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Abstract. Network coding has been recently proposed in information theory as
a new dimension of the information multicast problem that helps achieve aptim
transmission rate or cost. End hosts in overlay networks are natumidedes

to perform network coding, due to its available computational capabilities. In
this paper, we seek to bring theoretical advances in network coding taodbe p
tice of high-throughput multicast in overlay networks. We have compléted
first real implementation of network coding in end hosts, as well as tedierd
algorithms to construct the routing strategies and to perform random aode
signment. Our experiences suggest that approaching maximum tmatugith
network coding is not only theoretically sound, but also practically promisin
We also present a number of unique challenges in designing and realoieg
data dissemination, and corresponding solution techniques to address the

1 Introduction

In recent years, application-layer overlay networks hawnerged as important direc-
tions to evolve future network architectures, due toftbxbility of programming over-
lay nodes to execute any application-layer algorithm orsedegigned. This is in sharp
contrast with the lack of flexibility at the IP layer. Regast of the approach taken,
most of the previous work in overlay or peer-to-peer netwddcuses on accessing
or disseminating information more efficiently over the emtrgeneration Internet. We
may attempt to find unicast paths with higher throughput arelolatency by pass-
ing through other overlay nodes, or to construct a highigualverlay multicast tree
from one source to multiple receivers [1, 2]. Depending @napplications, we may be
disseminating bulk data, or streaming multimedia withcs#ri throughput and timing
constraints [3].

Despite the contributions of existing work, we have stilk mmswered one fun-
damental question: what is the maximum throughput one chrew using overlay
networks, given a single source with information to be disisated, and a set of inter-
ested receivers? With the intuition of constructing an ayemulticast tree, it is easy
to show that we still have residual idle network capacitiésrahe tree is formed. In
this paper, we consider the problem of distributing largeives of data across overlay
networks, and seeks to design and implement the best stiatdisseminate data from
the source to the receivers with maximized throughput, eviéimthe presence of the
dynamic nature of overlays.

One naturally starts with constructing multiple multicestes from the source to
the destinations with the best possible performance [4¢.flihdamental advantage of
multicast over unicast is that multicast employs interratglinodes taeplicate data
packets to achieve higher transmission performance. liisigue property of informa-
tion flows to be replicable. In fact, we can do better thandmaitting along multiple



trees, by also taking advantage of another fundamentakpiopf information flows:
we cancodemultiple streams of information into one stream. In cortiraene of the
normal commodity flows may be codedetwork codingextends the capabilities of
network nodes in a communication session: from basic daweafding (as in all uni-
cast) and data replication (as in IP or overlay multicast¥ading in finite fieldslt has
been shown that, with linear codes, we may be able to achieyeising results with
respect to optimizing throughput for both delay-sensitind delay-insensitive applica-
tions [5—7]. As overlay nodes can afford to code data flowsmaationally, they are
ideal candidates to execute network coding based algasiind protocols.

In this paper, we bring theoretical advances in networkrmgpth realistic implemen-
tations, and present a complete set of network infrastracind distributed protocols
for coded data flow dissemination, which is ready to servelayapplications that may
benefit from high end-to-end transmission rate without hight. Towards a realistic
implementation of coded overlay flows, we present our aligors for the construction
of a transmission topology for network coding, and for randaed code matrix gener-
ation. Based on observations and experiences from ourtppa&gystem, we argue that
network coding enables a more efficient way to compute thetkassmission topolo-
gies to maximize session throughput and to utilize residadiork capacities. Overlay
multicast systems implemented in previous work generatipley a multicast tree or a
multicast mesh (multi-tree) as the transmission topolagpy) encoding at source node
only or no coding at all. To the best of our knowledge, our-tgaild implementa-
tion of multicast flows with network coding is the first in thesearch community. It
is also the first real multicast system that targets mathieailgtprovable near-optimal
throughput, as contrasted to heuristically high throughple believe it is instrumen-
tal to develop additional insights of the practical imptioas of network coding and
high-throughput data networking.

The remainder of this paper is organized as follows. In Sewe2review related
past research. In Sec. 3, we propose our decentralizedthlgaio compute optimal
routing strategies with network coding. We present our-veald implementation of
both our algorithms and network coding itself in Sec. 4,detd by observations and
experiences with such an implementation (Sec. 5). We cdedle paper in Sec. 6.

