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ABSTRACT

We address the question: What is the best way to construct la oveslay topology for multimedia content distribution,
such that the highest streaming rate can be achieved? Wd madkay capacity correlations as linear capacity constsa
(LCC) and propose a distributed algorithm that construetsverlay mesh which incorporates heuristically inferiedar
capacity constraints. Our simulations results confirm tteeieacy of representing overlays using our LCC model andisho
the LCC-overlay achieving substantial improvement in ecable flow rate.
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1. INTRODUCTION

One of the most fundamental challenges in overlay contesitilolition of multimedia content is the high demand for
available capacities in the underlying network. The reeaivent of H.264/AVC content can easily command sustained
streaming rates of over 1 Mbps. Due to the flexibility affatdiyy edge nodes (qreers, it is common practice to construct
meshoverlay topologies to distribute multimedia content. As thost important form of such distribution streaming
there has been a significant body of recent work in the areaefay multimedia streaming. While most existing work
focus on the optimization of streaming latencies, we belibat a critical Quality of Service parameter for any mudtdia
content distribution is theustainable flow ratef the streaming sessions. Ideally, we prefer to achievhittest streaming
rates that the underlying network can sustain. The meanshieae such an objective is to construct the most suitable
overlay topology for content distribution, which best eifd the available capacities in the underlying network.

Unfortunately, it is a challenge to construct such an oyeriash topology, simply because we have minimal knowledge
of the underlying IP network, especially with respect taitailable capacity. As overlay links in the msh may unaviolga
share underlying IP linksx(g. the “last-mile” access link at the ISP), there existtleneck link$n the underlying network,
shared by overlay links, leading to deteriorated achiev#iblv rates in the mesh overlay.

Obviously, if we have complete knowledge of the underlyiRgnetwork topology, as well as their link capacities, it
may be possible to design an optimal overlay topology. Suop@ogy discoverprocess, while noteworthy for theoretical
research, is too expensive with respect to overhead in rothing traffic and time. A number of previous work require
or propose protocols to acquire such knowledge. Other puevvork adopted the restricted view that overlay links in
a mesh topology are stand-alone and independent, and #iaatiilable capacities can be probed using point-totpoin
bandwidth probing techniques. We argue, instead, thatayink capacities are inherentbprrelated due to their sharing
of available capacities in the underlying links. More sfieally, an overlay link maps to an underlying path, and cagrl
links may map to paths that have shared links. The capaciycommon underlying link is shared by all the overlay links
mapped to it: we call this overldink correlation

Thus, the question we would like to address in this paper iserGthe lack of complete knowledge of underlying
topology, what is the best way to construct an overlay mepblégy for multimedia content distribution, which can
achieve the highest possible sustained streaming ratesithutinimal probing overhead?

Towards this objective, we study the problem of constryctitorrelation-awareoverlay mesh topology with a dis-
tributed algorithm. In such an algorithm, link correlatsoare inferred with minimal probing. To design such an atyami
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we propose an overlay model to accurately represent thdagy@nd model link correlation witlinear inequality con-
straintsfor overlay flow rates. We show that such linear constraintsige succinctandsufficientinformation to achieve
modeling accuracy, as compared to complete knowledge afrtderlying network capacities. We show that if such link
correlations are not considered, it may incur grave deteisreffects on the sustainable flow rates of the topologynfey
link correlations and linear capacity constraints of anrlaye our algorithm utilizes both latency measurements effiel
cient bottleneck-sharing techniques. Our simulationltestow that even a limited localized enhancement usingagp
constraints is sufficient to notably improve the sustaiedlolw rate of the existing mesh construction strategy.

The remainder of this paper is organized as follows. We fgghlrelated work in Section 2. Section 3 describes
our overlay model of linear capacity constraints. In Setwtid and 5, we present our distributed algorithm for mesh
construction integrating capacity constraints, and dis@nhancing existing mesh strategies with constrainitsul&tion
results are presented in Section 6. Finally, we conclude in 7

2. RELATED WORK

Some previous workg(g, Younget al.!) on overlay mesh construction adopted the view that ovdini&g are independent.
Most commonly, the metrics of latency and bandwidth of a ik measured by unicast probing and assigned to overlay
links as scalars. In contrast, in our previous wérkye argued that overlay links are not independent, and aexently
correlated. We have proposed the modeliméar capacity constraintsbut only studied overlay unicast problems in a
largely theoretical study. In this paper, we investigateghoblem of constructing an accurate overlay network ireotd
attain sustained high flow rates for multimedia contentritigtion.

