
Adaptive Middleware Architecture for a Distributed Omni-Directional
Visual Tracking System

Baochun Li, Won Jeon, William Kalter, Klara Nahrstedt, Jun-Hyuk Seo�

Department of Computer Science
University of Illinois at Urbana-Champaign
b-li,wonjeon,kalter,klara,jseo@cs.uiuc.edu

Abstract

In different areas of applications such as education, en-
tertainment, medical surgery, or space shuttle launching,
distributed visual tracking systems are of increasing impor-
tance. In this paper we describe the design, implementa-
tion and evaluation of a distributed omni-directional visual
tracking system, developed at the University of Illinois at
Urbana-Champaign, with the Adaptive Middleware Archi-
tecture as the core of the system. With respect to both op-
erating systems and network connections, adaptation is of
fundamental importance to the tracking system, since it runs
in an environment with large performance variations and
without support of Quality of Service (QoS) guarantees.

We present (1) The design of an Adaptive Middleware
Architecture that systematically supports application-aware
quality adaptation; (2) A complete integration of user pref-
erences and offline profiles in order to assist the middleware
architecture and dynamically steer the adaptation path and
behavior; (3) The design and experiments with a distributed
omni-directional visual tracking system, showing the viabil-
ity of our approach. In such an application, we show that
with the support of the Adaptive Middleware Architecture,
tracking precision can be kept stable under dynamic varia-
tions of the environment such as the fluctuation of available
network bandwidth, variations in CPU load, and dynamic
changes in the location and speed of the tracked objects.

Keywords: Visual tracking, resource adaptation, adap-
tive middleware, adaptive application

1. Introduction

Distributed visual tracking systems are becoming of in-
creasing interest to several application areas such as educa-

�This research was supported by the Air Force Grant under contract
number F30602-97-2-0121, NASA Grant under contract number NASA
NAG 2-1250, and National Science Foundation Career Grant under con-
tract number NSF CCR 96-23867.

tion, entertainment or space shuttle launching. These track-
ing systems are distributed multimedia applications with
a complex behavior, and are expected to deliver a desired
level of Quality of Service (QoS) with key parameters such
as the tracking precision1. In reality, however, these track-
ing systems run on general-purpose operating systems such
as Windows NT, and over shared networks such as the In-
ternet, both of which lack mechanisms for guaranteeing
the strict timeliness and quality requirements. Dynamic
variations in resource availability are caused by either dy-
namic demands of other concurrently running applications,
or physical resource limitations in a heterogeneous network
environment.

The presence of these dynamic variations in resource de-
mands and availability calls for the adoption of on-the-fly
adaptation mechanisms. These complex tracking applica-
tions are thus desired to adapt themselves and adjust their
resource demands dynamically. Frequently, the purpose of
adaptation is to reach one or more critical performance cri-
teria, such as the tracking precision, by optimally adjusting
functionalities and parameters internal to the application.
These applications are said to be flexible, with a tolerable
range of QoS parameters to allow room for adaptations to
occur.

These flexible applications rely on the guidance of the
Adaptive Middleware Architecture to meet their critical per-
formance criteria. In the Adaptive Middleware Architec-
ture, we address the problem of optimizing the strategy of
adaptation. Some applications, such as video streaming,
have a certain degree of adaptive strategies built in. How-
ever, these adaptive strategies are ad hoc and fail to con-
sider the following concerns: (1) From the system’s point
of view, does the adaptation strategy conflict or being un-
fair to other concurrent applications in the same end sys-
tem? (2) From the application’s point of view, does the
strategy focus on optimizing one or more critical perfor-

1The tracking precision is defined as the distance between the center
of tracked region and center of the object. We wish to keep this distance
stable and as small as possible.

mance criteria? Strictly speaking, an adaptation strategy
guides the tradeoff among different application quality and
system performance parameters. The optimization towards
critical performance criteria may not be necessary in adap-
tive mechanisms that perform simple QoS tradeoffs, such
as adaptive video playback. However, within a complex
application where critical performance criteria depend on
tuning multiple parameters or switching configurations, an
optimized adaptation strategy becomes crucial to the suc-
cess of application-aware adaptation.

Our approach and contribution in this paper are the fol-
lowing: (1) Design of an Adaptive Middleware Architecture
with a fair, stable and configurable adaptation strategy re-
lated to resource consumption. In the middleware architec-
ture, we introduce Adaptors that observe both system-level
and application-level states, and propose control algorithms
based on control theory to guarantee adaptation stability and
fairness properties. (2) A strong focus on a specific critical
performance criteria, such as the tracking precision in the
tracking application. We introduce Tuners and Configura-
tors that attempt to create an optimal adaptation strategy
so that the criteria are met by trading off other less critical
quality and performance parameters. For example, we can
tradeoff perceptual image quality to preserve the tracking
precision. (3) In order to gain precise knowledge about the
adaptive behavior in the application and the relationship be-
tween critical criteria and resource consumptions, we intro-
duce the Probing and Profiling Service in the middleware
architecture, so that the adaptation strategy can be gener-
ated to be highly application-specific. (4) We present a dis-
tributed Omni-Directional visual tracking application as a
case study, with multiple tracking servers and the capabil-
ity of on-the-fly server switching. In order to assist such
switching, we introduce Negotiators in the middleware ar-
chitecture so that coordination among different end systems
are more effective. (5) We show the complexity involved in
the application in order to preserve the tracking precision,
and the effectiveness of our middleware architecture via a
series of experimental results in various scenarios.

The rest of this paper is organized as follows. In Sec-
tion 2, we give an overview of the omni-directional visual
tracking system and the Adaptive Middleware Architecture.
In Section 3 we present the design issues of the Adaptive
Middleware Architecture components such as the Adaptor,
Configurator, Negotiator and the Profiling Service. In Sec-
tion 4 we describe related implementation issues. In Section
5 we present experimental results with the visual tracking
application. Sections 6 and 7 review previous related work
and conclude the paper.

