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Abstract— The transmission of information within a
data network is constrained by network topology and
link capacities. In this paper, we study the fundamental
upper bound of information multicast rates with these
constraints, given the unique replicable and encodable
property of information flows. Based on recent information
theory advances in coded multicast rates, we are able
to formulate the maximum multicast rate problem as a
linear network optimization problem, assuming the general
undirected network model. We then proceed to apply
Lagrangian relaxation techniques to obtain (1) a necessary
and sufficient condition for multicast rate feasibility, and
(2) a subgradient solution for computing the maximum
rate and the optimal routing strategy to achieve it. The
condition we give is a generalization of the well-known
conditions for the unicast and broadcast cases. Our subgra-
dient solution takes advantage of the underlying network
flow structure of the problem, and therefore outperforms
general linear programming solving techniques. It also
admits a natural intuitive interpretation, and is amenable
to fully distributed implementations.
Index Terms: Graph Theory, Information Theory, Math-
ematical Programming/Optimization.

I. I NTRODUCTION

Packet transmission in data networks may be modeled
as the flow of bit streams, referred to as information
flows. Compared to classical network flows,e.g., fluid
flows in a pipe network, information flows share some
common fundamental properties while differ in others.
As compared in the table below, both fluid flow and
information flow need to confine to the network topol-
ogy, and to respect link capacities. However, information
flows may be replicated or encoded, while fluid flows
may not.

Replication and encoding have been shown to be
fundamental capabilities in achieving high information
multicast rates [1], [2], [3]. Multicast refers to the form
of one-to-many data transmission. Ahlswedeet al. and
Koetteret al. recently proved that, in a directed network,
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a multicast rateχ is feasible if and only if the max-
flow rate from the source to each receiver is at least
χ [1], [2]. Fig. 1 illustrates the concept of multicast
rate, data replication and data encoding with two simple
multicast transmissions. All links in the examples have
a unit capacity of1 bit per second.
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Fig. 1. Multicast rates with information replication and information
encoding.

In the first example, the max-flow rate fromS to
eitherT1 or T2 is 1 bit per second. Although these two
flows share their first link, It is still possible to multicast
information to bothT1 and T2 at the rate of1 bit per
second. We can send just one copy of the flow at the
shared link, then replicate it into two identical copies
and forward one along each downstream link.

In the second example, the max-flow rate fromS to
either T1 or T2 is 2 bits per second. Again these two
flows share a common relay link in the middle of the
network. This time the problem can be resolved by data
encoding. Two distinct unit rate incoming flows,a and



b, are encoded at the tail of the shared link, using the+
operation defined in the Galois field. The encoded flow,
which also has a unit rate of1 bit per second, is then sent
through the shared link to its head, where the encoded
flow is replicated and further routed to both receivers.
Each receiver can recover the two original flowsa and
b from the two flows they receive.

For directed networks, the aforementioned result due
to Ahlswede et al. and Koetter et al. constitutes a
nice necessary and sufficient condition for multicast rate
feasibility. It further leads to an efficient solution for
computing the maximum multicast rate. One just needs
to compute a maximum flow from the multicast sender
to each receiver, independently. Then the minimum of
these max-flow rates is the maximum achievable rate for
the entire multicast connection.

However, these results do not directly apply in the
more general undirected network model [4], for which no
non-trivial necessary and sufficient feasibility condition
is known, and no efficient algorithm for computing the
maximum rate has been proposed. In an undirected net-
work model, each link is bi-directional, and flows in both
directions share its capacity. The study of the undirected
network model is supported by the following justifi-
cations. First, as past research in network flow theory
[5] and information theory [4] suggests, the undirected
network model has its own rhythm, and results obtained
there may be drastically different from those obtained
in the directed network model. In fact, the undirected
model is more general in that, a solution constructed for
undirected networks can usually be applied to solve the
same problem in directed networks, but not vice versa.
This is particularly true for our problem and solution in
this paper. Second, undirected links provide the complete
flexibility in capacity allocation, and consequently leads
to higher transmission rates that better represent the
optimal information delivery rate, compared to static link
capacity allocation in directed networks. Finally, in spe-
cial network scenarios such as wireless ad hoc networks,
the communication link is naturally undirected, in the
sense that data transmission along both directions of the
wireless link share the available spectrum [6], [7].

