Copyright 1997, Baochun Li

ADAPTIVE BEHAVIOR OF QUALITY OF SERVICE
IN DISTRIBUTED MULTIMEDIA SYSTEMS

BY

BAOCHUN LI

B.Engr., Tsinghua University, 1995

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois

Abstract

Current distributed multimedia applications demand Quality of Service from the system to
facilitate effective services to the end users. However, within the range of QoS demands appro-
priately specified by the application, lower level transport facilities may not be able to constantly
provide Quality of Service without perturbations. We introduce facilities in the middleware level
to perform Quality of Service adaptations on a specific Quality of Service metric that is measured
from the raw Quality of Service provided by the underlying layers, and refer to the component
performing the task as adaptors. We are able to approach Quality of Service adaptations from a
different perspective with a simplified but precise model for Quality of Service metrics, adap-
tations, and the adaptation behavior. Utilizing theories and techniques from the digital control
theories and digital signal processing, we are able to model adaptation stability and agility of the
performed adaptation behavior, and to introduce methods to analyze and configure the transfor-

mations according to the demands specified by the distributed multimedia applications.

ii

TO MY PARENTS

iv

Acknowledgments

First and foremost, I would like to thank my thesis advisor, Professor Klara Nahrstedt, for
her invaluable directions and support throughout my research efforts towards this thesis. Her in-
sights and suggestions to the problems presented in this thesis enlightened me in various detailed
aspects through the work.

I would also like to acknowledge the constant assistance and encouragements from my best
friends. Among them, special thanks goes to Dongyan Xu, who was also conducting research
in the area of Quality of Service, and who has been generously taking time to discuss research
possibilities with me, as well as to proofread my thesis at its completion.

Last but not least, my family deserves particular recognition for their unconditional emotional
support during the past years. I am very grateful for my parents and my wife, Fang, for their love,

dedication and belief in my ongoing graduate studies, even though we are so far away.

Table of Contents

Chapter1 Introduction. ittt it 1
1.1 Background 1
1.2 Motivation L 3
1.3 Proposed Approach 5
14 RelatedWork 8

Chapter 2 A Model for Adaptive Quality of Service 13
21 OVerview 13
2.2 A Model for Quality of Service Metrics oo oL 13

2.2.1 Definition of QoS Metrics 13
222 SystemRate 16
223 GeneratingRate L o 17
224 Delay 18
225 LOSS ... e 19
226 Jitter oL 19
227 Conclusion 20
2.3 Quality of Service Specification oL oL 20
231 QoSDemands e 20
2.3.2 Quality of Service Violations L. 23
2.4 Quality of Service Adaptations L Lo 24
241 Modeling Generic Adaptors L 24
2.4.2 Modeling TransformationRules 25
25 Conclusion 31

Chapter 3 Configuring Quality of Service Adaptors 32
31 Overview 32
3.2 Time Domain Analysis and the Convolution Summation Property 34

321 Overview 34
3.2.2 Convolution Summation Property 36
3.3 Frequency Domain Analysis and Adaptation Agility 38
3.3.1 Frequency Spectrum of the Excitation 38
3.3.2 Frequency Response of the Transformation 40
3.3.3 Adaptation Agility L 43
3.4 Frequency Domain Analysis: the z Transform 44
341 Overview e 44
342 Definitions 45
343 Applications 45

Vi

3.5 Adaptation Stability 46

3.5.1 Definition e 47

352 JudgingCriteria. 48

3.6 Configuring Adaptation Agility: the Fourier Transform Approach 49
3.6.1 OVerview e e e e e 49

3.6.2 The Windowing Functions 52

3.7 Configuring Adaptation Agility: The Chebyshev Approach. 55
371 OVErview e e e e 55

3.7.2 the Chebyshev Approach 56

3.8 Conclusion e e 59
Chapter 4 A Prototype Adaptor for Video-On-Demand Applications 61
41 OVerVIeW o o e e e e 61
41.1 General Infrastructure 61

412 SystemDesign 63

42 Designing the Prototype Adaptor 64
42.1 Quality of Service Monitors L o 64

422 Quality of Service Adaptors L L o 66

4.3 Adjusting Buffer Allocation L oL o 67
44 ExperimentalResults L 68
441 Configuration of Non-Recursive Adaptors 68

442 Configuration of Recursive Adaptors 72

45 Conclusion e e e e 75
Chapter5 Conclusion ittt ittt 78
51 Conclusion o o e 78
52 Future Work e e 79
References o i i i e i e 81

vii

List of Tables

21

4.1
4.2
4.3

A simplified model for Quality of Service metrics 16
An evaluation of the adaptation effectiveness for non-recursive adaptors 71
Pole positions for the recursive adaptor L. 73
An evaluation of the adaptation effectiveness for recursive adaptors. 75

viii

List of Figures

1.1

2.1
22
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10

A generic framework for QoS-aware distributed applications

Sampling time intervals for evaluating Approximated QoS Metrics
A frequently used special case for sampling time intervals
Applying adaptation process to the raw QoS metrics

Configuring Quality of Service adaptors: anoverview
Elementary excitation functions: the impulse, unit step, and exponential function

The impulse response: anexample L L oL
The Convolution Summation Property: anexample
A comparison between time and frequency domain analysis
The gain function of the frequency response: an example
Modeling the transformation process using z transform
Poles and zeros on the z-plane: anexample
An ideal low-pass adaptor with cut-off frequency Q¢o
The frequency response to ideal low-pass adaptors: anexample
A 51-term von Hann windowing function
A 51-term Hamming windowing function
Typical frequency response of Chebyshev approximation

The infrastructure of Video-On-Demand application with adaptors
System design of the prototype Quality of Service adaptor
The coefficients in the non-recursive difference equation of the configured adaptor .
Spectral magnitude in the frequency response of configured non-recursive adaptor .
Excitation signal for the non-recursive adaptor: generated by the simulator
Response generated by the non-recursive adaptor
Spectral magnitude in the frequency response of configured recursive adaptor
Cascading relationship among subadaptors
Excitation signal for the recursive adaptor: generated by the simulator
Response generated by the recursiveadaptor

ix

Chapter 1

Introduction

1.1 Background

In recent years, the field of distributed multimedia systems has shown extraordinary growth
as witnessed by the tremendous amount of interest shown by academia, and by the wide spectrum
of interactive distributed multimedia applications that rapidly emerged and reshaped our model
of computing. A typical multimedia application conveys information to the end user via all possible
presentation media, including synchronized video and audio, images, hyperlinks, graphics and
animations, in addition to traditional text found in legacy applications. These promising new
possibilities of presenting information have extended the capabilities of the application, thus made
it possible to build complex frameworks such as digital libraries, video conferencing and high-
performance video-on-demand distribution servers. These applications are only limited by the
ingenuity of human imagination.

Along with these promising prospects for potential benefits of the unfolding multimedia rev-
olution, we are also faced with technological challenges pushing the limits of the currently avail-
able hardware and software infrastructure. While providing extended capabilities of presentation,
multimedia applications are also critically demanding for system processing resources in all levels
and categories. To realize actual working systems, extensive research and development efforts are
needed in various areas of general purpose distributed multimedia information systems.

Distributed multimedia applications are uniquely sensitive to the performance behavior of the
components on the delivery path, while in contrast, traditional network applications are more

tolerant of dynamic fluctuations of performance. Examples include multimedia conference appli-

cations that demand guaranteed end-to-end latency, video applications that demand guaranteed
bandwidth, and speech applications that are sensitive to excessive jitter of delivery delay.

It is therefore necessary to assure that the Quality of Service (QoS) performance delivered by
the coordination of all components on the delivery path matches the requirements of multimedia
applications. While Quality of Service performance criteria traditionally included parameters with
regards to network transmission, such as end-to-end latency, minimum allocated bandwidth, loss
rate and delay jitter, it does not limit to this domain. As we shall notice, the notion of Quality of
Service can be extended to much more diverse dimensions. As an example, we may extend the
notion to the quality control of timing interdependencies, where an upper bound on the synchro-
nization skew among different transmission streams may be desired. We may also extend Quality
of Service to the quality of the result of a query to a digital library, in which case certain degrees
of accuracy, timeliness or completeness of retrieved information may be demanded.

Due to the fact that the relative sensitivity to Quality of Service of multimedia applications
usually exceed traditional applications by several orders of magnitude, guaranteeing the satisfac-
tion of the expected Quality of Service over the course of delivery is not trivial, especially when
utilizing currently adopted networking infrastructure to provide such guarantees. For some appli-
cations, we need Guaranteed Quality of Service, in which case once the delivered Quality of Service
is promised and the connection is admitted, it should never be violated. However, Adaptive Quality
of Service is sufficient for most other less demanding applications, where the need to dynamically
adapt to variations of the actual Quality of Service delivered by the network may arise from time
to time. These adaptations may be conducted at various levels, from the switching mechanism in
the underlying network to the application itself.

Recent studies of Quality of Service delivery have focused on the design of network mecha-
nisms to assure the guaranteed QoS. These studies range from the design of Asynchronous Transfer
Mode (ATM) [20] protocols, resource allocation and reservation techniques such as the Resource
ReSerVation Protocol (RSVP) [24], to the design of multimedia transport protocols. Mostly, these
mechanisms have focused on regulating competition for network resources among traffic sources
at the network level. They involve resource allocation and reservation, as well as flow and admis-

sion control techniques used by packet, cell, or transport layers.

On the contrary, this thesis will focus on the design of application level mechanisms to sup-
port effective adaptation to and control of Quality of Service delivery. Specifically, it focuses on
implementing the adaptation policies in the middleware level, serving as a intermediate media-
tor between the multimedia applications that utilize Quality of Service delivery and the transport
and network level mechanisms that provide Quality of Service. Apparently, any adaptive behav-
ior and policies that the middleware addresses are only meaningful in the scenario of Adaptive

Quality of Service, where the actual Quality of Service delivery varies in the time domain.

1.2 Motivation

As elaborated above, in order to provide stable and effective services to the user, distributed
multimedia applications demand distinct Quality of Service guarantees from the underlying sys-
tem and transport facilities. These demands, in turn, give rise to a range of new problems with
regards to resource allocation, reservation, and manipulation techniques. A primary requirement
of all the applications in the class is the provision of end-to-end real-time processing and service
guarantees, and these guarantees ensure that continuous and discrete information can be achieved
within a limited upper time bound.

The open problems of resource allocation, reservation and manipulation in the system and
transport layers to provide Quality of Service have been addressed by various research efforts in
the past years. However, these research efforts mainly focused in two broad categories. The first
category, hereby referred to as the one-dimensional category, included the research of policies and
mechanisms that provides guaranteed quality to one media stream, satisfying its requirements
on various Quality of Service criteria such as end-to-end delay, bandwidth, and local processing
resources. The second category, referred to as the two-dimensional category, included the cases
of preserving timing interdependencies between two or multiple interdependent media streams,
satisfying their demands on the upper bound of various interdependent behavior such as syn-
chronization skew.

The research in the third category, referred to as the three-dimensional category, is still in its
infancy. This direction of research focuses on the proper response by the underlying system and

transport layers to the adaptive behavior of continuous media streams. In this category, the de-

3

sired quality of service of an distributed application may change after the negotiated connection
has been set up, therefore demanding modified Quality of Service levels by the underlying lay-
ers to accommodate its needs. The system allows the demand in Quality of Service to change in
predictable or unpredictable ways. In the case of predictable Quality of Service changes, the appli-
cation may change its demands in a time deterministic manner or a event deterministic manner,
which is driven by preset time instances or event types. In the case of unpredictable quality of ser-
vice changes, the demands may change in unpredictable manners that are not specified off-line in
advance. In both cases, the underlying system must be able to provide the adaptations promptly
and in a stable manner, so that the response time of adaptation has its upper time bound, which,
along with other time variant adaptation parameters, constitutes another main category of Quality
of Service criteria that may be observed and demanded by the application.

In addition to the three-dimensional category problems elaborated above, another major class
of adaptation possibilities should also be brought into consideration. As stated before, Adaptive
Quality of Service, rather than Guaranteed Quality of Service, suffices to satisfy the QoS concerns and
requirements of most of the applications. During the course of delivering Adaptive Quality of Ser-
vice, the delivered QoS may change over time. For example, while the major previous research
efforts tend to assume that the underlying system capabilities would stay stable without dramatic
configuration and bandwidth changes, it may not be the case in the emerging mobile environ-
ment, where the mobile agents are constantly on the move and may lead to sudden and unex-
pected bandwidth and configuration changes in the wireless communication channels, especially
when during the handoff process between heterogeneous wireless networks. In this scenario, the
application and the system need to coordinate to provide graceful adaptation to dynamic Qual-
ity of Service variations. With the rapid evolution of commercially available mobile computing
environments witnessed in recent years, the problems of adaptability emerge as a focus of recent
research efforts.

The major focus of this thesis will be a close examination on the adaptive behavior and various
associated parameters of the provided Quality of Service to regular distributed multimedia appli-
cations. The purpose of the study will be two-fold: one is to examine the problems occurred in

the adaptation capabilities of underlying systems support, while the demanded Quality of Service

from the application changes over time in a predictable or unpredictable way after a connection
with guaranteed service was set up; another purpose is to examine and experiment with the adap-
tive behavior of application Quality of Service demands while the provided Quality of Service by
the underlying system changes over time, particularly in the scenario of mobile computing over

heterogeneous networks.

1.3 Proposed Approach

Our proposed approach to solve the open problems elaborated above is to introduce the middle-
ware level between the distributed multimedia applications and the transport facilities. This level
will operate above the kernel space, and need to be portable over heterogeneous environments
that is typical for distributed multimedia systems. Two objectives of introducing the middleware
level will be addressed in this thesis. First, the middleware level is to encapsulate any minor or
major changes in the raw Quality of Service that is delivered by the transport facilities, in order
to make them transparent for the applications. Thus, the applications will only be aware of the
filtered Quality of Service after intervened by the middleware, and the behavior of adaptations
by the middleware can be specified and configured by the applications. Second, the middleware
also needs to encapsulate the deterministic or indeterministic changes in Quality of Service re-
quirements made by the applications, so that the transport facilities do not need to go through
inadequate renegotiation at excessive frequency, and in the case of a multicast environment, the
Quality of Service provided to other clients will not be violated or forced into modifications.

In order to realize the capabilities expected in the middleware level, a modular generic frame-
work is being proposed that emphasizes the delivery of high availability, predictability, reliability
and timeliness. The framework is proposed to be flexible for encompassing future developments,
and to accommodate the demands of a wider range of distributed applications. Unsolved research
issues will be investigated in the specification, classification and identification of Quality of Ser-
vice. A generic model for the framework need to be presented to provide the maximum overall
quality of the applications, under circumstances of limited input quality and available system re-
sources. This requirement justifies the introduction of reward profiles into the middleware, which

specify output quality as a multidimensional function of input quality and resource availability.

5

Quality of Service demanding distributed applications
il

Quality of Service Provider] [QOS Negotiator

Quality of Service Adaptor } Profiler [QOS Translator

Quality of Service Monitoring Service

Middleware Level

Ihm N N

Underlying Operating Systems and Transport Protocols

NI N N N N

[WirelineANireIess Networks (Broadband ATM or Internet)

Figure 1.1: A generic framework for QoS-aware distributed applications

It also demand local or global optimization mechanisms in order to optimize overall system re-
source utilization, without jeopardizing the Quality of Service provided to individual tasks. In
order to provide the above mechanisms, various services are necessary to be introduced into the
middleware level, such as adaptors for adaptation purposes, profilers for QoS profiling, translators
for QoS translations and mappings among different categories, and negotiators for QoS negotia-
tions and re-negotiations. Figure 1.1 shows the generic architecture of the proposed framework
for QoS-aware distributed applications.