2. Overview

We give a brief introduction of the behavior and com-
plexities involved in the distributed omni-directional visual
tracking application, followed by an overview of the Adap-
tive Middleware Architecture.

2.1. Distributed Omni-Directional Visual Tracking

Implemented based on the XVision [3] project and
in Windows NT, the Distributed Omni-Directional Visual
Tracking system is a flexible, multi-threaded and client-
server based application, which adopts complex tracking
capabilities in multiple dimensions, such as visual object
tracking, camera tracking and switching, and features full
integration of user preferences. This application illustrates
the coexistence of multiple adaptation possibilities, ranging
from image properties, codec choices, server selections, to
tracker quantities and variety. The actual adaptation choices
are based on a combination of user preferences and deci-
sions made by the underlying Adaptive Middleware Archi-
tecture.

As illustrated in Figure 1, the visual tracking system is
client-server based. The viewing area is surrounded by a
set of pan/tilt cameras, referred to as omni-directional cam-
eras, each served by a tracking server. The client is respon-
sible to perform the following. (1) Accept user input (visual
specification of the desired tracked objects) from the User
View Controller; (2) Receive a video stream from one of
the tracking servers, the active server; (3) Execute multiple
computationally intensive tracking algorithms, referred to
as trackers, on the tracked moving object; (4) Display the
video with overlayed illustration of tracking results.

The selection of the active server that currently transmits
video streams to the client is controlled by the Gateway.
If the moving object gets out of the view, the system can
either pan/tilt the server’s camera to reach a better view of
the object, or switch from one server to another in order
to improve the view of the tracked object. In the cases of
camera movement or server switching, the user may need to
re-adjust the visual specification of desired tracked objects
on the client.

The critical performance criteria of the tracking applica-
tion is the tracking precision. However, due to the complex-
ity involved in the application, it is not trivial to determine
adaptation strategies that optimize the performance related
to this critical criteria. These inherent complexities include:
(1) The computational complexity and resource demands of
multiple concurrent trackers are time-variant and specific to
the object movement speed and the types of these trackers;
(2) The tracking precision may be affected by parameters
in multiple dimensions, such as video quality, CPU avail-
ability, as well as the shape and speed of objects, which is

2

Negotiator

Client

Application
Tasks

Active
Middleware

OS and
Network

Gateway
Interface

Gateway

containing
Scene

tracked object

"F"

"L"

90

180"B"

"R"

270

0

Server Task

Negotiator

Server

Server

Server Task

Negotiator

Server Task

Negotiator

Server

Omni-Directional
Camera

Server

Server Task

Figure 1. The Distributed Omni-Directional Vi-
sual Tracking System

affected by switching servers that have diversely different
camera angles. These observations make it non-trivial to
determine the effects on tracking precision when actual re-
source availability varies.

In addition, the application includes a User View Con-
troller that facilitates the integration of user preferences in
the decision-making process of adaptation strategy. With
the User View Controller, the user may (1) observe the
streaming video, (2) visually determine which moving ob-
ject in the video will be tracked, (3) determine the type of
trackers being used, (4) move the pan/tilt tracking camera,
and (5) switch to a different camera server for a better view.

Finally, we emphasize that the tracking application is
multi-threaded on the client. The two primary threads are
the tracking thread, and the video streaming thread. The
tracking thread is responsible for the execution of the track-
ers, as well as the display of video and tracking results.
The video streaming thread is responsible for video trans-
fer from the server. We note that the application-specific
QoS parameters are different in each thread. Within the
CPU-intensive tracking thread, multiple trackers are exe-
cuted iteratively and video frames are displayed in a Win-
dows message loop, thus the key parameter is the tracking
frequency, defined as the number of times that the tracker it-
eration loop can be executed per second. In contrast, within
the throughput-intensivevideo streaming thread, the key pa-
rameter is the frame rate, which is defined as the rate at
which frames are streamed to the client.

Protocol

User Configurator

Functional Configurator

Processes
User Level

Active
Middleware
Architecture

Visual Tracking System User View Controller

Application Tasks

Negotiator
To Gateway

Adaptation TaskAdaptation
Task

Observation
Task

Observation Task

Adaptor for Bandwidth

Operating Systems
and Transmission Network

Controller

Tuners

Adaptor for CPU

Communication

Figure 2. An Overview of the Adaptive Middle-
ware Architecture

2.2. Adaptive Middleware Architecture

The ultimate objective of the Adaptive Middleware Ar-
chitecture is to control application-aware adaptation be-
havior and to optimize the adaptation strategy towards
application-specific performance criteria. In order to ac-
complish these goals, the middleware architecture consists
of Adaptors, Tuners, Configurators and Negotiators. These
components cooperatively monitor the application and sys-
tem states, control applications to carry out adaptation de-
cisions, and eventually meet the pre-specified performance
criteria, such as the tracking precision. Figure 2 illustrates
such an architecture.

The major responsibilities of the Adaptive Middleware
Architecture are the following.

1. The Adaptive Middleware Architecture interacts with
the underlying operating system, which is Windows
NT in our implementation, and accurately observes
the current state of the system and application, mainly
with respect to resource availability. It is preferred
to integrate this feature in the middleware architecture
rather than applications themselves. This feature is im-
plemented in a component referred to as the Observa-
tion Task.

2. The middleware architecture needs to decide the adap-
tation choices and actions to be carried out in the ap-
plication, so that the adaptive behavior is both stable
and fair to other concurrent applications in the same
end system, and highly configurable in terms of adap-
tation agility. The agility represents the sensitivity or
responsiveness of the application when adapting itself
to external disturbances. These responsibilities of the
Adaptive Middleware Architecture are integrated in a
component referred to as the Adaptation Task. Since it
depends on the accurate observations produced by the

3

Observation Task, we refer to the combination of both
components as the Adaptor.

