
1

Lava: A Reality Check of Network Coding
in Peer-to-Peer Live Streaming

Mea Wang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{mea, bli}@eecg.toronto.edu

Abstract—In recent literature, network coding has emerged
as a promising information theoretic approach to improve the
performance of both peer-to-peer and wireless networks. It has
been widely accepted and acknowledged that network coding can
theoretically improve network throughput of multicast sessions in
directed acyclic graphs, achieving their cut-set capacity bounds.
Recent studies have also supported the claim that network coding
is beneficial for large-scale peer-to-peer content distribution, as it
solves the problem of locating the last missing blocks to complete
the download.

We seek to perform a reality check of using network coding
for peer-to-peer live multimedia streaming. We start with the
following critical question: How helpful is network coding in peer-
to-peer streaming? To address this question, we first implement
the decoding process using Gauss-Jordan elimination, such that it
can be performed while coded blocks are progressively received.
We then implement a realistic testbed, called Lava, with actual
network traffic to meticulously evaluate the benefits and trade-
offs involved in using network coding in peer-to-peer streaming.
We present the architectural design challenges in implementing
network coding for the purpose of streaming, along with a pull-
based peer-to-peer live streaming protocol in our comparison
studies. Our experimental results show that network coding
makes it possible to perform streaming with a finer granularity,
which reduces the redundancy of bandwidth usage, improves
resilience to network dynamics, and is most instrumental when
the bandwidth supply barely meets the streaming demand.

I. INTRODUCTION

Network coding has been originally proposed in information
theory [1], [2], [3], and has since emerged as one of the
most promising information theoretic approaches to improve
performance in peer-to-peer and wireless networks. The upshot
of network coding is to allow coding at intermediate nodes in
a directed network, assuming that links are error-free. The
assumption of error-free links is made to avoid the most
perplexing challenges of interference in the field of network
information theory. It has been shown that random linear
codes using a Galois field of a limited size are sufficient to
implement network coding in a practical network setting. In
some cases, even exclusive-ORs — GF(2) — can improve
throughput in wireless mesh networks [4].

Avalanche [5], [6] has demonstrated — using both simula-
tion studies and realistic experiments — that network coding
may improve the overall performance of peer-to-peer content
distribution, up to about a hundred peers. The intuition that
supports such a claim is that, with network coding, all blocks
are treated equally, without the need to distribute the “rarest

block” first, or to find them in the “end game” of the download-
ing process. While these are noteworthy observations, we note
that content distribution applications deal with elastic traffic:
one wishes to minimize downloading times, but there are no
required lower bounds with respect to the instantaneous rate
of a live session.

The requirements of peer-to-peer live multimedia streaming
applications, however, have marked a significant departure
from traditional applications of elastic content distribution.
The most critical requirement is that the streaming rate has
to be maintained for smooth playback. Each live streaming
session may involve a live media stream with a specific
streaming rate, such as 800 Kbps for a typical Standard-
Definition stream, generated with a modern codec such as
H.264. The challenge of streaming is that the demand for
bandwidth at the streaming rate (which is very similar to
CBR traffic) must be satisfied at all peers, while additional
bandwidth is, in general, not required.

Existing successes with peer-to-peer streaming, such as
CoolStreaming [7] and PPLive, have demonstrated that peer-
to-peer live streaming is not only feasible, but also practi-
cal at a large scale. Observing the recent success of using
network coding in wireless mesh networks [4] and peer-to-
peer content distribution [5], it is natural to ask the following
interesting question: Does network coding help in peer-to-
peer live streaming? In this paper, we endeavor to explore the
benefits and trade-offs of applying network coding in peer-
to-peer live streaming, using an experimental testbed with
real traffic and a highly optimized implementation of network
coding. To implement the decoding process at each peer with
the highest performance possible, we propose to use Gauss-
Jordan elimination (rather than the usual Gaussian elimina-
tion), which can be performed concurrently while coded blocks
are progressively received.

In building our experimental testbed, henceforth referred
to as Lava, in a cluster of 44 dual-CPU servers, we have to
address a number of significant design and implementation
challenges. First, as live traffic is involved in all our experi-
ments, large volumes of live TCP connections and UDP traffic
need to be efficiently managed. Second, all experiments need
to be both realistic and controllable, with upload capacities
on each peer accurately emulated. Third, since we emulate a
number of peers in each cluster node, we wish to minimize
the processing and memory footprint of our implementation.
Finally, to qualify as a “reality check,” we wish to implement



2

peer joins and departures following specific probability dis-
tributions. This brings all the challenges when dynamics are
considered, including handling broken and orphaned network
connections, exchanging availability, and maintaining updated
peer lists.

In order to compare network coding with a standard peer-to-
peer live streaming protocol without coding, we have imple-
mented a pull-based P2P live streaming protocol (henceforth
codenamed Vanilla), which is typically used in real-world
streaming applications. As an intentional design decision to
guarantee fairness in our comparison studies, network coding
is implemented as a plugin component in Vanilla, such that
both share identical protocols, configuration parameters, and
design choices. With our testbed, we strive to faithfully report
our results from a selected set of experiments and from an
unbiased point of view, as well as our empirical observations
and insights from hands-on experiences of analyzing logs from
a large number of experiments. Our experimental results show
that network coding makes it possible to perform streaming
with a finer granularity, which reduces the redundancy of
bandwidth usage, improves resilience to network dynamics,
and is most instrumental when the bandwidth supply barely
meets the streaming demand.

