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ABSTRACT

We address the question: What is the best way to construct a mesh overlay topology for multimedia content distribution,
such that the highest streaming rate can be achieved? We model overlay capacity correlations as linear capacity constraints
(LCC) and propose a distributed algorithm that constructs an overlay mesh which incorporates heuristically inferred linear
capacity constraints. Our simulations results confirm the accuracy of representing overlays using our LCC model and show
the LCC-overlay achieving substantial improvement in achievable flow rate.
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1. INTRODUCTION

One of the most fundamental challenges in overlay content distribution of multimedia content is the high demand for
available capacities in the underlying network. The recentadvent of H.264/AVC content can easily command sustained
streaming rates of over 1 Mbps. Due to the flexibility afforded by edge nodes (orpeers), it is common practice to construct
meshoverlay topologies to distribute multimedia content. As the most important form of such distribution isstreaming,
there has been a significant body of recent work in the area of overlay multimedia streaming. While most existing work
focus on the optimization of streaming latencies, we believe that a critical Quality of Service parameter for any multimedia
content distribution is thesustainable flow rateof the streaming sessions. Ideally, we prefer to achieve thehighest streaming
rates that the underlying network can sustain. The means to achieve such an objective is to construct the most suitable
overlay topology for content distribution, which best exploits the available capacities in the underlying network.

Unfortunately, it is a challenge to construct such an overlay mesh topology, simply because we have minimal knowledge
of the underlying IP network, especially with respect to itsavailable capacity. As overlay links in the msh may unavoidably
share underlying IP links (e.g.,the “last-mile” access link at the ISP), there existbottleneck linksin the underlying network,
shared by overlay links, leading to deteriorated achievable flow rates in the mesh overlay.

Obviously, if we have complete knowledge of the underlying IP network topology, as well as their link capacities, it
may be possible to design an optimal overlay topology. Such atopology discoveryprocess, while noteworthy for theoretical
research, is too expensive with respect to overhead in both probing traffic and time. A number of previous work require
or propose protocols to acquire such knowledge. Other previous work adopted the restricted view that overlay links in
a mesh topology are stand-alone and independent, and that their available capacities can be probed using point-to-point
bandwidth probing techniques. We argue, instead, that overlay link capacities are inherentlycorrelated, due to their sharing
of available capacities in the underlying links. More specifically, an overlay link maps to an underlying path, and overlay
links may map to paths that have shared links. The capacity ofa common underlying link is shared by all the overlay links
mapped to it: we call this overlaylink correlation.

Thus, the question we would like to address in this paper is: Given the lack of complete knowledge of underlying
topology, what is the best way to construct an overlay mesh topology for multimedia content distribution, which can
achieve the highest possible sustained streaming rate, butwith minimalprobing overhead?

Towards this objective, we study the problem of constructing acorrelation-awareoverlay mesh topology with a dis-
tributed algorithm. In such an algorithm, link correlations are inferred with minimal probing. To design such an algorithm,
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we propose an overlay model to accurately represent the overlay, and model link correlation withlinear inequality con-
straintsfor overlay flow rates. We show that such linear constraints providesuccinctandsufficientinformation to achieve
modeling accuracy, as compared to complete knowledge of theunderlying network capacities. We show that if such link
correlations are not considered, it may incur grave deleterious effects on the sustainable flow rates of the topology. Toinfer
link correlations and linear capacity constraints of an overlay, our algorithm utilizes both latency measurements andeffi-
cient bottleneck-sharing techniques. Our simulation results show that even a limited localized enhancement using capacity
constraints is sufficient to notably improve the sustainable flow rate of the existing mesh construction strategy.

The remainder of this paper is organized as follows. We highlight related work in Section 2. Section 3 describes
our overlay model of linear capacity constraints. In Sections 4 and 5, we present our distributed algorithm for mesh
construction integrating capacity constraints, and discuss enhancing existing mesh strategies with constraints. Simulation
results are presented in Section 6. Finally, we conclude in 7.

2. RELATED WORK

Some previous work (e.g., Younget al.1) on overlay mesh construction adopted the view that overlaylinks are independent.
Most commonly, the metrics of latency and bandwidth of a linkare measured by unicast probing and assigned to overlay
links as scalars. In contrast, in our previous work,2 we argued that overlay links are not independent, and are inherently
correlated. We have proposed the model oflinear capacity constraints, but only studied overlay unicast problems in a
largely theoretical study. In this paper, we investigate the problem of constructing an accurate overlay network in order to
attain sustained high flow rates for multimedia content distribution.