Research has been active in recent years in peer-to-peda isteeaming. As examples, a peer-to-peer streaming
architecture is introduced in Zimmermaetal 2 that significantly reduces end-to-end delay for interaathedia streaming
services. The problem of load distribution in multipledpaata streaming is studied in Abdowtial.* In,> the authors
propose a peer-to-peer adaptive layered streaming frarkewbeir work is mainly on receiver-side mechanisms which
adaptively control packet distribution among coding layeand which maximize overall quality while minimizing vaians
in playback quality in the presence of dynamics in availdaledwidth. A number of papers,g,,%” propose algorithms
for encoded video streaming, but focus on problems from tieeding aspect such as segmentation for transmission and
joining/leaving of layers.

The previous work most relevant to ours is PROMISE,peer-to-peer media streaming system that includes anscti
of peer lookup, aggregated streaming from multiple peedsdgnamic adaptation to network conditions. The best sendin
peers are selected by a topology-aware selection technifjue sender-to-receiver paths are optimized based on a pre-
liminary step of network tomography, which infers an apjmate underlying topology. Ouworrelation-awarecontent
distribution differs from PROMISE, in that we have relaxééd tequirements of explicit discovery of underlying paths,
abstracting link correlation into linear capacity constta— obtained through efficient end-to-end probing.

A significant amount of work has also been completed in mtiim content distribution, including overlay multicést,
content distributiof and multimedia streaming. Among them, the topology-aware overlay construction algors by
Ratnasamegt al.'? are especially noteworthy: they incorporate more topaaigiwareness into overlay construction. This
work differs from ours in focusing exclusively on the latgmoetric, while our goal is to achieve high sustained flowsate

3. OVERLAY NETWORK MODEL OF LINEAR CAPACITY CONSTRAINTS

We now present the model we propose for overlay networksaaighe the service for correlation-aware multimedia cohten
distribution. To facilitate our studies, we first make thewaptions that (1) The routing path in the underlying nekwor
between two end systems does not vary, and is decided byd#p+auting protocols; and (2) Whenoverlay flows share
the same underlying link with capacity every flow is entitled to a capacity of at magt:.

Overlayis so named because there is a network hierarchy of two lageeslay is the higher layer; the underlying
physical network forms the lower layer, henceforth alsemefd to as the underlay. The underlay is a gréhh =
(S U R, E) whose set of nodes is a disjoint union of the set of roufeesd the set of overlay nodés In theory, because
every pair of end systems may form a virtual link, the oveitag complete graph of the nodéslet it be denoted by 15!
Let M : (s,t) € KISl — P c FE be a mapping from overlay links to pathsdh,. For every link between nodesandt
in K51, M(s,t) = (s,e1,ea,...,e,t) maps it to a path from to ¢ through underlay edgelg; : i = 1...1} C E. We



assign a flow variablg (s, t) to every link(s,t) € K5, representing its capacity. It follows then that if a set oéray

links {(s;,%;)}¥ maps to the same linke F, Zle f(s;,t;) cannot exceed the capacity«ofGiven the grapld:,, and the
set of overlay nodes, it is straightforward to obtain the complete set of lineanstraints for overlay link capacities.

Table 1. Common notations in the paper

Notation Definition

S set of overlay nodes

|S] number of overlay nodes

R set of routers in underlay

E set of edges in underlay

Gy G, = (RUS, E), underlay graph

K151 complete (overlay) graph ¢f| nodes

m m = |S|(]S| — 1)/2, number of edges i& "]

S source node in multicast

M linear capacity constraints matrii|-by-m)

x r = [x1,...,2,]7, overlay flow variables
vector

c ¢ = [e1,..., g7, capacity vector of edges
in £

To illustrate, we give a naive example of an underlay grapisisting of only four nodes, as shown in Fig. 1, where
S ={a,b,c}andR = {r}, E = {(a,r), (b,7), (¢c,)}. Capacity of an edge iR is as labeled in the figure. We I{, f>, f3
be flow variables for the three overlay edges, respectigsiiabeled. The mapping of overlay edges to underlying paths
shown in the figure.