In this paper, we study the maximum multicast rate
problem in undirected networks. Our objectives include
both a necessary and sufficient feasibility condition,
and an efficient, distributed algorithm to compute the
maximum multicast rate. Towards this direction, we first
formulate the maximum multicast rate problem into a
linear network optimization problem. We present and
interpret both the primal and dual linear programs, on

each of which we then apply Lagrangian relaxation
techniques. Lagrangian dualization has been proven to
be an effective method both for deriving max-min style
iff conditions [5], and for designing efficient distributed
solutions for convex optimization problems [8], [9].

The necessary and sufficient condition we derive in
this paper is a generalization of the well known condi-
tions for the unicast and broadcast cases, and is obtained
through studies of the Lagrangian dual of the primal
linear program. Applying Lagrangian relaxation on the
dual program leads to a subgradient solution, which
has an appealing intuitive interpretation: it iteratively
improves an existing orientation of the original network
based on the link saturation level, until an optimal one is
reached. Then a number of maximum flow computations
are invoked to determine the maximum flow rate and
the corresponding flow routing strategy. Our algorithm
takes advantage of the underlying network flow structure
of the problem, and consists of mostly max-flow/min-cut
computations. It outperforms general solution techniques
such as the simplex method, which solves the linear
program as a black-box and ignores its background. We
also show that our algorithm allows a fully distributed
implementation.

The rest of the paper is organized as follows. We
present related work in Sec. II, give linear programming
formulations of our problem in Sec. III, derive the
iff condition in Sec. IV, and construct the subgradient
algorithm in Sec. V. We then conclude the paper in
Sec. VI.

II. RELATED WORK

Recent research in information theory discovers that
routing alone is not sufficient to achieve maximum
information transmission rate across a data network [1],
[2]. Rather, applying encoding and decoding operations
at relay nodes as well as at the sender and receivers, are
in general necessary in an optimal transmission strategy.
Such coding operations are referred to asnetwork cod-
ing. The pioneering work by Ahlswedeet al. [1] and
Koetteret al. [2] proves that, in a directed network with
network coding support, a multicast rate is feasible if
and only if it is feasible for a unicast from the sender to
each receiver. Liet al. [10] then prove that linear coding
usually suffices in achieving the maximum rate.

In [11], Sanderset al. study efficient code assignment
in directed acyclic networks. They design polynomial
time algorithms that determine the coding operations to
be applied at each node, in order to achieve the maximum



multicast rate. Their result improves the previous algo-
rithm of Li et al., which performs exponentially many
linear independence inspections [10]. Code assignment
is complementary to our work in this paper. Our subgra-
dient algorithm finds the optimal routing strategy, which
specifies how much flow is to be routed through each
link. Code assignment then determines the content of
these flows,i.e., their linear relation with the original
information flows at the sender.

In [3], we show that for undirected networks, the
potential of network coding to improve multicast rate
is rather limited: bounded by a factor of2 in theory (the
bound2 is for the fractional case; in the integral case, the
best known bound is26 implied by Lau’s recent work
[12]), and usually much smaller in practice. However,
the introduction of network coding dramatically reduces
the computational complexity of finding the maximum
multicast rate and the strategy to achieve it. Without
network coding, the maximum multicast rate problem
is equivalent to Steiner tree packing, which is a well-
known NP-complete problem [13]. With network coding,
the maximum multicast rate can be computed via linear
optimization. In [4], we show that for either a single
communication session or multiple sessions, either with
network coding support at all nodes or at edge nodes
only, the maximum transmission rate problem can be
formulated into linear network optimization. While [4]
gives only the primal linear program without a solution
method, we work on both the primal and dual linear pro-
grams in this paper, and provide an efficient, distributed
solution.