Research has been active in recent years in peer-to-peer media streaming. As examples, a peer-to-peer streaming
architecture is introduced in Zimmermannet al.3 that significantly reduces end-to-end delay for interactive media streaming
services. The problem of load distribution in multiple-path data streaming is studied in Abdouniet al..4 In,5 the authors
propose a peer-to-peer adaptive layered streaming framework. Their work is mainly on receiver-side mechanisms which
adaptively control packet distribution among coding layers and which maximize overall quality while minimizing variations
in playback quality in the presence of dynamics in availablebandwidth. A number of papers,e.g.,,6, 7 propose algorithms
for encoded video streaming, but focus on problems from the encoding aspect such as segmentation for transmission and
joining/leaving of layers.

The previous work most relevant to ours is PROMISE,8 a peer-to-peer media streaming system that includes functions
of peer lookup, aggregated streaming from multiple peers and dynamic adaptation to network conditions. The best sending
peers are selected by a topology-aware selection technique. The sender-to-receiver paths are optimized based on a pre-
liminary step of network tomography, which infers an approximate underlying topology. Ourcorrelation-awarecontent
distribution differs from PROMISE, in that we have relaxed the requirements of explicit discovery of underlying paths,by
abstracting link correlation into linear capacity constraints — obtained through efficient end-to-end probing.

A significant amount of work has also been completed in multimedia content distribution, including overlay multicast,9

content distribution10 and multimedia streaming.11 Among them, the topology-aware overlay construction algorithms by
Ratnasamyet al.12 are especially noteworthy: they incorporate more topological awareness into overlay construction. This
work differs from ours in focusing exclusively on the latency metric, while our goal is to achieve high sustained flow rates.

3. OVERLAY NETWORK MODEL OF LINEAR CAPACITY CONSTRAINTS

We now present the model we propose for overlay networks to provide the service for correlation-aware multimedia content
distribution. To facilitate our studies, we first make the assumptions that (1) The routing path in the underlying network
between two end systems does not vary, and is decided by IP-layer routing protocols; and (2) Whenk overlay flows share
the same underlying link with capacityb, every flow is entitled to a capacity of at mostb/k.

Overlay is so named because there is a network hierarchy of two layers: overlay is the higher layer; the underlying
physical network forms the lower layer, henceforth also referred to as the underlay. The underlay is a graphGu =
(S ∪R,E) whose set of nodes is a disjoint union of the set of routersR and the set of overlay nodesS. In theory, because
every pair of end systems may form a virtual link, the overlayis a complete graph of the nodesS, let it be denoted byK |S|.
Let M : (s, t) ∈ K |S| → P ⊂ E be a mapping from overlay links to paths inGu. For every link between nodess andt
in K |S|, M(s, t) = (s, e1, e2, . . . , el, t) maps it to a path froms to t through underlay edges{ei : i = 1 . . . l} ⊂ E. We



assign a flow variablef(s, t) to every link(s, t) ∈ K |S|, representing its capacity. It follows then that if a set of overlay
links {(si, ti)}

k
1 maps to the same linke ∈ E,

∑k
i=1 f(si, ti) cannot exceed the capacity ofe. Given the graphGu and the

set of overlay nodesS, it is straightforward to obtain the complete set of linear constraints for overlay link capacities.

Table 1. Common notations in the paper

Notation Definition
S set of overlay nodes
|S| number of overlay nodes
R set of routers in underlay
E set of edges in underlay
Gu Gu = (R ∪ S,E), underlay graph
K |S| complete (overlay) graph of|S| nodes
m m = |S|(|S| − 1)/2, number of edges inK |S|

s source node in multicast
M linear capacity constraints matrix (|E|-by-m)
x x = [x1, . . . , xm]T , overlay flow variables

vector
c c = [c1, . . . , c|E|]

T , capacity vector of edges
in E

To illustrate, we give a naive example of an underlay graph consisting of only four nodes, as shown in Fig. 1, where
S = {a, b, c} andR = {r}, E = {(a, r), (b, r), (c, r)}. Capacity of an edge inE is as labeled in the figure. We letf1, f2, f3

be flow variables for the three overlay edges, respectively,as labeled. The mapping of overlay edges to underlying pathsis
shown in the figure.