The edg€a, r) is traversed by two overlay edgés b), (a, ¢), hencef1 + fo < w(a,r). Similarly, the linear constraints
fi+ f3s <wb,r), f2 + f3 < w(c,r) are obtained for the other two edgesAin The matrix form of the complete set of
linear constraints is given next to the network graph in Eig.

= e ]
[ e

Figure 1. A naive example.

Devising an algorithm for deriving a complete set of lineapacity constraints is therefore straightforward, given
G. = (SUR, E), S and a mappind/ of overlay edges i'!®! to paths inG,,. One such algorithm is to order the edges
in £ as{ey,es,...,e g} as well as theS|(|S| — 1)/2 (m) overlay edgeqp;, ..., p,}. Matrix A is initialized to have
all zero elements. For eagh, M (p;) is the corresponding underlay path; sitj, <) = 1 if and only ife; € M(p;).
The complete set of constraints is thisr < ¢, wherez = |12 ... 2,,]7 is the vector of variables for overlay flows
P1,...,Pm, andc is the vector of capacities for underlay links, . .., e z. The dimensions oM is |E|-by-m. We call
M the constraint matrix; the flow variable vector, andthe link capacity vector.

Theoretically and ideally, ahS|-node overlay is perfectly accurately defined by this modehe complete graph
K151 with the complete set of linear capacity constraints for|$ieflow variables. The currently prevailing model of the
overlay is as a network graph with no link correlations arallihks labeled by numbers representingependentinicast
latency and capacity. The independent model misrepret@ntctual overlay metrics. Generally, previous work dffse
detrimental misrepresentation by limiting the degree obagerlay node. Each node selects a limited number of incident
links according to some selection rules, usually thosealegood by certain metrics.



We examine a specific instance of such an overlay construefigorithm, let it be denoted b®C. In OC, a node
selectsd highest-capacity incident links (or neighbots).his is a reasonable representative selection rule witheigo
the objective of optimizing the flow rate. The following argent will be valid against any such ad hoc selection ruledbase
on the independent overlay model.

To compare the overlay graph constructeddfyand the overlay defined by linear capacity constraints, wal@nrone
of the most common multimedia content distribution topasg— the overlay multicast tree. We use a greedy algorithm
MT to obtain the multicast tree with the objective of optimgits flow rate: Given a source nodethe tree is initialized
to T = {s}. The highest-capacity link with only one end-node7iris chosen and its other end-node is adde@ tdies
are broken randomly.

The above greedy algorithm takes as input a graph with liakélg capacities as scalar weights. A slight modification
is sufficient for the algorithm to take linear constraintdiok flows as input. When deciding on a link to addTo select
the one that would have the highest capacity when gettinggitsl share of any shared underlay links with overlay links
already inT". To be more precise: Lét/, x, c denote the constraint matrix, overlay flow variable vectat anderlay link
capacity vector, respectively. Boff andc are input. Also letyr be anm-by-1 vector (n is the number of overlay flow
variables) such thaty (p) = 1if pisinT, otherwise it i9). We usev}. to denotevr with v7(p) changed fronf to 1. Then,
the following overlay link is selected to add 1a p’ = arg max,{min{ ;Ei)) : V(i) # 0} : Yor(p) = 0 andk = Ml };
vr(p’) = 1.

Next we consider the simple example depicted in Fig. 2 — F&g.% a networkG,, with |[R| = 4 and|S| = 4
(4 routers,4 overlay nodes), and Fig.2(b) is the complete oved&y with the unicast capacity labeling the links. The
overlay-to-underlay mapping is the obvioyst, B) — (A, r;, B) and similarly for(C, D); (A,C) — (A,rs,73,C) and
similarly for (A, D), (B, D). ExecutingMT on K* yields the multicast tre&o¢ in Fig. 2(c). Note that this is an optimal
multicast tree ifonly K is given. It is implicit that the number of neighbors sel@d®d = 3 in OCin this case; however,
it is not hard to see that witth= 2 or d = 1, the same result ensues. Given the constraints
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MT will give the multicast tredl’, in Fig. 2(d). It is easy to see thd} - has actual flow raté due to three flows
sharing the linkr2, r3). YetT.c achieves flow rate.