3. In order to balance between globally optimized and
fair control decisions and the requirements of meet-
ing diversely different critical performance criteria in
different applications, we introduce the Tuners and
Configurators. These components translate the output
of control algorithms in the Adaptors into the actual
parameter-tuning actions or reconfiguration choices to
be carried out during the execution of applications.
The Tuners are responsible for parameter-tuning ac-
tions, whereas the Configurators are in charge of func-
tional reconfiguration choices, and are activated at a
much lower frequency.

4. In extreme cases, in order to deal with prolonged pe-
riod of limited resources and degraded qualities, Nego-
tiators are activated to coordinate with other end sys-
tems. In the case of the tracking application, the Nego-
tiators are responsible to locate the new active camera
server via the Gateway. After a successful negotiation,
the Negotiators are also responsible for a smooth video
transition from the new server, soliciting user prefer-
ences when necessary.

The Adaptive Middleware Architecture is designed to be
generic, rather than specific to the tracking application. In
the end system, for example, there may exist one Adaptor
per resource type, but more than one Configurators, each
controlling a concurrent application. In other words, the
Adaptors are associated with resource types, while the Con-
figurators are application-specific. Furthermore, the Tuners
are associated with both resource types and applications,
i.e., each Tuner corresponds to a single resource Adaptor,
as well as a single application. From an implementation
standpoint, for the Adaptive Middleware Architecture to be
generic and able to control a wide variety of flexible appli-
cations, the interaction among different middleware com-
ponents and the applications is through a specific service
enabling platform, with the current implementation being
CORBA 2.0 implemented in Windows NT.

3. Components in the Adaptive Middleware
Architecture

3.1. Adaptors

In order to control the adaptive behavior of flexible ap-
plications with a global awareness of resource availability,
so that fairness, stability and adaptation agility properties
can be mathematically reasoned about and proved, we in-
tegrated a Task Control Model as proposed in our previous
work [5] into the design of our middleware Adaptors. This

is complementary to the design of Tuners and Configurators
presented in Section 3.2. The Adaptors promote global re-
source awareness, while Tuners and Configurators focus on
application-specific nonlinear adaptation possibilities.

In the Task Control Model, the application task to be con-
trolled by the middleware Adaptor is referred to as the Tar-
get Task. Within the middleware Adaptor, the Adaptation
Task carries out the control algorithm, and the Observation
Task observes the current system status. For the purpose
of developing and reasoning about properties in the adapta-
tion behavior, we adopted a control-theoretical approach to
model the Target Task and the control algorithm carried out
in the Adaptation Task.

In the Target Task, we assume multiple tasks competing
for a shared resource pool. Each task T i makes new requests
ui for resources in order to perform their actions on inputs
and produce outputs. These requests may be granted or out-
standing. If a request is granted, resources are allocated im-
mediately. Otherwise, the request waits with an outstand-
ing status until it is granted. The system grants requests
from multiple tasks with a constant request granting rate y.
Figure 3 illustrates the Task Control Model. In our previ-
ous work [5], we were able to derive control algorithms in
the Adaptation Task in this scenario, and prove stability and
fairness properties based on the derived control algorithm.

From Previous Task

Configurator

New Resource Requests u(k)

Core Functionalities

Adaptation Points

To Next Task

Control Algorithm Estimation Observation

Observation TaskAdaptation Task

Requesting Resources

Resource Management and Scheduler

Shared Resource PoolGranted Resource

x(k)

Requests y(k)
Requests x(k)
Resource

Outstanding

Requests
Granting

Middleware Adaptor

Figure 3. The Task Control Model

3.2. Tuners and Configurators

The Tuner and Configurator determine discrete control
actions based on application-specific needs and control val-
ues produced by the Adaptors. They serve as an extension to
the Adaptation Task in the Task Control Model, augmenting
its capability so that it is highly application-specific. Sim-
ilar to the role of the Task Control Model in the design of
the middleware Adaptors, we leverage the rich semantics
and features in existing fuzzy control systems to design a
Fuzzy Control Model [6] for Tuners and Configurators. An
illustration for this design, with the Configurator as an ex-
ample, is given in Figure 4.

4

3.2.1 The Fuzzy Control Model

The model consists of five components. The fuzzy infer-
ence engine implements particular fuzzy control algorithms
defined in the application-specific rule base and member-
ship functions for linguistic variables. The input normal-
izer, fuzzifier and defuzzifier prepare input values for the
fuzzy inference engine, and convert fuzzy sets (the deci-
sions made by the inference engine) to the actual real-world
control actions for the applications.

The advantages of adopting this design model are as fol-
lows. (1) Taken the fact that multiple reconfiguration op-
tions and parameter-tuning possibilities exist in a typical
complex application, the controllable regions and variables
within the application are in most cases discrete, non-linear
and complex by nature. On the other hand, a fuzzy con-
trol system is naturally a nonlinear control system, in which
the relationships between inputs and control outputs are ex-
pressed by using a small number of linguistic rules stored
in a rule base. The nonlinearity of the fuzzy controller
matches naturally with the nonlinearity of controllable re-
gions and adaptation possibilities within an application. (2)
The model, using membership functions for linguistic vari-
ables and the rule base, is inherently generic and highly con-
figurable according to specific application needs.

Middleware Configurator

FuzzifierInput Normalizer DefuzzifierInference
Fuzzy

Engine

Membership
Fuctions

Rule Base

Control
Actions

Middleware
Adaptor for
Bandwidth

Middleware
Adaptor for

CPU

x
in

u(k)

u(k)

Figure 4. The Overall Architecture of the
Fuzzy Control Model

3.2.2 The Rule Base

The decisions of selecting linguistic values and rules in the
rule base are based on a combination of human expertise
and trial-and-error experiments on the particular applica-
tion. The tradeoff is to decide on a minimum number of
linguistic rules, while still maintaining the desired accuracy
to achieve an acceptable adaptation performance. All of
the linguistic values in the rule base should use words of
a natural or synthetic language, such as moderate or be-
low average for the linguistic variable cpu. These val-
ues are modeled by fuzzy sets. The design of the Rule Base
involves the generation of a set of conditional statements in
the form of if-then rules. Examples of these rules are:

/* Linguistic rules corresponding to bandwidth adaptation */

if rate is very high then rate demand is chopped image
if cpu is very high and rate is below average then rate demand is compress

/* Linguistic rules corresponding to bandwidth adaptation */

if cpu is very high and rate is above average then cpu demand is add tracker
if cpu is below average and rate is very low then cpu demand is drop tracker

where rate and rate demand are linguistic variables,
very high and below average are linguistic values, charac-
terized by their membership functions. Each rule defines a
fuzzy implication that performs a mapping from fuzzy input
state space to a fuzzy output value. After the defuzzifica-
tion process, the fuzzy output value directly corresponds to
a particular control action within the application.