The edge(a, r) is traversed by two overlay edges(a, b), (a, c), hencef1+f2 ≤ w(a, r). Similarly, the linear constraints
f1 + f3 ≤ w(b, r), f2 + f3 ≤ w(c, r) are obtained for the other two edges inE. The matrix form of the complete set of
linear constraints is given next to the network graph in Fig.1.

a

b c

r
f1 f2

f3

1

2 3

Figure 1. A naive example.

Devising an algorithm for deriving a complete set of linear capacity constraints is therefore straightforward, given
Gu = (S ∪ R,E), S and a mappingM of overlay edges inK |S| to paths inGu. One such algorithm is to order the edges
in E as{e1, e2, . . . , e|E|} as well as the|S|(|S| − 1)/2 (m) overlay edges{p1, . . . , pm}. Matrix A is initialized to have
all zero elements. For eachpi, M(pi) is the corresponding underlay path; setA(j, i) = 1 if and only if ej ∈ M(pi).
The complete set of constraints is thusMx ≤ c, wherex = [x1x2 . . . xm]T is the vector of variables for overlay flows
p1, . . . , pm, andc is the vector of capacities for underlay linkse1, . . . , e|E|. The dimensions ofM is |E|-by-m. We call
M the constraint matrix,x the flow variable vector, andc the link capacity vector.

Theoretically and ideally, an|S|-node overlay is perfectly accurately defined by this model of the complete graph
K |S| with the complete set of linear capacity constraints for the|S| flow variables. The currently prevailing model of the
overlay is as a network graph with no link correlations and the links labeled by numbers representingindependentunicast
latency and capacity. The independent model misrepresentsthe actual overlay metrics. Generally, previous work offset the
detrimental misrepresentation by limiting the degree of anoverlay node. Each node selects a limited number of incident
links according to some selection rules, usually those thatare good by certain metrics.



We examine a specific instance of such an overlay construction algorithm, let it be denoted byOC. In OC, a node
selectsd highest-capacity incident links (or neighbors).∗ This is a reasonable representative selection rule with respect to
the objective of optimizing the flow rate. The following argument will be valid against any such ad hoc selection rule based
on the independent overlay model.

To compare the overlay graph constructed byOCand the overlay defined by linear capacity constraints, we employ one
of the most common multimedia content distribution topologies — the overlay multicast tree. We use a greedy algorithm
MT to obtain the multicast tree with the objective of optimizing its flow rate: Given a source nodes, the tree is initialized
to T = {s}. The highest-capacity link with only one end-node inT is chosen and its other end-node is added toT . Ties
are broken randomly.

The above greedy algorithm takes as input a graph with links having capacities as scalar weights. A slight modification
is sufficient for the algorithm to take linear constraints oflink flows as input. When deciding on a link to add toT , select
the one that would have the highest capacity when getting itsequal share of any shared underlay links with overlay links
already inT . To be more precise: LetM,x, c denote the constraint matrix, overlay flow variable vector and underlay link
capacity vector, respectively. BothM andc are input. Also letvT be anm-by-1 vector (m is the number of overlay flow
variables) such thatvT (p) = 1 if p is in T , otherwise it is0. We usevp

T to denotevT with vT (p) changed from0 to 1. Then,

the following overlay link is selected to add toT : p′ = arg maxp{min{ c(i)
k(i) : ∀k(i) 6= 0} : ∀vT (p) = 0 andk = Mvp

T };
vT (p′) = 1.

Next we consider the simple example depicted in Fig. 2 — Fig.2(a) is a networkGu with |R| = 4 and |S| = 4
(4 routers,4 overlay nodes), and Fig.2(b) is the complete overlayK4 with the unicast capacity labeling the links. The
overlay-to-underlay mapping is the obvious:(A,B) → (A, r1, B) and similarly for(C,D); (A,C) → (A, r2, r3, C) and
similarly for (A,D), (B,D). ExecutingMT onK4 yields the multicast treeTOC in Fig. 2(c). Note that this is an optimal
multicast tree ifonlyK4 is given. It is implicit that the number of neighbors selected isd = 3 in OC in this case; however,
it is not hard to see that withd = 2 or d = 1, the same result ensues. Given the constraints
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MT will give the multicast treeTLC in Fig. 2(d). It is easy to see thatTOC has actual flow rate1 due to three flows
sharing the link(r2, r3). Yet TLC achieves flow rate2.
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connected to each other by physical 
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Figure 2. A simple example network showing the potential detrimental effect of the independent model of overlay.