A 3 C A C
2 312
B 3 D B D
(@) A, B, C, D are overlay nodes (b) Overlay graph © )

connected to each other by physical
links and 4 routers.

Figure 2. A simple example network showing the potential detrimental effect of thepiaddent model of overlay.

Taking a cue from our simple example, we arrive at the foltmyproposition in our previous pageand it is included
for completeness of this paper.

*Though fictitious, this is a slightly simpler version of the selection rule ffbin which d/2 neighbors are selected from lowest
latency ones and the othéf2 from highest capacity ones among randomly probed nodes.



Proposition 1: For any fixed value ofS|, there is aG,, such that the flow rate of an optimal multicast tree in any
overlay graph (for any value af) constructed byDC on top ofG,, is asymptoticallyl /|S| of the flow rate of a multicast
tree obtained from flow constraintd/ andc) derived fromG,,.

Proof: Consider a generalized gragh, = (R U S, E) of the one in Fig. 2 with.S| overlay nodes instead of only
The layout ofG,, can be seen in Fig. 3(a). A single inter-router linkdrconnect S|/2 overlay nodes with the othé§|/2
nodes. In the case ¢f| being odd, the nodes are partitiongf|+1)/2 and(]S|—1)/2, and the succeeding reasoning still
holds. Any overlay graph constructed ®C will clearly include the(3 + €)-link for every node. An optimal multicast tree
in the OC graph must include only thg3 + ¢)-links — one possible such tree is given in Fig. 3(b) — becaibkerwise
its calculated flow rate would b@ < (3 + €). However, the actual flow rate of this tree mappedtpis only (5 + €)/|S|
since all|S| links in the tree traverse the same inter-ro\ter- ¢)-link.

In the informed constraints overlay model, howewdil on the input of the overlay flow constraint&/ andc¢, will
form a multicast tree with flow ratg. With (5 — €) approaching), theOC tree asymptotically achievdg|S|of 5. O

Although at first glance, the network in Fig. 3 may appear paitical, it is worth noting that its topology resembles
the scenario of a transatlantic link — real and inevitable/ide-area networks.
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Figure 3. A | S|-overlay-node network showing the potential detrimental effect of thependent model of overlay.

4. LCC-NEIGHBORHOOD ALGORITHM DESIGN

The design objectives of the algorithm are: 1. Constructreeg®-purpose overlay mesh. 2. Every overlay node maisitain
information of linear capacity constraints. 3. Distritditéntelligent and limited (as opposed to exhaustive) erfee

of capacity constraints. We first describe the high-leveigte of the algorithm in the following section. In subseduen
sections, every high-level component will be elucidatedetil.

4.1. High-level Overview

Every node randomly probes another node at regular inera@dintaining and updating their stored measurement-infor
mation. Both inter-node latency and capacity are measuEsery node also estimates its last-mile capdcitifurther
discussion of this network measurement is deferred to S2c. 4

Based on the 'distance’ metric of latency, nodes distritiytgroup themselves intoeighborhoods— each neighbor-
hood contains nodes that are close to each other, while ricdeslifferent neighborhoods are relatively far apart.

The rationale behind neighborhood grouping is the follgyimoposition. In large-scale wide-area networks, latency
(especially averaged over multiple probe results over egeaf time to account for network fluctuations) is univehgal
acknowledged and used as a measure of node proximity in aretw

Proposition 3: Assuming that IP layer routing does not deviate too far froiorgest-path routing, if two node$ and
B have a high latency link between them, while nddeand A have a low latency link, and node and B have a low
latency link. Then it implies that overlay link4 — C and B — D do not share any bottleneck underlay links.

Proof: The scenario in the proposition is shown in Fig. 4. We provedytradiction. Suppose the latency between
andB, [ 4, is high, but latencieky andigp are low. Also suppose that— C andB — D do share a bottleneck underlay

TThe last-mile of a node is the capacity of its access link to the Internet. Inamtext, last-mile capacity is the constraint for the
total capacity of all incoming and outgoing flows of a node.



link. Latencylcp between nod€’ and D must be low, because the path— e — D is all encompassed by segments of
C —AandD — B, thuslcp < lac + gD, With the reasonable assumption that IP routing is not tofréan shortest-path.