The remainder of this paper is organized as follows. In
Sec. II, we discuss related work in practical network coding.
Sec. III presents the architectural design challenges in building
our experimental testbed, as well as design choices we have
made in our implementation. In Sec. IV, we show results from
our experiences in comparing network coding with Vanilla in
peer-to-peer live streaming sessions. We conclude the paper in
Sec. V.

II. RELATED WORK

The benefit of network coding with respect to improving
throughput in directed acyclic graphs has been studied ex-
tensively in previous literature (e.g., [3]). In recent studies,
network coding has also been shown to be helpful with respect
to throughput in wireless networks [4], [8].

Since the landmark paper on randomized network coding by
Ho et al. [9], [10], there has been a gradual shift in research
focus in the area of network coding, from theoretical studies
on achievable flow rates and code assignment algorithms [11],
to more practical studies on applying network coding in a
practical setting. Such a shift of focus has been marked by the
work of Chou et al. [12], which concludes that randomized
network coding can be designed to be robust to random packet
loss, delay, as well as any changes in network topology and ca-
pacity. Avalanche [5], [6] has further proposed that randomized
network coding can be used for elastic content distribution. It
has been shown that the performance benefits provided by
network coding in terms of throughput can be more than 2-3
times better compared to not using network coding at all. In
this sense, one concludes that network coding can indeed be
practically implemented, and does offer significant advantages
in peer-to-peer bulk content distribution.

Our recent work [13] has investigated the practicality of
randomized network coding, from the point of view of coding

complexity and real-world coding performance in peer-to-peer
content distribution. We have shown that the performance of
network coding is acceptable when one uses a small number
of blocks, in the order of less than a thousand. We seek to
continue to explore the practicality of network coding in this
paper, but in the setting of peer-to-peer live streaming, rather
than bulk content distribution.

To the best of our knowledge, there has been no existing
work that has systematically studied the practicality of using
network coding in peer-to-peer live streaming applications,
especially using a realistic testbed that involves actual network
traffic and peer dynamics.

III. LAVA: EXPERIMENTAL TESTBED OF NETWORK
CODING IN PEER-TO-PEER LIVE STREAMING

The complexity and challenges of practical network coding
have not been previously examined in the context of peer-to-
peer live streaming. There is no doubt that an experimental
testbed needs to be implemented to form an unbiased and
meticulous evaluation of network coding in live streaming
sessions. The design and implementation of such a testbed,
however, proved to be both inspiring and demanding.

We insist that our experiments should not only be control-
lable, repeatable and configurable, but also involve a large
percentage of peers with DSL Internet connections. For these
reasons, we first preclude a real-world deployment due to
its unpredictability with respect to both bandwidth and CPU
availability. We believe that the most accurate results are
achieved by using a dedicated cluster of high-performance
servers, interconnected by Gigabit Ethernet, and by correctly
emulating upload bandwidth capacities on each peer at the
application layer. Fortunately, a cluster of 44 dedicated dual-
CPU servers (Pentium 4 Xeon 3.6 GHz and AMD Opteron
2.4 GHz) is at our disposal for our experiments.

To make more convincing and conclusive observations, our
testbed must address the following design challenges:
B Actual network traffic needs to be involved to emulate

practical streaming sessions. Hence, a potentially large
number of TCP connections and UDP flows need to be
efficiently managed by each peer.

B To avoid miscalculations and incorrect conclusions due to
an inferior implementation of randomized network cod-
ing, a highly optimized implementation with maximum
performance is a must, with attention to details.

B Network coding should be evaluated in the same context
as a conventional peer-to-peer streaming protocol, with
identical parameter settings and protocol design.

B Peer arrivals and departures in a particular session need to
be emulated, which leads to the challenges of maintain-
ing up-to-date peer lists and handling dynamic network
connections.

B Since we wish to maximize the number of peers to be em-
ulated on each cluster server, the processing and memory
footprint of our implementation must be minimized.

In this section, we present the design choices that we have
made in our testbed, Lava, from both the architectural and
algorithmic point of views.



3

Playback
buffers 

(one per 
session)

Progressive 
decoding

Encoding

Vanilla
P2P
live

streaming

incoming segments from 
multiple upstream peers

outgoing segments to 
downstream peers

accumulated segments so far (streaming playback 
begins after a sufficient number of segments received) 

per-peer upload and download bandwidth limits enforced 
throughout all active connections

Fig. 1. The architecture of a bandwidth-emulated peer in Lava.

A. Lava: Architecture

On each peer in a peer-to-peer live streaming session,
the architectural design of our experimental testbed is best
illustrated in Fig. 1. The core of the Lava architecture is
referred to as the algorithm, which includes both the standard
pull-based peer-to-peer streaming protocol, and the encod-
ing/decoding processes of randomized network coding. To
feed the algorithm, the architecture allows multiple live TCP
connections from multiple upstream peers. To transmit the out-
comes of the algorithm (i.e., results of the encoding process),
multiple TCP connections to their corresponding downstream
peers are established. During the lifetime of each neighboring
peer, a persistent TCP connection is established to minimize
overhead. A live session in Lava contains one multimedia
stream with a specific streaming rate. Such a live stream is
divided into segments, each of which has a specific duration
(one second in our experiments). If network coding is used,
each segment is further divided into blocks.