Taking a cue from our simple example, we arrive at the following proposition in our previous paper2 and it is included
for completeness of this paper.

∗Though fictitious, this is a slightly simpler version of the selection rule from13 in which d/2 neighbors are selected from lowest
latency ones and the otherd/2 from highest capacity ones among randomly probed nodes.



Proposition 1: For any fixed value of|S|, there is aGu such that the flow rate of an optimal multicast tree in any
overlay graph (for any value ofd) constructed byOC on top ofGu is asymptotically1/|S| of the flow rate of a multicast
tree obtained from flow constraints (M andc) derived fromGu.

Proof: Consider a generalized graphGu = (R ∪ S,E) of the one in Fig. 2 with|S| overlay nodes instead of only4.
The layout ofGu can be seen in Fig. 3(a). A single inter-router link inE connect|S|/2 overlay nodes with the other|S|/2
nodes. In the case of|S| being odd, the nodes are partitioned(|S|+1)/2 and(|S|−1)/2, and the succeeding reasoning still
holds. Any overlay graph constructed byOCwill clearly include the(β + ǫ)-link for every node. An optimal multicast tree
in theOC graph must include only the(β + ǫ)-links — one possible such tree is given in Fig. 3(b) — becauseotherwise
its calculated flow rate would beβ < (β + ǫ). However, the actual flow rate of this tree mapped toGu is only (β + ǫ)/|S|
since all|S| links in the tree traverse the same inter-router(β + ǫ)-link.

In the informed constraints overlay model, however,MT on the input of the overlay flow constraints,M andc, will
form a multicast tree with flow rateβ. With (β − ǫ) approaching0, theOC tree asymptotically achieves1/|S| of β. ⊓⊔

Although at first glance, the network in Fig. 3 may appear pathological, it is worth noting that its topology resembles
the scenario of a transatlantic link — real and inevitable inwide-area networks.
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Figure 3. A |S|-overlay-node network showing the potential detrimental effect of the independent model of overlay.

4. LCC-NEIGHBORHOOD ALGORITHM DESIGN

The design objectives of the algorithm are: 1. Construct a general-purpose overlay mesh. 2. Every overlay node maintains
information of linear capacity constraints. 3. Distributed, intelligent and limited (as opposed to exhaustive) inference
of capacity constraints. We first describe the high-level design of the algorithm in the following section. In subsequent
sections, every high-level component will be elucidated indetail.

4.1. High-level Overview

Every node randomly probes another node at regular intervals, maintaining and updating their stored measurement infor-
mation. Both inter-node latency and capacity are measured.Every node also estimates its last-mile capacity†. Further
discussion of this network measurement is deferred to Sec. 4.2.

Based on the ’distance’ metric of latency, nodes distributedly group themselves intoneighborhoods— each neighbor-
hood contains nodes that are close to each other, while nodesfrom different neighborhoods are relatively far apart.

The rationale behind neighborhood grouping is the following proposition. In large-scale wide-area networks, latency
(especially averaged over multiple probe results over a period of time to account for network fluctuations) is universally
acknowledged and used as a measure of node proximity in a network.

Proposition 3: Assuming that IP layer routing does not deviate too far from shortest-path routing, if two nodesA and
B have a high latency link between them, while nodeC andA have a low latency link, and nodeD andB have a low
latency link. Then it implies that overlay linksA − C andB − D do not share any bottleneck underlay links.

Proof: The scenario in the proposition is shown in Fig. 4. We prove bycontradiction. Suppose the latency betweenA
andB, lAB , is high, but latencieslAC andlBD are low. Also suppose thatA−C andB−D do share a bottleneck underlay

†The last-mile of a node is the capacity of its access link to the Internet. In our context, last-mile capacity is the constraint for the
total capacity of all incoming and outgoing flows of a node.



link. LatencylCD between nodeC andD must be low, because the pathC − e − D is all encompassed by segments of
C−A andD−B, thuslCD ≤ lAC + lBD, with the reasonable assumption that IP routing is not too far from shortest-path.
It follows from the same reasoning thatlAB ≤ lAC + lBD is low as well. We reach a contradiction. ⊓⊔

lAB

lAC lBD

lCD

A

DC

B

e

f

Figure 4. An example of the independence of links that are far apart with respectto latency. The bolder lines represent overlay links;
the lighter lines represent underlay links.