3.2.3 The Difference between Tuners and Configura-
tors

Both Tuners and Configurators implement the Fuzzy Con-
trol Model, however there are reasons to distinguish be-
tween the two. Tuners are designed to control the appli-
cation by parameter-tuning actions (data adaptation actions,
for example the modification of frame size or frame rate),
and are activated frequently, normally for small-scale ad-
justments in the application. In contrast, the Configura-
tors are designed to activate functional reconfiguration ac-
tions, when the necessity arises to adapt to fundamental
changes in the environment, which cannot be remedied by
parameter-tuning adjustments. Adaptation timing is differ-
ent between Tuners and Configurators, the latter are acti-
vated much less frequently.

3.3. Smart Offline Probing and Profiling Service

As noted in the introduction, one of the most important
objectives in the design of Adaptive Middleware Architec-
ture is to carefully create an adaptation strategy that meets
the critical performance criteria within the application, by
trading off the quality of other less critical parameters. In
the tracking application, the critical performance criteria is
the tracking precision, since once the trackers lose track,
the perceptual video quality does not contribute at all. In
this section, we focus on a smart offline probing/profiling
service that is complementary to the Tuner.

The need for the offline probing/profiling service is ex-
plained as follows. (1) Online measurements of critical ap-
plication performance parameters are not possible. For ex-
ample, in visual tracking the tracking precision cannot be
readily measured by source-level instrumentation, since in
live video the precise location of the moving object at any
instant is unknown. (2) Relationships between critical pa-
rameters and tunable parameters by the Tuner need to be
known, most conveniently as a continuous function, or at
least as a lookup table. For example, the mapping between
tracking precision and frame rate or tracking frequency is
desired in order to create optimal adaptation strategies and

5

(pixels, smaller values shows better precision)
Object Moving Speed (pixels/sec)

1

max

0
0

Tracking Frequency (times/sec)

10 15

Tracking

2

Precision

Figure 5. Offline Profiling for Visual Tracking

meet the performance criteria. (3) The above described re-
lationship may not be a straightforward single-variable lin-
ear function, more variables may be involved. For exam-
ple, in visual tracking the moving speed at which the object
is in motion is a key factor affecting the function between
tracking precision and frequency. When the moving speed is
slow, a stable precision only requires relatively low tracking
frequency. However, when speed of the object is fast, pre-
cision requires much higher tracking frequency, thus com-
plicates the specification of the functional relationship be-
tween precision and tracking frequency.

We present our approach, referred to as smart offline
probing/profiling, based on our case in the visual tracking
application.

Offline Probing/Profiling is defined as the trace measure-
ment procedures of tracking precision before actual live
video is processed. This technique is valid based on the
following assumptions. (1) Though tracking precision can-
not be measured in live video, it can be measured in artifi-
cial animations used as benchmarks of visual tracking, since
the specific positions of artificially animated objects can be
easily computed. (2) The relationships among three param-
eters, the precision, moving speed and tracking frequency,
stay the same after switching the contents from artificial an-
imations to live video, assuming the same hardware and OS
platform.

In the actual implementation, we probe and create
a three-dimensional offline profile for precision, moving
speed and tracking frequency. An illustration of such a pro-
file is shown in Figure 5.

In order to obtain this profile, we keep moving speed
fixed and measure traces of tracking precision under dif-
ferent tracking frequencies, which can be affected by ma-
nipulating tunable parameters in the Tuner, such as frame
size (to cope with variations in bandwidth) or number of
concurrent trackers (to cope with variations in CPU capac-
ity). We then increase the moving speed by a small margin
and repeat the process. This procedure continues until the
maximum moving speed.

In order to store the profile obtained by offline trace mea-
surements, we note from Figure 5 that the tracking precision

Observation Task

Resource Requests Adaptation

Tracking Frequency

Tracking Precision

Offline Profiling

Tuner

Application

Figure 6. The Process towards Optimal Adap-
tation

can be approximated by a binary variable, i.e., it can be ei-
ther in state lost track or stable. This makes it possible to
store only the cutoff frequency at individual moving speed
levels, saving the amount of data to be stored. This does
not apply to other applications that do not show the binary
property with respect to their critical performance parame-
ters.

Once the profiles are obtained, the visual tracking ap-
plication can be readily switched to online mode, captur-
ing live video and tracking objects on the fly. The adapta-
tion strategy can be intuitively explained as follows: The
Observation Task observes the tracking frequency and cal-
culates the volume of outstanding resource requests to the
CPU Adaptor. The Adaptor produces an adapted resource
request rate that preserves the desired weighted fairness,
stability and agility properties. These request rate values
are inputs to the Tuner and Configurator, where they are
mapped back to the application-specific parameters, in our
case, the tracking frequency. The Tuner decides if an appro-
priate adaptation action should be activated. If the observed
tracking frequency is higher than the cutoff frequency by a
pre-defined margin, adaptation is not activated. Otherwise,
adaptation is activated according to the fuzzy inference en-
gine, which is based on the rule base in the Fuzzy Control
Model. The offline profiles are critical to assist creating an
optimal set of rules and membership functions being used
in the Tuner and Configurator. Figure 6 illustrates the pro-
cedure.