With scalability as one of the design goals, the entire Lava
implementation on each peer consists of only two threads.
The network thread has the following responsibilities: (1) It
maintains all the incoming and outgoing TCP connections
and UDP traffic, as well as their corresponding FIFO queues;
(2) It is capable of generating data sources for a streaming
session, and managing the session during its lifetime; and (3)
It emulates the upload and download capacities on each peer,
as well as capacities and delays on specific overlay links. To
manage all TCP and UDP traffic in a single thread, they are
monitored by a single select() call with a specific timeout
value. The timeout value of the select() call is dynamically
tuned according to the traffic volume and bandwidth settings.
Such timeout-based select() calls are also critical for the
network thread to emulate overlay link delays and bandwidth
limits.

The algorithm thread implements the actual algorithms and
protocols to support peer-to-peer live streaming, including
the following duties: (1) It processes head-of-line messages
from incoming connections, and sends produced streaming
segments from the algorithm to outgoing connections; (2) It

maintains a local buffer that stores data segments that have
been received so far, and emulates the playback of each
segment; (3) It supports multiple event-driven asynchronous
timeout mechanisms with different timeout periods, so that
asynchronous reoccurring or one-time events can be scheduled
as their respective time; and (4) It implements Vanilla, a
standard pull-based peer-to-peer live streaming protocol, as
well as a plugin component that performs randomized network
coding within Vanilla. With respect to its playback buffers, the
algorithm thread forms natural producer-consumer relation-
ships with the network thread. We note that the asynchronous
timeout mechanisms are implemented without any CPU usage,
which is important to schedule a large number of future events
(such as peer departures) at each peer.

There are no limitations in the Lava implementation that
preclude running more than one peer on each server. Unlike
real-world applications, they do not need to periodically con-
tact a central server for logistics or authentication. All logs are
written to local file systems, then collected and analyzed by
dedicated Perl scripts after the experiments. To control all the
events in an experiment, we have implemented a log-driven
facility in Lava. There are two logs: events and topologies.
The events log specifies one event per line, including the time
that the event should occur in the experiment, the event type,
and optional parameters associated with the event. Typical
events include the beginning and end times of a session, as
well as peer arrivals and departures within a session. For
example, when a session begins, the event specifies the time,
the streaming source, and the streaming rate. The topologies
log is used to bootstrap the peer when it first joins a network.
For each peer, it includes a small number of existing peers.
The use of such a log-driven facility further relaxes the
necessity to contact centralized servers, which may lead to
a considerable amount of TCP traffic that affects the precision
of the experiments.

Finally, to guarantee the most optimized binary, Lava is im-
plemented in approximately 11, 000 lines of code in C++, and
compiled with full optimization (-O3). The implementation
of network coding is further accelerated using the x86 SSE2
instruction set. Though all our experiments are performed in
our server cluster running Linux, it can be readily compiled
on other UNIX variants as well.

B. Lava: Streaming with Vanilla

In order to evaluate the benefits and tradeoffs of network
coding in a typical streaming system, we implemented Vanilla,
a standard peer-to-peer streaming protocol. Network coding
(both encoding and decoding processes) is implemented as a
plugin component, such that it shares identical protocol design
and parameter settings with Vanilla. In this section, we briefly
review our design choices in Vanilla.

Similar to real-world peer-to-peer live streaming systems
(e.g., CoolStreaming [7] and PPLive), Vanilla employs a
data-driven pull-based peer-to-peer streaming protocol. As in
any pull-based peer-to-peer streaming protocol, peers period-
ically exchange information on segment availability, which is
sometimes referred to as buffer maps in previous literature.
According to the buffer maps, those peers that have a particular



4

segment available for transmission are referred to as the seeds
of this segment.

For each streaming session, a peer maintains a playback
buffer in which segments are ordered according to their
playback deadlines. A segment is removed from the buffer
after being played. Similar to real-world streaming systems,
a peer does not immediate start playback as the first data
segments are received. Instead, it waits for a period of initial
buffering delay to ensure smooth playback. At any time, a
peer makes concurrent requests for missing segments in its
playback buffer, from an arbitrarily selected seed of each
segment. The number of concurrent requests is upper bounded.
In the case of network coding, since segments are further
divided into blocks and then coded, the peer downloads coded
blocks from multiple seeds. To avoid overloading the seeds,
Vanilla limits the number of concurrent TCP connections
on each peer. When a requested segment is not received in
time, Vanilla requests the segment again (possibly from a
different seed) after a per-segment timeout. In the event of peer
departures, Vanilla re-transmits the affected segments from
other seeds.

During smooth playback, all segments should be readily
available before its playback deadline. In the unfortunate
event that a segment is not successfully received in time,
Vanilla skips the segment. The number of playback skips is a
good indicating factor to quantitatively evaluate the quality of
streaming playback. To minimize playback skips and to fully
utilize download capacity, we introduce the low and standard
buffering watermarks, which mark the alert mode and normal
playback mode, respectively. After the initial buffering delay,
a peer enters the alert mode if there are missing segments
before the low buffering watermark. In this case, it retransmits
the missing segments from other seeds, and requests one
additional segment for each missing segment in the next period
to increase the transmission rate. Naturally, the peer returns to
its normal mode after it reaches the low buffering watermark
again. Fig. 2 visually illustrates the playback buffer in Vanilla
and its playback modes. The playback buffer is internally
implemented as a circular queue in Vanilla for efficiency.

current playback
point

standard buffering
watermark

low buffering
watermark

enter alert mode normal playback mode new segments

playback buffer
size

amount of buffering 
before initial playback

Fig. 2. The playback buffer in Vanilla.