Therefore, we conclude that it is not unreasonable to deduceindependence of links from different neighborhoods,
which implies that no capacity constraints exist for them. This reduces the need to probe capacity sharing between links
from different neighborhoods and constraints within the neighborhoods can be probed and inferred independently of each
other in parallel.

The reader will find in Sec. 4.3 details of how nodes distributedly group themselves into neighborhoods so that nearby
nodes are grouped together. The neighborhoods can be viewedassupernodes; they also naturally form a complete graph.
A subgraph is formed by every supernode selecting a number ofadjacent supernodes to which incident superedges are
maintained, we refer to it assupergraph.

Adjacent supernodes use capacity-sharing techniques to infer which edges in the supergraph share bottleneck capacity.
(Detailed discussion about such techniques are deferred until Sec. 4.4.) These are the inter-neighborhood linear capacity
constraints. They translate to the original overlay graph as follows. All inter-neighborhood flows inherit the constraints
for corresponding supernodes. When the flow between two supernodes, sayS1 andS2, is constrained byb, for all overlay
nodesu in the neighborhood represented byS1 andv in S2, the sum of flows between nodesu, v is constrained byb. A
more complicated example is the following. Nodesu1, u2 are inS1 andv1, v2 are fromS2, and a constraintf(S1, S2) ≤ b,
the constraintf(u1, v1)+f(u1, v2)+f(u2, v1)+f(u2, v2) ≤ b is derived. Adding a fifth nodew from a third supernodeS3

and the constraintf(S1, S2)+f(S1, S3) ≤ b′, we induce the constraint
∑

i=1,2;j=1,2 f(ui, vj)+f(u1, w)+f(u2, w) ≤ b′.

For scalability reasons, the inter-neighborhood constraints are not explicitly stored by a node, which would include
all possible flows from nodes in different neighborhoods. Instead, nodes exchange and store the respective supernode
IDs of other nodes, and only keep the constraints of flows (if any) between their own supernode and other supernodes —
which have far fewer variables. All inter-neighborhood constraints are effectively implicitly stored in this manner.For any
set of overlay flows, any possible inter-neighborhood constraints that exist can be directly obtained from their associated
supernode IDs and the stored supergraph flow constraints.

For any two adjacent supernodes in the supergraph, all the links between overlay nodes in different supernodes may be
chosen to be in the overlay mesh, i.e., a node in one neighborhood may keep as many links to known nodes in the other
neighborhood as computational efficiency dictates. A limitmay easily be imposed should applications require it for the
sake of efficiency: links with lower latency and higher capacity would be chosen. We remark that in theory, it is fine to
keep all the links between neighborhoods that are adjacent in the supergraph — the constraints would disallow congestion
due to inter-neighborhood flows, and better-performing data routes or topology may be found for various services due to
the greater number of choices.

The full details of supergraph formation and inference of inter-neighborhood constraints are presented in Sec. 4.4.

Now it remains to consider overlay links within the same neighborhood — the intra-neighborhood links. In a neighbor-
hood, the nodes first forms a spanning tree to ensure connectivity. Each node then selectsdintra incident links:dintra/2
links have lowest latencies and the otherdintra/2 have highest capacities. Afterwards, a node waits for a randomly chosen
period of time, and initiates probes for detecting capacitysharing among flows on its incident links. Every node thus
obtains at mostdintra constraints withdintra flow variables.



In the following sections, we proceed to present the detailsof all the individual algorithm components.

4.2. Unicast network measurement and last-mile estimation

All the nodes maintain and update whenever possible these pieces of information data: (1) a list of IP addresses of known
nodes — node list; (2) latencies and capacities of nodes thathave been measured; (3) IDs of neighborhoods associated
with nodes; (4)last-mile capacity of nodes.

Latency and capacity are measured periodically for randomly chosen nodes from the node list, by theping utility
and a variant of the packet-bunch method.14 Nodes update their node lists by periodically exchanging random subsets of
them with randomly contacted nodes. A node may have to sacrifice completeness for scalability by keeping only a random
subset of the node list when it grows too large.