3.4. Integration of User Preferences

In the Adaptive Middleware Architecture, we adopt a hy-
brid approach in the decision-making process of a particular
adaptation strategy. While most of the adaptation choices
and decisions are generated automatically within the mid-
dleware, we believe that user preferences and choices
should be given a high priority and be integrated in the
decision-making process.

The User View Controller is included to facilitate this in-
tegration. In the case of the tracking application, the User
View Controller is provided for the user to be involved in the
adaptation process. The adaptation possibilities that require

6

user intervention are the following. (1) The user may ini-
tiate, drop and replace various types of trackers on-the-fly;
(2) The user may control the movement of a pan/tilt cam-
era to obtain a better view; (3) When stationary cameras are
used and movement is not possible, the user may switch the
view of the camera by switching tracking servers; (4) Af-
ter view movements or switches, the user may visually se-
lect the objects again so that trackers can regain the desired
tracking precision.

3.5. Negotiators

The Adaptor and Configurator are usually capable of
making the necessary adjustments to adapt to dynamic re-
source availability. However, there are instances when fur-
ther adaptation capabilities are necessary. When there is
a prolonged period of limited resources the quality of the
application may be degraded beyond usability, despite the
best effort adaptations within the end system. For the sake
of more effective adaptations, we introduce the Negotiators
in the middleware architecture so that smooth coordinations
can be achieved among different end systems.

We focus on the distributed omni-directional tracking ap-
plication as a case study. Various solutions exist when a
prolonged period of limited resources are present. One case
is that when this occurs, the best solution may be to switch
from an uncompressed to a compressed video stream. This
adaptation strategy is controlled by the Configurator, and
is useful when CPU utilization is manageable but network
bandwidth is low. Similarly, it may be beneficial to switch
from compressed to uncompressed video when the CPU is
over-utilized and there is network bandwidth available. An-
other case for which no amount of adaptation can compen-
sate is when the object being tracked goes out of the server’s
camera range. In all of these cases, the client needs the abil-
ity to switch from one server to another. In the first case, the
client can switch to a server transmitting data in the desired
format. In the second case, the client can switch to a server
which has the object being tracked in its view.

Several components of the client are used to facilitate
this omni-directional functionality. The user can turn the
camera or move to a new server with a better view of the
moving object through the User View Controller. This GUI
sends messages to the user Configurator within the adaptive
middleware. The user Configurator then sends a request to
the Negotiator to turn the camera or switch to a new server
in the requested direction. The Configurator may also re-
quest that the Negotiator switches servers if the fuzzy logic
engine decides a change from compressed to uncompressed
video or vice versa is necessary. These control messages
are referred to as requests because they are not guaranteed
to produce the desired result. For example, if the Configu-
rator requests compressed video but there is no compressed

video server then the request will fail.
Once the client’s Negotiator receives a move or turn re-

quest, it forwards the request to the Gateway. The Gateway
is responsible for finding the best server that matches the re-
quested parameters and facilitating a smooth transition from
one server to the other on behalf of the client. To do this,
the Gateway requires that each server provides two pieces
of information to the Gateway: the format with which it
is transmitting data and what view of the overall scene the
server’s camera has. These parameters are sent to the Gate-
way when the server first comes online. The second param-
eter - what view the server has - requires that an arbitrary
coordinate system is imposed on the scene. The scene is
given four directions - front, left, back and right, or FLBR.
One direction is designated as front and any camera with a
full frontal view of the scene is at position zero. The po-
sitions then correspond with increasing degrees clockwise
from the zero position: L is 90, B is 180, and so on. Com-
binations of directions may also be used, such as FL for po-
sition 45. It is important to distinguish that the positions are
relative to the scene containing the tracked object, not the
object itself. Though the object may move throughout the
scene, the coordinate system never changes. Figure 7 shows
an example containing three servers. Server 1 is transmit-
ting compressed motion-JPEG data and is located at F, po-
sition 0. Server 2 is transmitting uncompressed video and
is located at L, position 90. Server 3 is also transmitting
uncompressed video and is located at FR, position 315.

Scene

tracked object
containing

Server 2

Server 3Server 1

Gateway
uncompressed, 270

uncompressed, 315

MJPEG, 0

Figure 7. An Example of Three Servers

When the Gateway receives a turn request from a client,
it forwards the message to the client’s server. If the server
is capable of pivoting the camera in the specified direction
then it does. If not, it reports to the Gateway that it could
not turn and the Gateway tries to move the client to a new
server in the given direction. This essentially transforms
failed turn request into a move request.

When the Gateway receives a move request from a client
first tries to find the best server which matches the requested

7

parameter. If the message requests to move in a partic-
ular direction, the best server is the server closest to the
client’s current server in the given direction with the same
video format. If the message requests to change compres-
sion, the best server is the server closest to the client’s cur-
rent server in either direction with the requested video for-
mat. The Gateway then authenticates the client with the best
new server. If the server accepts, the Gateway informs the
client to switch servers and unathenticates the client with
the client’s old server. If the server rejects, the Gateway
tries again with the next best server. This continues until
a server accepts or until all matching servers, if there were
any, have rejected the client. If this happens the Gateway
informs the client that the request could not be performed.
Currently servers do not reject clients but future implemen-
tations could take advantage of this feature. For example,
a server could reject a client when doing so would degrade
the QoS of video with the server’s current clients. Figure
8 shows a typical successful implementation of the server
switching protocol.

Client

New Server

Gateway

Old Server

1. Request MJPEG

2. Auth. Client

4. Switch New Server

3. Accept Client

5. Drop Client

6. Shutdown video

7. Start video

Figure 8. A Typical Successful Implementa-
tion of the Server Switching Protocol

Beyond performing as server switching mediator, the
Gateway attempts to maintain a stable video stream on the
client’s behalf. For example, if a server becomes unsta-
ble or goes offline, the Gateway automatically attempts to
switch the server for each client which had been connected
to that server. The Gateway searches for servers closest to
the old server with the same video format and moves the
affected clients to those servers. Server instability is deter-
mined by the Gateway pinging each server at regular inter-
val. Failed acknowledgments force the Gateway to assume
that the server has become unstable or gone offline.