It follows from the same reasoning thats < la¢c + Ip is low as well. We reach a contradiction. O
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Figure 4. An example of the independence of links that are far apart with respéatency. The bolder lines represent overlay links;
the lighter lines represent underlay links.

Therefore, we conclude that it is not unreasonable to dethdspendence of links from different neighborhoods,
which implies that no capacity constraints exist for therhisTreduces the need to probe capacity sharing between links
from different neighborhoods and constraints within thgghleorhoods can be probed and inferred independently ¢f eac
other in parallel.

The reader will find in Sec. 4.3 details of how nodes distelllit group themselves into neighborhoods so that nearby
nodes are grouped together. The neighborhoods can be vassegernodesthey also naturally form a complete graph.
A subgraph is formed by every supernode selecting a numbadjatent supernodes to which incident superedges are
maintained, we refer to it asupergraph

Adjacent supernodes use capacity-sharing techniquegetoihich edges in the supergraph share bottleneck capacity
(Detailed discussion about such techniques are deferrildSec. 4.4.) These are the inter-neighborhood linear capa
constraints. They translate to the original overlay grapiiolows. All inter-neighborhood flows inherit the constiz
for corresponding supernodes. When the flow between two sages, say; andS:, is constrained by, for all overlay
nodesu in the neighborhood represented By andwv in Sy, the sum of flows between nodesw is constrained by. A
more complicated example is the following. Nodgsu. are inS; andvy, vo are fromSs,, and a constraint (S, S2) < b,
the constrainy (w1, v1 )+ f(u1,v2)+ f(ua, v1)+ f(uz2,v2) < bis derived. Adding a fifth node from a third supernod#&;
and the constrainf(S1, S2) + f(S1, S3) < b', we induce the constraidt,_, ,.;_, » f(ui, vj)+ f(ur, w)+ f(uz, w) < V.

For scalability reasons, the inter-neighborhood constisaare not explicitly stored by a node, which would include
all possible flows from nodes in different neighborhoodsstéad, nodes exchange and store the respective supernode
IDs of other nodes, and only keep the constraints of flowsnif) detween their own supernode and other supernodes —
which have far fewer variables. All inter-neighborhood siaints are effectively implicitly stored in this mannEar any
set of overlay flows, any possible inter-neighborhood aaists that exist can be directly obtained from their assted
supernode IDs and the stored supergraph flow constraints.

For any two adjacent supernodes in the supergraph, allrtke tietween overlay nodes in different supernodes may be
chosen to be in the overlay mesh, i.e., a node in one neighbdrinay keep as many links to known nodes in the other
neighborhood as computational efficiency dictates. A liméty easily be imposed should applications require it for the
sake of efficiency: links with lower latency and higher capawould be chosen. We remark that in theory, it is fine to
keep all the links between neighborhoods that are adjanghtisupergraph — the constraints would disallow congestio
due to inter-neighborhood flows, and better-performing datites or topology may be found for various services due to
the greater number of choices.

The full details of supergraph formation and inference térimeighborhood constraints are presented in Sec. 4.4.

Now it remains to consider overlay links within the same hbgrhood — the intra-neighborhood links. In a neighbor-
hood, the nodes first forms a spanning tree to ensure cowitecEach node then selec#s, .., incident links: d;,¢rq /2
links have lowest latencies and the othgr;,., /2 have highest capacities. Afterwards, a node waits for amamychosen
period of time, and initiates probes for detecting capasitgring among flows on its incident links. Every node thus
obtains at mosd;,,;,., constraints withi;,,;,-, flow variables.



In the following sections, we proceed to present the detditd! the individual algorithm components.

4.2. Unicast networ k measurement and last-mile estimation

All the nodes maintain and update whenever possible thesepif information data: (1) a list of IP addresses of known
nodes — node list; (2) latencies and capacities of nodeshtdnat been measured; (3) IDs of neighborhoods associated
with nodes; (4)last-mile capacity of nodes.

Latency and capacity are measured periodically for rangdahbsen nodes from the node list, by thieng utility
and a variant of the packet-bunch metHédNodes update their node lists by periodically exchangimgloan subsets of
them with randomly contacted nodes. A node may have to saedéimpleteness for scalability by keeping only a random
subset of the node list when it grows too large.