2 Reated Work

Recent work on high-bandwidth data dissemination in oyenlatworks has focused
on constructing multiple multicast trees or an overlay meshexemplified bySplit-
Stream[4], Bullet[8], as well as Digital Fountain [9]. In SplitStream, theginal data
is split into multiple stripes and is sent among interiodedlisjoint multicast trees to
improve the throughput, such that all nodes share the burftsurplicating and forward-
ing data. Digital Fountain and Bullet uses source erasulesand reconciles missing
data among peers. This effectively leads to a topologicatlay mesh The designs
depend on strong buffering capabilities to tradeoff eneéd latency for achievable
throughput. They work well on bulk data downloading or dellasensitive streaming
of media.

Another category of proposals have each overlay node éstablinks to other
overlay peers. Links established may be shortest (smd#lestcy), widest (highest
bandwidth), randomly chosen, or a combination of the ab&vevious experiences



show that, always selecting ttebest links may result in poor connectivity and a large
diameter in the resulting mesh. This problem may be resdyesklecting some best
links mixed with a small number of random links [10]. Yourgal. [11] proposed a
distributed algorithm to compute Minimum Spanning Treesk(MST), where edge
weights correspond to the latency or loss rate. BMST mesh ensures the existence
of k edge disjoint overlay paths between any pair of nodes.

If we assume an overlay node may encode and decode data umgag ¢odes in
Galois fields, we may then take advantage of the recent thiemradvances imetwork
coding[12, 13]. As opposed to source coding, where data is encastdecoded only
at the source and destinations, respectively, networkngodilowseverynode in the
network to encode and decode data streams as necessargdiig@rocess usdisear
codesn the Galois field, and includes two basic operations:tland- operations in the
Galois field GFg¥). Since elements in a Galois field have a fixed-length reptasien,
bytes in flows do not increase in length after being encoded.

While information flows differ from normal commaodity flows ihdt they may be
replicated and encoded, the transmission of informationdlstill exhibits an under-
lying network flow structure. Ahlswedet al. [12] and Koetteret al. [13] prove that,
a multicast ratey can be achieved for the entire multicast session if and drilycan
be achieved from the sender to each of the multicast reseindependently. With this
theorem, computing the routing strategy to maximize sesimughput can be trans-
formed into a sequence of maximum flow computations, whictotonly polynomial-
time solvable, but also allows fully distributed solutiolfsflows to different receivers
share some links in the network, the conflict may be resolkezligh network coding.

Recently, a number of multicast algorithms [6, 7, 14, 15]ehbgen proposed to uti-
lize the underlying network flow structure of coded multidasefficiently achieve high
transmission rate or low cost. Gkantsidtsal.[16] also propose to employ network cod-
ing in large-scale content distribution in peer-to-pedwoeks, to eliminate the need of
strategic peer reconciliation. Our work in this paper fasimstead on high-throughput
with controlled delay.

3 Computing the Optimal Routing Strategy

In this work, we achieve the objective of maximizing endettd session throughput
in two phases: constructing the transmission topology,d&signing the suitable cod-
ing strategy for data dissemination using a randomized asdiggnment algorithm. The
network coding theorem reviewed in Sec. 2 establishes thernying connection be-
tween multicast flow routing and network flows. Consequetttly computation of the
multicast rate and the optimal multicast transmission lmgpis separable into a num-
ber of maximum flow computations. The maximum achievableughput of a multi-
cast session is the smallest throughput among all soustédton pairs. Given such a
transmission topology, the final question is how data shbeldisseminated and coded.
In this section, we present algorithms for all phases that Inearealistically applied to
compute the optimal transmission topology for coded oyefttavs.

3.1 TheMaximum Flow Problem

Maximum flow is a well studied problem in the theory of netwdidws. Given a di-
rected networlG = (V, A) and nodes:, v € V, the maximum flow fromu to v is the
maximum rate at which flows can be shipped frano v along capacitied arcs i@. In



themin-cost flonproblem, which is a more general version of the max-flow probla
cost is associated with every unit flow shipped through anaard a given flow rate is
to be achieved while introducing minimum link costs. A mipstflow algorithm may
be used to compute the maximum flow, by inserting a virtua(afeedback linkfrom
receiverv to senden; with cost—1, while setting other arc costs to zero. We employ
ane-relaxation based algorithm [17] to compute the max-ratétioast topology with
minimum bandwidth consumption. Our algorithm is amenabl&itly distributed and
fully asynchronous implementations.

