaches zero. For thejth incoming flow on a node, the value ofn is
the number of nonzero entries in thejth column of the code matrix. More precisely, a
positive value presented at the(i, j) cell in the code matrix means that thejth incoming
flow is required to produce theith outgoing flow.

Conventionally, only the message at the front of a FIFO queueis available to the al-
gorithm. This raises the message blocking problem, which causes the algorithm to serve



either all outgoing flows or nothing. Consider two outgoing flows: flowOut1 requires
coding messages from all incoming flowsA, B, andC; and flowOut2 is just a dupli-
cation of flowA. Thus, the reference counters for messages of flowA are initialized to
2, whereas the reference counters for messages of flowB andC are initialized to1. In
the case where the buffer for flowA contains several messages, and the buffers for flow
B andC are empty, this node is ready to serve flowOut2, but not flowOut1. Conse-
quently, none of the messages, except the first one inA can be forwarded toOut2 until
messages become ready inB andC. The same problem occurs, but to a less extent,
when the arrival rate varies among different flows. To overcome this problem, we allow
algorithms to peek any message in the queue, but must processthem in a sequential
order.

The third challenge is to ensure the correctness of the decoded messages received
at the destinations. At each node, the actual outgoing data messages are computed as
linear combinations of the incoming messages, using the code matrix, and over GF(28).
In Fig. 1, the outgoing message of nodeG m

j
out(j = 1, 2, 3) is produced by taking a

messagemi
in(i = 1, 2) from each incoming flowi as input, and computem1

out = 27 ·
m1

in+173·m2
in, m2

out = 112·m1
in+85·m2

in, andm3
out = 98·m1

in+164·m2
in. Since TCP

connections preserve message ordering as they are originally generated, the incoming
messages are coded in the same order as they are received. Forexample, theith message
of flow 23a+4b is always coded with theith message of flow5a+97b. Otherwise, the
destination node will not be able to decode and restore the original messages correctly.

5 Evaluation
In this section, we perform an empirical study of various performance aspects of coded
flows. we have completed a realistic implementation of our proposed algorithms, and
conducted a series of experiments on a cluster of dual-CPU Pentium 4 Xeon 2.4GHz
servers. The topology of the test networks are generated using the BRITE topology
generator [21], with up to100 overlay nodes.

The parameters we use include: (1) The number of original flows from the source
to all receivers in the optimal routing strategy, henceforth referred to asmaxflow. (2)
The message size, which is the number of data bytes in typicalmessages of a particular
flow, and (3) The session size, which is the number of sender and receivers in a session.

For the purpose of comparison, we implemented an alternative of thek-MST algo-
rithm: rather than computingk minimum spanning trees, we devise and implement a
distributed algorithm to computek spanning trees with the maximum bandwidth, re-
ferred to ask-MaxST. Since we seek to maximize the throughput of data dissemination
rather than minimizing latency, we naturally would like to employ thewidestselection
criterion, in order to achieve high throughput.

5.1 Performance of routing strategy computation

The message overhead introduced by our protocol for computing the optimal routing
strategy is less than12KB per node on average. Such low overhead is due to the rea-
son that messages are passed between nodes only when the prices of flows and nodes
are being updated. Fig. 6(a) illustrates the message overhead required to compute the
optimal routing strategy is closely related to both the network size and session size. As
the network size increases, the message overhead grows linearly. The optimal routing
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Fig. 6. (a) Messages required to compute the optimal strategy for different session sizes and
network sizes; (b) computation time for the routing strategy over networksof different sizes; and
(c) the throughput of the optimal strategy in comparison withk multicast trees for the session
size of3 in networks of various sizes.

strategy between each pair of source and destination nodes are computed separately.
For every additional destination, the message overhead is increased.

The message overhead is also affected by the network topology. Depending on the
number of nodes involved in the optimal transmission topology, the message overhead
may vary. As shown in Fig. 6(a), the total message overhead isincreased by400KB in
the network of size30 when the session size is increased from2 to 3. This is mainly
because the optimal routing strategy between the source andthe third destination intro-
duces a number of new nodes to the final optimal routing strategy.

We count the computation time of the algorithm from the time arequest is sent to the
source node until the time the routing strategy is fully established,i.e., when all nodes
have no excess flows. The time plotted in Fig. 6(b) shows that the computation time
again depends on both the network size and the session size. With more destinations,
a larger number of messages are exchanged and processed. Note that the delay of less
than1.6 seconds is introduced only once upon session set up, and doesnot apply to the
transmission of data messages.

The theoretical achievable throughput of the routing strategy is presented in Fig. 6(c)
in comparison with single multicast tree and four multicasttrees. We observe that our
routing strategy always enjoys the highest throughput regardless of the network size.

5.2 Coding delay

In coded overlay flows, the end-to-end delay depends on not only the TCP delay, but
also the coding delay introduced at each routing hop. Therefore, we measure the coding
time on each node and the end-to-end delay. We present the average coding time per
node and and the code-delay ratio under various parameter settings. Thecode-delay
ratio is the ratio between the sum of the coding time on all nodes and the end-to-end
delay. This sum is the upper bound of the end-to-end coding time since non-sequential
nodes perform coding in parallel.