As a start, this thesis will focus on the control and delivery of adaptation behavior that is tenta-
tively implemented in the component referred to as adaptors in the above mentioned framework.
These adaptors run in the application space and should be measured and configured according
to their adaptive capabilities. In the case of a mobile environment, where distributed multimedia
applications may suffer from sudden changes in the delivered Quality of Service, the need for
adaptations becomes crucially important to maintain an acceptable behavior of the applications.
There are two extremes with regards to adaptive capabilities of an adaptor. One is to avoid any
attempts for adaptations, and pass the raw Quality of Service provided by the transport facilities
directly to the applications. The other extreme is to provide an application-transparent adapta-
tion, and places the entire responsibilities for adaptation on the middleware level. We need some
specific metrics to measure the adaptive capabilities of the adaptor between the two extremes.

We propose the metric referred to as adaptation agility or sensitivity of the adaptor, which repre-

sents the ability and extent of an adaptor to promptly respond to perturbations in the raw Quality
of Service from the lower levels. We will quantitatively measure the agility of the adaptors in this
thesis, and propose methods to configure the adaptor behavior to a specified agility that is desired
by the application.

An adaptor that is highly agile may suffer from instability. Such an adaptor consumes almost
all its resources reacting to minor perturbations, hence taking excessive computational resources
from the system. This behavior is apparently not desired. We note that stability is another im-
portant issue in the configuration process of an adaptor. We will introduce methods to verify the
stability of the adaptors, and to guarantee the stability of a newly configured adaptor.

In addition to the adaptors, we also need monitors in the middleware level so that we can
monitor the provided Quality of Service performance in from the underlying levels and detect
changes in the time domain. Monitors should be capable of detecting variations for any specified
QoS metrics, typically end-to-end delay, transmission rate and delay jitter. The output of monitors
will be fed into adaptors to activate adaptations to Quality of Service fluctuations.

There are also certain occasions for the middleware level to adapt to requested changes of
Quality of Service requirements made by the application. The need for such adaptations will arise
when the requests were made frequently and the overhead for re-negotiation and re-establishment
of new resource reservation arrangements in the lower layers is significant. Such adaptations are
also desired in the case of multicast environments, where a sudden increase in the Quality of
Service demands of one application may severely affect the provided Quality of Service to other
applications, due to the resource limitations and resource sharing characteristics at the multicast
server.

In addition to the metrics mentioned above for an adaptor, we propose an extended Quality of
Service specification mechanism to specify the Adaptive Quality of Service desired by the applica-
tion. We introduce the Imprecise Computational Model [4], that suits the QoS requirements of flexible
tasks in flexible applications. It is possible to design a wide range of multimedia real-time applica-
tions so that their tasks are flexible. The output quality of these applications improves while the
provided Quality of Service improves. For example, allocating a tracking application more pro-

cessor time to complete a better but more complex tracking algorithm leads to a lower probability

of producing false tracks. Research on Imprecise Computation in areas as diverse as digital control
systems [5] and artificial intelligence [12] have shown it to be a feasible and effective approach.

Under the model of Imprecise Computation, we logically divide the requirement of each flex-
ible application into two parts: a mandatory part and an optional part. this division is done in such
a way that the system still performs acceptably as long as all the mandatory parts of the require-
ment are satisfied. In other words, the mandatory part of the requirement is the least tolerable
Quality of Service that the system must provide in order to maintain acceptable behavior of the
application. In contrast, providing the optional part of the requirement improves the quality of
the application’s output, but it is not required for minimum performance of the application.

Once we have the extended specification mechanisms for Quality of Service, we can make
decisions in the middleware adaptors according to the extent of changes in the QoS requirements
made by the application, and the extent of violations for the mandatory part of the provided QoS
to other applications in a multicasting environment. In the case of limited shared resources in the
multicasting server, we can propose adequate policies as a response to the increasing or decreasing
requests for Quality of Service.

In summary, in order to preserve the distributed multimedia system from disturbance of sud-
den perturbations of provided Quality of Service performance or the requests from other applica-
tions that share limited resources, we need to introduce adaptors and monitors in the middleware
level to screen raw Quality of Service provided by the underlying transport facilities. The met-
rics, behavior and policies adopted in the middleware level are the major research concerns of this

thesis.

1.4 Related Work

Currently there are many ongoing active research projects that focus on the open issues in
Quality of Service management in end systems. Many of them focus on the transport or operating
system levels in the end system, or on a generic framework for Quality of Service architecture.
There are also research efforts that address the problems related to adaptations or graceful degra-
dations of Quality of Service.

The Quality of Service Architecture (QoS-A) developed at Lancaster University [2] targets a lay-

8

ered architecture of services and mechanisms for QoS management and control of media flows
in multiservice networks. Among others, the QoS specification supports the notion of QoS scal-
ing policy to identify the QoS adaptation [23] similar to the notion of adaptors developed in this
thesis.

The OMEGA End-Point Architecture [17] [18] developed at University of Pennsylvania intro-
duces the notion of QoS Broker in order to provide end-to-end Quality of Service guarantees for
distributed applications. QoS parameters are translated between application and network require-
ments by the QoS Broker, thus integrating media and network QoS management into a single en-
tity. The work focuses on mapping and translation of QoS parameters. Not much attention is paid
to adaptation issues.

The Quality Assurance Language (QuAL) developed at Columbia University [7] presents a new
specification language referred to as QuAL. QuAL abstractions allow the specification of QoS con-
straints expected from the underlying computing and communication environment. These spec-
ifications are compiled into run-time components that monitor the actual Quality of Service de-
livered from the underlying layers. Upon QoS violations, application provided exception handlers
are signaled to act upon the faulty events. QuAL also generates profiles, referred to as Management
Information Bases in the work, that contain QoS statistics per application. Such MIBs, derived from
the SNMP protocol, may be used to integrate application level QoS management mechanisms into
standard network management frameworks.

Recent research interests in mobile computing also address the issues in Quality of Service
adaptations for mobile transmissions over heterogeneous wireless networks [1] [21]. These re-
search efforts focus on graceful adaptations to dynamic Quality of Service variations in the en-
vironment of mobile computing. Current state-of-the-art mobile environments must deal with
scarce and dynamically varying resources, in particular, the network Quality of Service. Appli-
cations which execute in such environments need to adapt to the dynamic operating conditions
in order to preserve the illusion of seamlessness for the end-user as far as possible. The research
and development of the Prayer mobile computing environment [14] [15], for example, proposes a
framework for adaptation which provides applications with runtime support for Quality of Ser-

vice negotiation, monitoring and notification services. Utilizing the framework, applications only

need to specify the policy of adaptation at a high level, and are shielded from the mechanics of
adaptation behavior. The generic objectives of this work are similar to the work presented in this
thesis, though the approaches are from a different perspective.

Open problems in the area of adaptive playout control mechanisms in destination end systems
have also been explored in previous research efforts. The Adaptive Playout Mechanism for packe-
tized audio applications over wide area networks, developed at University of Massachusetts, fo-
cuses on the elimination of end-to-end delay jitter for audio data transmission over the Internet.
Various algorithms for adaptively adjusting the playout delay of audio packets in an interactive
packet-audio terminal application have been addressed in the work. The algorithms are able to
explicitly adjust to the sharp, spike-like increases in packet delay. Since audio data playback is
extremely sensitive to delay jitter, delay adaptation in the face of varying networking delays is
crucial in preserving the audio quality at the destination end systems, especially in the cases of
Internet transmissions. The goal of this work is also similar with the work presented in this thesis,
though the former only focuses on delay jitter adaptations during audio transmissions. Similar
research work also includes the work presented in [11], which also focuses on jitter control of
playing back continuous media streams.

While the above mentioned work deals only with audio transmissions, various playout algo-
rithms for video transmissions have also been discussed in previous research efforts, especially in
the context of Video-On-Demand applications. The work at University of Pennsylvania [16], for
example, mainly focuses on the playout requirements in destination end systems, assuming con-
stant rate transmission of video data in Video-On-Demand applications over the ATM network.
The protocol assumes the establishment of constant bit rate (CBR) virtual channel between the
video provider and the viewer’s set-top box, and it needs a certain number of cells be built up in
the set-top box buffer space before the commencement of playback. The build up, cell transmission
rate and set-top buffer size must be chosen so that there is no starvation or overflow at the set-top
box. This work is analogous to the presented work in this thesis in the sense that we also deal with
problems with the playback buffer space in the end systems, though our adaptation algorithm will
be more complicated than the work presented in [16].

Previous research in the area of flow shaping and control in the source end system has led to

10

numerous noteworthy results in the past few years. In the work at AT&T Bell Laboratories [19], for
example, has examined the performance of the well-known Leaky Bucket control scheme for both
intraframe and mixed intra/interframe variable bit rate (VBR) MPEG video sources. The work
investigates the effect of varying the leaky bucket parameters, and presents a new technique for
VBR video transmission using multiple leaky buckets. In essence, source shaping and flow control
are to some degree similar to the adaptation behavior that we address in this thesis. Some of the
research results in this area are proved to be valuable and helpful to the research in our thesis.

The research efforts on switch-based flow control algorithms in the transport and network
layers also provide valuable basis for the research presented in this thesis. Among them, we take
the work at University of Texas as an example [8]. The work presents an adaptive network layer
protocol for variable bit rate (VBR) video transport, which minimizes buffer requirement in the
network while guaranteeing that packets of VBR encoded video flows will not be lost. It also
works to minimize the end-to-end delay and jitter of video frames. To achieve these objectives,
it utilizes a protocol referred to as receiver-oriented adaptive credit-based flow control algorithm.
Research work for flow control protocols in the transport and network layers appears to be a major
research concern in the past few years. Numerous research results are presented, which deserve
close attention in the ongoing research for adaptation.

In more practical aspects, previous research efforts also focus on the preservation of Quality of
Service, particularly in the case of audio and video transmissions, over best effort environments
such as the Internet. Outstanding examples include the work at University of Illinois [3], in which
a real time protocol referred to as the Video Datagram Protocol (VDP) for transmitting video and
audio data over best effort environments was developed. VDP reduces inter-frame jitter and dy-
namically adapted to the client CPU load and network congestion. Best efforts environments such
as the Internet shift all the workload of adaptation requirements to the end systems, thus require
the protocols utilized to be stable and robust, while minimizing the resources required at the end
systems. Previous work in this direction also serves as a basis for the ongoing research in this
thesis.

To summarize, the adaptation problems faced in the ongoing research efforts presented this

thesis are not new. Numerous previous research work related to these problems often presented

11

fruitful and thought provoking results. It is obviously necessary to conduct ongoing research
efforts based on these results and experiences, while presenting new protocols and algorithms to

meet more stringent requirements and research objectives.

12

Chapter 2

A Model for Adaptive Quality of Service

2.1 Overview

In order to provide certain adaptive behavior on the raw Quality of Service performance pro-
vided by the underlying transport facilities, we have introduced the notion of adaptors and moni-
tors in the middleware level, that serves as an intervening medium between the application that
receives Quality of Service and the underlying transport mechanisms that provides Quality of
Service. Apparently, in order to deliver the desired adaptabilities, we should be able to measure
and configure the behavior of the adaptors and monitors. In order to achieve this configurability,
we need to formalize the concept of various Quality of Service metrics and adaptation behavior

parameters, such as adaptation agility or stability. We address these problems in this chapter.

2.2 A Model for Quality of Service Metrics

2.2.1 Definition of QoS Metrics

A Quality of Service Metric, in its restrictive sense, measures the delivery performance of a
stream of entities. In its broader sense, Quality of Service metrics can denote any kinds of quality
that is delivered to the application transparently, for instance consistency, completeness or accu-
racy in a typical query to a digital library. We will only address the restrictive sense of Quality of
Service in this thesis, and leave other criteria to later research efforts. However, we believe that
the conclusions drawn from examinations on the restrictive sense of Quality of Service may also

apply to any broader contents of Quality of Service.

13

We represent a stream as an ordered sequence of S = {ej}rer, where e denotes a distinct
entity, which may in reality a frame of video data, a packet of data transferred over packet switching
networks, or a protocol independent message carried by any transport facilities. I is the set of entity
indices, while a stream S is an ordered sequence of entities. Also, we define T' as the domain
of time instants, which are normally represented by real numbers, and R as the domain of real
numbers.

For each ey, we assign a distinct Quality of Service Signature 7, where k € I:

Tk = (Sk,Tk) (88 <7k, Sk €T, 74 €T) (2.1)

where sy, and r represent the sending time at the original source of transmission and receiving
time at the destination of the entity ey, respectively.

Once the above notions are defined, we are able to define the ordered sequence of QoS sig-
natures. We formally define the ordered sequence I1g = {my}.,cs as the Quality of Service Profile
of sequence S. Furthermore, the predicates first(Ilg) and last(Ilg) denote the indices of the first
and last QoS signatures in IIg respectively. For example, the expression 7 ;,s(114) represents the
receiving time of the first entity in the stream S, while the expression s;,4(114) denotes the send-
ing time of the last entity in the stream S. We will also use the expression II15[C] to represent the
subset of QoS signatures in II5 that satisfy the condition C, where C may be any unconditional or
conditional equations.

Given the above definitions, a Quality of Service Metric consists of a measure computed from the

Quality of Service Profiles of one or multiple streams. Formally, it represents a mapping function:

QoS : d" > R (2.2)

where @ is the domain of QoS profiles, n represents the dimension of the QoS metric, and R is
the domain of real numbers. For example, in the one-dimensional category, the value of QoS(Ils)
is the result of computing the QoS metric QoS on the Quality of Service Profile ITg. If in reality we
are interested in the Quality of Service delay, we will compute delay(Ils) based on the QoS profile

IIs of the stream S.

14

QoS Metric

Figure 2.1: Sampling time intervals for evaluating Approximated QoS Metrics

Even though the Quality of Service metrics can be defined as such, it is generally difficult to
obtain these metrics strictly as the definitions, constrained by practical measurement limitations.
We thus introduce the notion of Approximated Quality of Service Metrics, whose definitions make it
practical to measure and monitor QoS metrics in various implementations. Though these defini-
tions can only approximate formally presented metrics shown above, they are normally sufficient
for most cases.

For Approximated QoS Metrics, we define a mapping function:

QoS*: T xT xd®" - R (2.3)

where again, ® is the domain of QoS profiles, n is the dimension of the metric, R is the domain
of real numbers, and T represents the time domain. To be more specific, if we define ; and g; to

be time instants so that

a; < ﬂi, o; € T, ,31 eT (2.4)

where 7 is an index number. We can thus define a time interval [o;, §;] so that

t € [a, Bl ifand only if a; <t < 3 (2.5)

As an example, in the one-dimensional category, the value of QoS*(a1, f1,11ls) is the result of

15

Notation Definition Example

ek an entity of index k a data packet or message
I the set of entity indices integers

S a stream of entities: S = {eg }rer a regular data stream
Sk sending time of an entity e, sending at time 1

Tk receiving time of an entity ey, receiving at time 2

Tk Quality of Service Signature: 7y, = (s, 7%)(sk,7e € T) | (1,2)

IIs Quality of Service Profile: Ilg = {7} }e,es

first(Ilg) the index of the first entity in stream S

last(Ilg) the index of the last entity in stream S

II5[C] the subset of QoS signatures in Il 5 that satisfies C Osfrr < 2]

QoS(Ilg) QoS metric computed on Il g delay(Ilg)
QoS*(t1,t2,1Ig) | Approximated QoS metric computed on Ilg delay*(t1,t2,1lg)

Table 2.1: A simplified model for Quality of Service metrics

computing the approximated QoS metric QoS™* on QoS profile IIg, over the time interval [ay, 51],
where a1, 81 € T. In reality if we are interested in the QoS metric delay, we use delay* (o, 5;, Is)
to compute the average delay of the QoS Profile ITg in the time interval [«;, 5;]. We may establish
multiple time intervals referred to as sampling intervals during the course of QoS delivery, so that
we can evaluate an ordered sequence of Quality of Service metric values during each of these time
intervals, as illustrated in Figure 2.1. We will discuss these problems in later sections.