In our notation, each linki, j) € A is associated with bandwidth capacity. f;;
is the flow rate from nodéto nodey, ¢;; is the cost of transmitting a unit flow via link
(,7), g is the flow excess on node andp; is the dual variable acting as unit price
charged for flow excess at node

3.2 Computing the Transmission topology

The first step towards maximum-rate multicast transmisg@adie compute a routing
topology indicating the amount of bandwidth required onheligk in the network.
Given this topology, we assign flows on each link accordintpéoallocated bandwidth
and eventually transmit the data. In this section, we foecusoonputing the transmission
topology and bandwidth allocation.

Unicast sessions In the case of unicast sessions, each (ink) € A is initialized with
flow f;; = 0 and cost;; = 0. We then add a feedback link with, = f4s = a, and
cas = —|D|, wherex is a constant with any value known to be larger than the aabiev
maximum flow rate andD| is the maximum diameter of the network (in number of
hops). For each nodethe flow excesg; is calculated ag(meA fii— Z(i’j)eA fij
and the pricep; is initialized to0. After initialization, each node with a positive flow
excessq; > 0) executes the algorithm in the Table 1. The algorithm teat@s when
every node has zero flow excess [17].

Multicast sessions We are now ready to generalize the algorithm to compute &tran
mission topology that seeks to achieve maximized througfgsiany communication
session. In a multicast session, data are sent from theesta group of interested
receivers at the same rate in the overlay. To achieve maatmizulticast throughput,
we first need to identify the maximum achievable throughptiveen each source-
destination pair, using the previously described algorifor unicast sessions. Given
the maximum achievable throughput for each destinatiantttroughput of a multicast
session corresponds to the smallest throughput achiet@lalé destinations [12, 13].
Since the maximum throughput for each destination may Herdifit from each other,
they need to be reduced to match the prevailing multicast féte:

We introduce a set of variables to maintain the status of d&iakhwith respect
to each destination. The cost and bandwidth capacity dtelstioted byc;; andb;;
respectively on each directed lirfk j). We let f be the flow rate on ar¢, j) serv-
ing destinationk, g* be the flow excess on nodén serving destinatio, andp be
the price on nodeé in serving destinatiot. The min-cost flow algorithm remains un-
changed, except that we apply the algorithm independeaitigdch source-destination
pair.

When the min-cost flow algorithm terminates for all destioagi, the maximum
achievable throughpuf,, of a source-destination pair is the flow rate on the feedback




Each node maintains a price vector of its direct upstream and
downstream nodes and a capacity vector of incident links, and execute:

1 while(g; > 0)
2 Scan all links for an outgoing link@, j) such that
pi = p; + cij + eandfi; < cij,
or an incoming link(3, ¢) such that
pi =pj — Cji + € andfij > 0.
3 if (such outgoing linkz, ) is found)
Decrease excess by increasifg

4 6 = min(gs, cij — fij);
5 fiz = fij +0,
6 gi =gi — 6,
7 95 =9; + 0
8 elseif (such incoming link(7, 7) is found)
Decrease excess by reducifig
9 6 = min(gs, fji);
10 fii =[5 — 6
11 gi = gi — 6,
12 9i =9; +0;
13 else
Increase price of node
14 Pi = Mileeptyr- &,
where,

R™ ={p; +cij +€}|(i,j) € Aand fi; < bis},
R™ = {p; — cji +€}|(j,1) € Aandf;; > 0},

Table 1. Thee-relaxation based min-cost max-flow algorithm

link. The maximum achievable throughputfis., = min{fx}. To tune the transmis-
sion topology to conserve unnecessary bandwidth, we reitheciow from the source
to destinationk by 6 = fi — fumax. We initiate the flow reduction process by reducing
the flow on each feedback link by The reduction algorithm is presented in Table 2.

3.3 Data Dissemination

Each transmission topology computed by the min-cost flowrélgm provides infor-
mation not only on the maximum achievable throughput of aicagt session, but also
on the amount of bandwidth to be reserved on each link. Nttagthese topologies are
computed independently based on the assumption that eaclogy has the privilege
to utilize up to 100% of the currently available link capgciBandwidth contention
problem occurs when two or more transmission topologiesestiaks. For instance,
we requireb; + b units of bandwidth on the link shared by two destinationsereh;
andb, are the amount of bandwidth required by each destinationaM/g@ushing the
limit of the link capacity ifb; + by > b;;. Fortunately, network coding resolves this
issue by allowing coexistence of multiple flows. The coded flequires no more than
max{by, bo } units of bandwidth on such link.