C. Lava: Progressive network coding

Aggressiveness and density in randomized network coding

With randomized network coding [5], [9], [10], [12], each
segment in a live stream is further divided into n blocks
[b1, b2, . . . , bn], where bi has a fixed number of bytes k
(referred to as the block size). If the number of playback
seconds l represented by a segment and the streaming rate
r are pre-defined, the block size k = (r · l)/n. When encoding
a new block for a downstream peer p, the peer (including the

streaming source) first independently and randomly chooses
a set of coding coefficients [cp

1, c
p
2, · · · , cp

n] in the Galois field
GF(28), one for each received block (original blocks on the
source) in the segment. The ratio of none-zero entries in the
set of coding coefficients d(0 < d ≤ 1) is referred to as the
density. It then produces one coded block x of k bytes:

x =
n∑

i=1

cp
i · bi (1)

As the session proceeds, a peer accumulates coded blocks
from the seeds into its local buffer, and encodes new coded
blocks to serve its downstream peers. In order to reduce the
delay introduced by waiting for new coded blocks, the peer
starts producing and serving new coded blocks after a ·n (0 <
a ≤ 1) coded blocks has been received, where a is referred to
as aggressiveness. A smaller a leads to a shorter waiting time
and, potentially, shorter delay at downstream peers. In other
words, the peer is more “aggressive.”

Since each coded block is a linear combination of the
original blocks, it can be uniquely identified by the set of
coefficients that appeared in the linear combination. The
coefficients of x can easily be computed using Eq. (1) by
replacing incoming blocks bi with the coefficients of bi. In
our implementation, a coded block x is self-contained, in that
the coefficients are embedded in the header of the coded block,
leading to a header overhead of n bytes per coded block. When
both aggressiveness a and density d are 1, the seed used to
initialize a random number generator is embedded to reduce
the overhead. Upon receiving a block, a peer can reproduce
the coefficients using the seed.

A peer decodes the segment as soon as it has received n
linearly independent coded blocks x = [x1, x2, . . . , xn]. It first
forms a n × n matrix A, using the embedded coefficients of
each block bi. Each row in A corresponds to the coefficients
of one coded block. It then recovers the original blocks b =
[b1, b2, . . . , bn] as:

b = A−1xT (2)

In this equation, it first needs to compute the inverse of A,
using Gaussian elimination. It then needs to multiply A−1 and
xT , which takes n2 ·k multiplications of two bytes in GF(256).
The inversion of A is only possible when its rows are linearly
independent, i.e., A is full rank.

Progressive decoding using Gauss-Jordan elimination

We note that a peer does not have to wait for all n linearly
independent coded blocks before decoding a segment. In fact,
it can start to decode as soon as the first coded block is
received, and then progressively decodes each of the new
coded blocks, as they are received over the network. In this
process, the decoding time overlaps with the time required to
receive the original block, and thus hidden from the tally of
overhead caused by encoding and decoding times.

To realize such a progressive decoding process, we employ
Gauss-Jordan elimination, rather than Gaussian elimination, in
the decoding process. Gauss-Jordan elimination is a variant of
Gaussian elimination, that transforms a matrix to its reduced



5

row-echelon form (RREF), in which each row contains only
zeros until the first nonzero element, which must be 1. The
benefit of the reduced row-echelon form is that, once the
matrix is reduced to an identity matrix, the result vector on
the right of the equation constitutes the solution, without any
additional needs of decoding.

As each new coded block is received, its coefficients are
added to the coefficient matrix A of the corresponding seg-
ment. A pass of Gauss-Jordan elimination is performed on this
matrix, with identical operations performed on the data portion
of the blocks. At the end of this process, the data portion of
each block becomes the original block. Though Gauss-Jordan
elimination usually leads to numerical instability, it does not
affect network coding since we operate in the Galois field.

Moreover, if a peer received a coded block that is linearly
dependent with existing blocks of the corresponding segment,
the Gauss-Jordan elimination process will lead to a row of
all zeros, in which case this coded block can be immediately
discarded. No explicit linear dependence checks are required
either during or at the end of the transmission of a segment.

x86 SSE2 acceleration

To further optimize the network coding implementation,
we have implemented an accelerated framework in both the
encoding and progressive decoding process using x86 SSE2 in-
structions. To achieve this objective, we need to implement the
basic GF(28) operations in Rijndael’s finite field, employing
the reducing polynomial x8+x4+x3+x+1 for multiplication,
leading to an algorithm that performs a combination of bit
rotations and exclusive-ORs in a loop (with 8 iterations) to
produce the product of two bytes. This algorithm is relatively
easy to perform “batch processing” of special 128-bit SSE
registers in x86 CPUs, making use of the SSE2 instructions
to operate on these registers. When compared with a baseline
implementation using C (but without SSE2 acceleration), the
performance gain of employing SSE2-accelerated network
coding is between 300% and 500%, depending on specific val-
ues of various parameters. The implementation details of our
accelerated framework are omitted due to space constraints,
and will be presented in a separate paper.

Architectural design

The architecture of the network coding implementation in
Lava is summarized in Fig. 3. Every time a new coded block
is received into a segment in the playback buffer, progressive
decoding is performed by applying Gauss-Jordan elimination
to all received blocks of this segment. As decoding progresses,
intermediate outcomes of Gauss-Jordan elimination are stored
in the playback buffer, until the entire segment is completely
decoded.

playback buffer

progressive decoding using 
Gauss-Jordan elimination

Incoming coded blocks
from upstream peers

Outgoing coded blocks
to downstream peers

encoding using matrix
multiplication in GF(256)

network thread

algorithm thread alert mode normal playback mode new segments

Fig. 3. The architectural design of network coding in Lava.