For easier references, we summarize the above notations and definitions in table 2.1.

Given above, we are able to define the common Quality of Service metrics such as system rate,

generating rate, delay, loss and jitter. These metrics are addressed in the following sections.

2.2.2 System Rate

System rate is generally referred to as transfer rate, leaky bucket rate, bandwidth or throughput in a
network transmission context. However, the definition of rate should not be limited to this context,
and we will refer to this as system rate. It should denote a QoS metric that measures the delivery
speed or efficiency of any QoS quantitative entities. Given the definitions for QoS metrics in the
previous section, system rate measures the mean number of entities per time unit received during
the duration of a stream. For this purpose, it is useful to define the function quantity : IIg[C] — N
that counts the quantity of entities in a QoS profile II5[C] under the condition C, or, equivalently,
a subset of the stream S. For example, quantity(Ilgt; < a < t3]) is the number of entities in S that

are received within the time interval [¢;, t2]. The formal definition of system rate is:

16

rateg : @ — R

quantity(Ils[C,])

rates(Ilg) = (2.6)
Tlast(llg) — T first(Ils)
where condition C, can be defined as:
Cr = T first(Tlg) <rp < Tlast(llg)> Tk € T (2.7)

As stated in the previous section, it is normally not convenient to practically measure the sys-
tem rate defined above. We may define the approximated system rate so that it can be measured
practically. The proposed solution is to use an interval of time during which the rates are com-
puted. Once the time interval starts, all computations are reset to their initial status. When the
interval finishes, the metrics are computed and analyzed. Immediately following the computa-
tions of the previous interval, the statistics are initialized again as the new interval starts. The
process should be repeated for the duration of the stream. The same mechanism will be used
for most other QoS metrics. Given a time interval [o;, 3;] defined in equation (2.4) and 2.5, the

definition of approximated system rate is as follows:

ratey : T xT x®— R

_ quantity(IIs[C;])

ra es(az,ﬁu S) ﬁi_ai ()
where condition C; can be defined as:
Cr =a; <rp < B (2.9)

2.2.3 Generating Rate

The generating rate QoS metric measures the rate in which entities are generated or inserted

into the stream. Its computation is very similar to that of system rate and defined by:

17

rateg: @ — R

quantity(I1s[Cy])

Slast(Illg) — S first(Ils)

rateg(Ills) =

where condition C, can be defined as:

Cs = S first(Ilg) < < Slast(Tg)

Similarly, approximated generating rate is defined by:

Tate;:TxTx@r—)R

quantity (T1s[C5])

lra’te;(aia ﬂia HS) = /B’L — o

where condition C} can be defined as:
C; =a; <s, < B

2.24 Delay

(2.10)

2.11)

(2.12)

(2.13)

Delay is usually referred to as end-to-end delay in the network transmission context, it measures

the average difference between the sending time s; and the receiving time r of all or a subset of

QoS signature in a QoS profile IIg. Formally, we define:

delay : ® — R

Lymyetis[c,] Tk — 5)
IIg) = = =2
delay(Ilg) quantity(Ig[Cy])

where C;, was defined in equation (2.7). Similarly, approximated delay is defined by:

delay* : T XT x®— R

18

(2.14)

Yvmeensic:) Tk — Sk)

delay (azaﬁ'w S) quantzty(Hs[C;‘])

(2.15)

where C} was defined in equation (2.9).

2.2.5 Loss

An QoS entity is considered to be lost if and only if it is received more than a given timeout ¢

after its sending time. We can define the metric loss based on this assumption:

lossy : @ — R

_ quantity(Ig[(ry — sg) > t A C])

II .
toss({ls) quantity(Ts[C,) (210
where C; was defined in equation (2.11). Similarly, approximated loss is defined by
lossi :TxTx®— R
1 (TT B .
loss: (TTg) = quantity(Ilg[(ry — sk) > t A CF]) 217)

quantity(TTs[C3])
where C was defined in equation (2.13).

For example, assume a stream S with quantity(Ils) = 20, and quantity(Ilg[ry — sp > t]) = 5,

we will conclude that the loss rate loss; is 25%.

2.2.6 Jitter

The QoS metric jitter, also referred to as delay jitter, measures how far apart consecutive entities
are received. It can be measured as the standard deviation among individual entity delays and the

average delay of the stream. The definition of standard deviation is:

i1 (T — p)?
n—1

(2.18)

where p is the mean of all data, ¢ is the index, n is the total number of data points, and z; is a

data point of index i.

19

Following the definition of standard deviation above, we can therefore define jitter as:

jitter : & — R
jittor(Ils) = \/EVWEHS[ZSCEZ;;}{EL [;;f];la_yiﬂs[Cr])]Q 219)
where C; was defined in equation (2.7). As usual, approximated jitter is defined as:
jitter* : T xT x ®— R
it (SRR

where C was defined in equation (2.9).

2.2.7 Conclusion

As is shown in the previous sections, our model for Quality of Service Metrics suits well for
defining the most common QoS metrics such as system rate, generating rate, delay, loss and jitter.
This model uses a simplified approach in modeling these metrics, so that they can be monitored,
configured and manipulated in QoS adaptors in later sections. Despite the simplified character-
istics of the model, it can well represent a wide range of other metrics not mentioned in previous
sections, such as synchronization skew, peak delay and permutation. However, its capabilities are lim-
ited in simple quantitative metrics, and are unlikely to be extended to more complex, qualitative

metrics. The solutions to these deficiencies are left to future research efforts.

2.3 Quality of Service Specification

2.3.1 QoS Demands

In addition to the Quality of Service metrics elaborated and formally defined in the previous
sections, we also need to specify the application demands, or requirements, for a specific Quality
of Service level. Adaptive Quality of Service can only be made possible if the specified Quality of

Service allows flexible fluctuations in a reasonable range, thus allows adaptations to occur within

20

authorized limits. We refer to these applications as flexible applications. These applications may
similarly be composed of a series of flexible tasks, which carry different parts of the responsibilities
of the application, and may have their own specific Quality of Service demands. In order to model
the QoS demands of these flexible applications or tasks, we apply the Imprecise Computation Model
[4] [12] [5] [13], which originated from the research of hard real-time scheduling for computational
tasks.

The essence of the Imprecise Computation Model is to make the scheduling of real-time systems
easier by dividing the processing of each task and its result in the system into two parts: a manda-
tory part and an optional part. The mandatory processing time of each task must be satisfied so that
the task provides results of minimum quality requirement. If the optional processing can also be
performed, the quality of the result produced by that task is improved, thus improving the quality
of the output from the system as a whole. The system schedules the mandatory and optional parts
so as to optimize the overall quality of its output.

The concept of the Imprecise Computation model was motivated by the observation that for
many real-time applications, we may prefer to have approximated results of a poorer but accept-
able quality on a timely basis, other than late results of the desired quality. Applying this concept
to the context of multimedia applications, for example, it is often more acceptable to tolerate poor
quality images or voices in multimedia transmissions than late frames and long silences. It is also
observed that good approximate results can often be produced with much less processor time
or system resources than results of desired quality. By trading the quality of the results for the
amount of time and resource required to produce them, a system based on this technique tries to
make approximate results of acceptable quality available whenever it cannot produce results of
the desired quality in time. Such system is often referred to as an adaptive system. The approach is
most frequently applied to cases when the system is overloaded.

Even though the original concept of Imprecise Computation Model is for the purpose of hard
real-time scheduling of flexible tasks, it is natural to extend the concept to adaptive Quality of Ser-
vice management, graceful degradations and adaptations of real-time systems. All systems that
require Quality of Service support are in some sense real-time systems, and applications execut-

ing on these systems indeed have their implicit or explicit deadlines. Some of these deadlines are

21

presented as Quality of Service metrics that are specified in the Quality of Service demands, and
require satisfaction in the provided Quality of Service. This scenario is naturally very similar to
that of task scheduling in real-time systems.

We thus propose the Quality of Service specification mechanism be extended to accommodate
minor fluctuations or adaptations, within the range of specified QoS demands. In the case that
an underlying system cannot meet both the mandatory and the optional part of the Quality of
Service demands of the flexible applications or tasks, the application or individual tasks will yield
imprecise results, whose precision depends on the QoS that the system can provide. While the
system will make every effort trying to meet the demands of both parts, in case of overloading
or other exceptions, the application agrees to tolerate if the system decides to trade quality with
time.

In the original Imprecise Computation model, each task T; is logically decomposed into two
tasks, the mandatory task M; followed by the optional task O;, independent of the method used to
implement it. Let 7;, m; and o; denote the processing times of T;, M; and O;, respectively. Clearly,
m; + 0; = 7;. The classical deterministic model is a special case of this imprecise computation
model where all tasks are mandatory, that is, o; = 0 for all i. Similarly, a sieve or an anytime
computation is a task that is entirely optional.

Similarly, in the specification of any of the Quality of Service metrics discussed in the previous
sections, we can logically decompose the Quality of Service demand for a particular metric T'g,
or Ty,s+ by the application into two partial demands, the mandatory demand M,s and the optional
demand Ogps. Let 7405, Mgos and o495 denote the quantitative measures of Tios, Myos and Ogyos,
respectively. Clearly, mgos + 0gos = Tgos-

In addition to extensions to the Quality of Service specification mechanism, we can also apply
the original Imprecision Computation Model to the representation of data. In this scenario, the
tasks will be defined as manipulations or operations on data, and the mandatory and optional part
of the tasks will naturally represent a division of data into different sections. For example, in pro-
gressive coding schemes, some spatial or temporal parts of the image or video will be mandatory,
while the refinements and enhancements will be optional. Corresponding to different require-

ments and divisions, different number or types of tasks will need to be performed in order to

22

render the desired quality of images or video streams.

2.3.2 Quality of Service Violations

A Quality of Service violation occurs when a QoS metric of the provided Quality of Service is not
within the tolerable range that specified a priori by the application. All QoS violations are detected
by a Quality of Service monitor that is integrated in the implementation of the middleware level.
A QoS violation function defines in reality a class of functions, where each function measures
violation of a specific metric. Given a QoS metric gos, where gos can be any Quality of Service
metric such as system rate or jitter, violationg,s indicates whether a stream violates the metric gos.
When mg,s < gos(Ils) < 7405 does not hold to be true, we can determine that a QoS violation

occurs. Formally, we define:

violationges : ® X R x R+ {True, False}

False, if mgys < qos(Ilg) < (mges + 0
violationges(Ilg, Myos, 0gos) = 9es (Is) < (mgos + 0gos) (2.21)

True, otherwise

Similar to the study of Quality of Service metrics, violations can be approximated and checked

over a time interval [, §;]. Formally:

violationg,e : T x T X ® X R x R+ {True, False}

. . False, if Mgos* < QOS*(aiaﬁiaﬂS) < Tqos*
violationg,e (i, Biy s, Myos* , 0gos*) = (2.22)
True, otherwise
Consider, for example, the monitoring of a QoS metric system rate on a Quality of Service
profile. vi0lations e (i, B, ILs, Myater , Oratex) = False if and only if it holds that the average

system rate delivered by the QoS underlying layers in the time interval [«;, §;] is within the interval

[Mrater, Mrater + Opatex], Which is the same as [mrqser s Tratex |- Here, myater, 0rater and Trqqex are all

23

determined by the application, in its specified Quality of Service demands, using the proposed

extended mechanism for Quality of Service specifications.

2.4 Quality of Service Adaptations

241 Modeling Generic Adaptors

The discussions proposed in previous sections provide sufficient grounds for the elaboration
of a model suitable for modeling the behavior of Quality of Service Adaptations commonly found in
the Quality of Service adaptors in the middleware level. These adaptors control the raw Quality of
Service metrics measured by the monitors upon the QoS provided by underlying layers, according
to a predefined configuration. In this section we formally define the behavior model of the adaptor.

Generally, an adaptor is an operator or filter on a particular stream that controls and modifies its

Quality of Service profile. Formally, an adaptor is defined as:
p:P— P

where ¢(Ilg) is any transformation performed on IIs.

As a simple example, p({(sk,7k)}) = {(sk, Tk + const)} is an adaptor that delays the receiving
time of all entities in a stream by a constant const. This adaptor can be understood as a delaying
adaptor, whose only transformation applied on the QoS profile is to delay the receiving time by a
specified amount.

Modeling and configuring the behavior of a generic adaptor described above is not a trivial
task. To the extent of this thesis, we will only address a specific subset of these generic adaptors,
namely, those adaptors whose behavior only transforms a specific QoS metric of a particular QoS
profile. In addition, since the adaptor will be implemented on the receiver side, it is only able to

affect the receiving time of each QoS signature, the sending time remains unaffected. Formally:

p: P> P

ITs = o(Ils) = {(sk, %)}, for V(sk, i) € g (2.23)

24

Apparently, the behavior of these adaptors is to transform the receiving time ry, to r}, in all QoS
signatures of a QoS profile according to a predefined set of transformation rules. However, we
still need a precise model for the transformation rules, so that we can specify and configure these

rules to perform the desired transformations. This problem is addressed in the next section.

2.4.2 Modeling Transformation Rules

Based on the modeling for adaptors elaborated above, we can model the behavior of adaptors
as a transformation from original values of r, to some new values r},. Since we are more interested
in adapting to the fluctuations in specific Quality of Service metrics, the transformation should not
be applied to the receiving times in signatures directly, as the case of the simple delaying adaptor
illustrated in the previous section. Instead, the transformation will be applied to a specific QoS
metric, such as system rate, and the response of the transformation will then be values based on
the measuring unit of this QoS metric. By utilizing the definitions that we developed for QoS
metrics or approximated QoS metrics, we can easily compute values for these metrics based on
a sequence of QoS signatures in a specific QoS profile. Furthermore, it is obvious to notice that,
based on the definitions, we can also develop mechanisms to reversely convert the known values
of QoS metrics to QoS signatures of a QoS profile, in which the known values of QoS metrics are
the response of the transformation made by the adaptor.