One of the most time consuming aspects of switching
servers is opening a new TCP connection with the new
server every time a switch occurs. To avoid this delay, the
Gateway initially supplies the client with a list of all servers
and updates the client as new servers come on and offline.
The client opens a control connection with each server even
though it may only use one server at a time. This way, if
the client does switch servers, the connection with the new
server is already established. The client is prevented from
utilizing several servers at once because a server will only

supply video to the client if it has been authenticated by the
Gateway in the preceding protocol.

4. Implementation Issues

The distributed omni-directional visual tracking system
is implemented in Windows NT, with its core being the
Adaptive Middleware Architecture discussed in the last sec-
tion. All interactions among various components within
the middleware architecture and the application are via
CORBA, with interfaces clearly defined in IDL. This en-
sures that the middleware architecture is generic and not
tightly bound to the applications.

4.1. Adaptation Choices

Divided in two major categories, we have identified the
adaptation choices in the tracking application as the follow-
ing.

4.1.1 Adaptation of Communication Bandwidth Re-
quirements

First, there exist several options for parameter-tuning ac-
tions during an uncompressed image transfer. (1) The im-
age size can be enlarged or reduced to adjust bandwidth re-
quirements, by chopping the edges. The tradeoff is that the
smaller the image, the higher the probability that the objects
move out of the range. (2) The image size can be enlarged
or reduced by scaling. The tradeoff is a higher CPU load
for real-time per-frame scaling. (3) The color depth can be
altered. Existing choices for coding one pixel are 24 bits
RGB, 16 bits packed RGB, 8 bits grayscale or 1 bit black-
and-white.

Second, if we consider functional reconfiguration
choices, compression and corresponding decompression
can be activated, using available choices such as Motion-
JPEG and streaming MPEG-2. In some case, for example
when hardware is needed, this activation is made possible
by switching between camera servers, i.e., to those servers
that support the suitable codec formats. In other cases,
bandwidth requirements are reduced dramatically at the ex-
pense of increased CPU load. In both cases, the adaptations
require control feedback from the client’s Bandwidth Adap-
tor to its counterpart in the server.

4.1.2 Adaptation of CPU Requirements

The tracking algorithms are inherently computationally in-
tensive. In the current implementation, there are three fre-
quently used tracking algorithms. Line tracking and corner
tracking are edge based algorithms, SSD tracking is a region
based algorithm. Experiments show that different tracking

8

algorithms present diverse computational requirements. In
addition, the application can run multiple algorithms track-
ing multiple objects simultaneously, with each algorithm re-
ferred to as a tracker, and the tradeoff being increased com-
putation load. These facts motivate the following reconfig-
uration choices: (1) Add additional trackers to utilize idle
CPU; (2) Drop running trackers to decrease CPU demand;
(3) Replace existing trackers by less or more computation-
ally intensive trackers. Finally, parameter-tuning adaptation
may also be applied by modifying the size of the tracked
region of a specific tracker, effectively tuning the computa-
tional load of the tracker. The tracked region is defined as
the searching range of the tracker in the feature detection
stage of computation.

4.2. Tracking Thread

Within the tracking thread, each tracking algorithm is ex-
ecuted inside the Windows message loop, similar to the fol-
lowing simplified source skeleton:

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
// Polls for new CORBA events
reactor->dispatchOneEvent(timeout);
// Receives one frame from streaming
// client thread with shared buffer
captureFrame(frameBuffer);
// multiple trackers iteration loop
while (i = 0; i < TrackerNum; i ++) {
tracker[i]->track();

}
}

The tracking thread is highly CPU intensive. There are
two primary causes. First, the Windows WM PAINT mes-
sage is handled to draw video frames to a window, and the
bitmap stretching process is CPU intensive. Second, calls
to the track() method for each trackers are themselves
CPU intensive as well. The adaptation choices related to
CPU requirements are executed within this thread.

4.3. Video Streaming Thread

The Video Streaming thread in the tracking application
consists of two channels:

1. Control channels. They are primarily used to coordi-
nate between client and the server for their adaptation
choices. The control channels are setup when a new
connection is made between the server and the client
by the request of the client. The channel between
client and server carry control information such as
video format (uncompressed or MJPEG compressed),
video quality and properties, camera position, etc. For

example, when the Adaptive Middleware Architecture
decides to switch to a compressed video stream, con-
trol channels are used to notify the server so that the
following frames can be sent as compressed. Alterna-
tively, control channels may be used to notify the Gate-
way, so that the active tracking server can be switched
to a server with the appropriate encoding capabilities
(such as MPEG streaming hardware support).

2. Multimedia streaming channels. They are used for live
video streaming. All channels and data transmission
are implemented with WinSock 2 in Windows NT.

Implementation-wise, the video streaming thread coor-
dinates with the tracking thread using a shared ring buffer.
Proper synchronization is implemented so that both threads
can access the buffer correctly.

5. Experimental Results

Both the Adaptive Middleware Architecture and the dis-
tributed omni-directional visual tracking application are im-
plemented on Windows NT 4.0 on the x86 platform. The
Gateway runs on a Pentium Pro with 128 MB RAM. One
server runs on 300 MHz Pentium II with 64 MB RAM
and another runs on a Pentium Pro with 128 MB RAM.
The client runs on a 200 MHz Pentium MMX with 64 MB
RAM. Both servers are equipped with with Sony EVI-D30
pan/tilt digital cameras. All PCs are connected via the 10
Mbps Ethernet.

5.1. Experimental Scenarios

We present experimental results in three different exper-
imental scenarios.

(1) An animated video sequence is streamed from the
server to the client using Motion-JPEG compression. The
reason for using animated video sequence is that it allows us
to measure directly the tracking precision and generate of-
fline profiles via the probing/profiling service. The profiles
include measurements of tracking precisions that are not
possible to measure directly in live video. The animated se-
quence is 320*240 pixel frame size video sequence. Within
this scenario, we illustrate basic adaptation possibilities by
adapting the image size. We measure the tracking precision
and show that the tracking precision remains stable with
fluctuating bandwidth availability.