There are still a few remaining problems to be addressedt, Fire transmission
topology specifies only the amount of flows to be assigned oh éak, but not the
actual coded flows. We thus need an algorithm to perform flasigament. Second,
if each node simply forwards all flows that it has receivedhwiigh probability the



for (each destinatiok)
I =¢
Scan all incoming linkgj, ¢) such that
link (4,%) serve flows for destinatiok
3 I, =1;U (], ’L)
4 Tiotar = Zjeli Jii

5  0;=6

6 Scan all outgoing linké:, 5) such that
link (4, 7) serve flows for destinatiok

8 Otctal = ZjEOi fzj

N -

9 D= Ototal - Itotal
10 while (D > 0)

11 Scan all linkg7, 7) in O; such thatf;; > 0
12 6= min{fij, D}

13 fiz =fiz —9

14 D=D-$§

Table 2. The flow reduction algorithm for multicast sessions

destinations are unable to successfully reconstruct ilgamat data. Though there exist
centralized polynomial time algorithms that guaranteénogitcode assignment [18], it
is not desirable in a realistic implementation of networkiog due to their high com-
plexity. We propose a randomized and distributed algoritbrassign codes on each
overlay node, so that flows may be encoded and decoded ajgtebprwith signifi-
cantly less complexity.

Without loss of generality, we explain the algorithm with example shown in
Fig. 1. Each link is labeled with both its capacity and thesreed bandwidth, as com-
puted by algorithms proposed in Sec. 3.2. Before disseimdata, the source node
needs to determine how maayiginal flows(the maximum achievable throughput) the
transmission topology can handle. In our example, we hageotiginal flows, labeled
a andb, since the intended throughput of this transmission tappls 2.

[2a+300] 1/1

Fig. 1. lllustration of randomized code assignment.

First, each node generates a code matrix in a randomizetbifgaskhich remains
static unless the network environment changes. The nuniflsews and columns cor-



respond to the number of incoming and outgoing flows at thiencespectively. Each
entry in the matrix is independently and uniformly takemfr6é F'(28). Next, the source
node initiates the computation of flow content on each linkich is determined by both
incoming flows and the code matrix at its tail node. There&dreach node, the outgo-
ing flows can be determined by taking a production of the inagnflow coefficient
matrix and the code matrix. For example, at néleve have:

27 173 23 4 207 205
Mo =Cp - M; = (112 85) (5 97> :< 2 30)
98 164 83 122
Matrix operations are all computed over the Galois field Z8F(More detailed

discussions on performing finite field operations can be daur{19]. Note that such
matrix production needs to be performed only once upon@essit-up, unless network
dynamics occur. After successful execution of the algarjteach destination should
receive exactly: flows if there aren original flows. The coefficient matrix of incoming

flows is then inverted at each receiver to serves as its degaodatrix. The product of
the decoding matrix with each incoming flow yields the oraifiow.

3.4 Coding Challenges

So far, we have implicitly assumed links selected by thenogtirouting strategy form
a directed acyclic graph. However, a cycle in the routingotogy may introduce a
deadlock for code generation. An simple example is showrignZa), in which nodes
B andC each expects a flow description from the other.

To address this problem, we label each link with a list of nears it is serving,
during the max-flow computation phase. Consequently, eade iconstructs 8, 1-
matrix representing the input-output dependence relatioong its incident flows. Only
entries with valuel will then be replaced by a uniform random symbol taken from
GF(28). The new solution applied to the previous example is showfign2(b) and

(c).

A A A
O
@ ®) @ () randomized coding [23a+4b] [5a+97b]
B C B C B C
«—— 7\
? (b) [5a+97b]
(@) (b) (©

Fig. 2. An example of avoiding coding cycles.

3.5 Adapting to dynamic variations

Our algorithms are based on the knowledge of link capacity. #ealistically measured
link capacities, however, may not reflect the actual linkezates between two nodes
in the underlying physical network. For example, if two dagrlinks share the same
physical link in the IP network, results from independerdikable bandwidth probes
will not be accurate when both links are utilized by the oagnnesh. Furthermore,
even if all overlay link capacities are independent, they midl fluctuate over time,
due to cross traffic beyond the control of the overlay.