To be more concrete, we take the QoS metric system rate as an example. We already learned
that:

_quantity(ls[o; <1 < Bi])

rate;(a;, B;, Illg) = [(2.24)
(3 7

Once applied to an ordered sequence of time intervals o; and f3;, as illustrated previously in
Figure 2.1, this definition of system rate can be utilized to compute a discrete-time ordered sequence
of values rate}[i] based on the QoS profile IIg. For the most frequently used case of consequent

time intervals where

Bi = it (2.25)

25

QoS Metric

i+1

a
B, B By Bi

Figure 2.2: A frequently used special case for sampling time intervals

as shown in Figure 2.2. we have:

Tlast(llg) — T first(llg)

0<i< 2.26

- Bi — o (220
and the computation of the ordered discrete-time sequence rate’[i]:
tity(s|a; <1 < G

rate}[i) (o, i, Tg) = eamitty@slai <7 < A1) (2.27)

Bi — i
Reversely, we can take a discrete-time sequence of rate}[i] and convert it to a Quality of Service
profile IIs whose system rate is identical or approximated by the sequence rate’[i]. Formally:
i
quantity(Tsfon <1y, < i) = D (B — ag)rate;[k](ag, Br, s) (2.28)
k=1
In any Quality of Service signature (s, r}) in the Quality of Service Profile IT'y[a1 < 74 < Sy]

defined in equation (2.23), we have:

" Bi — a; — o+ 1
R quantity(Tgle <7, < B]) *1 7 rater[i)(e, Bi, ITg)

if o <rp < B (229)

In later discussions, we take system rate as an example of the Quality of Service metrics on

26

x(nT) é{ Transformation Process]éy(nT)
(excitation) (response)

Quality of Service Adaptor

Figure 2.3: Applying adaptation process to the raw QoS metrics

which the adaptor applies adaptations. Other common QoS metrics as discussed in previous
sections are similar in forms of treatment.

Because of the limitations in measurements, the original values rate}[i] are a series of discrete-
time values, or signals, rather than continuous-time signals. Formally, the original values of QoS
metrics ratel[i] can be represented by a function z(nT'), where T is a constant and # is an integer
in the range (n1,n2) such that —oo < n; and ny < co. Alternatively, a discrete-time signal can be
represented by z(n) or z,. In this thesis we will be using the first two notations, namely, z(nT)
and z(n).

The transformation process can be represented by the block diagram of Figure 2.3. Input z(nT')
and output y(nT) are the excitation and response of the transformation, respectively. In their orig-
inal senses, input z(nT') is the original ordered sequence of rate’[i] of a specific QoS profile, and
output y(nT') is the transformed response series rate’*[i], corresponding to the transformed QoS
profile IT%; according to equation (2.29).

Obviously, the response is related to the excitation by some rule of correspondence. We can
indicate this fact notationally as:

y(nT) = Oz(nT) (2.30)

where O is an operator. Equation 2.30 can be treated as a generic definition for the Quality of
Service adaptors that we will discuss in later chapters.
Like other digital systems [10], adaptors can be classified with respect to time-invariance, causal-

ity, linearity and recursiveness.

Time Invariance

An adaptor is said to be time-invariant if its response to an arbitrary excitation does not depend

on the time of application of the excitation. As in other types of systems, the response of an

27

adaptor depends on a number of internal system parameters. In a time-invariant adaptor, these
parameters do not change with time. Formally, an adaptor with excitation z(nT') and response

y(nT), such that z(nT) = y(nT) = 0 for n < 0, is said to be time-invariant if and only if

Oz (nT — kT) = y(nT — kT) (2.31)

holds for all possible excitations z(nT") and all integers k. In other words, in a time-invariant
adaptor, the response produced if the excitation z(nT') is delayed by a period kT is numerically
equal to the original response y(nT') delayed by a period kT

For example, y(nT) = ©z(nT) = 2nTz(nT) is not a time-invariant adaptor, since Oz (nT" —
kT) = 2nTxz(nT — kT) # y(nT — kT) = 2(nT — kT)z(nT — kT). On the other hand, y(nT) =
Oz (nT) = 2z[(n — 1)T] + z[(n — 2)T] is time-invariant, since Oz(nT — kT') = 2z[(n — k)T —T] +
z[(n — k)T — 2T] = y(nT — kT).

Causality

A causal adaptor is one whose response at a specific instant is independent of subsequent
values of the excitation. More precisely, an adaptor in which z(nT') = y(nT) = 0 for n < 0 is said

to be causal if and only if

Oz1(nT) = Ozo(nT) forn <k (2.32)

for all possible distinct excitations z1(nT') and z2(nT') such that

z1(nT) = zo(nT) forn <k (2.33)

Conversely, if

Oz1(nT) # Ozo(nT) forn <k (2.34)

for at least one pair of distinct excitations z1(nT') and z2(nT') such that

z1(nT) = zo(nT) forn <k (2.35)

28

then the adaptor is not causal.

The above causality definition can be easily justified. If all possible pairs of excitations z(nT)
and zo(nT') that satisfy z1(nT) = z2(nT) produce responses that are equal at instants n7" < kT,
then the adaptor response must depend only on values of the excitation at instants prior to nT,
where z1(nT) and z2(nT) are assumed to be equal, and the adaptor is causal. Conversely, if at
least two distinct excitations 1 (nT') and z2(nT) that satisfy z;(nT) = z2(nT') produce responses
that are not equal at instants nT' < kT, then the adaptor response must depend on values of the
excitation at instants subsequent to n7’, since the differences between z(n7’) and z2(nT") occur
after nT', and the adaptor is not causal.

For example, y(nT') = Oz(nT) = 3z[(n — 2)T] + 3z[(n + 2)T] is not causal. On the other hand,
y(nT) = Oz(nT) = 3z[(n — 1)T] — 3z[(n — 2)T] is causal.

Linearity

An adaptor is linear if and only if it satisfies the conditions

Oaz(nT) = aOz(nT) (2.36)

O[z1(nT) + z2(nT)] = Oz1(nT) + Ozo(nT) (2.37)

for all possible values of a and all possible excitations z1(nT") and z2(nT'). These conditions
are also referred to as the homogeneity and additivity conditions.
The response of a linear adaptor to an excitation az(nT) + Bz2(nT), where o and f are arbi-

trary constants, can be expressed as

y(nT) = Olazi(nT) + Bz2(nT)] = Oazxi(nT) + Ofze(nT) = aOzi(nT) + fOzo(nT) (2.38)

Therefore, the above two conditions can be combined into one as

Olaz1(nT) + Bzo(nT)] = aOx1(nT) + fOz2(nT) (2.39)

29

If this condition is violated for any pair of excitations or any constant « or (3, then the adaptor
is nonlinear. For example, while y(nT) = ©z(nT) = 3z(nT — 2T) is linear, obviously y(nT) =

Oz (nT) = z2(nT — T) is nonlinear.

Recursiveness

In this thesis, we only address the analysis and configuration of the subset of adaptors that are
time-invariant, causal and linear. Similar to the analog control systems in the control theory [22]
that are characterized in terms of differential equations, we characterize this subset of adaptors in
terms of difference equations. There are two types of adaptors that can be identified, non-recursive
and recursive adaptors.

The response of a generic nonrecursive adaptor at instant n7" is of the form
y(nT) = f{...,z(nT —T),z(nT),z(nT +T),...} (2.40)

If we assume linearity and time invariance, y(nT') can be expressed as

y(nT) = i ajz(nT —iT) (2.41)

1=—00

where q; represents constants. Now on assuming that the adaptor is causal and noting that

z(nT +T), x(nT + 2T), ... are subsequent values of the excitation with respect to instant n7, we
must have
a; =0 fori<—1 (2.42)
and so
o0
y(nT) = Z a;z(nT —iT) (2.43)
i=0

If, in addition, z(nT) = 0 for n < 0 and a; = 0 for 7 > N, we have

N
y(nT) = Z aiz(nT —iT) (2.44)
i=0

Therefore, a linear, time-invariant, causal and nonrecursive adaptor can be represented by an

30

Nth-order linear difference equation. N is referred to as the order of the adaptor.
Similarly, the response of a recursive adaptor is a function of elements in the excitation as well

as the response sequence. In the case of a linear, time-invariant, causal adaptor, we have

M N
y(nT) = Z aiz(nT —iT) — Z biy(nT —iT) (2.45)
i=0 i=1

i.e. if instant nT is taken to be the present, the present response is a function of the present and
past M values of the excitation as well as the past N values of the response. Note that if we let
b; = 0, nonrecursive adaptors is obviously a special case of the recursive adaptors.

For simplicity, if expressed in the form of z(n) instead of z(nT") and y(n) instead of y(nT'), and

in a more concise form, we have

N M
Z aiy(n —1i) = Z biz(n — 1) (2.46)
=0 1=0

2.5 Conclusion

From the analysis discussed in this chapter, we developed a suitable simplified but unified
model for Quality of Service metrics, Quality of Service specification mechanisms, and Quality of
Service adaptations. Once we can utilize this model to illustrate the complex dynamic behavior of
adaptive Quality of Service delivery, we can focus in the later chapters on discussions addressing
only this abstract model, with the assumption that it will model without loss of generality a wide
range of basic Quality of Service adaptive behaviors that we study. We reasonably ignore the
details in the adaptive behaviors that the model cannot describe. We will come back to these

details in our discussion of implementation issues.

31

Chapter 3

Configuring Quality of Service Adaptors

3.1 Overview

In previous chapters, we decided to model Quality of Service adaptors in the middleware level
using difference equations, and only to address a subset of adaptors that are time-invariant, causal
and linear. The function of the Quality of Service adaptors is to apply adaptations on a particular
QoS metric, such as system rate, so that to provide the applications with adapted Quality of Service,
such as graceful service degradation if the services of raw QoS degrades severely and rapidly. The
adaptations are in essence some form of transformations, such as the transformation of one series
of QoS metric values to another. These series of QoS metric values are modeled by discrete-time
values, or signals, and the transformation can be modeled by difference equations provided its
behavior is time-invariant, causal and linear. The general form of the difference equations that we

address can be expressed as equation (2.46) in the previous chapter:

N M
Z a;y(n —1i) = Z biz(n — 1) (3.1)
1=0 1=0

In this chapter, we will introduce theories in digital control systems [22] [10] to analyze and
configure the adaptors modeled by the above difference equations. Specifically, we will utilize
z-transform, an important mathematical transformation method introduced in digital systems con-
trol theory, and analyze the frequency domain responses of the adaptive behavior of an adaptor.
The analysis for the adaptor will be focused on the stability of the adaptive behavior, and the con-

figuration will be based on a specified adaptation agility or sensitivity in the application Quality of

32

Lower level networks
Delivering Quality of Service

¢

Raw Quality of Service

Quiality of Service demanding
Distributed Applications

¢

Quality of Service Specifications
Agility (Q) ¢ Stability

Quality of Service Configurator (offline)

Quality of Service
Monitor

¢ Recursiveness?
Approximated (measured) Nonrecursive | | Recursive |
Quality of Service Metrics Fourier Chebyshev
Transform Approach
Approach

t

Quality of Service Adaptor
(on-line)

Transformation Process
(Difference Equations)

Adapted Quality of Service

Figure 3.1: Configuring Quality of Service adaptors: an overview

Service specification. As a basis of further discussions, time-domain properties of the adaptor will
also be addressed in this chapter.

We present an overview on the configuration process described above in figure 3.1. The con-
tiguration starts with the raw Quality of Service that is provided by the underlying transport fa-
cilities, as well as the Quality of Service specifications demanded by distributed applications. Ap-
plications specify a desired adaptation agility and stability, which we will further describe in later
sections, and the Quality of Service configurator will configure adaptors according to a specific
agility demanded the applications. As the focus of this chapter, we will present two approaches
to configure both non-recursive or recursive adaptors. One of the common characteristics of these
approaches is that they both operate in the frequency domain, thus requiring the result of the

configuration be converted back to the time domain in the form of difference equations. These

33

difference equations will precisely model the transformation process made by the adaptors, gen-

erating the final adapted Quality of Service that is delivered to the applications.

3.2 Time Domain Analysis and the Convolution Summation Property

3.2.1 Overview

In order to analyze the time-domain properties of the difference equations that describe the
behavior of the adaptors defined in equation (2.46), methods in time domain analysis of traditional
analog control systems [22] use several elementary functions such as the unit impulse function, the
unit step function, etc.

Similar functions also apply to the discrete-time difference equations. The discrete-time unit
step, unit ramp, exponential and sinusoid functions are generated by letting ¢ = nT in the corre-
sponding continuous-time functions. The discrete-time unit impulse 6(nT"), however, is generated

by letting t = nT in the pulse function py,(t) given by

1 fort| <to<T
pto (t) = (32)
0 otherwise

Now we can introduce the definition to the discrete-time unit impulse §(n) as follows:

0 n#0
d(n) = 4 (3.3)

dn)=1 n=0
The role of §(n) in discrete-time systems is analogous to the role of the continuous-time unit
impulse §(¢) in analog systems. Nevertheless, the two functions are defined differently, and as a
consequence 4(t) cannot be generated by letting ¢ = nT in d(¢). Given the above explanations,

some frequently used discrete-time functions are illustrated in figure 3.2 . The impulse function

shown in the figure is §(n — 0.1).

!The x axis of the graph denotes time, in the unit of second. Same applies to all similar graphs in this chapter. The y
axis is normalized to the range of [0, 1].

34

3 T T T T
Impulse —
Unit Step -o--
Exponential -+--_-T
25 | + i
A
2 - + -
A+
- T
15 I -
4T
LT
1 4
05 | i
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 3.2: Elementary excitation functions: the impulse, unit step, and exponential function

We will frequently refer to the concept of impulse response of an adaptor. It is defined as the
response of an adaptor when the excitation signal is a simple impulse function é(n). As is shown
in later sections, the impulse response is able to represent all the time domain properties of an
adaptor and its difference equation. The impulse response function will be formally defined in
equation 3.7.

As an example, assume we have an adaptor whose difference equation is recursive and can be

expressed as:

y(n) = 1.5y(n — 1) — 0.85y(n — 2) + z(n) (3.4)

It is easy to calculate the impulse response of this adaptor, which is illustrated in Figure 3.3.

Evidently, the time domain response of simple adaptors can be determined by solving the
difference equation directly using induction. However, this approach is somewhat primitive. By
applying the Convolution Summation Property, introduced in the next section, we are able to derive
the response to any excitation signals by calculating convolution with the impulse response of the

adaptor.

35

1 T T T T T T T T T
Impulse Response —~<—

0.8 -
0.6 - E

04 E

Afwx . _
S |

04 | i

-0.6 -

1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 3.3: The impulse response: an example

3.2.2 Convolution Summation Property

It can be proved in control theory [22] that, the response of an adaptor to an arbitrary excitation

can be expressed in terms of the impulse response of the adaptor. An excitation z(n) can be written

as
z(n) = Y zx(n) (3.5)
k=—o00
where
z(k) forn==%k
Tp(n) =
0 otherwise
Alternatively
zi(n) = z(k)d(n — k)
and hence
z(n) = Z z(k)d(n — k) (3.6)
k=—00

We further formally define impulse response function h(n), which was informally explained in

the previous section:

h(n) = ©d(n) (3.7)

where O is previously defined in Chapter 2, equation (2.30), which we repeat as below:

y(n) = Oz(n) (3.8)

Substituting equation (3.6) in equation (3.8), we have

o

© > xz(k)d(n—k)

k=—00
oo

= Y z(k)©s(n —k)
k=—00

= Y xz(k)h(n—Fk)

k=—o00

i h(k)z(n — k) (3.9)

k=—00

=
G
I

where the second line is deduced by a simple change of variable, and the last line is deduced

based on the proved [9] commutative property of convolution:

z(n) @ y(n) = y(n) Q) z(n) (3.10)

where the convolution operator) is defined by:

o0

z(n) Qu(n) = Y z(k)y(n—k) (3.11)

k=—00

The relation shown in 3.9, known as the convolution summation property, is of considerable
importance in the characterization as well as analysis of adaptors and is an important part in the

time domain analysis in the control theory [22]. Given this property, we can derive the response

37

of an adaptor to any excitation signals, once we know the impulse response h(n) of the adaptor.
This demonstrates that the impulse response h(n) fully represents all the time domain properties
of the transformation process of an adaptor.