For estimating last-mile capacity, we adopt a simple protocol which does not inject much extra network traffic. A
nodeA maintains a small list of nodes that have the highest last-mile capacity as estimated byA thus far; it includesA.
Initially, the last-mile list contains the nodes with whichA has the highest-capacity links, and their last-mile estimates
are their respective link capacity. The last-mile capacityof A is estimated to be the highest of these. Periodic exchanges
and updates of last-mile lists are done with random nodes. Less frequently, nodeA also chooses a random node from the
last-mile list to measure the link capacity, and its estimate of its own last-mile may be updated. The last-mile estimates are
non-decreasing. IfA has a high capacity, it will probe nodes with higher and higher capacity, and eventually estimate a
comparable high capacity for itself. On the other hand, ifA has low capacity, it is impossible to falsely estimate a higher
one. Since a node’s last-mile capacity is usually rather stable, onceA detects that its own estimated last-mile has not
changed in some time,A refrains from further active probing for a long time.

4.3. Grouping nodes into neighborhoods

We propose a low-overhead, distributed solution for grouping nearby nodes (with latency as the distance metric) into
neighborhoods. Our solution requires only a small constantnumber ofpings and no landmark nodes (which is the case
in12).

We consider classes of latencies rather than particular values. For instance, latencies may be divided into four classes:
(0, 10)ms, (10, 100)ms, (100, 200)ms, (200,∞)ms. If two nodes do not have a low latency link, e.g., latency is greater
than100ms, then they assume they are in different neighborhoods. Two nodesA andB (with relatively low latency link)
determine whether they are in the same neighborhood in the following way. NodeA choosesg/4 nodes whose latencies
fall into each of the four latency classes — a total ofg nodes chosen from relatively recently probed nodes. NodeA sends
these toB. NodeB also sendsg node IPs with latency classes toA. Now A checks its own measured latency classes
for theg nodessent byB, activatingping probes if necessary. Latency class of each of theg node as measured byA is
compared with the class of that node sent byB. NodeA conjectures thatB is in the same neighborhood only if most of
them coincide (i.e., a high fraction of them match, the fraction is a parameter that can be set). NodeB proceeds in the
same way. The two nodes are in the same neighborhood if both ofthem conjecture that. The procedure terminates when
the size of a neighborhood reaches a certain threshold.

The effectiveness of our grouping scheme is verified by our simulation results, presented later in the paper, which reveal
low overlay path latencies even when compared with minimum spanning tree algorithms that has minimization of latency
as the main objective.

4.4. Inference of linear capacity constraints

With the nodes grouped, the neighborhoods can be logically shrunk into supernodes. A supernode is connected to another
supernode through all the edges between nodes from (the neighborhoods corresponding to) the two respective supernodes.
Our aim is a more sparsely connected supergraph. The question is: how do the supernodes select adjacent supernodes to
keep in the supergraph?

In every neighborhood, an intra-neighborhood mesh — a sub-mesh of the overlay mesh being constructed — is built
according to the protocol previously described at the end ofSec. 4.1. From each neighborhoodS, h nodes are selected as
theanchor nodesof S; the parameterh can be tuned for the tradeoff between overhead and precision. The criterion for an
anchor node is high last-mile capacity. Every node has an estimate of its own last-mile; these estimates are used to choose



theh highest ones. For the purpose of selecting anchors, it is straightforward to leverage the spanning tree infrastructure
for control data dissemination.

A neighborhoodS chooses another neighborhoodT to be its adjacent supernode in the supergraph if the anchorsin S
have high capacity links from anchors inT . The degree limit ofS in the supergraph isdinter. The anchors inS records the
sum of capacities of links from anchors in another supernode; the minimum latency is also recorded. Adjacent supernodes
are chosen alternately from highest total capacity and lowest minimum latency, untilS reachesdinter.

The reasoning that led to the above heuristic of anchor selection is the following. The Internet consists of end system
nodes that have vastly varying last-mile capacities. It does not help to have nodes with low last-mile capacity to probe for
inter-neighborhood capacity, because all probes originating from and arriving at them will be automatically bounded by
their low last-mile.