We highlight the fact that our algorithms naturally adapstech uncertainty and
network dynamics very well. If a certain link capacity tums to be different than what
was expected, therelaxation algorithm may resume with cached states, dietuflow
rates and node prices. Since the new optimal state is usuatlfar from the old one,
convergence speed is much higher than re-computing the néticast topology.

4 Implementation

we have experimentally implemented all the algorithms psagl in Sec. 3. To the best
of our knowledge, this work represents the first work on aisgalimplementation
of network coding. In this section, we discuss our obseowati experiences and chal-
lenges encountered during this implementation. We havéeimgnted two main com-
ponents, as illustrated in Fig. 3: (1) a generic applicatayer message switch, with
the multi-threaded capability of handling and switchingltiple incoming and out-
going flows; and (2) an implementation of the architectuesidn supporting coded
overlay flows.

— =

----- == == >|Architecture for coded flowa

“-oo-o---m="~~1 Galois field

Galois field library operations incoming 1r coded
messages messages

@eneric application-layer message switch ’

receive 1r JL send

C TCP-based stream sockets )
N s

Fig. 3. The overlay network infrastructure.

4.1 Infrastructure

To simplify the implementation of both the algorithms foutimg strategy and network
coding, we have developed an infrastructure to reduce thedeme work. These in-
clude multi-threaded programming for message forwardmgjrees, failure detection
and reaction, measurement of delay and throughput, as svedbaitoring and deploy-
ing facilities.

To facilitate the switching of application-layer messafesn multiple incoming
connections to multiple outgoing connections, we havegiesl a high-performance
application-layer message processing facility in UNIXstgpport live data sessions
from the source to the receivers.

The salient capabilities of the application-layer switch three-fold: (1)Message
processingThe application-layer message switch is able to efficyeslitch data from
upstream nodes to downstream nodes, and process each afsmgralgorithm-specific
implementations. (2Measurements of performance metritmportant performance
metrics such as per-link throughput and latency are meddyréhe switch. (3gmula-
tion of bandwidth availabilityTo verify correctness of the algorithm implementations,
we sometimes prefer to perform preliminary tests of the rigm under controlled en-
vironments, in which node and link characteristics are npyeglictable. The switch
supports precise emulations of bandwidth availability acheoverlay link. For detailed



discussions on the switch design and implementation, veg tieé readers to our recent
work onioverlay[20].

We have further extended the message processing mechan&upgort network
coding, by allowing bothl-to-n andm-to-1 mappings between incoming and outgo-
ing flows. Each incoming or outgoing flow is associated withulids managed by our
customized FIFO queuing algorithm. Each flow consists ofrdinaous stream of mes-
sages. Messages belonging to the same flow reside in the seme gnd are processed
in their arrival order. An architectural illustration is@hin in Fig. 4, in which the de-
sign for coded flows introduced in Sec. 3.3 is referred to axtiling algorithmfor
simplicity. We discuss how to identify flows in Sec. 4.3.

receiver bufferl Coding Algorithm| sender buffer A
flow 1 - | [ flow A
%-.W.—» receiver buffer > ‘ > sender buffer Coded messaged &
fL-to-n Q
3 . 9]
£ receiver buffer 2 apping, sender buffer B B
g W‘—» receiver buffer I e > sender buffer coded message? §
3 3
3 receiver buffer 3 sender buffer C 3
g flows receiver buffer 1N ‘ der buff flow € 8
@ messages IR I sender butter coded message$

Fig. 4. Switch designm-to-m mapping among input and output coded flows.

4.2 Routing Strategy

In computing the routing topology, the minimum assumpt®thiat each node is aware
of its one overlay-hop neighbors as well as the cost and dgpatits incident links.
For any multicast session witlu destinations, each node maintaimssets of local
information. These information include node prige flow excesg¥, and flow rate i’;

as defined in Sec. 3.

During the initialization phase of a multicast session, sbarce nodes sends a
f1nitiate message to each destinatiégndirectly. On receipt of thé I ni ti ate
message, the nodk adds to the source nodean outgoing link withb;s = f% = q,
andcgs = . In other words, the destination nodenjects flows into the source to
start the min-cost flow algorithm. For each neighbor, the@node then computés
and sends the results irf #ush message to the corresponding neighbor. When a node
receives thd Push message, it applies the min-cost flow algorithm to updatésall
local variables, and sends the valueidh anf Push message to push flows on each
link. The destination nodes never push any flow away. The flowsach link converge
once the number of flows received by the destination and th&eu of flows sent by
the source are the same. Links that are not selected by ttvéthig will havezeroflows
on them. Eventually, the links with a positive flow rate forine transmission topology
with the maximized throughput.