As an example, consider a simple excitation signal with two different frequencies of sinusoids,

namely:

Ty + sin(™), 60 < n < 320 (3.12)

z(n) = sin(30 s

and a simple moving-average adaptor, whose recursive difference function is expressed by 2:

y(n) = y(n — 1) + 15[x(n) — 2(n — 10)] (3.13)

Its impulse response function h(n) is obviously:

% for0<n<9

0 otherwise
By applying the convolution summation property expressed in equation 3.9, we can calculate
the response, as illustrated in Figure 3.4. As illustrated, the adaptor eliminates the high frequency
perturbations in the excitation signal, and generates response to represent the low frequency long

term trends of the excitation.

3.3 Frequency Domain Analysis and Adaptation Agility

3.3.1 Frequency Spectrum of the Excitation

It is understood that the excitation to an adaptor can be modeled as a discrete-time signal
series, and the transformations performed by the adaptor can be modeled as difference equations.
As stated in the previous section, it is relatively straightforward to analyze the functionalities of
the adaptor in the time domain, i.e., to model the response as a discrete-time function of time. To

produce such a function, we only need to apply the difference equation to the current and previous

*This adaptor can also be expressed in non-recursive difference function as: y(n) = 0.1[z(n)+z(n—1)+...+z(n—9)].

38

0.8 |

0.6 |

04

0.2 |

-0.2

04 |

-0.6

-0.8

350

300

250

200

150

100

50

Figure 3.4: The Convolution Summation Property: an example

values of excitations and responses, thus yield the current value of response. Alternatively, we can
also apply the convolution summation property if we know the impulse response function h(n) of

the transformation.

However, the analysis of the behavior of an adaptor in the time domain can not reveal the full

details of characteristics of the transformation that the adaptor performs. One of the most impor-
tant characteristics that cannot normally be described is the frequency spectrum of the excitation

signal and the frequency response of the transformation.

Most excitation signals can be characterized as aperiodic, which is the case for the excitation

input to the adaptors. This type of excitation signals can normally be analyzed by applying Fourier

(3.15)

N—

>

n=0
39

Transform is normally used for the frequency analysis for periodic and continuous-time signals, we
The analysis equation of the Discrete Fourier Series can be defined as:

Transform to the excitation signal and thus generate its frequency spectrum. Since the Fourier

need to modify it to cope with aperiodic discrete-time signals.

in which ¢, represents the kth spectral component, and N is the number of sample values in
each period of the signal.
Conversely, if we know the coefficients c;, we may regenerate z(n) using the synthesis equation

defined as:

N)
o(n) = 3 cpe” W (3.16)
k=0

The above analysis and synthesis equations apply, apparently, to a strictly periodic signal with
period N. However, it is possible to extend the equations to apply to aperiodic signals. We could
make N — oo, thus yield a continuous, rather than discrete, distribution of spectral energy. Al-
though each spectral coefficient becomes vanishingly small as N — oo, the product Nc¢j remains

finite. Let X = Ncg, 2 = 2Z% and think of them as continuous frequency variables, we have

o
X(Q)=Neg= > z(n)e 7™ (3.17)
This analysis equation defines the Fourier Transform X (2) of the aperiodic signal z(n). Us-

ing similar arguments and substitutions, we can develop the inverse transform from the synthesis

equation previously shown, as:

1

_ iQn
=5 |, X(@e™dn (3.18)

z(n)

Having defined the analysis and synthesis equations for aperiodic discrete-time signals, we

will be able to fully generate and analyze the frequency spectrum of an excitation signal.

3.3.2 Frequency Response of the Transformation

We have discussed the analysis and synthesis of the frequency spectrum of an aperiodic signal,
the problem left to be addressed is the application of Fourier Transform to analyze the frequency
domain performance of the transformations performed by the adaptor.

By applying the analysis equation addressed in the previous section, we can derive the fre-

quency spectrum of an unit impulse ¢(n) defined in equation 3.3 at n = 0:

40

Excitation| Quality of Service Response

_—

Adaptor
Time Domain: x(n) h(n) y(n) = x(n)® h(n)
Frequency x(q) H(Q) Y(Q)= X(QH(Q)

Domain:

Figure 3.5: A comparison between time and frequency domain analysis

X(Q) = nio S(n)e M = 79| ;=1 (3.19)

n=—00
This shows that §(n) contains an equal amount of all frequencies in its frequency spectrum. It
could be synthesized from an infinite set of cosines, all of vanishingly small, but equal, amplitudes.
We also note that unlike the case in the time domain, where the excitation signal z(n) is con-
volved with the time domain response of the transformation k(n) to produce the output signal y(n)
as demonstrated in equation (3.9), the equivalent frequency domain process must be multiplication.

The frequency spectrum of the response signal Y (§2) can be expressed as

Y(Q) = X(Q)H(Q) (3.20)

where H(Q) is the frequency response of the transformation. Figure 3.5 demonstrates a com-
parison between time domain analysis and frequency domain analysis on an adaptor. Since we
demonstrated that the frequency spectrum of the unit impulse is unity, that is, X (©2) = 1, we then
have

Y(Q) = X(QH(Q) = H(Q) (3.21)

This shows that the frequency response of a transformation is the Fourier Transform of the output
response signal y(n) after applying the transformation on an excitation signal equivalent to the
unit impulse. It is easy to see the fact that since an unit impulse contains an equal amount of all
frequencies, when used as an input signal, it simultaneously probes the system’s response to all
possible input frequencies.

As an example, we take equation 3.4 as the recursive difference equation of the adaptor and

41

12 T T T T T T
Frequency Response: Gain —<—

e

0 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Figure 3.6: The gain function of the frequency response: an example

analyze its frequency response, compared with its time domain impulse response illustrated in

tigure 3.3. Using equation (3.20) we will have:

H@Q) = %
ZIZcV:O ake—jkﬂ
Yl bre 7k
1
1 — 1.5 92 4 0.85¢ 420

1
= 3.22
(1 —1.5cos Q2+ 0.85cos 22) + j(1.5sin 2 — 0.85sin 2Q2) (3.22)
The gain and phase functions are therefore:
1
|H(Q)| = _ _ T (3.23)
{(1 —1.5co8 2+ 0.85cos 2Q)? + (1.5sin 2 — 0.85sin 202)?}2
1.5sin Q — 0.85sin 2Q
Dy (Q) = ,
1(Q) = arctan (1 —1.5cos Q2 + 0.85 cos 29) (3.24)

The result from equation (3.23) is visually illustrated in figure 3.6. This figure demonstrates the

42

frequency domain impulse response H (€2), which is obviously different from the impulse response
h(n) in the time domain illustrated in figure 3.3, and fully represents the properties of an adaptor

in the frequency domain.

3.3.3 Adaptation Agility

As addressed in the first chapter, for distributed multimedia applications in need of Quality of
Service support, we need adaptors serving in the middleware level to be fully configurable by the
application that demands Quality of Service. In order to compare the adaptive capabilities of two
adaptors and to configure them, one of the most important metrics is adaptation agility, or sensitiv-
ity, which represents the ability and extent of an adaptor to promptly respond to perturbations in
the raw Quality of Service from the lower layers.

An adaptor that is too agile may suffer from instability. Such an adaptor consumes almost
all its resources reacting to minor perturbations, hence taking excessive computational resources
from the system. This behavior is apparently not desired. An adaptor that is not agile enough
may consume too much temporary resources such as buffer space to transparently adapt to most
of the fluctuations in the excitation signals and keep the response undisturbed. It is important
for the application to specify a suitable value for the agility of the adaptor. Based on the model
that we developed in previous chapters, we are able to quantitatively model the transformation
performed by an adaptor, thus makes it possible to precisely define the adaptation agility of the
adaptor on which configuration may be based on.

It is understood that the basic functionality that the adaptor should provide is to filter the rapid
perturbations and high frequency short-term fluctuations from the long-term trends of changes in
the excitation signal. An example of this was illustrated in section 3.2.2 and figure 3.4. In the
frequency domain that we discussed in the previous section, this may be expressed as a low pass
adaptor, the transformation of which screens the incoming frequency spectrum and only passes
low frequency components, eliminating all high frequency components of the signal. The time-
domain effects of this transformation is that all the high frequency short-term perturbations are
eliminated to stress the long-term low frequency changes, which is precisely the desired adapta-

tion effects for the adaptor.

43

X(z)| Transformation Process | Y(z)| Inverse

X(N)_| 7 transform
Transfer Function: H(z) Z transform

QoS Adaptor
Y(2) = H(2)X(2)

Figure 3.7: Modeling the transformation process using z transform

Given above, the adaptation agility, or sensitivity of an adaptor can be defined as the cut-off
frequency Q,y; of the frequency response of a transformation applied by the adaptor. The cut-off
frequency Q,; is illustrated in figure 3.9 and will be discussed later in section 3.6. Defined as
such, we can therefore configure the adaptor to provide a specific agility required and specified
by the application. The result of configuration should be an adaptor showing the agility, or cut-off
frequency, required by the application. The configuration process will be addressed in details in
later sections.

However, the configuration process is not trivial. We need to utilize the knowledge of z Trans-

form for this purpose.

3.4 Frequency Domain Analysis: the z Transform

3.4.1 Overview

In order to configure the adaptive behavior to conform to the required agility from an applica-
tion, we need to introduce the z transform as a valuable set of techniques for the frequency analysis
on excitation signals and transformations themselves. The z transform and the Fourier Transform,
which was introduced in previous sections, are closely related, and should be regarded as comple-
mentary to one another. They all model the analysis of the frequency domain behavior. However,
the z transform is inherently concerned with discrete-time signals, whereas digital Fourier Trans-
form was derived from the continuous-time analysis techniques.

The z transform, similar to the case for the Fourier transform, is useful because it has an inverse
z transform. The application of the z-transform to a discrete-time signal z(n) yields a representa-
tion of the signal in terms of a rational function X (z) where z is a complex variable. if the signal

is to be processed by an adaptor, then the required processing can be carried out in the z do-

44

main through algebraic manipulations. In this way, a transformed version of X(z), say Y (2), is
obtained. Consequently, by applying the inverse z transform to Y (z), the time-domain response

y(n) is obtained. Figure 3.7 illustrates the transformation process using the z transform.

3.4.2 Definitions

The z transform of a discrete-time function z(n) is defined as

X(z) = 2Zz(n) = Z z(n)z™" (3.25)

n=—oo

for all z for which X (z) converges. Conversely, z(n) can be uniquely determined as
1
= Z_l = —f n—1 .
z(n) X (z) 2mj X(2)z" " dz (3.26)

where I' is defined as a contour in the counterclockwise sense enclosing all the singularities,
also referred to as poles, of X (z)2z"~'. Equation (3.26) is referred to as the inverse z transform of

X(2).

3.4.3 Applications

Originally, the transformation performed by an adaptor was modeled by difference equations,
which is inconvenient for the analysis and synthesis of major transformation characteristics such
as stability. However, through the use of the z transform, the transformation of an adaptor can be
characterized by a discrete-time transfer function, which profoundly facilitates time domain and
frequency domain analysis on the transformation behavior.

The transfer function of an adaptor is defined as the ratio of the z transform of the response
to the z transform of the excitation. Consider a linear, time-invariant adaptor, and let z(n), y(n)
and h(n) be the excitation, response, and impulse response, respectively. It is understood that in
frequency domain analysis the response is obtained by multiplication of the excitation signal and

the frequency response of the adaptor, the property also holds for z transform:

Y(z) = H(2)X(2) (3.27)

z-plane

X
an\y ~
\\B/ N\
X
Unit circle
|z| =1

Figure 3.8: Poles and zeros on the z-plane: an example

In effect, the transfer function of an adaptor is the z transform of the impulse response H (z). It

can be put in the form
_Y(2) N(z) KT (2 — 2)
9= %6 = D) ~ T, —p) 029

where zi, zg, ..., zn are referred to as the zeros and p1, ps, ..., pn are referred to as the poles of
H(z), and m; is the order of pole p;.

A very useful representation of a z transform is to obtained by plotting its poles and zeros in
the complex plane. The plane is then referred to as the z-plane. The z-plane plot is very useful for
determining the adaptation stability which will be discussed in the next section.

For example, assume an adaptor has a transfer function as follows:

22(z —1.2)(z + 1)
(z— 0.5+ 50.7)(z — 0.5 — j0.7)(z — 0.8)

H(z) = (3.29)

From the transfer function we learn that the adaptor has 4 zeros at 0, 0, 1.2 and -1, respectively. It
also has 3 poles at 0.5 & j0.7 and 0.8, respectively. We can thus plot these points on the z-plane as

illustrated in figure 3.8.

3.5 Adaptation Stability

Intuitively, all the adaptations made by an adaptor should be stable, that is, any reasonable

excitation signals should not yield an unbounded response that will keep fluctuate forever. This

46

is a basic requirement that must be imposed on the configuration of any adaptors.

3.5.1 Definition

An adaptor is said to be stable if and only if any bounded excitation results in a bounded
response, i.e., if

|z(n)| < oo foralln (3.30)

implies that
ly(n)| < oo foralln (3.31)

For a linear, time-invariant adaptor, the time domain convolution summation property of

equation (3.9) concludes that

> h(k)z(n —k) (3.32)
k=—o0
we then have
n)| < Z |h(E)||z(n — k)] (3.33)
k=—00
and if
|z(n)| < M < oo foralln (3.34)
we have
n)| <M > |h(k)] (3.35)
k=—o00
Clearly if
Z |h(k)| < oo (3.36)
k=—o00
then
ly(n)| < co foralln (3.37)

and therefore, equation (3.36) constitutes a sufficient condition for stability.

An adaptor can be classified as stable only if its response is bounded for all possible bounded

47

excitations. Consider the bounded excitation

M ifh(k) >0
z(n—k)= (3.38)
—M ifh(k) <0

where M is a positive constant. From equation (3.9) we have

yn) = [y = 3 MIh() (339)
k=—00

D) =M 3 [h(k)] (3.40)
k=—00

Evidently, the response will be bounded if and only if equation (3.36) holds and, therefore,
equation (3.36) constitutes a necessary and sufficient condition for stability.
3.5.2 Judging Criteria

Consider an adaptor characterized by the transfer function of equation (3.28). The time domain

impulse response h(n) of such an adaptor is given by equation (3.26) as

Y

hin) = Z2-1H(z) = 1j 7{ H(z)"'dz (3.41)
r
We may express all the poles of H(z) defined in equation (3.28) in polar forms:
pi =ried%, fori=1,2,...,N (3.42)

where 7; is the radius and ¢; is the angle.
we can prove that [10]:

r; <1 fori=1,2,...,N (3.43)

is the necessary and sufficient condition for deciding that the adaptor is stable.
If we plot all the poles in the z-plane as described in section 3.4.3 and figure 3.8, the condition

in equation (3.43) satisfies if and only if all poles p; is located inside the unit circle |z| = 1. For

48

example, the transfer function in equation (3.29) satisfies the stability condition (3.43), thus can be
determined as a stable adaptor. As illustrated in figure 3.8, all the poles locate inside the unit circle
|z| = 1. The necessary and sufficient condition in equation (3.43) is proved to be a very simple but

useful judging criteria to judge the stability of an adaptor.

3.6 Configuring Adaptation Agility: the Fourier Transform Approach

3.6.1 Overview

As noted in section 3.3.1, Discrete Fourier Transform is widely used to analyze the frequency
spectrum of a series of excitation signals or the frequency response of a transformation. In fact, the
Discrete Fourier Transform, when combined with its inverse transform, can not only be applied to
frequency domain analysis, but also to the configuration of adaptation agility of an non-recursive
adaptor.