Finally, an important note we wish to make is that, depend-
ing on the settings of aggressiveness, the encoding process in
network coding uses either the intermediate or fully decoded
blocks from the playback buffer, and progresses concurrently
with the decoding process. Thus, the encoding progress may
start before the decoding process is complete, such that peers
may appear more “aggressive.”

IV. NETWORK CODING IN P2P STREAMING:
A REALITY CHECK

With Lava, we are now ready to perform an empirical “re-
ality check” of network coding in peer-to-peer live streaming.
The focus of our study is on the practicality, performance
and overhead of randomized network coding, as compared
to Vanilla, a standard peer-to-peer streaming protocol without
using network coding. The ultimate objective of this study is
to answer the question: Should we implement network coding
in peer-to-peer live streaming? In all experiments, we set each
segment to represent 1 second of playback, and the playback
buffer to contain 30 segments. The low and standard buffering
watermarks are 10 and 20 seconds, respectively. The initial
buffering delay is set to 20 seconds, and the maximum number
of concurrent requests for missing segments is 10.
A. Performance of network coding

The first important question we wish to ask is about the
baseline performance of network coding. What is the raw
performance of network coding, with and without our pro-
gressive decoding implementation using Gauss-Jordan elimi-
nation? With Lava, we establish a single streaming connection
between one source and one receiver peer, each hosted by
a dedicated dual-CPU server, interconnected by Gigabit Eth-
ernet, without imposing bandwidth limits. We test network
coding with live streams with an average duration of 125
seconds. In tuning network coding, we use 100% for both
density and aggressiveness, since we wish to evaluate the raw
coding performance.

5

10

15

20

12
8B

,78
4

51
2B

,68
8

1K
B,5

92

2K
B,4

80

4K
B,3

52

8K
B,2

56

16
KB,1

76

32
KB,1

28

65
KB,8

0

12
8K

B,6
4

25
6K

B,3
2

8.008.00

5.00

4.00

2.75
2.00

1.38
0.94

0.580.340.10

Maximum streaming rate
Encoding bandwidth
Decoding bandwidth

Mbytes/sec

Fig. 4. The encoding bandwidth and maximum sustained streaming rates
with different numbers of blocks. We have attempted streaming rates up to 8
MB per second.

In our experiments, we activate all optimization switches,
including x86 SSE2 acceleration. We vary the block size from



6

128 bytes to 256 KB, and show the average of measurements
from encoding all 125 segments in the stream. For each block
size, we increase the streaming rate until the CPU is 100%
saturated to find the maximum sustainable streaming rate.

In Fig. 4, we show our results of evaluating the coding
performance, with respect to the encoding and decoding
bandwidth, as well as the maximum sustainable streaming
rate. From these results, we have observed that, thanks to
our SSE2 accelerated implementation, the absolute coding
performance is quite impressive, especially when there are
fewer blocks. When there are only 32 blocks, the encoding
bandwidth exceeds 15 MB per second on one CPU! On the
flip side, we have also observed that both encoding bandwidth
and decoding bandwidth rapidly decrease as the number of
blocks per segment linearly increases. We have also shown that
network coding can support a wide range of streaming rates,
from 100 KB per second to more than 8 MB per second, which
are more than sufficient to accommodate typical streaming
rates in real-world P2P streaming.

With SSE2-accelerated network coding operations, we have
observed that the decoding bandwidth decreases faster than
the encoding bandwidth as the number of blocks increases.
This is mostly due to the fact that the computational overhead
of Gauss-Jordan elimination may not be as easily accelerated
with SSE2 as straightforward vector multiplications. This
phenomenon also makes the decoding process the bottleneck
of network coding in the streaming process. As indicated in
Fig. 4, the maximum sustainable streaming rate is limited by
the decoding bandwidth.

To illustrate the advantage of progressive decoding using
Gauss-Jordan elimination, we modified the algorithm to de-
code blocks only after all blocks of a segment has been
received, and then run the same experiment again. This time,
we measure the time required to completely receive a segment
(“transmission time”), and the time spent in the decoding
process to recover the original blocks after all blocks have been
received (“recovery time”). The transmission time includes the
encoding time on the source.

In Fig. 5, the bar on the left of each setting represents
the results from using conventional decoding, and the bar on
the right corresponds to progressive decoding. We note that
the recovery time of conventional decoding is longer than
the transmission time in most cases. In fact, the conventional
decoding process consumes a remarkable amount of CPU such
that most of the segments can not be played according to their
deadlines. Progressive decoding significantly reduces the time
required to completely receive and recover a segment, with one
exception. In the (128B, 784) setting, progressive decoding has
a longer transmission time because the computational overhead
of Gauss-Jordan elimination dominates the transmission time
with a large number of blocks. The decoding time spent after
the last coded block is received is negligible. With progressive
decoding, decoding times are almost completely concealed
within the time required to receive the segment.