On the application side, network coding research
has spawned a number of coded multicast system de-
sign recently. These systems are usually built upon
application-layer overlay networks or wireless ad hoc
networks, where each node is a fully-functional host,
and therefore possesses data encoding capabilities. These
systems differ from previous multicast protocols in that
information is no longer transmitted along a single
multicast tree, or a collection of multicast trees. For
instance, Zhuet al. utilize network coding to buildk-
redundant multicast mesh in application-layer overlay
networks [14]. Chouet al. design robust de-centralized
network coding schemes for broadcast transmission [15].
Wanget al. [16] completed a real-world coded multicast
implementation targeting near-optimal throughput. It in-
cludes anǫ-relaxation based algorithm for computing the
maximum-rate multicast topology, a randomized code as-
signment component, and a coding library that supports
network coding operations over finite fieldGF (28) or

GF (216).
Traditional network flow theory studies the transmis-

sion of goods within a capacitied transportation network.
The maximum transmission rate between two nodes is
characterized by the celebrated max-flow min-cut theo-
rem [5]: a flow rateχ between nodesu andv is feasible,
if and only if every cut betweenu and v has size at
leastχ. Various algorithms may compute the maximum
flow efficiently, some of which allow fully distributed
implementation,e.g., the push-relabel algorithm [5] and
the ǫ-relaxation algorithm [8].

Our work in this paper was also inspired by a prelim-
inary version of [9], in which Lunet al. successfully
design subgradient algorithms for computing the min-
cost multicast topology in directed networks. Both their
algorithm and ours target efficiency and potential for
distributed implementation. Their algorithm works on
a partial Lagrangian dual of the primal problem, and
employs primal recovery techniques to obtain the entire
optimal solution. Our algorithm applies Lagrangian re-
laxation on the dual problem, and compute the entire
optimal primal solution from partial primal solution
through pure combinatorial computations.

III. M AXIMUM MULTICAST RATE : LINEAR

PROGRAMMING FORMULATION

In [4], we have given the primal linear program for the
maximum multicast rate problem in undirected networks.
Here we present this LP again for completeness. We
also give the dual program, which will be used in the
design of our subgradient algorithm in Sec.V. Our primal
and dual linear programs have an underlying structure
of network flow and cut, respectively. For the ease of
understanding and later reference, we present the max-
flow and min-cut linear programs first.

A. The max-flow LP and the min-cut LP

Let G = (V, E) be the network topology, and the
constant vectorC ∈ QE

+ be capacities of the undirected
links, whereQ+ denotes the set of nonnegative rational

numbers. In the max-flow LP,
→
TS is a directed virtual

link with infinite capacity, going from the destinationT
to the sourceS. N(u) denotes the set of neighbors of
node u. f ∈ QA

+ is the flow vector, whereA = {
→
uv

,
→
vu |uv ∈ E} is the set of directed arcs. The scalar

χ is the overall end-to-end flow rate. The max-flow LP
essentially maximizes the end-to-end flow rate, with link
capacity limits and flow conservation requirements (total
incoming flow rate at a node equals its total outgoing
flow rate). Flow conservation at source and destination



nodes are possible due to the virtual link
→
TS we add,

the flow rate on which exactly equals the overall flow
rate fromS to T .

The max-flow linear program

Maximize χ = f(
→

TS)

Subject to:
{

f(
→
uv) ≤ C(uv) ∀

→
uv 6=

→

TS
∑

v∈N(u) f(
→
uv) =

∑

v∈N(u) f(
→
vu) ∀u

f(
→
uv) ≥ 0 ∀

→
uv

The min-cut linear program

Minimize
∑

→

uv
C(uv)y(

→
uv)

Subject to:
{

y(
→
uv) + p(v) ≥ p(u) ∀

→
uv 6=

→

TS
p(T ) − p(S) ≥ 1

y(
→
uv) ≥ 0 ∀

→
uv

In the min-cut LP, vectory indicates which links are
“cut”. This LP always has an optimal solution that is
integral, where each entry iny is valued to either1
or 0, indicating whether the corresponding link is in
the min-cut or not. The constraints imply that, for each
path P connecting the sourceS to the destinationT ,
∑

→

uv∈P
yi ≥ 1, i.e., at least one link along the path is

cut. The objective is to minimize the total link capacity
being cut.