The general form of difference equation for a causal, linear and time-invariant adaptor was

first introduced in equation (2.44) as:

N
y(n) = Z agz(n — k) (3.44)
k=0

Such non-recursive adaptors has the advantageous property that it implements the convo-
lution sum directly, and the coefficients a; are simply equal to successive terms in its impulse
response h(n).

According to equation (3.25) and equation (3.17), the transfer function H(z) and frequency

response H (2) corresponding to a difference equation of equation (3.44) are, respectively:

N N
H(z) =Y h(k)z™" = apz* (3.45)
k=0 k=0
and
H(Q) =Y h(k)e ¥ =" qpe™740 (3.46)
k=0 k=0

The approach is conceptually straightforward. If we start with a desired adaptation agility,

49

H(Q)
1.0

- Qo Qoff Q
passband stopband

Figure 3.9: An ideal low-pass adaptor with cut-off frequency €,

which is defined as a cut-off frequency Q, 3 as in section 3.3.3, we will be able to deduce a desired
frequency response H(2). Equation (3.18) defines the inverse Discrete Fourier Transform, which
is able to derive the corresponding impulse response h(n) from the desired frequency response

H(Q):

1

z(n) = o

/ X(Q)e’"d0 (3.47)
2w

When rewriting it to describe the frequency response of a transformation made by an adaptor,

rather than an excitation signal, we have:

1

h(n) = Cy

/ H(Q)ed0 (3.48)
2

If we start with a desired frequency response H(2), equation (3.48) shows how to derive the
corresponding impulse response h(n). It is explained previously that the sample values of h(n)
are identical with the required multiplier coefficients ay, for the difference equation representing
the non-recursive adaptor.

There are two major difficulties in this approach. First, if H(€2) has a complicated form, the
integral in equation (3.48) is not always easy to solve. This problem can be addressed by concen-
trating on simple, idealized magnitude characteristics of the frequency response, shown in figure
3.9, and will assume linear phase responses.

The second difficulty concerns the number of terms in h(n). Our choice of H(Q2) as shown in
figure 3.9 may result in an impulse response with infinite or a large number of terms, making it

not realistic and economic. We must clearly have some way of limiting the number of coefficients,

30, 5 is also visually illustrated in the ideal frequency response in figure 3.9.

50

0.2

0.15 |

0.1

0.05 -

sin(n*pi/5)/(n*pi) —

-0.05
-30

-20

-10 0 10 20 30

Figure 3.10: The frequency response to ideal low-pass adaptors: an example

and settling for a compromise between time domain and frequency domain performance.

Starting with the ideal low pass characteristics of figure 3.9, we can assume a zero-phase sys-

tem for which H() is real, and assume unity gain between frequencies +0Q,ss. Equation (3.48)

specifies integration over any convenient 27 interval, we defined H(2) over the range Q = —x to

m, rather then 0 to 2, to simplify the integral in equation (3.48). Thus:

h(n)

1 /7 '
— H(Q)eI"™dO
27[' /—7r ()e d

For example, if we specify 2, to be ¥, using equation (3.49) we have

Qs s _ jn] os f
%/ 1#Mm:%r.]
wJ_ T | jn
s I 1y
1 . .
= [I%ffm o= IS sm
27rjn{e ¢ }
1
— sin(n2, 3.49
— sin(nQqyy) (3.49)
h(n) = = sm(ﬂ) (3.50)
S onm 5 '

51

We illustrate the result of equation (3.50) in figure 3.10.

Although the impulse response shown in figure 3.10 decay to either side of n=0, they theo-
retically continue infinitely in both directions. This reflects the general antithesis between band
limitation and time limitation: since we have chosen a frequency response H (2) with an infinitely
sharp cut-off curve, the time-domain response continues infinitely. To realize such an adaptor we
need to truncate the impulse response using a windowing function. The simplest windowing func-
tion is to ignore the infinitely small sample values toward both ends. After truncating, we can
then shift h(n) to begin at n = 0, yielding a causal, linear-phase, adaptor. Obviously, the more
terms remained in the final difference equation, the more accurate its actual frequency response

approximates the ideal magnitude characteristics in figure 3.9.

3.6.2 The Windowing Functions

When we truncate an infinite-length impulse response, the process is equivalent to multiplying
it by a finite-length windowing function. In other words, the final difference equation coefficients are
derived by time-domain multiplications. The modulation property [9] of the Fourier Transform
shows that time-domain multiplication is equivalent to frequency-domain convolution. Therefore,
the truncating process in the time domain will produce an actual frequency response H 4(2) which
is the convolution of the desired frequency response H p(2) with the frequency spectrum of the
window W (), namely

H(Q) =Hp(R2) @ W(R) (3.51)

If we use a simple windowing function, the rectangular window, defined as:

1 |n|<M
w(n) = (3.52)

0 |n|>M
As we have shown in equation (3.49), the spectrum of the rectangular windowing function
tends to the S22 form, thus its convolution with Hp(f2) gives an approximation to the desired

frequency response containing a number of fluctuations which we normally referred to as ripples.

These ripples will distort the shape of the passband response of the frequencies, and produce

52

1 T T T T
von Hann window ——
von Hann window ¢
0.8 E
0.6 - E
04 B
0.2 i
6 ?Tﬂ ﬁ%
-20 20

-30 -10 0 10 30

Figure 3.11: A 51-term von Hann windowing function

unwanted sidelobes. +

The main reason for the poor performance of the rectangular windowing function stems from
the trade-off antithesis between the time domain and the frequency domain. As known in the con-
trol theory [22], an unit impulse in the frequency domain maps to an infinitely long time window-
ing function in the time domain, and vice versa. Intuitively, if the windowing function suddenly
chops off in the time domain, it tends to spread out in the frequency domain. Consequently, we
may expect that a windowing function with more gentle curves in the time domain will introduce
less ripples and sidelobes in the frequency domain.

In theories related to digital signal processing [9], two widely accepted windowing functions
are referred to as the von Hann window and the Hamming window. The definition for the von Hann

window is:

1 1 nmw
5 + 5 cos , —M<n<M
wn) =4 > 2 M (3.53)

0 elsewhere.

“The term passband, as well as stopband which will be referred later, denote the range of frequencies being passed or
eliminated in the frequency response.

53

1 T T T T
Hamming window ——
Hamming window ¢
0.8 | B
0.6 | B
04 B
0.2 | 4
-30 -20 -10 0 10 20 30

Figure 3.12: A 51-term Hamming windowing function

it consists of one period of a sampled cosine, and a constant level which makes all the sample
values positive. Apparently the cosine shape gives a smoother tapering action than the rectangular
window. Figure 3.11 illustrates the von Hann windowing function.

Similarly, the definition for the Hamming window is:

0.54 + 0.46cos 2=, —M <n<M
w(n) = M (3.54)

0 elsewhere.
Figure 3.12 illustrates the Hamming window.
The corresponding spectrum function of both the von Hann window and Hamming window is
given by:
M
W(Q2) = w(0) + 2 Z w(k)cos(kQ) (3.55)
k=1

Experiences [10] showed that the Hamming window performs better, thus it will be chosen in
lieu of the rectangular window in the configuration of adaptation agility of adaptors. We will

show an example of configuring non-recursive adaptors using the Fourier Transform approach in

54

section 4.4.

3.7 Configuring Adaptation Agility: The Chebyshev Approach

3.7.1 Overview

Configurations using the Fourier Transform approach will result in a non-recursive difference
equation that may include a considerable number of terms in order to meet the required accuracy
to approximate the desired frequency response. To reduce the complexity of the difference equa-
tions, thus reducing the complexity of the computation needed for adaptation, we could configure
the difference equations to be recursive equations, as defined in equation (2.46).

One of the suitable approaches for configuration is to transform the available continuous-
time transfer functions into the desired discrete-time difference equations. The theories related
to the study of analog signals and analog control systems [22] have been evolved for years and
are readily available for the purpose of discrete-time adaptation design. As a comparison, while
in the discrete-time cases we used z transform, the Laplace transform plays a similar role in the
continuous-time analog design. For example, an analog control system can always be described

by a frequency-domain transfer function of the general form:

K(S - Zl)(s - 2'2)(3 - Z3)
(s =p1)(s—p2)(s—p3)...

H(s) = (3.56)

where s is the Laplace variable and K is a constant, or gain, factor. Apart from this factor, as in the
case of difference equations with z transform and z-plane, the transfer function is also characterized
by its poles (p1,p2,ps, - - .) and zeros (21, 22, 23, . . .), which can be plotted in the complex s-plane.

Although the form of equation (3.56) is identical to that describing the transfer function H(z)
of an transformation that we addressed in section 3.4.3 and equation (3.28), the variable s has dif-
ferent connotations from the variable z. While the frequency response of a discrete-time transfer
function as in equation (3.28) can be obtained by substituting z with e/%, the equivalent substi-
tution in the analog case is s — jw, where w is the angular frequency in radians per second. It
follows that the imaginary axis in the s-plane (s = jw) corresponds to the unit circle |z| = 1 in the

z-plane, and that the interpretation of pole/zero locations is different in the two cases. Another

55

essential difference is that the frequency response of an analog control system is not a periodic
function, any conversion from an continuous-time design into an discrete-time adaptation design
must clearly take these factors into account.

To summarize, we need to be able to convert a transfer function H(s) into a transfer function
H(z), so that the frequency response of the transformation made by an adaptor over the range of
0 < Q < 7 approximates, in an acceptable manner, that of the frequency response of an analog
transfer function over the range of 0 < w < . Our approach is to use an effective way referred to
as the bilinear transformation, and by the application of bilinear transformation, which will be de-
fined in equation (3.60), on the widely used Chebyshev analog design, we could achieve acceptable

configurations of an recursive difference equation.

3.7.2 the Chebyshev Approach

Our approach is to convert an analog design into a discrete-time equivalent configuration by
means of bilinear transformation, defined in equation (3.60). In this section we apply the method
to the best know Chebyshev design, resulting in an acceptable configuration of recursive difference
equations.

The Chebyshev design offers an approximation of the ideal rectangular response characteristic
illustrated in figure 3.9. The ideal response has unity transmission in the passband, and zero
transmission in the stopband, while a Chebyshev approximation gives an equiripple performance
in the passband, and the response oscillates between 1.0 and (1 + 62)*%, where € is a configurable
ripple parameter. The number of passband ripples increases with the order of the approximation.

The magnitude functions of the frequency response is given by:

H(w)| = L (3.57)

{t+ec (57}

As an illustration, a typical magnitude frequency response for the Chebyshev analog approxi-

N[

mation is given in figure 3.13. This graph is generated by Mathematica, with e = 0.3 and w, ¢y = 1.2.

The generating function is obtained from equation (3.57):

Chebyshev = Plot[(1/Sgrt[1 + 0.372 * ChebyshevT[5, x] * (x /7 1.2)],

56

1 2 3 4
Figure 3.13: Typical frequency response of Chebyshev approximation

x, 0, 31

where 7 is the order and w,; is the cut-off frequency. C,, is referred to as the Chebyshev poly-
nomial of nth order. It oscillates between 0 and 1 in the passband(for any value of n > 0), rising to
large values in the stopband. The amount of passband ripple ¢ is related to the parameter € by the
expression:

§=1—(1+¢)2 (3.58)

The Chebyshev polynomial C,, is recursively given by:

C()(w) =1
Ci(z) =z
Cn(z) = 22Cph_1(z) — Cp_2(x) (3.59)

Although the magnitude characteristics of the Chebyshev approximation is good, its phase
responses are less impressive. It departs considerably from the ideal linear-phase characteristic,
especially towards the cut-off frequency. It also displays extra unwanted ripples. In this respect
the Chebyshev approximation is inferior to the non-recursive Fourier Transform approach dis-

cussed in section 3.6.

57

We now introduce the bilinear transformation. Consider the function:

z—1

Flz) = z+1

(3.60)

It is bilinear in the sense that its numerator and denominator are both linear in z. To illustrate

its application in the present context, we need to obtain its frequency spectrum. We have:

e 1

eI 41

i) i —iQ

e2 {62 —e 2 }

i) F1Y =i

e 2 {62 + e 2 }
Q

2jsin(3)
Q

2cos(3)

= jtan (9) (3.61)

F(Q) =

2j sin(

2

Evidently, F(Q) is purely imaginary and periodic. Its magnitude varies between 0 and oo as €2
varies between 0 and 7. If we have the transfer function of the desired analog approximation as

equation (3.56), its frequency response can be determined by substituting jw for s:

K(jw — 2z1)(jw — 22)(jw — 23)
(jw — p1)(jw — p2)(jw — p3) . ..

H(w) = H(s)|s=jw = (3.62)

The complete response is clearly generated as w varies from 0 to co. If we substitute F'(Q2) =
j tan($) for jw, exactly same values must be produced as 2 varies between 0 and 7. In other words
we obtain a function H (2) in which the complete frequency response of the analog approximation
is compressed into the range of 0 < 2 < 7.

As a conclusion, the bilinear transformation gives a discrete-time transformation whose re-
sponse over the range of 0 < €2 < 7 reproduces that of the analog approximation over the range
of 0 < w < co. However, the resulting compression of the frequency scale is non-linear. The shape
of the tan function decides that the compression, or warping, effect is very small near € = 0; but it
increases dramatically as we approach Q2 = 7.

By applying the bilinear transformation, given the transfer function H(s) of the Chebyshev

approximation, we can readily generate the transfer function H(z) of its discrete-time counter-

58

part. However, the transfer function of the Chebyshev approximation is relatively complex. For-
tunately, the bilinear transformation has already been done [9]. We describe the result of the
transformation by giving formulae for the z-plane pole-zero locations.

A Chebyshev approximation of nth order has 7 poles in the z-plane, and an nth-order real zero

at z = —1. The corresponding formulae are:

_2{1 - atan(%) cos ¢}

re(pm) = b1
. Qorry .
im(pm) = 20 tan(5) sin ¢ (3.63)
where
Qogy 2 g2 pan2(Sfy 2
1 = {1 — atan(5) cos ¢}* + % tan (T)sm ¢
a= %('ﬁ —y7n)

1, 1 _1
p=50m)

m=0,1,...,2n—1

With the above formulae, once we have the order n of the Chebyshev approximation and the
desired adaptation agility €2, s, we can calculate the pole-zero positions of the transfer function in
the z-plane, and thus have the final recursive difference equation as the result of the configuration.

An comprehensive example will be demonstrated in section 4.4.

3.8 Conclusion

In this chapter, we introduced models derived from developed theories in digital control sys-
tems and digital signal processing systems [9] [10] to analyze and configure the adaptors modeled

by non-recursive or recursive difference equations. We addressed the analysis of both the exci-

59

tation signals and the adaptive transformation itself in the time domain and frequency domain,
and utilized the Discrete Fourier Transform and z-transform for analysis and configuration purposes.
Based on the methods discussed, we were able to analyze the adaptor in terms of its stability of
adaptive behavior, and to configure the adaptation according to a pre-determined adaptation agility

or sensitivity in the application Quality of Service specification.

60

Chapter 4

A Prototype Adaptor for
Video-On-Demand Applications

41 Overview

41.1 General Infrastructure

In Chapter 2, we proposed a simplified formal model for measurements of Quality of Service
metrics as well as adaptation behavior parameters such as adaptation agility or stability. In Chapter
3, we addressed the problems related to the analysis and configuration of the adaptation behavior
of a typical Quality of Service adaptor, utilizing developed theories in digital control systems. In
order to verify the validity and performance issues of the proposed approach given by the pre-
vious chapters, we developed prototype adaptors based on the proposed methods, and analyzed
the performance and adaptation behavior of these prototype adaptors in the context of Video-On-
Demand applications, one of the widely known distributed multimedia applications in the area.