For each neighborhoodS, after it has chosen its adjacent neighborhoods, the anchors in S utilize capacity sharing
techniques to infer linear capacity constraints for all flows from anchors in adjacent supernodes toS. There have been
several proposals of techniques that analyze multiple flowsand detects shared bottlenecks among the flows, e.g.,.15, 16 In
particular, in,15 Katabi et al. propose a technique to infer bottlenecks by minimizing the Renyi entropy (a generalized
form of Shannon entropy) of the packet inter-arrivals. Withonly a small number of packets per flow, the method is able to
partition flows into groups such that flows belonging to the same group share a common bottleneck whose capacity is also
measured. They present Internet measurement results that demonstrate robust partitioning even under heavy cross traffic.

In practice, we only need to use10 UDP messages of8KB for each flow, since bothdinter andh are kept very small.
We in fact were able to obtain good simulation results by setting dinter to only 4 andh to 2. In this setting, inference of
constraints for flows betweenS and all its adjacent neighborhoods costs640KB.

Once flows are partitioned into groups that share bottlenecks and the corresponding bottleneck capacities are obtained,
a set of linear capacity constraints for flows betweenS and its adjacent supernodes{Si} are inferred. The constraints
inference is performed by anchors in every neighborhood. Thus, a set of constraints are determined for inter-neighborhood
flows.

5. ENHANCING OVERLAY MESH CONSTRUCTION WITH LINEAR CAPACITY CONSTRAINTS

It may already be evident from the previous section that linear capacity constraints could be added to any overlay mesh
construction scheme. We begin by briefly highlighting threeprevious mesh construction strategies: 1.k Minimum spanning
trees (k-MST): Nodes distributedly buildk edge-disjoint minimum spanning trees, with every node keeping its bestk links.1

2. Short-long links (SL): Every node selectsk links, by selectingd/2 of the shortest (lowest latency) links of which it has
knowledge and selectingd/2 random (long) links.12 2. Short-wide links (SW): Every node selectsk/2 of the shortest links
of which it has knowledge andk/2 of the widest (highest capacity) links from randomly probednodes.13

Both SLandSWhave node degree limitk, which is usually a small constant in practice. For instance, in,13 SWsetsk
to be8, so that every node has at most8 incoming flows and8 outgoing flows. Although in the simulations fork-MSTin,1

k varies only from1 to 4, the algorithm does not impose a degree constraint. However, measures of adding a degree limit
are discussed in.1 Even without a degree limit, every node ink-MSThas onlyk incoming edges, withk ≤ 4.

As it takes an exponential number of capacity-sharing teststo obtain a complete set of linear constraints, we experi-
mented with various heuristics of adding inference of linear capacity constraints (LCC) to a general overlay mesh with a
node degree limit. We were able to find one that is efficient, localized, distributed, and has comparable overhead as the
mesh construction strategies themselves. It is also very simple. In the overlay mesh, nodes have at mostk neighbors. Ev-
ery node independently conducts probes for detection of bottleneck sharing among all flows on its incoming and outgoing
edges. As discussed in the previous section, the bottleneckdetection technique that we adopt actually partitions flowsinto
groups such that flows in each group share a bottleneck and measures the respective bottleneck capacities.

Similar to probing parameters discussed in the previous section, we use10 messages of size8KB for each flow. There
are at mostk flows. Consider theSWmesh, every node has at most16 incident links. Thus, the total cost of probing
for bottleneck sharing is1280KB. In,13 in constructing anSWmesh, a capacity measurement test costs480KB. In other
words, if the bottleneck sharing probes are launched periodically with a sufficiently long period, it is not more costly than
capacity measurement, which is a common periodic tool in overlay meshes.

We show our simulation results in Sec. 6.



6. SIMULATION RESULTS

We now describe the results of our simulations on topologiesgenerated by a power-law degree-based topology generator,
BRITE.17 Using bothC andMatlab, we simulated and experimented with eight mesh algorithms altogether.
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Figure 5. Discrepancy between expected and achievable flow rates; and average latency of overlay paths.
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Figure 6. Discrepancy between expected and achievable flow rate for maxflow
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Figure 7. Discrepancy between expected and achievable flow rate for maxflow

We list the algorithms with which we experimented:LCC-nbh: Nodes group by latency into neighborhoods, with
inference of coarse inter-neighborhood constraints and localized independent intra-neighborhood constraints.k-MST: k
minimum spanning tree mesh.Short-long: Short-long mesh.Short-wide: Short-wide mesh.k-MSTwith LCC: k-MST
with localized linear capacity constraints.Short-longwith LCC. Short-widewith LCC.