After determining the maximum flow between each sourcehugtsbn pair, we need
to perform flow reduction if max-flow rates toward differeiceivers do not agree.
A few additional control messages are introduced into thelémentation of our dis-
tributed algorithm. We explain the implementation with gresentative example in
Fig. 5(a), in which each link is labeled with the flow rates &erving for destinatior,



C, and D respectively. The source collects the optimal throughparhfeach destina-
tion using thef Report message, and compute the maximum multicast throughput as
min(7,10,5) = 5.

Fig. 5. Reducing flows.
The source node sendsf&educe message along each network flow, with the

appropriate value for flow reduction (initial/in the flow to B and5 in the flow toC).

If a nodei can not reduce the specified amount by reducing flow rate agéesutgoing
link, it reduces rates on more than one outgoing links, atayref Reduce message
along each of them, with the total flow reduction amount suntougne amount being
reduced at. Result of this reduction procedure is shown in Fig. 5(b)e Tilambers in
bold face indicate the amount of flows each link must servai®ghe computation of
the optimal multicast transmission topology is based oragsemption that each node
can support network coding. In Fig. 5(b), the optimal thigugt5 can be achieved for
each of the destinations.

4.3 Network Coding

The randomized network coding algorithm presented in Secis3almost ready for
direct implementation. Several challenges are still waréntioning, though. We con-
tinue to use our network coding example, as shown in Fig. &.firet problem is flow
identification at each node. Recall that each flow in the trassion topology is a lin-
ear combination of the original flows, in the form »i. ), f;. Hence, each flow can be
uniquely identified by the coefficient vectar referred to as thlow description The
flows are designed to keelf-explanatoryin that the flow description of the flows are
stored in the application-layer header of data messages) agay of bytes, each byte
representing one coefficient. In our example, the fd3« + 4b can be represented by
an array of two bytef23, 4].

Each data message may be coded with several other messagethd same queue
or other queues, to produce a message of an outgoing flow.€0and challenge is to
keep the message in the queue long enough for each outgomgaftole controlling
the size of the queue as small as possible at all time. Tolisvee modify the message
buffer by attaching a reference counter, initializedhtdo each message as it is queued
into the appropriate buffer. Every time a message is usedde a new outgoing mes-
sage, its reference counter is decrementedl. Bymessage is deleted as soon as the its
reference counter reaches zero. For tffeincoming flow on a node, the value afis
the number of nonzero entries in th# column of the code matrix. More precisely, a
positive value presented at the ;) cell in the code matrix means that tffé incoming
flow is required to produce th&" outgoing flow.

Conventionally, only the message at the front of a FIFO qugaeailable to the al-
gorithm. This raises the message blocking problem, whiosesithe algorithm to serve



either all outgoing flows or nothing. Consider two outgoiray: flow Out, requires
coding messages from all incoming flowls B, andC; and flowOuts is just a dupli-
cation of flowA. Thus, the reference counters for messages of fiaave initialized to

2, whereas the reference counters for messages ofBl@andC' are initialized tol. In

the case where the buffer for flad contains several messages, and the buffers for flow
B andC are empty, this node is ready to serve flowt,, but not flowOwut;. Conse-
guently, none of the messages, except the first onedan be forwarded t®ut, until
messages become readyBhand C. The same problem occurs, but to a less extent,
when the arrival rate varies among different flows. To overedhis problem, we allow
algorithms to peek any message in the queue, but must prtwssin a sequential
order.

The third challenge is to ensure the correctness of the @ecotbssages received
at the destinations. At each node, the actual outgoing datsages are computed as
linear combinations of the incoming messages, using the owatrix, and over GEf).

In Fig. 1, the outgoing message of no@emn? ,(; = 1,2,3) is produced by taking a
messagen!, (i = 1,2) from each incoming flow as input, and compute:! , = 27 -
ml,+173-m?,, m2,, = 112-m} +85-m2, , andm3,, = 98-m}, +164-m? . Since TCP
connections preserve message ordering as they are olyggeslerated, the incoming
messages are coded in the same order as they are receivesafple, thé!" message
of flow 23a + 4b is always coded with th&” message of floviia 4 97b. Otherwise, the
destination node will not be able to decode and restore flggnat messages correctly.