The infrastructure of the system including the Video-On-Demand applications and prototype
adaptors is illustrated in figure 4.1. In the Video-On-Demand clients, we developed the middle-
ware level between the multimedia applications and the underlying operating system and trans-
port levels. In the current context, the middleware level consists of two components. One compo-
nent is a Quality of Service monitor which monitors current status and changing trends of multiple
specific Quality of Service metrics from the raw Quality of Service provided by underlying transport
facilities. The other component is a Quality of Service adaptor which performs required adaptation

on the Quality of Service metric that is being monitored. After performing the adaptation, the

61

Layers:

ot Video-On-Demand Video-On-Demand
Application
PP Client [MPEG Player] gde;pted Server [Repository]
o]
0S Adaptor oS Adaptor
Middleware |- Q --------- e Q --------- Pt
QoS Monitor Provided QoS Monitor
Transport Operating Systems Raw QoS Operating Systems
Network Delivery Network Delivery Network

! }

Network Transmission

Figure 4.1: The infrastructure of Video-On-Demand application with adaptors

adaptor will deliver the adapted Quality of Service to the application layer.

The Video-On-Demand application is adopted as a testbed for our experimental prototype
adaptor in the middleware level. It is designed to fit in the client-server model, and includes a
Video-On-Demand server and a Video-On-Demand client. The server serves as a central video
repository that satisfies the requests made from the possibly remote clients, and the client is de-
signed as a simple video player that is capable of video playback based on the information re-
trieved from the server. This relationship between the client and the server is also illustrated in
tigure 4.1.

The performance of the system described above will be enhanced once the adaptors in the
middleware level are introduced. There are occasions, especially in the heterogeneous mobile en-
vironment when the client is constantly on the move from one wireless base station to another,
the bandwidth of the connection between the client and the server ports may change considerably
over time. In these occasions, the application and the system need to coordinate to provide grace-
ful adaptation to dynamic Quality of Service variations. This includes graceful degradation of
provided Quality of Service to the application when the raw Quality of Service from the network
level degrades significantly, and also includes pessimistic recovery speed when the connection
quality recovers quickly. The adaptors described and formally modeled in the previous chapters

will suit this purpose, after proper configuration with a suitable adaptation agility.

62

Application specified)))
adaptation agility Quality of Service Configurator
v
: : (. .)
Raw Quality of Service Quiality of Service Adaptor
(excitation signal) ;
Buffer Adaptive Algorithms
'\,/\ —>| Space (Difference equations)
|
) \ Controls output flow of buffer)
T T T T \
| Network | Adapted Quiality of Service
- QoS !
' Simulator | ’\/\
\ |

—_— - - = =

Figure 4.2: System design of the prototype Quality of Service adaptor

4.1.2 System Design

In order to achieve acceptable adaptation behavior of Quality of Service, we need to design
the structure of various system components and their coordination and interconnections appro-
priately. We have discussed the general framework of the system briefly in chapter 3 and figure
3.1. Evidently, besides the actual Quality of Service adaptor that will be operating on line, we also
need the Quality of Service configurator, which will generate adaptor configurations according to
application needs. A more detailed design of the system is illustrated in figure 4.2.

For the purpose of fast prototyping and achieving capabilities to execute on heterogeneous
environments, we used the Java language [6] for the implementation of the prototype adaptor.
The Video-On-Demand application testbed, though, was implemented in a combination of C and
Java languages, where the MPEG decompression engine was implemented in C due to the nature
of MPEG-2 decompression complexity. The whole testbed was implemented in the Windows NT
environment.

In order to simulate the fluctuations in the performance of the networking environment, we
implemented a simulator that simulates the vibrations of the bandwidth factor over the connec-
tion. Due to the bandwidth fluctuations, the QoS metric system rate that can be measured by the

monitors will also change accordingly. The initial experiments with adaptation behavior were

63

applied on these fluctuations with regards to the system rate of data arrivals.

The adaptors are implemented fully in the Java language as standalone applications. We im-
plemented the configuration and analysis methods addressed in Chapter 3 in these adaptors, as
well as all the related mathematical calculations and transformations, such as the Discrete Fourier
Transform and its inverse form, the Chebyshev approximation, and the Hamming windowing func-
tions. As a result, we were able to configure these adaptors to conform to prescribed adaptation
agility, and to analyze the adaptation behavior of these adaptors. The adaptors are also responsible
for delivering the Quality of Service metric, initially the system rate in our experimental prototype,
to the application.

The monitors are implemented again in the Java language, and provide the functionalities of
measuring a specific Quality of Service metric of the current instant according to the proposed
model elaborated in Chapter 2. For instance, in our initial experiments systemn rate was selected as
the Quality of Service metric being adapted, so we need to refer to equation (2.6), or alternatively
and more realistically in terms of implementation, equation (2.8), to implement the measurements

in the monitors:

rate; : T xT x ®— R

quantity(lls[a; < ar < fGi])

— 4.1)

rate: (aia /Bia HS) =

Using this model it is relatively straightforward to implement the Quality of Service monitor,
as well as to activate it periodically to monitor the raw Quality of Service provided from the

transport facilities.

4.2 Designing the Prototype Adaptor

4.2.1 Quality of Service Monitors

Before designing the overall structure and implementation details of the prototype adaptors,
we first need to prepare appropriate inputs that are required by the adaptor. One of the most

important input is the sequence of Quality of Service metric values on which we need to apply

64

adaptation. This sequence of values on a pre-specified Quality of Service metric can be measured
by the monitor. The monitor will interact with the underlying transport levels and will be fully
aware of the raw Quality of Service provided by the transport facilities.

Based on the specific QoS metric that is intended to be measured and adapted, the detailed
implementation of the measurement algorithms in the monitor may be significantly different. This
makes it unlikely to construct a general-purpose monitor that is suitable for all monitoring tasks,
individual monitors may need to be devised according to the characteristics of the specific QoS
metric.

It it worth to mention that not all Quality of Service metrics can be adapted. While we can eas-
ily monitor and adapt to some commonly known metrics such as system rate and delay, some of the
QoS metrics are inherently impossible to be adapted based on our current adaptation definition
and algorithms. These metrics include error rate and compression ratio, whose common characteris-
tic is that they are all direct reflections of the inherent quality of network transmissions or media
streams, and cannot be easily modulated without substantial revision of the transmission or media
coding schemes. We thus divide the Quality of Service metrics into two subsets, the first subset
includes all the metrics that can be adapted using the current adaptation scheme, the other subset
includes other metrics that are harder to harness without more substantial renovation.

For the prototype adaptors and monitors, we focus on a specific metric system rate for our ex-
periments. Based on these assumptions, the QoS monitors can be defined in the Java language
implementation as below:

public abstract class MMonitor extends Object {
protected DatagramSocket inputChannel;
protected MSequence metricSequence;
private int metricld;

public MMonitor(DatagramSocket inputChannel, int metric);

public setChannel (DatagramSocket channel);
public MSequence getMetricSequence();

65

4.2.2 Quality of Service Adaptors

Once we have the monitors available, we can apply appropriate adaptations on the sequence
of metric values that we obtained by the monitors. For the preliminary prototype, we were able
to configure the adaptor according to a predefined adaptation agility or sensitivity, and a speci-
tied precision, or order, of the adaptation difference equation. Obviously, the higher the order of
the difference equation, the more precision it can possibly achieve the ideal frequency response.
However, when the order of the difference equation is too high, it can introduce excessive amount
of calculation overhead and may not be desired at the middleware level. Moreover, The order
of a recursive difference equation tends to be the number of pole/zero positions in the transfer
function, and the order of a non-recursive difference equation is the number of terms that appear
on the right side of the equation.

The adaptor should also be capable of analyzing the stability of the current configuration of
adaptation behavior, according to the stability judging criteria that was addressed in section 3.5.2.
The stability of the adaptation behavior is very important in order to ensure that the system will
be stable even after adaptation is introduced in the middleware level.

The class definition shown below in the Java language specification shows the important in-
terfaces and functionalities that an adaptor should provide:

public class MAdaptor extends Object {
protected MSequence excitation;
protected MSequence response;
private boolean recursive;
private float agility;
private int order;
private MDiffEquation adaptEquation;
private MBuffer internalBuffer;

public MAdaptor(float agility, boolean recursive);
public final boolean isRecursive();

public setlnputSequence(excitation);

public isStable();

public MSequence responseSequence();

Evidently, some basic class definitions need to be defined before the definition of MAdaptor.

MSequence denotes the sequence of values of a specific Quality of Service metric, and should be

66

readily produced by the monitors. MDiffEquation defines the difference equation and trans-
fer function of the adaptation, which fully represent and describe the adaptation behavior of the
adaptor. Method isStable() judges the stability of the current adaptation status, and method
responseSequence() retrieves the result sequence of the transformation performed by the

adaptation.

4.3 Adjusting Buffer Allocation

In the process of performing adaptations on the specified Quality of Service metrics, in order
to maintain graceful degradation when the raw Quality of Service provided by the underlying
levels degrades significantly over a short period of time, we need to maintain buffer spaces and
associate them with the adaptor itself. Before graceful degradation can be performed according
to the current configuration, we need to allow a considerable amount of preprocessing in order
to activate the adaptor buffer with initial metric values. This is normally achieved by prefetch-
ing metric values from the sequence produced by the monitors to fill the adaptor buffers, before
feeding the adapted Quality of Service to the application. The tradeoff being made in the prepro-
cessing step is that end-to-end delay may be sacrificed if the requirement is so stringent that the
prefetching time makes a significant difference. Due to the relatively fast processing time of the
processor as compared to the transmission time of the transport facilities, the above mentioned
scenario normally will not be the case in regular distributed multimedia systems.

However, another problem may arise during the initialization phase of the adaptors. The ini-
tialization need to allocate a predetermined space for the adaptor buffers, so that to minimize later
attempts to reallocate buffers to acquire more space. We thus need an appropriate approximation
of the buffer space, so that the approximate value will not be too large to extend the prefetching
time, and that the value should not be too small so that enlargement requests for the buffer space
are made too frequently.

It is impossible to determine the required buffer space according to inherent characteristics of
the adaptor itself. This space requirement will also depend on the fluctuations in the excitation
sequence, as it can be expressed as the integral of the difference between the response sequence

and the excitation sequence over a specific period of time. If we have

67

N M
Z a;y(n —1i) = Z biz(n — 1) 4.2)
i=0 i=0

as the difference equation of the adaptation behavior. The excitation signals are represented by
z(7), and the response signals are represented by y(i). If we interpolate these discrete-time signals

to generate continuous-time functions z(t) and y(t¢), we will have

t2
sl = [u(® a0 @3)

where s, denotes the required buffer space from time #; to ¢s.

Obviously, the required buffer space s; cannot be determined without the knowledge of exci-
tation signal z(t). This makes it difficult to determine s, at the initialization phase before perform-
ing the adaptations. In the prototype adaptors that we implemented, we choose the value of s;

according to the desired adaptation agility €2,s, using

k
Qofy

Sp = (4.4)

where £ is a pre-determined constant according to experiments or experiences of previous rounds

of execution. The adaptor buffer is implemented as a regular ring buffer.

4.4 Experimental Results

4.4.1 Configuration of Non-Recursive Adaptors

In the initial prototype of our adaptors we experimented with the configuration of some non-
recursive low-pass adaptors, using the Fourier Transform approach addressed in section 3.6. As
an example, we present the experiment results in this section with typical configuration param-
eter sets, and apply the configured adaptor to excitation signals that the network QoS simulator
generated.

Using the Fourier Transform configurator, we successfully configured a 101-term low-pass
adaptor with an adaptation agility of 0.2m, which is defined as cut-off frequency Q,;; in 3.3.3.

For better configuration results, we chose the Hamming windowing function defined in section

68

02 T T T T T
coefficients ——

0.15 B
0.1 E
0.05 B

0 ekl i \H‘ ‘H‘ ‘H‘ ‘H‘ ‘H‘ ‘H\ L TR R
-0.05 1 1 1 1 1

0 20 40 60 80 100 120

Figure 4.3: The coefficients in the non-recursive difference equation of the configured adaptor

3.6.2 to truncate the original result of Inverse Fourier Transform shown in equation (3.48) and
equation (3.49). The approach discussed in section 3.6 was utilized in the configuration. As it
is easily realized, the number of terms in the non-recursive adaptor determines the precision of
the approximation of the actual frequency response to the ideal frequency response illustrated in
tigure 3.9. We chose to configure a 101-term low-pass adaptor to achieve an acceptable precision
of approximation, while not sacrificing the adaptation overhead.

The result of a configured adaptor is expressed in the form of difference equations. Non-
recursive difference equations were defined in equation (2.44), and we only need to present the
coefficients a; to fully represent the difference equation. Due to the volume of coefficients we need
to present here, we chose to illustrate them in figure 4.3 1.

For better visibility of passband ripples and sidelobes in the frequency response, we chose to
plot the frequency response function to logarithmic scales rather than linear scales. A widely used
logarithmic measure of spectral magnitude (or gain) is the decibel. If we have a function H(2)

whose magnitude at some frequency is G, then the equivalent value in decibels (dB) is 20l0g19G.

The x axis in figure 4.3 denotes tine in the unit of second. The y axis denotes a real number as a coefficient in the
difference equation.

69

O T T T T T T
frequency response ——

210 + _

20 F _

30 F _

40 F _

50 |))) , ,
0 0.5 1 15 2 25 3 35

Figure 4.4: Spectral magnitude in the frequency response of configured non-recursive adaptor

Furthermore, it is often convenient to normalize the frequency response function to unity, namely
in the range of [0, 1], giving a logarithmic plot with a maximum of 0 dB in the passband. We
illustrate the frequency response plotted to the logarithmic scale in figure 4.4 2.

We now apply this adaptor to actual QoS metrics generated by the network QoS simulator
illustrated in figure 4.2. The simulator simulates the actual performance of the network, utilizing
traces obtained from the Unix ping command between the client and the server. Figure 4.5 3
illustrates one sequence of the simulator output, where system rate values are illustrated in the
unit of kilobits per second. Figure 4.6 illustrates the generated adaptation result of the configured
adaptor.

As shown in figure 4.6, the results of the adaptation behavior are as we expected and encourag-
ing. Using the jitter evaluation component that is included in the network QoS simulator and the
adaptors, we can calculate the standard deviation, or jitter, of the excitation and response signals

using equation (2.18), which is repeated in equation (4.5):

*The x axis in figure 4.4 denotes frequency in the unit of radians. The y axis denotes spectral magnitude in the unit of
decibels.

*The x axis in figure 4.5 is time in the unit of second, the y axis is system rate in the unit of Kbps. Same applies to figure
4.6.

70

60 T T T T T
excitation —<—

50 -

40

30

20 - -

10 y

100 200 300 400 500

Figure 4.5: Excitation signal for the non-recursive adaptor: generated by the simulator

60 T T T T

response ——

50

40 -

30 -

20

10

0 —0&@’% ! ! ! ! %M@
100 200 300 400 500 600

Figure 4.6: Response generated by the non-recursive adaptor

Evaluation metric Excitation Response
Jitter (Standard Deviation) | 7.252160 Kbps | 5.838508 Kbps

Table 4.1: An evaluation of the adaptation effectiveness for non-recursive adaptors

71

(4.5)

where 1 is the mean of all data, ¢ is the index, n is the total number of data points, and z; is a data
point of index i.

The calculation results were shown in table 4.1.