For estimating last-mile capacity, we adopt a simple pratedhich does not inject much extra network traffic. A
node A maintains a small list of nodes that have the highest lakt-caipacity as estimated by thus far; it includesA.
Initially, the last-mile list contains the nodes with whieghhas the highest-capacity links, and their last-mile edta
are their respective link capacity. The last-mile capacftyl is estimated to be the highest of these. Periodic exchanges
and updates of last-mile lists are done with random nodess frequently, nodel also chooses a random node from the
last-mile list to measure the link capacity, and its esterdtits own last-mile may be updated. The last-mile estisate
non-decreasing. Ifl has a high capacity, it will probe nodes with higher and higtapacity, and eventually estimate a
comparable high capacity for itself. On the other hand} tias low capacity, it is impossible to falsely estimate a aigh
one. Since a node’s last-mile capacity is usually rathdslstaonceA detects that its own estimated last-mile has not
changed in some time] refrains from further active probing for a long time.

4.3. Grouping nodes into neighbor hoods

We propose a low-overhead, distributed solution for grogpiearby nodes (with latency as the distance metric) into
neighborhoods. Our solution requires only a small constantber ofpi ngs and no landmark nodes (which is the case
in'2).

We consider classes of latencies rather than particulaesalFor instance, latencies may be divided into four ctasse
(0,10)ms, (10, 100)ms, (100, 200)ms, (200, co)ms. If two nodes do not have a low latency link, e.g., laterscgreater
than100ms, then they assume they are in different neighborhoods.nbesA and B (with relatively low latency link)
determine whether they are in the same neighborhood in tleeving way. NodeA chooseg;/4 nodes whose latencies
fall into each of the four latency classes — a totayafodes chosen from relatively recently probed nodes. Nbdends
these toB. Node B also sendg node IPs with latency classes tb Now A checks its own measured latency classes
for the g nodessent byB, activatingpi ng probes if necessary. Latency class of each ofgthede as measured by is
compared with the class of that node sentihyNode A conjectures thaB is in the same neighborhood only if most of
them coincide (i.e., a high fraction of them match, the facis a parameter that can be set). Ndg8i@roceeds in the
same way. The two nodes are in the same neighborhood if bdtteof conjecture that. The procedure terminates when
the size of a neighborhood reaches a certain threshold.

The effectiveness of our grouping scheme is verified by enukition results, presented later in the paper, which tevea
low overlay path latencies even when compared with minimpaneing tree algorithms that has minimization of latency
as the main objective.

4.4. Inference of linear capacity constraints

With the nodes grouped, the neighborhoods can be logidatlyn& into supernodes. A supernode is connected to another
supernode through all the edges between nodes from (thelbmtgpods corresponding to) the two respective supernodes

Our aim is a more sparsely connected supergraph. The guéstibow do the supernodes select adjacent supernodes to
keep in the supergraph?

In every neighborhood, an intra-neighborhood mesh — a sedhmf the overlay mesh being constructed — is built
according to the protocol previously described at the enSeaf. 4.1. From each neighborho8dh nodes are selected as
theanchor node®f S; the parametek can be tuned for the tradeoff between overhead and preciSkmncriterion for an
anchor node is high last-mile capacity. Every node has amat of its own last-mile; these estimates are used to €00s



the h highest ones. For the purpose of selecting anchors, itagtforward to leverage the spanning tree infrastructure
for control data dissemination.

A neighborhoodS chooses another neighborhabdo be its adjacent supernode in the supergraph if the anahéfs
have high capacity links from anchorsih The degree limit o in the supergraph ig;,,;.,.. The anchors it$ records the
sum of capacities of links from anchors in another supernibgeminimum latency is also recorded. Adjacent supernodes
are chosen alternately from highest total capacity anddowénimum latency, untib reachesl; ;e

The reasoning that led to the above heuristic of anchor teteis the following. The Internet consists of end system
nodes that have vastly varying last-mile capacities. Isduos help to have nodes with low last-mile capacity to praie f
inter-neighborhood capacity, because all probes origigdtom and arriving at them will be automatically bounded b
their low last-mile.