5 Evaluation

In this section, we perform an empirical study of various@enance aspects of coded
flows. we have completed a realistic implementation of owppsed algorithms, and
conducted a series of experiments on a cluster of dual-CRitiuPe 4 Xeon 2.4GHz
servers. The topology of the test networks are generatet) ke BRITE topology
generator [21], with up t@00 overlay nodes.

The parameters we use include: (1) The number of originalsfiivam the source
to all receivers in the optimal routing strategy, hencéfogferred to asnaxflow (2)
The message size, which is the number of data bytes in tymieasages of a particular
flow, and (3) The session size, which is the number of senderengivers in a session.

For the purpose of comparison, we implemented an altemafithek-MST algo-
rithm: rather than computing minimum spanning trees, we devise and implement a
distributed algorithm to computke spanning trees with the maximum bandwidth, re-
ferred to agi-MaxST Since we seek to maximize the throughput of data disseimimat
rather than minimizing latency, we naturally would like tm@oy thewidestselection
criterion, in order to achieve high throughput.

5.1 Performance of routing strategy computation

The message overhead introduced by our protocol for comgptitie optimal routing
strategy is less that2KB per node on average. Such low overhead is due to the rea-
son that messages are passed between nodes only when #wegiflows and nodes
are being updated. Fig. 6(a) illustrates the message m@ntegjuired to compute the
optimal routing strategy is closely related to both the mekwsize and session size. As
the network size increases, the message overhead growagyiriehe optimal routing
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Fig.6. (a) Messages required to compute the optimal strategy for differastosesizes and
network sizes; (b) computation time for the routing strategy over netvajfrétgferent sizes; and
(c) the throughput of the optimal strategy in comparison wkitmulticast trees for the session

size of3 in networks of various sizes.

strategy between each pair of source and destination nadesomputed separately.
For every additional destination, the message overheadiisased.

The message overhead is also affected by the network topddegpending on the
number of nodes involved in the optimal transmission togglthe message overhead
may vary. As shown in Fig. 6(a), the total message overhegtlisased byt00KB in
the network of size80 when the session size is increased frdno 3. This is mainly
because the optimal routing strategy between the sourcthartird destination intro-
duces a number of new nodes to the final optimal routing sfyate

We count the computation time of the algorithm from the timecuest is sent to the
source node until the time the routing strategy is fully blsaed,i.e., when all nodes
have no excess flows. The time plotted in Fig. 6(b) shows tiaicobmputation time
again depends on both the network size and the session sittemate destinations,
a larger number of messages are exchanged and processedhatdahe delay of less
than1.6 seconds is introduced only once upon session set up, anchdbapply to the
transmission of data messages.

The theoretical achievable throughput of the routing sghats presented in Fig. 6(c)
in comparison with single multicast tree and four multidases. We observe that our
routing strategy always enjoys the highest throughputrdégss of the network size.

5.2 Coding delay

In coded overlay flows, the end-to-end delay depends on rigttbe TCP delay, but
also the coding delay introduced at each routing hop. Thezefve measure the coding
time on each node and the end-to-end delay. We present thegaveoding time per
node and and the code-delay ratio under various parametergse Thecode-delay
ratio is the ratio between the sum of the coding time on allescand the end-to-end
delay. This sum is the upper bound of the end-to-end coding since non-sequential
nodes perform coding in parallel.

To quantitatively evaluate the average coding time per nadevary the size of the
application-layer data messages frolB to 35KB, and measure the time to code each
message. The results are presented in Table 3. We obsetwbdéhsomputation time
increases linearly as the data size increases, but theyl am the order of microsec-
onds, which is insignificant compared to typical end-to-éaténcies over wide-area
networks.

To evaluate the code-delay ratio, we set the available bitivan each link in
the overlay within the rangd KB, 10KB). In order to achieve the optimal throughput,



Size 1 5 10 |15 |20 |25 |30 (35
Computation timesec) [224 (1057 (2194 3288 (4447 |5374 |6256 | 7664

Table 3. Average computational overhead for coding one message at omeaved different
message sizes.
the message size is set 1B so that each link can accommodate as many flows as

possible. We start the experiment by selecting a pair ofceoaind destination node. One
additional receiver node is added to the session for eaddtitiep of the experiment.
We set the maxflow of each session to be within the rang}e2(). In each experiment,
we collect the times that each node has spent on performitajsGield coding as well
as the end-to-end delay.