B. The primal linear program

In the primal LP for the maximum multicast rate
problem, vectorc : QA

+ stores capacities for directed
links, i.e., the allocation of the undirected link capacity
in both directions. The sender node isS, and the receiver
nodes areT1, . . ., Tk. χ is the overall multicast rate.
Vectors fi ∈ QA

+ denotes a network flow from sender

S to each receiverTi. Directed links
→

TiS with infinite
capacity are again introduced for a concise presentation
of the LP.

Constraints in the primal program require capacities
allocated to both directions not to exceed the undirected
link capacity (4), each flowfi to be a valid network flow
(2)(3), and the multicast rate not to exceed any of these
network flow rate (1). Essentially, the primal LP tries
to establish an orientation of the undirected network,
within which to set up independent network flows from

Maximize χ
Subject to:






















χ ≤ fi(
→

TiS) ∀i (1)

fi(
→
uv) ≤ c(

→
uv) ∀i,∀

→
uv 6=

→

TiS (2)
∑

v∈N(u) fi(
→
uv) =

∑

v∈N(u) fi(
→
vu) ∀i,∀u (3)

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv 6= TiS (4)

c(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

the senderS to each receiverTi — and do so in an
optimal way, in that the minimum of the independent
max-flow rates — which by the result of Ahlswedeet
al. [1] equals to the multicast rate — is maximized. A
feasible solution to the primal LP provides an orientation
of the original network,c(

→
uv); a flow routing scheme,

f(
→
uv) = maxi fi(

→
uv); and a feasible multicast rate,χ.

C. The dual linear program

The dual linear program for the maximum multicast
rate problem is:

Minimize
∑

uv C(uv)x(uv)
Subject to:


















x(uv) ≥
∑

i yi(
→
uv) ∀uv 6= TiS (5)

yi(
→
uv) + pi(v) ≥ pi(u) ∀i,∀

→
uv 6=

→

TiS (6)
pi(Ti) − pi(S) ≥ zi ∀i (7)
∑

i zi ≥ 1 (8)

x(uv), yi(
→
uv), zi ≥ 0 ∀i,∀

→
uv

While the primal LP is in the form of flow maximiza-
tion, the dual LP is in the form of cut minimization. In
an optimal solution, each dual variable in vectorsx, y
andz is valued between0 and1. In the dual constraints,
(8) distributes weights among the cuts betweenS and
eachTi. (6) and (7) require each cutyi to be a valid
cut, except that an edge in the cut will now be cut to
percentagezi, rather than100% as in the minimum cut
LP. Then the cut values of a link in thek different cuts
are added up in (5). If the summations in both directions
differ, the larger one is taken to be the cut value for the
undirected link.

The variable-constraint correspondence in the primal
and dual LPs is given in the table below. It will later
help us decide which constraints to relax.



primal (1) (2) (3) (4) c f(
→
uv) f(

→

TiS) χ
dual z y p x (5) (6) (7) (8)

D. Performance of general LP solvers

Both the primal and the dual LPs haveO(km) number
of variables andO(km) number of constraints, wherek
is the number of multicast receivers, andm = |E| is the
number of links in the network. Since linear program-
ming is polynomial time solvable in general, it follows
that the maximum multicast rate can be computed in
polynomial time, even for undirected networks.

However, experiences show that for network flow type
problems with extra side constraints,e.g., the multi-
commodity flow problem, the performance of general
linear programming techniques are often below accept-
able levels, when the size of the problem is relatively
large. For the multicast rate problem in particular, we
have experimented with both the simplex method and
the primal-dual interior-point method, as implemented
in glpk 4.4 [17]. We apply both methods to solve the
primal LP as a black-box, on networks and multicast
groups with various sizes. Our findings show that, on
a typical Pentium IV computing platform, the interior-
point method may handle networks with a few thousand
links within a reasonable amount of time (on the order
of seconds), as long as the multicast group is small
(k ≤ 5). For networks that are larger, or for a broadcast
network with a few hundred nodes and less than one
thousand links, the computation easily takes hours. The
performance of the simplex method is constantly worse
than that of the interior-point method.