For each neighborhoof, after it has chosen its adjacent neighborhoods, the aséhdt utilize capacity sharing
techniques to infer linear capacity constraints for all 8dinom anchors in adjacent supernodesstoThere have been
several proposals of techniques that analyze multiple fevasdetects shared bottlenecks among the flows,'e.¢,.In
particular, in!®> Katabiet al. propose a technigue to infer bottlenecks by minimizing tle@yR entropy (a generalized
form of Shannon entropy) of the packet inter-arrivals. Witty a small number of packets per flow, the method is able to
partition flows into groups such that flows belonging to thmegroup share a common bottleneck whose capacity is also
measured. They present Internet measurement resultseimaingtrate robust partitioning even under heavy crodfictraf

In practice, we only need to ug® UDP messages &KB for each flow, since both,;,,;.,. andh are kept very small.
We in fact were able to obtain good simulation results byirsgt;,,;,- to only 4 andh to 2. In this setting, inference of
constraints for flows betweesiand all its adjacent neighborhoods cast8KB.

Once flows are partitioned into groups that share bottlenaokl the corresponding bottleneck capacities are obtained
a set of linear capacity constraints for flows betwéeand its adjacent supernodés;} are inferred. The constraints
inference is performed by anchors in every neighborhoodsTa set of constraints are determined for inter-neighdmath
flows.

5. ENHANCING OVERLAY MESH CONSTRUCTION WITH LINEAR CAPACITY CONSTRAINTS

It may already be evident from the previous section thatlireapacity constraints could be added to any overlay mesh
construction scheme. We begin by briefly highlighting thpesvious mesh construction strategiesk Minimum spanning
trees £-MST) Nodes distributedly build edge-disjoint minimum spanning trees, with every node kegips best links.!

2. Short-long links (SL)Every node selects links, by selectingl/2 of the shortest (lowest latency) links of which it has
knowledge and selectinty2 random (long) links? 2. Short-wide links (SW)Every node selectis/2 of the shortest links

of which it has knowledge ankl/2 of the widest (highest capacity) links from randomly promedes'3

Both SLandSWhave node degree limit, which is usually a small constant in practice. For instangé® SWsetsk
to bes, so that every node has at mashcoming flows and outgoing flows. Although in the simulations fofMSTin,!
k varies only froml to 4, the algorithm does not impose a degree constraint. Howmeasures of adding a degree limit
are discussed ih. Even without a degree limit, every nodekAMSThas onlyk incoming edges, with < 4.

As it takes an exponential number of capacity-sharing testbtain a complete set of linear constraints, we experi-
mented with various heuristics of adding inference of Imgagpacity constraints (LCC) to a general overlay mesh with a
node degree limit. We were able to find one that is efficierdaliaed, distributed, and has comparable overhead as the
mesh construction strategies themselves. It is also verglei In the overlay mesh, nodes have at ntoseighbors. Ev-
ery node independently conducts probes for detection dleleick sharing among all flows on its incoming and outgoing
edges. As discussed in the previous section, the bottletetelkction technique that we adopt actually partitions flmies
groups such that flows in each group share a bottleneck ansumesathe respective bottleneck capacities.

Similar to probing parameters discussed in the previousoseave usel0 messages of sizZKB for each flow. There
are at most flows. Consider th&sWmesh, every node has at mdst incident links. Thus, the total cost of probing
for bottleneck sharing i$280KB. In,'3 in constructing arBWmesh, a capacity measurement test cé3eB. In other
words, if the bottleneck sharing probes are launched pieatig with a sufficiently long period, it is not more costlyan
capacity measurement, which is a common periodic tool imlayeneshes.

We show our simulation results in Sec. 6.



6. SSMULATION RESULTS

We now describe the results of our simulations on topologéeerated by a power-law degree-based topology generator,
BRITE.!” Using bothC andMatlab, we simulated and experimented with eight mesh algorithitogether.
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We list the algorithms with which we experimentedCC-nbh Nodes group by latency into neighborhoods, with
inference of coarse inter-neighborhood constraints aadlied independent intra-neighborhood constraikt8ST. &

minimum spanning tree mestshort-long Short-long mesh Short-wide Short-wide meshk-MSTwith LCC: k-MST
with localized linear capacity constrainShort-longwith LCC. Short-widewith LCC.