B. Tuning density and aggressiveness

Theoretically, a lower coding density leads to a smaller
number of blocks being coded, which reduces the coding

0.5

1.0

1.5

2.0

2.5

12
8B

,78
4

51
2B

,68
8

1K
B,5

92

2K
B,4

80

4K
B,3

52

8K
B,2

56

16
KB,1

76

32
KB,1

28

65
KB,8

0

13
2K

B,6
4

26
2K

B,3
2

Transmission time Recovery timeseconds

Fig. 5. The effects of progressive decoding: the time required to receive
all blocks of a segment (including encoding and progressive decoding times),
and the time used to recover the original blocks after the last coded block is
received.

complexity. In addition, a lower aggressiveness setting leads
to more “supply” of coded blocks. That said, if peers become
too aggressive and start producing new coded blocks too
soon, it may not have a sufficient number of original blocks
represented in its playback buffer, leading to a potential of lin-
early dependent blocks being produced. Since the transmission
of such linearly dependent blocks consume bandwidth, they
lead to redundancy in terms of bandwidth usage. Bandwidth
redundancy may also be caused by blocks that are received
later than the per-segment timeout, due to busy seeds and lack
of bandwidth.

We are interested in the effects of tuning density and aggres-
siveness parameters in network coding, compared to Vanilla.
For this purpose, we have established a streaming session with
88 peers in a server cluster of 44 dual-CPU cluster node, i.e.,
each peer has a dedicated CPU. With respect to the “supply”
of upload bandwidth, the streaming source of the session is
constrained to 1 MB per second, and all peer connections are
emulated as DSL uplinks, uniformly distributed between 80
and 100 KB per second. With respect to the “demand” of live
streaming, we use a streaming rate of 64 KB per second, which
should be satisfied at all peers during their streaming playback.
Each segment is divided into 32 blocks since it offers a high
encoding and decoding bandwidth (19.3 MB per second), and
introduces little header overhead (32 bytes). The streaming
session lasts for 10 minutes. To evaluate playback quality, we
measure the percentage of playback skips during streaming
playback, caused by a missing segment when it is due for
playback. To evaluate the level of redundancy when using
bandwidth, we measure the percentage of discarded blocks
(due to linear dependence or obsolescence) over all received
blocks. For all measurements, we take the average from all 88
peers.

We first vary aggressiveness in network coding, and then
vary density. In Fig. 6(a), we show that both the percentage of
playback skips and bandwidth redundancy remain insignificant
and almost unchanged when tuning aggressiveness. The same



7

can be observed when tuning density as well, as shown in
Fig. 6(b). We have also observed that the percentage of linearly
dependent blocks discarded at the peers before the segment is
completely decoded is insignificant, at less than 0.03% of the
network traffic.

1%

2%

3%

4%

100% 75% 50% 25% Vanilla

2.1%
1.5%

2.0%

1.3%1.5%

0.1%

0.8%
0.4%0.6%

0.3%

Playback skips Banwidth redundancy

(b) tuning density

1%

2%

3%

4%

100% 75% 50% 25% Vanilla

2.1%

0.8%0.9%1.0%
1.5%

0.1%0.4%0.4%0.4%0.3%

Playback skips Bandwidth redundancy

(a) tuning aggressiveness

Fig. 6. Average number of playback skips and average number of discarded
blocks due to either linear dependence or obsolescence, when tuning (a)
aggressiveness (density set to 100%); and (b) density (aggressiveness set to
100%).

Though these results may seem counter-intuitive, we believe
that it is primarily due to the nature of live streaming playback,
in that there are not sufficient room in each segment for
these coding parameter settings to take effect. In addition,
it is also because of the relatively small number of blocks
in each segment when network coding is used. Since tuning
these parameters does not materially affect streaming quality,
and the best playback is achieved when both aggressiveness
and density are 100%, we use this setting in the remainder of
our experiments.

C. Balance between bandwidth supply and demand

In our previous experiment, bandwidth supply outstrips
demand since the peer upload bandwidth is higher than the
streaming rate. It may appear that network coding does not
lead to improved performance when compared to Vanilla. The
question naturally becomes: is this the case when the supply-
demand relationship of bandwidth changes? We run another
set of experiments to compare network coding and Vanilla,
with three different streaming rates: 64 KB per second to
represent the case where supply outstrips demand, 73 KB
per second to represent an approximate match between supply
and demand, as well as 78 KB per second, when the demand
exceeds the supply of bandwidth. Fig. 7 shows the results of
our comparison study.

From Fig. 7(a), we have observed that network coding
performs significantly better than Vanilla when there is a close
match between supply and demand. When supply outstrips
demand or vice versa, there does not exist a significant differ-
ence between the two. As shown in Fig. 7(b), the bandwidth
redundancy of Vanilla increases remarkably faster than that
of network coding, as the streaming rate increases. This is

5%

10%

15%

20%

25%

64 KB/s 73 KB/s 78 KB/s

16.8%

9.0%

0.1%

18.4%

2.1%
0.3%

Network coding Vanilla

(a) Percentage of playback skips

(b) Redundancy of bandwidth usage

10%

20%

30%

40%

64 KB/s 73 KB/s 78 KB/s

31.6%29.8%

2.1%

8.6%
3.0%1.5%

Network coding Vanilla

Fig. 7. A comparison between network coding and Vanilla with respect to
(1) average percentage of playback skips; and (2) redundancy of bandwidth
usage, when tuning the streaming rate.

because that, with network coding, peers may be served by
multiple randomly selected upstream peers that have coded
blocks of the requested segment, leading to fewer redundant
transmissions due to requests timing out. The key insight
is that network coding makes it possible to perform data
streaming in a finer granularity, so that the impact of a
bandwidth supply shortage is significantly less severe.