(2) Live video is streamed from the active server to the
client in a omni-directional setting. The content of the live
video is captured by the digital camera and an image grab-
ber. We use 320*240 pixel frame size for the default initial
properties of the live video. Within this scenario, we illus-
trate both throughput-related and CPU-related adaptation in

9

action simultaneously, such as compression and dropping
trackers. We finally measure the tracking precision and
show that the tracking precision remains stable with fluc-
tuating CPU availability.

(3) With the assistance of the Gateway and Negotiators,
we switch the active server from an uncompressed video
server to a Motion-JPEG compressed video server, chang-
ing the camera view and the video formats by the switch.
We measure the camera initialization time, repositioning
time and the server switching delay.

5.2. Experimental Results

5.2.1 Scenario 1

In Figure 9, we illustrate basic adaptations by adapting the
image size on a Motion-JPEG compressed video stream.
We show from the results that, despite the fluctuating net-
work bandwidth availability, the tracking precision remains
stable under the control of the Adaptive Middleware Archi-
tecture.

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

throughput

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300 350

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

"thru.txt"

(a) Throughput

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 50 100 150 200 250 300 350

fr
am

e
si

ze
 (

B
yt

es
)

time (s)

frame size

(b) Image Size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200 250 300 350

fr
am

e
ra

te
 (

nu
m

be
r/

s)

time (s)

frame rate

(c) Frame Rate

0

20

40

60

80

100

0 50 100 150 200 250 300 350

tr
ac

ki
ng

 p
re

ci
si

on

time (s)

tracking precision

(d) Tracking Precision

Figure 9. Scenario 1

5.2.2 Scenario 2

Figure 10 and Table 1 show the experimental results. With
respect to parameter-tuning adaptations, Figure 10(b) shows
the result of Adaptors and Tuners by changing image size
during the fluctuation of network bandwidth shown in Fig-
ure 10(a). With respect to reconfiguration alternatives, Fig-
ures 10(c), 10(d) and Table 1 show the Configurator in ac-
tion. In this experiment, Figure 10(c) shows the CPU load

fluctuation, while Table 1 shows the control actions gener-
ated by the Configurator at various time instants, and exe-
cuted by the application. Figure 10(d) shows the actually
measured tracking precision. The first tracker tracks a more
important object, so if a drop tracker event is signaled,
later trackers should be dropped. We note that the tracking
precision stays stable in a small range, which shows that the
adaptation efforts are successful to lock the trackers on the
objects, before they are dropped for more important track-
ers.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 50 100 150 200 250 300 350 400

th
ro

ug
hp

ut
 (

B
yt

es
/s

)

time (s)

Observed Throughput (Bytes/s)

(a) Throughput

0

50000

100000

150000

200000

250000

300000

350000

0 50 100 150 200 250 300 350 400

fr
am

e
si

ze
 (

by
te

s)

time (s)

Frame Size (Bytes)

(b) Chopped Image Size

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

C
P

U
 L

oa
d

time (seconds)

CPU Load

(c) CPU Load

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400

tr
ac

ki
ng

 p
re

ci
si

on

time (s)

#1
#2
#3

(d) Tracking Precision

Figure 10. Scenario 2

Time (sec) Control Action from Configurator
28.22 uncompress
51.24 add tracker
67.37 compress
167.7 drop tracker
320.4 drop tracker

Table 1. Control Actions produced by the Con-
figurator (follow the time scale in Figure 10(c))

5.2.3 Scenario 3

In this scenario, we measure the time necessary to start a
minimal omni-directional camera based on Scenario 2. The
Gateway is started first, immediately followed by the server.
The camera initialization time is the period between starting

10

time of Gateway and finishing time of server registration at
the Gateway. Figure 11 illustrates the Camera Initialization
Time.

0

200

400

600

800

1000

2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Trial

Omni-Directional Camera Initialization Time

Figure 11. Camera Initialization Time

Once the omni-directional camera is established, the
client connects to the tracking server and start receiving
video. The Client Initialization time, shown in Figure 12,
is the time it takes from starting time of the client till the
display of video.

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Trial

Client Initialization Time

Figure 12. Client Initialization Time

Figure 13 shows the Server Switching Time. To measure
the server switching time, two servers serve live video with
different video formats, e.g., uncompressed and MJPEG
compressed. The user requests to switch from one server
to the other by clicking on the move button on the User
View Controller. The switching time is the period between
the time when a user clicks the button on the User View
Controller and the time when the client retrieves the video
stream from the new server.

0

200

400

600

800

1000

5 10 15 20 25 30 35 40 45 50

T
im

e
(m

s)

Trial

Server Switching Time

Figure 13. Server Switching Time

6. Related Work

It has been widely recognized that many QoS-
constrained distributed applications need to be adaptive in
heterogeneous environments. Recent research work on re-
source management mechanisms at the systems level ex-
pressed much interests in studying various kinds of adaptive
capabilities. Particularly, in wireless networking and mo-
bile computing research, because of resource scarcity and
bursty channel errors in wireless links, QoS adaptations are
necessary in many occasions. For instance, in the work rep-
resented by [7, 1], a series of adaptive resource management
mechanisms were proposed that applies to the unique char-
acteristics of a mobile environment, including the division
of services into several service classes, predictive advanced
resource reservation, and the notion of cost-effective adap-
tation by associating each adaptation action with a lost in
network revenue, which is minimized. As another exam-
ple, Noble et al. in [8] investigated in an application-aware
adaptation scheme in the mobile environment. Similarly to
our work, this work was also built on a separation princi-
ple between adaptation algorithms controlled by the system
and application-specific mechanisms addressed by the ap-
plication. The key idea was to balance and tradeoff between
performance and data fidelity.