Code-delay ratio
Code-delay ratio

A

Network size Network size
(b)

(@)

Fig.7. The code-delay ratio of: (a) sessions with different sizes; and @sjimes with different
message sizes.

Nodes in larger networks spend less time on network codingesihe flows are
scattered in the network. In other words, network codingeidggmed in a more dis-
tributed fashion in larger networks. In Fig. 7(a), we haveawed that the coding time
becomes more significant as the session size increasess beisause each additional
receiver requires at leastmore flows in the network, whereis the maxflow from the
source to all receivers.

We further investigate the effect of message size in varmis/ork settings. We
vary message size fronKB to 5KB and then tol0KB. The session size is set #o
and the maxflow is within thel(-20) range throughout this experiment. We compare
the coding and end-to-end delay of sessions with differezggage sizes. As shown in
Fig. 7(b), the larger message sizes introduce higher cddimgat each node, but the
amount of increase is rather moderate, which is consistihttkae results in Table 3.

5.3 Throughput

The key advantage of coded overlay flows is the improvemesdhito-end throughput.
Theoretically, the throughput achieved by coded overlay$lapproaches mathematically-
provable optimality. In order to evaluate the achievableulyhput of our algorithms,
especially the optimal routing strategy, we conduct a sexperiments under various
settings.

To see how the multicast throughput computed by our algoritaries with more
nodes joining the multicast session, we test the algoritlittn Wwcreasing session sizes.
For each network size, we select one node as the source nddsddrone new des-
tination node to multicast group as the session size inesed$e throughput perfor-
mance over time (in increasing order of the sequence nurahder different parameter
settings is shown in Fig. 8(a). These throughput are calteétom a network of size
80. The optimal throughput of the session of sizés 12Kbps. We observe that the
throughput of a session quickly converges to the optimalubhput after starting up,
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Fig. 8. The throughput of (a) sessions with different sizes; (b) sessionssizigh=4, message
size =1KB, and maximum achievable throughpu{ ¥l — 20)KBps in different networks; and
(c) coded overlay flow in comparison withMaxST and maxflow.

and remains stable throughout the session. The througtgameases only when the
newly added destination has lower end-to-end throughptiittive source node than the
throughput of the smaller session size. Such situatioesmgien a node with a small
incident link capacity joins the multicast group. Othemyis high flow rate to each
destination can be concurrently achieved, without interfee with each other, thanks
to network coding.

To further verify the scalability of coded overlay flows imres of network sizes, we
run experiments in various networks, and evaluate the gimput measurement of the
first 100 messages of sessions with fixed size in different networksfair comparison,
we control the maximum achievable throughput of the muitisassion to be within the
rangel1Kbps and20Kbps. Fig. 8(b) provides additional evidence for the optitpaf
the throughput achieved by coded overlay flows. Thereforeclaim that the coded
overlay flows can achieve maximized throughput with minimuewxleoff of end-to-end
delay.

Finally, we show the performance of all three algorithms kirty together over
time. We start with a network of siz&), and select two links to decrease their band-
width every 2 seconds. As shown in Fig. 8(c), the maximumughput of the single
multicast tree remains unchanged. It is because the batidwaidthe selected links are
not decreased below the bottleneck link bandwidth of theesponding tree. However,
the throughput of a multicast session of s¥zis indeed affected by the bandwidth vari-
ation. The actual throughput folige data streaming sessiarith randomized network
coding of this multicast session is also given in Fig. 8(cg dserve that the through-
put of alive coded data sessida rather close to the optimal throughput estimated by
the optimal routing strategy. This justifies the case forezbdverlay flows in realistic
experiments.

6 Concluding Remarks

In this paper, we have established the case for coded ovitolag, which uses net-
work coding to achieve maximized end-to-end throughput uiticast sessions. We
propose distributed algorithms to construct the optimeismission topology, and de-
sign corresponding coding strategies for data dissemsima@ur main contribution is
the implementation of coding in the Galois field and all ourgwsed algorithms in a
realistic overlay testbed, which suggests that using cadeday flows to maximize
throughput is not only theoretically sound, but realidtickeasible. To our knowledge,
this is the first attempt towards implementing network coiiieds in overlay networks.
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