Another critical drawback of applying general linear
programming methods, is that these methods are in-
herently centralized, requiring global information being
collected to one central point of computation. The so-
lution we construct in Sec. V solves both problems. It
decomposes the maximum multicast rate computation
into a sequence of max-flow/min-cut computations, for
which very efficient algorithms exist and can be applied.
It also allows the computation to be distributed onto each
node in the network, where only local information is
collected.

IV. M ULTICAST RATE FEASIBILITY: THE NECESSARY

AND SUFFICIENT CONDITION

We now apply Lagrangian relaxation on the primal
LP to derive the necessary and sufficient condition for
multicast rate feasibility in undirected networks. We

explain how it generalizes the conditions in unicast and
broadcast cases, and provide an interpretation from the
perspective of bandwidth efficiency.

A. The condition as a theorem

Theorem 1. A multicast rateχ is feasible in an undirected
networkG, if and only if for every link distance function
x ∈ QE

+,

|G|x
Minχ(f)=1|f |x

≥ χ.

In the theorem above,|G|x denotes the size of
the network under distance vectorx, i.e., |G|x =
∑

uv C(uv)x(uv). f ∈ QA
+ denotes a multicast topology,

or a flow routing scheme; and|f |x =
∑

→

uv
f(

→
uv)x(uv)

is the size of the multicast topology, under distance
vectorx. Minχ(f)=1|f |x denotes the size of the minimum
multicast topology that achieves unit multicast rate. Note
a multicast topology is not necessarily a multicast tree
— the second multicast transmission in Fig. 1 constitutes
a counter example.

B. The proof of correctness

Proof of Theorem 1:Consider the primal multicast rate
LP given in Sec. III-B. We now formulate its Lagrangian
dual by relaxing the undirected link capacity constraints
(4), and introduce corresponding prices into the objective
function, which becomes:

χ −
∑

uv

x(uv)∆(uv).

In the modified objective function above,
∆(uv) = c(

→
uv) + c(

→
vu) − C(uv) denotes the amount

of capacity over-use at linkuv, and x(uv) is the
Lagrangian multiplier acting as the unit price charged
for capacity over-use. At this point, the primal multicast
rate LP is transferred into the Lagrangian subproblem:

L(x) = MaxP [χ −
∑

uv

x(uv)∆(uv)],

with P being the following polytope:

P :























χ ≤ fi(
→

TiS) ∀i

fi(
→
uv) ≤ c(

→
uv) ∀i,∀

→
uv 6=

→
TiS

∑

v∈N(u) fi(
→
uv) =

∑

v∈N(u) fi(
→
vu) ∀i,∀u

c(
→
uv), fi(

→
uv), χ ≥ 0 ∀i,∀

→
uv

The Lagrangian dual problem is then:
The Lagrangian duality theorem assures that each

feasible value ofL(x) is an upper-bound for a feasible



Minimize L(x)
Subject to: x ≥ 0

multicast ratesχ. Furthermore, this bound is tight in
the sense that the minimum value ofL(x) exactly
matches the maximum achievable rateχ, i.e., the optimal
objective values of the primal LP and the Lagrangian
dual are equal. Consequently, the maximum multicast
rateχ∗ can be computed as:

χ∗ = Minx≥0{MaxP [χ −
∑

uv

x(uv)∆(uv)]}

We now perform manipulations on the expression of
χ∗, and provide justifications for each step.

χ∗

=1 Minx≥0{MaxP [χ −
∑

uv x(uv)∆(uv)]}

=2 Minx≥0{MaxP [χ −
∑

→

uv
x(uv)c(

→
uv)