25%

50%

75%

100% Network coding Vanilla

25%

50%

75%

100%
Network coding Vanilla

25%

50%

75%

100%
Network coding Vanilla

5 10 minutes0

78 KB/sec

73 KB/sec

64 KB/sec

Fig. 8. A comparison of the average peer buffering levels between network
coding and Vanilla, over the session lifetime. Three different streaming rates
represent different supply-demand relationships with respect to bandwidth.

To further show the benefits of network coding, we show
the average buffering levels of peers over the session lifetime
in Fig. 8, for each of the three streaming rates. We observed
that, when bandwidth supply outstrips demand, both network
coding and Vanilla are able to easily locate available segments
from neighboring peers, and to increase the buffering levels
to the standard buffering watermark. In the case when the de-
mand and supply closely matches each other, network coding
is able to consistently maintain a buffering level at the standard
buffering watermark, while Vanilla is striving to maintain
the buffering level above the low buffering watermark. When



8

the bandwidth demand exceeds the supply, neither is able to
maintain satisfactory buffering levels. The moral of the story is
that, in comparison to Vanilla, the streaming quality of network
coding excels in the challenging situation when the supply of
upload bandwidth only barely meets the streaming demand.

Finally, we note that the initial buffering level of network
coding increases less aggressively than that of Vanilla, in
Fig. 8. This is due to the higher processing overhead that
network coding introduces, when it works with blocks, rather
than segments. This is especially true at the beginning of
a session when a peer only knows one or two seeds for
each segment. As more seeds are discovered, the overhead
is balanced across seeds. For this reason, there are more skips
in the first 30 seconds of a session. We refer to these skips
as the initial skips. This also explains why network coding
always has higher playback skips than Vanilla in Fig. 6.

D. Scalability

We now compare Vanilla and network coding when the
number of peers in the network scales up. In our previous
experiments, each server is 12% and 7% loaded by network
coding and Vanilla, respectively. In this experiment, we add
one peer on each server at a time, until all 44 servers are fully
saturated. A 64 KB per second streaming session is deployed
in the network for 10 minutes. As shown in Fig. 9(a), the
CPU usage of both algorithms grows linearly with respect to
the network size. When the network size reaches 308 (7 peers
on each server), network coding consumes more than 60%
of CPU, and its performance degrades significantly. Due to its
computational complexity, network coding is not as scalable as
Vanilla in our emulation environment. Nevertheless, we argue
that such a limitation is not applicable in reality, since each
peer runs only one coding instance, which consumes less than
10% of the CPU.

5%

10%

15%

88 132 176 220 264 308 352

5.5%
3.8%3.7%4.0%3.6%

0.2%0.1%

10.8%

7.5%

4.7%
3.6%2.9%

1.6%
0.2%

Network coding Vanilla

(a) Percentage of playback skips

(b) Redundancy of bandwidth usage

10%

20%

30%

88 132 176 220 264 308 352

19.7%18.4%19.5%18.8%
21.0%

4.4%
2.1%

8.1%7.7%6.0%5.1%3.4%2.7%1.5%

Network coding Vanilla

Network size

Network size

Fig. 9. A comparison of the scalability of network coding and Vanilla: (1)
average percentage of playback skips; and (2) redundancy of bandwidth usage.

Fig. 9(b) shows that the bandwidth redundancy introduced
by Vanilla is approximately 20% of the total network traffic,
when the network consists of more than 176 peers. Network
coding is more scalable in term of bandwidth redundancy.
Since both algorithms have similar playback quality with 264

or fewer peers, we use this setting in the remainder of our
experiments.

E. Peer dynamics

To investigate the effects of network coding in the case of
dynamic peer arrivals and departures, we use Perl scripts to
generate peer join and departure events in the events log. Based
on Stutzbach et al. [14], both interarrival times of peer join
events and peer lifetimes are modeled as a Weibull distribution
(k, λ), with a PDF f(x; k, λ) = k

λ (x
λ )k−1e−(x/λ)k

, under
various settings of the shape parameter k and scale parameter
λ.

The first case we would like to examine is the flash
crowd scenario. We set the join events to follow the Weibull
distribution (60, 10). The first peer joins the network at the
35th second starting from the beginning of the session, and
all other peers join the network in the subsequent 35-second
period. As expected, network coding has higher percentage of
playback skips (5.7%) than that of Vanilla (3.4%), due to the
slow increase of buffering levels at the beginning of a session.
Without the initial skips, both algorithms have 3% average
playback skips.

We then switch our attention to the peer lifetime duration.
In this experiment, join events follow the Weibull distribu-
tion (60, 2), i.e., peers gradually join the session from the
beginning of a session. This ensures all peers can successfully
join the session since there are always a few peers already
engaged in the normal playback mode. We vary parameters
k and λ to adjust the length of peer lifetimes. With Weibull
distribution (450, 10), peers leave the session gradually start-
ing from the 293th second into the session. With Weibull
distribution (450, 50), all peers leave the session in the last
two minutes. With Weibull distribution (500, 200), all peers
leave the session in the last minute.

2%

4%

6%

8%

10%

weibull(450,10) weibull(450,50) weibull(500,200)

5.1%4.9%

3.1%
1.6%

3.1%
2.3%

Network coding Vanilla

2%

4%

6%

8%

10%

weibull(450,10) weibull(450,50) weibull(500,200)

5.3%5.3%

3.4%
4.1%

5.7%5.2%

Network coding Vanilla

(a) Percentage of playback skips

(b) Percentage of playback skips after the first 30 seconds

Fig. 10. A comparison of (a) the percentage of playback skips; and (b) the
redundancy of bandwidth usage between network coding and Vanilla, under
different settings of peer lifetime durations.