Overlay topologies range from20 nodes and1000 nodes. First, a larger router-level topology is generated using
BRITE. From the router-level topology, nodes with the smallest degrees are selected to be overlay nodes. Theall-shortest-
pathalgorithm is executed to map overlay links to underlying paths in the router-level topology. The mapping of overlay
links to underlay paths is stored for future reference. We implemented the mesh construction schemes listed above. From
each of the overlay topologies (essentially complete graphs), a mesh is constructed using every algorithm. We choose to
use maximum flow (maxflow) as a measure of the quality of the meshes with respect to flow rates that they can provide to
receivers, in order that we may compare them. As a measurement of overlay quality, maxflow is a reasonable representative
of multimedia content distribution applications. Moreover, its non-tree flow topology perfectly embodies the prevalent
overlay network condition of multiple overlay links being simultaneously utilized, forming a topology that is not a tree.

We compute maxflow on the various overlay meshes constructedby the different algorithms. This maxflow is referred
to as the expected maxflow by the meshes. Then we realize the overlay flows in the underlying network, using the mapping
from overlay links to underlying paths. Whenever an underlying link is traversed by more than one overlay flow, the
bandwidth of the link is allocated to the overlay flows by max-min fairness. After the overlay flows have been re-assigned
their respective real achievable bandwidth, we execute maxflow on these overlay links again to obtain the overall achievable
maxflow bandwidth.

The discrepancy between expected and real achievable maxflow bandwidth is plotted for every mesh construction algo-
rithm. In Fig. 5(a), the two lines in the graph represent the expected bandwidth and achievable bandwidth, respectively, for
our LCC-nbhalgorithm that incorporates capacity constraints in the mesh. The algorithm is clearly effective in producing
an accurate informed overlay mesh. This is evident from how closely the achievable bandwidth line follows the expected
bandwidth line. The performance of the other three algorithms is substantially inferior. For all three,k-MSTin Fig. 6(a),
Short-longin Fig. 7(a) andShort-widein Fig. 8(a), the achievable bandwidth is much (often wildly) lower than the expected
bandwidth. This conclusively confirms our conjecture that ignoring the hidden capacity constraints will inevitably lead to
a very inaccurate overlay mesh. We also define an error ratio:(expected− achievable)/achievable. The error ratios are
also plotted for all the algorithms in Fig. 9 and Fig. 10.

Now let us compare the discrepancy graphs fork-MST with and without LCC, shown in Fig. 6(b). With the con-
straints, the discrepancies between expected and achievable bandwidth shrink considerably. Note that this is with localized
constraints that are obtain distributedly and are far from being complete. Evidently, significant improvement in accuracy
can be achieved even for such limited information of capacity constraints. Similarly, as can be observed in Fig. 7(b) and
Fig. 8(b), respectively,Short-longwith LCC andShort-widewith LCC have much smaller discrepancy thanShort-longand
Short-wide, respectively, though the improvement is not as consistentas fork-MST.

Next, we study the plots of achievable bandwidth ink-MSTwith LCC and that in justk-MST, the two lines representing
them can be seen in Fig. 11(a). For larger network sizes of greater than50, achievable bandwidth ink-MSTwith LCC is
almost consistently higher by a significant amount. From this, we conclude that inaccurate overlay meshes cause inferior
performance. It makes perfect sense: when the mesh is not accurate, an application algorithm cannot make informed
choices in selecting routing paths and hence very likely will be misled into decisions that does not yield high performance.
On the other hand, a number of limited localized capacity constraints help substantially in ameliorating the performance.
However, in our experimentation with theShort-longwith LCC, we discovered that this particular mesh with our simple
heuristic of per-node constraint inference does not show clear increase in bandwidth, seen in Fig. 11(b). It is an indication
that different heuristics for constraint inference have varying effect on different mesh strategies. Finally, we showthe graph
of average latency of overlay paths in Fig. 5(b). It can be seen thatLCC-nbhhas low latency compared tok-MST.

7. CONCLUDING REMARKS

We considered the problem of constructing correlation-aware overlay meshes capable of maximizing the sustained flow rate
in multimedia content distribution. An algorithm is proposed to construct overlay networks that are informed of underlying
topological bandwidth constraints and hence accurate. Oursimulation results verify the necessity of an accurate overlay
mesh to ensure high flow rate.
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