Overlay topologies range fror20 nodes andl000 nodes. First, a larger router-level topology is generatsidgu
BRITE. From the router-level topology, nodes with the sestldegrees are selected to be overlay nodesalHsdortest-
pathalgorithm is executed to map overlay links to underlyinghgah the router-level topology. The mapping of overlay
links to underlay paths is stored for future reference. Welémented the mesh construction schemes listed above. From
each of the overlay topologies (essentially complete ggg@hmesh is constructed using every algorithm. We choose to
use maximum flow (maxflow) as a measure of the quality of theheewvith respect to flow rates that they can provide to
receivers, in order that we may compare them. As a measuterhaverlay quality, maxflow is a reasonable representative
of multimedia content distribution applications. Moregvies non-tree flow topology perfectly embodies the prentle
overlay network condition of multiple overlay links beingnsiltaneously utilized, forming a topology that is not aetre

We compute maxflow on the various overlay meshes constrigtétae different algorithms. This maxflow is referred
to as the expected maxflow by the meshes. Then we realize énap¥lows in the underlying network, using the mapping
from overlay links to underlying paths. Whenever an undagyiink is traversed by more than one overlay flow, the
bandwidth of the link is allocated to the overlay flows by nrain fairness. After the overlay flows have been re-assigned
their respective real achievable bandwidth, we executdlovawn these overlay links again to obtain the overall achtde
maxflow bandwidth.

The discrepancy between expected and real achievable madindwidth is plotted for every mesh construction algo-
rithm. In Fig. 5(a), the two lines in the graph represent thigeeted bandwidth and achievable bandwidth, respectifaly
our LCC-nbhalgorithm that incorporates capacity constraints in thetm&he algorithm is clearly effective in producing
an accurate informed overlay mesh. This is evident from hioaety the achievable bandwidth line follows the expected
bandwidth line. The performance of the other three algorilis substantially inferior. For all threk;MSTin Fig. 6(a),
Short-longin Fig. 7(a) andshort-widan Fig. 8(a), the achievable bandwidth is much (often wijddyver than the expected
bandwidth. This conclusively confirms our conjecture tigabiring the hidden capacity constraints will inevitabladeto
a very inaccurate overlay mesh. We also define an error rggkpected— achievablg¢/achievable. The error ratios are
also plotted for all the algorithms in Fig. 9 and Fig. 10.

Now let us compare the discrepancy graphs#aviST with and without LCC, shown in Fig. 6(b). With the con-
straints, the discrepancies between expected and aclaeaidwidth shrink considerably. Note that this is withdliwed
constraints that are obtain distributedly and are far fraim¢p complete. Evidently, significant improvement in aeoyr
can be achieved even for such limited information of capaminstraints. Similarly, as can be observed in Fig. 7(b) and
Fig. 8(b), respectively&hort-longwith LCC andShort-widewith LCC have much smaller discrepancy tf&tmort-longand
Short-wide respectively, though the improvement is not as consistefdrk-MST.

Next, we study the plots of achievable bandwidtltiMSTwith LCC and that in jusk-MST, the two lines representing
them can be seen in Fig. 11(a). For larger network sizes aitgréhans0, achievable bandwidth ih-MSTwith LCC is
almost consistently higher by a significant amount. From, thwe conclude that inaccurate overlay meshes cause inferio
performance. It makes perfect sense: when the mesh is notaecan application algorithm cannot make informed
choices in selecting routing paths and hence very likelylvélmisled into decisions that does not yield high perforoean
On the other hand, a number of limited localized capacitystraimts help substantially in ameliorating the perforoaan
However, in our experimentation with tf&hort-longwith LCC, we discovered that this particular mesh with oungglie
heuristic of per-node constraint inference does not sheardhcrease in bandwidth, seen in Fig. 11(b). It is an intioa
that different heuristics for constraint inference haveyivag effect on different mesh strategies. Finally, we slilog/igraph
of average latency of overlay paths in Fig. 5(b). It can begkatLCC-nbhhas low latency compared toMST.

7. CONCLUDING REMARKS

We considered the problem of constructing correlationrawsaerlay meshes capable of maximizing the sustained flew ra
in multimedia content distribution. An algorithm is progalsto construct overlay networks that are informed of uryitegl
topological bandwidth constraints and hence accurate.s@ulation results verify the necessity of an accuratelayer
mesh to ensure high flow rate.
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