Fig. 10 presents a comparison of the average percentage
of playback skips with and without the initial skips between
network coding and Vanilla, under the three typical settings
of peer lifetime durations. Despite the initial skips, network



9

coding has better performance than Vanilla, especially when
peers depart at a faster rate.

We now design more experiments to evaluate the cases of
high churn rates. In the first scenario, we used a join Weibull
distribution of (100, 0.5) and a lifetime duration Weibull
distribution of (350, 1), from which we have the join period
overlaps with the departure period. The average playback
skips with and without the initial skips of network coding
and Vanilla are (3.8%, 0.8%) and (1.3%, 0.9%), respectively.
Fig. 11(a) presents the buffering level of a long-lived peer
over the session lifetime, after the initial skips — 50 seconds
into the session. Although Vanilla enjoys a better overall
playback, its buffering level fluctuates significantly as the
network evolves.

25%

50%

75%

100% Network coding (0.8% skips)
 Vanilla (0.9% skips)

25%

50%

75%

100% Network coding (1.0% skips)
Vanilla (1.3% skips)

5 10 minutes0.8

(a) Low churn rate
5 10 minutes0.8

(b) High churn rate

7.6% skips

3.5% skips

1.2% skips

8.6% skips

Fig. 11. A comparison of average peer buffering levels between network
coding and Vanilla, under (a) join Weibull distribution (100, 0.5) and duration
Weibull distribution (350, 1), and (b) join Weibull distribution (150, 0.5) and
duration Weibull distribution (300, 1).

In the second scenario, we prolong both join and leave
periods so that more peers will join and leave at the same time,
leading to higher churn rates. The average playback skips with
and without the initial skips of network coding and Vanilla
are (4.4%, 1.0%) and (1.8%, 1.3%), respectively. Fig. 11(b),
again, shows that the buffering level after the initial skips
is more stable when using network coding, leading to better
performance in the long-lived node. Regardless of the join
and duration distribution settings, the bandwidth redundancy
of both algorithm remains approximately the same as in Fig. 9.

To conclude, we have made the following important obser-
vations in our empirical studies. First, for typical streaming
rates (e.g., 64 KB per second), the aggressiveness and density
settings do not have significant effect on the playback quality
and bandwidth redundancy. Second, network coding makes it
possible to perform data streaming with finer granularity, so
that the impact of a bandwidth supply shortage is significantly
less severe. Third, the buffering levels with network coding
increases slowly at the beginning of a session, due to pro-
cessing overhead of coded blocks. However, we believe that
this phenomenon can be avoided by increasing the number of
initial peers at bootstrapping. Fourth, though network coding
does not improve the playback quality in static sessions, it

reduces the amount of redundancy with respect to bandwidth
usage, when compared to Vanilla. Finally, despite initial skips,
network coding demonstrates its resilience to network dynam-
ics, without incurring any additional bandwidth.

V. CONCLUDING REMARKS

The objective of this paper is to evaluate the potential
and tradeoffs of applying network coding in peer-to-peer live
streaming, using an experimental testbed in a server cluster,
with emulated peer upload capacities and peer dynamics.
To achieve a fair comparison between using and not using
network coding, we have implemented a pull-based peer-to-
peer live streaming protocol in our testbed. As a result of our
empirical studies, we believe that network coding does have
its advantages in peer-to-peer live streaming when the supply
of upload bandwidth barely exceeds the bandwidth demand
in the session. In addition, network coding maintains stable
buffering levels when peers are volatile with respect to their
arrivals and departures, and it leads to less redundancy in
terms of bandwidth usage. Finally, the computational costs
introduced by network coding are very low in typical media
streaming rates, especially when progressive decoding using
Gauss-Jordan elimination is implemented. To the best of our
knowledge, this is the first systems paper to investigate the
effects of network coding in peer-to-peer live streaming with
an experimental testbed.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp.
1204–1216, July 2000.

[2] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE
Transactions on Information Theory, vol. 49, p. 371, 2003.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp.
782–795, October 2003.

[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in The Air: Practical Wireless Network Coding,” in Proc. of
ACM SIGCOMM 2006, 2006.

[5] C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale
Content Distribution,” in Proc. of IEEE INFOCOM 2005, 2005.

[6] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content
Distribution System with Network Coding,” in Proc. of the 5th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS 2006), 2006.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Data-Driven Overlay
Streaming: Design, Implementation, and Experience,” in Proc. of IEEE
INFOCOM, 2005.

[8] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The Importance
of Being Opportunistic: Practical Network Coding for Wireless Envi-
ronments,” in Proc. of Allerton Conference on Communication, Control,
and Computing, 2005.

[9] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting,” in Proc. of International
Symposium on Information Theory (ISIT 2003), 2003.

[10] T. Ho, M. Medard, J. Shi, M. Effros, and D. Karger, “On Randomized
Network Coding,” in Proc. of Allerton Conference on Communication,
Control, and Computing, 2003.

[11] P. Sanders, S. Egner, and L. Tolhuizen, “Polynomial Time Algorithm
for Network Information Flow,” in Proc. of the 15th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2003), 2003.

[12] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc. of
Allerton Conference on Communication, Control, and Computing, 2003.

[13] M. Wang and B. Li, “How Practical is Network Coding?” in Proc. of the
Fourteenth IEEE International Workshop on Quality of Service (IWQoS
2006), 2006, pp. 274–278.

[14] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” in Technical Report CIS-TR-05-03, University of Oregon,
2005.