Another related group of previous work studies the prob-
lem of dynamic resource allocations, often at the operating
systems level. Noteworthy work are presented in [9, 4, 10].
The work in [9] focuses on maximizing the overall system
utility functions, while keeping QoS received by each ap-
plication within a feasible range (e.g., above a minimum
bound). In [4], the global resource management system was
proposed, which relies on middleware services as agents to
assist resource management and negotiations. In [10], the
work focuses on a multi-machine environment running a
single complex application, and the objective is to promptly
adjust resource allocation to adapt to changes in applica-
tion’s resource needs, whenever there is a risk of failing to
satisfy the application’s timing constraints.

In contrast, our work distinguishes in domain, focus and
solutions. For example, our work in the Task Control Model
focuses on the analysis of the actual adaptation dynamics,
which is more natural for modeling with a control-theoretic
approach, rather than overall system utility factors. In ad-
dition, rather than focusing on a multi-machine environ-
ment running a single complex application, our work fo-
cus on an environment with multiple applications compet-
ing for a limited amount of shared resources, which we
believe is a common scenario easily found in many actual
systems. Thirdly, we focus on optimizing a critical perfor-
mance criteria in the application, by trading off other less
critical parameters by adaptation. Finally, our work focuses
on proposing various schemes for the middleware compo-

11

nents to actively control the application, rather than pro-
viding resource allocation and management services in the
execution environment to meet the application’s needs. In
other words, we focus on adapting applications, rather than
resource allocations in the system.

Recently, in addition to studies in the networking and
resource management levels, many active research efforts
are also dedicated to various adaptive functionalities pro-
vided by middleware services. For example, [11] proposes
real-time extensions to CORBA which enables end-to-end
QoS specification and enforcement. [12] proposes various
extensions to standard CORBA components and services,
in order to support adaptation, delegation and renegotia-
tion services to shield QoS variations. The work applies
particularly in the case of remote method invocations to
objects over a wide-area network. The work noted in [2]
builds a series of middleware-level agent based services,
collectively referred to as Dynamic QoS Resource Manager,
that dynamically monitors system and application states and
switches execution levels within a computationally inten-
sive application. These switching capabilities maximize the
user-specified benefits, or promote fairness properties, de-
pending on different algorithms implemented in the mid-
dleware.

In contrast, our work is orthogonal to the above ap-
proaches, since the Adaptive Middleware Architecture is
based on underlying service enabling platforms, which is
CORBA in our experimental testbed. In addition, we at-
tempt to provide adaptation support to the applications
proactively, rather than integrating adaptation mechanisms
in CORBA services so that they are provided transparently
to the applications. Furthermore, we attempt to develop
mechanisms that are as generic as possible, applicable to ap-
plications with various demands and behavior. Finally, we
attempt to provide support in the Adaptive Middleware Ar-
chitecture with respect to multiple resources, notably CPU
and network bandwidth.

7. Conclusion

This paper has presented several new contributions in
the area of multimedia computing and networking. First,
the design and implementation of an adaptive middleware
architecture is outlined which assists a flexible application
with data adaptation and functional adaptation in an inte-
grated fashion. Second, we discuss services such as prob-
ing and profiling which provide the bridge between criti-
cal quality parameter(s), which application cares about, and
underlying system resource parameters and other less crit-
ical application parameters. Third, we have implemented
a unique distributed omni-directional tracking application
which allows visual tracking, camera movement tracking
and view tracking using camera switching capabilities. This

flexible and complex application allows us examine new in-
tegrated adaptation strategies in the data domain and func-
tional domain and their impact on application performance.

The overall work is unique because it integrates the feed-
back of an adaptive middleware framework onto the design
of a multimedia application and the feedback of an applica-
tion onto the design of an underlying system support under
the common goal of satisfying the critical application per-
formance requirements.

References

[1] V. Bharghavan, K.-W. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer.
The TIMELY Adaptive Resource Management Architec-
ture. IEEE Personal Communications Magazine, 8 1998.

[2] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A Dynamic
Quality of Service Middleware Agent for Mediating Appli-
cation Resource Usage. In Proceedings of 19th IEEE Real-
Time Systems Symposium, pages 307–317, Dec. 1998.

[3] G. Hager and K. Toyama. The XVision System: A General-
Purpose Substrate for Portable Real-Time Vision Applica-
tions. Computer Vision and Image Understanding, 1997.

[4] J. Huang, Y. Wang, and F. Cao. On developing distributed
middleware services for QoS- and criticality-based resource
negotiation and adaptation. Journal of Real-Time Systems,
Special Issue on Operating System and Services, 1998.

[5] B. Li and K. Nahrstedt. A Control Theoretical Model for
Quality of Service Adaptations. In Proceedings of Sixth In-
ternational Workshop on Quality of Service, 1998.

[6] B. Li and K. Nahrstedt. Dynamic Reconfigurations for Com-
plex Multimedia Applications. In Proceedings of IEEE In-
ternational Conference on Multimedia Computing and Sys-
tems, 1999.

[7] S. Lu, K.-W. Lee, and V. Bharghavan. Adaptive Service in
Mobile Computing Environments. In Proceedings of 5th In-
ternational Workshop on Quality of Service ’97, May 1997.

[8] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile Application-Aware Adap-
tation for Mobility. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems and Principles, Oct. 1997.

[9] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
Resource Allocation Model for QoS Management. In Pro-
ceedings of 18th IEEE Real-Time System Symposium, 1997.

[10] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On Adap-
tive Resource Allocation for Complex Real-Time Applica-
tions. In Proceedings of 18th IEEE Real-Time System Sym-
posium, 1997.

[11] D. Schmidt, D. Levine, and S. Mungee. The Design and Per-
formance of Real-Time Object Requests. Computer Com-
munications Journal, 1997.

[12] J. Zinky, D. Bakken, and R. Schantz. Architectural Sup-
port for Quality of Service for CORBA Objects. Theory and
Practice of Object Systems, 1997.

12