4.4.2 Configuration of Recursive Adaptors

As an alternative, we also conducted experiments using our prototype adaptors with the con-
figuration of recursive low-pass adaptors, using the Chebyshev approach addressed in section
3.7. As an another example, we present the experiment results in this section with typical config-
uration parameter sets for the recursive adaptors, and again, apply the configured adaptor to the
excitation signals that the network QoS simulator generated. For the purpose of comparison, The
trace we used was the same as the last section.

Using the Chebyshev configurator, we configured a 5th order low-pass adaptor with an adap-
tation agility of 0.27, and a passband fractional ripple of 0.3. The approach discussed in section
3.7 was utilized in the configuration. Obviously, the order of the low-pass adaptor in the recursive
adaptor, rather than the number of terms in the difference equation for non-recursive adaptors,
determines the precision of the approximation of the actual frequency response to the ideal fre-
quency response illustrated in figure 3.9. Similar to the configuration of non-recursive adaptors,
We chose to configure a 5th order low-pass adaptor to achieve an acceptable precision of approxi-
mation, while not sacrificing the adaptation overhead.

The ultimate result of a configured adaptor should also be expressed in the form of difference
equations. The recursive form of difference equations was defined in equation (2.46). However,
the configuration process using the Chebyshev approach makes extensive use of pole/zero po-
sitions to specify the difference equations. As we will later demonstrate, the conversion from
pole/zero position specifications to regular difference equations is convenient and straightfor-
ward.

By starting the Chebyshev configurator using our selected parameters, we found that a 5th

order adaptor with a cut-off frequency of 0.27 has a real zero of order 5, at z = —1. The pole

72

-10

-20

-30

-40

-50

Figure 4.7: Spectral magnitude in the frequency response of configured recursive adaptor

locations, given in terms of radius r and angle 6, defined in equation (3.42), are shown in table 4.2.

Obviously, the adaptor contains one real pole, and two complex-conjugate pole-pairs. The

radius r

angle 0

0.892786
0.968629
0.915411

0.000000 degrees
34.840079 degrees
21.986345 degrees

Table 4.2: Pole positions for the recursive adaptor

T T
frequency response ——

0

0.5

1

15 2

25 3 3.5

configurator also calculates the maximum gain of the adaptor to be 6108.689453.

We then are able to illustrate the frequency response of the adaptor that we just configured.
Similar to the last section, for better visibility of passband ripples and sidelobes, we still chose
to plot the frequency response function to logarithmic scales rather than linear scales. We also
normalized the frequency response function to the range of [0, 1], giving a logarithmic plot with a
maximum of 0 dB in the passband. We illustrated the frequency response plotted to the logarith-
mic scale in figure 4.7 4.

Before applying the configured adaptor to the actual excitation signals, we first need to derive

“The x axis in figure 4.7 denotes frequency in the unit of radians. The y axis denotes spectral magnitude in the unit of

decibels.

73

the difference equation of the adaptor from the specification of pole/zero locations. Obviously,
knowing the poles and zeros, we could multiply the factors of H(z) to obtain a numerator and
denominator polynomial, and hence derive the difference equation of the adaptor. However this
would involve a considerable amount of coefficient multiplication, which causes a problem that
worsens as the adaptor order increases. A convenient alternative is to treat the overall adaptor
as a cascaded set of first and second-order subadaptors, as shown in figure 4.8. The first-order
subadaptor has a single real pole and zero; each second-order subadaptor comprises a complex
pole-pair and a second-order zero. In this way the total complement of five poles and a 5th-order
zero is built up. Note that the intermediate outputs are labeled v(n) and w(n).

The transfer function of the first-order subadaptor takes the form:

S E N 49
giving the difference equation:
v(n) =av(n —1) +z(n) + z(n—1) 4.7)
Each second-order subadaptor has a transfer function of the form:
W(z) _ (z+1)2
V(z) [z — redf)[z — re=3?]
= Frerin 49
yielding a difference equation:
w(n) = 2rcos Qw(n — 1) — rw(n — 2) +v(n) + 2v(n — 1) + v(n — 2) (4.9)

Inserting the pole values found in table 4.2, we obtain the following set of difference equations:

v(n) = 0.892786v(n — 1) + z(n) + z(n — 1)

74

Overall adaptor

v(n) w(n)
x(n) 1st \L 2nd ¢ 2nd y(n)
order order order

Figure 4.8: Cascading relationship among subadaptors

Evaluation metric Excitation Response
Jitter (Standard Deviation) | 7.252160 Kbps | 5.562410 Kbps

Table 4.3: An evaluation of the adaptation effectiveness for recursive adaptors
w(n) = 1.590004w(n — 1) — 0.93824w(n —2) +v(n) + 2v(n — 1) + v(n — 2)
y(n) = 1.697672y(n — 1) — 0.837977y(n — 2) + w(n) + 2w(n — 1) + w(n — 2)

We now apply this adaptor to actual QoS metrics generated by the network QoS simulator
illustrated in figure 4.2. Figure 4.9 ° illustrates one sequence of the simulator output, where system
rate values are illustrated in the unit of kilobits per second. Figure 4.10 illustrates the generated
adaptation result of the configured adaptor.

As shown in figure 4.10, the results of the adaptation behavior for recursive adaptors are also
positive. Using the jitter evaluation component that was included in the network QoS simulator
and the adaptors, we calculated the standard deviation, or jitter, of the excitation and response

signals using equation (2.18), the results are shown in table 4.3.

4.5 Conclusion

Preliminary experiments of the adaptation behaviors using our prototype system proved that
the adaptations were effective in delivering adapted Quality of Service to the distributed multime-
dia application, in our case, the Video-On-Demand application. While sacrificing an insignificant
amount of end-to-end delay time in order to prefetch QoS metric values into the adaptor buffer,

the adaptors were able to deliver a much smoother and graceful degradation to the application

>The x axis in figure 4.9 is time in the unit of second, the y axis is system rate in the unit of Kbps. Same applies to figure
4.10.

75

60 T T T T T
excitation —<—

50 -

40

10 F -

0 100 200 300 400 500 600

Figure 4.9: Excitation signal for the recursive adaptor: generated by the simulator

60 T T T T T
response —<—

50

10

0 100 200 300 400

Figure 4.10: Response generated by the recursive adaptor

76

in the event that sudden and unexpected Quality of Service degradations occur significantly in a
short period of time. This is demonstrated by the slowly effected frame rate that is being displayed
at the Video-On-Demand client, while the simulator that simulates the bandwidth vibration pro-

duced significant jitter and burstiness over the connection between the server and the client.

77

Chapter 5

Conclusion

5.1 Conclusion

In order to provide stable and smooth Quality of Service to a wide range of distributed multi-
media applications, and in the scenario that the applications do not demand guaranteed Quality
of Service delivery, we are able to deliver adaptive Quality of Service to the application.

There are cases, especially in the heterogeneous wireless networks with mobile users con-
stantly on the move, when it may be possible for the transport facilities to deliver severely fluctu-
ated raw Quality of Service. The sudden and unexpected variations in the raw Quality of Service
are obviously not desired by the application, and it can considerably affect the quality that the
application can deliver to the end user. Our approach was to design and incorporate a specific
component, referred to as adaptors, into the middleware level that is plugged in between the appli-
cation and the transport layers. The adaptors, with the assistance of monitors, are responsible to
monitor the raw Quality of Service provided by underlying levels, and perform adaptations to a
specific Quality of Service metric, such as system rate of the flow, before delivering the adapted
Quality of Service to the application. This is made possible by adopting existing theories in the
area of digital control systems and digital signal processing.

We defined and analyzed various properties of the transformation that the adaptation may
perform on the specific Quality of Service metric. An important inherent property among them is
adaptation stability. If the adaptation behavior is not stable, the adaptor may yield an unbounded
response that will keep fluctuating forever, on input of a reasonably bounded excitation signal.

This is certainly not desired by the application. We also defined adaptation agility or sensitivity

78

which represents the ability and extent of an adaptor to promptly respond to perturbations in
the raw Quality of Service from lower layers. We were able to model adaptation agility using
the cut-off frequency of the desired frequency response, and to configure the adaptation behavior
in the frequency domain with a desired adaptation agility requested by the Quality of Service
specification.

Our preliminary experiments of a prototype adaptor showed promising results for Video-On-
Demand applications using a client-server model. The results proved that the adaptations was
effective in delivering adapted Quality of Service of a much smoother jitter level to the distributed
multimedia applications. While sacrificing an insignificant amount of end-to-end delay time in
order to prefetch QoS metric values into the adaptor buffer, the adaptation was able to deliver
graceful degradation to the application in the event that sudden and unexpected Quality of Service
degradations occur significantly in a very short period of time, typically in the environment of
mobile wireless communications, when the mobile user is moving from one base station to the
next.

To conclude, we are able to approach Quality of Service adaptations from a different perspec-
tive, and to precisely model Quality of Service metrics and the adaptation behavior using tech-
niques from the digital control theory. Our initial results were promising with respect to the adap-
tation behavior on a specific Quality of Service metric, utilizing Video-On-Demand applications

as our testbed platform.

5.2 Future Work

While the initial results of the adaptation behavior delivered by the middleware level are ac-
ceptable, adaptations, in a broader sense, can be renovated and designed to be a team of much
more complicated tasks that is able to react to the various perturbations from the transport facili-
ties and deliver adapted Quality of Service with a significantly improved performance of multiple
QoS metrics.

As a part of future work, we are considering the possibilities to integrate the adaptors in the
middleware level with other components in the same or lower levels, such as Quality of Service

negotiation services, system resource allocation services, Quality of Service profile managers, as

79

well as Quality of Service translators between different levels and categories of Quality of Service
metrics in the specification. By appropriate integration of these components in different levels
with the adaptors, we will be able to deliver adaptations to those QoS metrics that are not possible
to be adapted by middleware adaptors alone.

For example, the adaptors could coordinate with the system resource allocation components
in the underlying layers to dynamically allocate available system resources according to the adap-
tation requirements. The adaptors could also coordinate with the Quality of Service negotiation
component to renegotiate the various parameters in the transport facilities to better facilitate the
adaptations performed. To conclude, we are actively seeking the theoretical and practical model
of a generic framework that integrates all the components in the middleware level, so that this
framework could deliver significantly improved Quality of Service to the applications, possibly
with the assistance of mechanisms in the transport facilities.

In the process of performing adaptations on a specific Quality of Service metric, the preser-
vation of various other Quality of Service metrics in possibly different levels or categories also
proved to be a complex problem. For example, while adapting to the QoS metric system rate of a
single media stream, it may be complicated to preserve acceptable QoS metric synchronization skew
that represents the synchronization qualities among multiple media streams. With the integration
of other components in the middleware level, we may need to devise a significantly complex the-
oretical model to deliver improved Quality of Service with regards to the overall quality that the
application demands, rather than improving a portion of the quality while sacrificing the rest. A
combination of local or global optimization methods may need to be employed at this stage of
research.

Towards the objective of constructing an integrated framework for application level Quality
of Service management and services, we are currently conducting research on various other com-
ponents in the middleware level, such as the Quality of Service translation and mapping services
between different categories of QoS metrics, the Quality of Service profiling services and its capa-
bilities in assisting adaptations and translations, and Quality of Service trading and cost functions
that facilitates the improvement of the overall Quality of Service that is delivered to the various

distributed applications and end users.

80

References

[1] V. Bharghavan. Challenges and Solutions to Adaptive Computing and Seamless Mobility
over Heterogeneous Wireless Networks. to appear in the International Journal on Wireless Per-

sonal Communications: Special Issue on Mobile and Wireless Networking, 1997.

[2] A. Campbell, G. Coulson, F. Garcia, D. Hutchison, and H. Leopold. Integrated Quality of
Service for Multimedia Communications. Proceedings of the IEEE INFOCOM 93, 2, 1993.

[3] Z. Chen, S. Tan, R. Campbell, and Y. Li. Real Time Video and Audio in the World Wide Web.
Fourth International World Wide Web Conference, 1995.

[4] J.Y. Chung, J. W.S. Liu, and K. J. Lin. Scheduling Real-Time, Periodic Jobs Using Imprecise

Results. IEEE Transactions on Computers, September 1990.

[5] W. Feng and]J. W.S. Liu. An Extended Imprecise Computation Model for Time-Constrained
Speech Processing and Generation. Proceedings of the IEEE Workshop on Real-Time Applications,
May 1993.

[6] D. Flanagan. Java in a Nutshell. O’Reilly & Associates, Inc., 1996.

[7] P. Florissi. Qual: Quality Assurance Language. Technical Report CUCS-007-94, Department of

Computer Science, Columbia University, 1994.

[8] P. Goyal, H. Vin, C. Shen, and P. Shenoy. A Reliable, Adaptive Network Protocol for Video
Transport. IEEE INFOCOM 96, 3, 1996.

[9] D. Manolakis J. Proakis. Digital signal processing, principles, algorithms, and applications. Pren-
tice Hall, 1996.

[10] R.Jacquot. Model Digital Control Systems. Marcel Dekker, Inc., 2 edition, 1995.

81

[11] S.Jha and M. Fry. Continuous Media Playback and Jitter Control. Proceedings of IEEE Interna-

tional Conference on Multimedia Computing and Systems (Multimedia "96), 1996.

[12] C. Liuand J. W.S. Liu. Effects of Imprecise Computation in Time-Invariant Control Systems.
Proceedings of the Twenty-Ninth Annual Conference on Information Sciences and Systems, March

1995.

[13] J. W.S. Liu, K. Lin, R. Bettati, D. Hull, and A. Yu. Use of Imprecise Computation to Enhance
Dependability of Real-Time Systems. In Foundations of Dependable Computing: Paradigms for
Dependable Applications. Kluwer Academic Publishers, 1994.

[14] S. Lu and V. Bharghavan. Adaptive Resource Management Algorithms for Indoor Mobile
Computing Environments. ACM SIGCOMM 96, 1996.

[15] S. Lu and V. Bharghavan. Adaptive Resource Reservation for Indoor Wireless LANs. IEEE
GLOBECOM "96, 1996.

[16] J. M. McManus and K. W. Ross. Video on Demand over ATM: Constant-Rate Transmission

and Transport. IEEE Journal on Selected Areas in Communications, June 1996.
[17] K. Nahrstedt and J. M. Smith. The QoS Broker. IEEE Multimedia, 1995.

[18] K. Nahrstedt and J. M. Smith. Design, Implementation, and Experiences of the OMEGA

End-Point Architecture. IEEE Journal on Selected Areas in Communications, August 1996.

[19] P.Pancha and M. Zarki. Leaky Bucket Access Control for VBR MPEG Video. IEEE INFOCOM
'95, 2, 1995.

[20] M. De Prycker. Asynchronous Transfer Mode: Solution for Broadband ISDN. Ellis Horwood
Limited, 1993.

[21] M. Satyanarayanan, B. Noble, P. Kumar, and M. Price. Application-Aware Adaptation for
Mobile Computing. Operating Systems Review, 29, 1995.

[22] S. Shinners. Modern Control System Theory and Design. John Wiley and Sons, Inc., 1992.

82

[23] N. Yeadon, F. Garcia, A. Campbell, and D. Hutchison. QoS Adaptation and Flow Filtering
in ATM Networks. Proceedings of the Second International Workshop on Multimedia: Advanced

Teleservices and High Speed Communication Architectures, 1994.

[24] L. Zhang, S. Deering, S. Shenker D. Estrin, and D. Zappala. RSVP: A New Resource ReSer-
Vation Protocol. IEEE Network Magazine, September 1993.

83