To quantitatively evaluate the average coding time per node, we vary the size of the
application-layer data messages from1KB to 35KB, and measure the time to code each
message. The results are presented in Table 3. We observe that the computation time
increases linearly as the data size increases, but they are all on the order of microsec-
onds, which is insignificant compared to typical end-to-endlatencies over wide-area
networks.

To evaluate the code-delay ratio, we set the available bandwidth on each link in
the overlay within the range (1KB, 10KB). In order to achieve the optimal throughput,



Size 1 5 10 15 20 25 30 35
Computation time (µsec) 224 1057 2194 3288 4447 5374 6256 7664

Table 3. Average computational overhead for coding one message at one node over different
message sizes.
the message size is set to1KB so that each link can accommodate as many flows as
possible. We start the experiment by selecting a pair of source and destination node. One
additional receiver node is added to the session for each repetition of the experiment.
We set the maxflow of each session to be within the range (11, 20). In each experiment,
we collect the times that each node has spent on performing Galois field coding as well
as the end-to-end delay.
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Fig. 7. The code-delay ratio of: (a) sessions with different sizes; and (b) sessions with different
message sizes.

Nodes in larger networks spend less time on network coding since the flows are
scattered in the network. In other words, network coding is performed in a more dis-
tributed fashion in larger networks. In Fig. 7(a), we have observed that the coding time
becomes more significant as the session size increases. Thisis because each additional
receiver requires at leastk more flows in the network, wherek is the maxflow from the
source to all receivers.

We further investigate the effect of message size in variousnetwork settings. We
vary message size from1KB to 5KB and then to10KB. The session size is set to4,
and the maxflow is within the (11-20) range throughout this experiment. We compare
the coding and end-to-end delay of sessions with different message sizes. As shown in
Fig. 7(b), the larger message sizes introduce higher codingtime at each node, but the
amount of increase is rather moderate, which is consistent with the results in Table 3.

5.3 Throughput

The key advantage of coded overlay flows is the improvement inend-to-end throughput.
Theoretically, the throughput achieved by coded overlay flows approaches mathematically-
provable optimality. In order to evaluate the achievable throughput of our algorithms,
especially the optimal routing strategy, we conduct a set ofexperiments under various
settings.

To see how the multicast throughput computed by our algorithm varies with more
nodes joining the multicast session, we test the algorithm with increasing session sizes.
For each network size, we select one node as the source node and add one new des-
tination node to multicast group as the session size increases. The throughput perfor-
mance over time (in increasing order of the sequence number)under different parameter
settings is shown in Fig. 8(a). These throughput are collected from a network of size
80. The optimal throughput of the session of size2 is 12Kbps. We observe that the
throughput of a session quickly converges to the optimal throughput after starting up,
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Fig. 8. The throughput of (a) sessions with different sizes; (b) sessions withsize =4, message
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(c) coded overlay flow in comparison with1-MaxST and maxflow.

and remains stable throughout the session. The throughput decreases only when the
newly added destination has lower end-to-end throughput with the source node than the
throughput of the smaller session size. Such situation arises when a node with a small
incident link capacity joins the multicast group. Otherwise, a high flow rate to each
destination can be concurrently achieved, without interference with each other, thanks
to network coding.

To further verify the scalability of coded overlay flows in terms of network sizes, we
run experiments in various networks, and evaluate the throughput measurement of the
first 100 messages of sessions with fixed size in different networks. For fair comparison,
we control the maximum achievable throughput of the multicast session to be within the
range11Kbps and20Kbps. Fig. 8(b) provides additional evidence for the optimality of
the throughput achieved by coded overlay flows. Therefore, we claim that the coded
overlay flows can achieve maximized throughput with minimumtradeoff of end-to-end
delay.

Finally, we show the performance of all three algorithms working together over
time. We start with a network of size20, and select two links to decrease their band-
width every 2 seconds. As shown in Fig. 8(c), the maximum throughput of the single
multicast tree remains unchanged. It is because the bandwidth on the selected links are
not decreased below the bottleneck link bandwidth of the corresponding tree. However,
the throughput of a multicast session of size2 is indeed affected by the bandwidth vari-
ation. The actual throughput for alive data streaming sessionwith randomized network
coding of this multicast session is also given in Fig. 8(c). We observe that the through-
put of alive coded data sessionis rather close to the optimal throughput estimated by
the optimal routing strategy. This justifies the case for coded overlay flows in realistic
experiments.

6 Concluding Remarks
In this paper, we have established the case for coded overlayflows, which uses net-
work coding to achieve maximized end-to-end throughput in multicast sessions. We
propose distributed algorithms to construct the optimal transmission topology, and de-
sign corresponding coding strategies for data dissemination. Our main contribution is
the implementation of coding in the Galois field and all our proposed algorithms in a
realistic overlay testbed, which suggests that using codedoverlay flows to maximize
throughput is not only theoretically sound, but realistically feasible. To our knowledge,
this is the first attempt towards implementing network codedflows in overlay networks.
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