+
∑

uv x(uv)C(uv)]}

=3 Minx≥0{MaxP [χ − |f |x + |G|x]}

=4 Min
x≥0,Minχ(f)=1|f |x≥1{MaxP [χ − |f |x + |G|x]}

=5 Min
x≥0,Minχ(f)=1|f |x≥1|G|x

=6 Min
x≥0,Minχ(f)=1|f |x=1|G|x

=7 Minx≥0
|G|x

Minχ(f)=1|f |x

In the derivations above,=1 holds due to Lagrangian
duality, as discussed early.=2 and =3 are due to
definitions. =4 is due to dual feasibility. The inner
maximization subproblem is unbounded in cases where
Minχ(f)=1|f |x < 1 — one may scale up flows inf
to arbitrarily large, and hence scaling up the difference
betweenχ and |f |x to arbitrarily large.=5 is due to the
fact that when Minχ(f)=1|f |x ≥ 1, we haveχ−|f |x ≤ 0,
and MaxP [χ − |f |x + |G|x] = |G|x. =6 is due to the
observation that for everyx where Minχ(f)=1|f |x > 1,
there exists another vectorx′ = x/Minχ(f)=1|f |x, such
that Minχ(f)=1|f |x′ = 1, and |G|x′ < |G|x. Finally, =7

is due to the fact that if we scale link distances inx
proportionally, the ratio|G|x/|f |x remains at the same
value.

Now we can claimχ∗ = Minx≥0
|G|x

Minχ(f)=1|f |x
, and

that concludes the proof of Theorem 1. ⊓⊔

C. Interpretation and discussions

Comparison with unicast and broadcast cases

A unicast is an one-to-one data transmission, and a
broadcast is an one-to-all data transmission. It is known
that for unicast or broadcast, encodability does not make
a difference in the maximum achievable transmission
rate [3]. Therefore, each atomic unicast topology is a
path, and each atomic broadcast topology is a spanning
tree. The maximum unicast rate problem is equivalent
to the path packing or maximum flow problem, and
the maximum broadcast rate problem is equivalent to
the spanning tree packing problem. For unicast rate
feasibility, the max-flow min-cut theorem constitutes an
elegant necessary and sufficient condition. For broadcast
rate feasibility, Tutte-Nash-Williams’ theorem takes the
role [18], [19]: A capacitied networkG containsχ pair-
wise capacity-disjoint unit spanning trees, if and only
if for every partition that separates the network intok
components, the total cross-component link capacity is
at least(k − 1)χ.

Unicast and broadcast are special cases of multicast,
with the number of receivers being1 andn, respectively,
wheren = |V | is the size of the network. Consequently,
Theorem 1 is a generalization of both the max-flow min-
cut theorem and Tutte-Nash-Williams’ theorem. For any
given cut (vertex partition) of the network, we can assign
a distance1 to each link in the cut (partition), and a
distance0 to all the other links. Then the condition
in Theorem 1 implies the cut condition (the partition
connectivity condition) in the max-flow min-cut theorem
(Tutte-Nash-Williams’ theorem).

A bandwidth efficiency perspective

Since the total bandwidth capacity of a network is
fixed, the achievable multicast rate closely depends on
the bandwidth efficiency of the multicast transmission.
Generally speaking, the higher the bandwidth efficiency,
the higher the achievable multicast rate. Theorem 1
essentially claims that these two quantities are exactly
proportional to each other, once we account for the fact
that prolonging or shrinking an internal branch without
changing its capacity does not affect the achievable
multicast rate. We now reformulate Theorem 1 in this
direction, after giving two definitions. Alink contraction
means replacing an 2-hop internal pathu-z-v (internal
means degree ofz is 2) with a linkuv, and setC(uv) =
min{C(uz), C(zv)}. Link expansionis the inverse op-
eration for link contraction, where a linkuv is replaced
with a 2-hop pathu-z-v, with C(uz) = C(zv) = C(uv).



Theorem 1.a. For a multicast connection in an undirected
network G, a sequence of link contraction and link
expansion operations can be applied onG, after which
the maximum multicast rate equals to the bandwidth
capacity of the network divided by the minimum band-
width consumption required for multicasting one bit
information.

V. EFFICIENT SOLUTION: THE SUBGRADIENT

ALGORITHM

In order to construct a subgradient solution for the
maximum multicast rate problem, we have the choices
of applying Lagrangian relaxation on either constraints in
the primal program (dual subgradient), or constraints in
the dual program (primal subgradient). We have decided
to take the later approach, due to the following facts.
First, dual subgradient methods do not always yield
optimal primal solutions, which contain the optimal
routing information we need. Second, as we will show,
our primal subgradient algorithm decomposes the entire
problem into a sequence of max-flow/min-cut computa-
tions, and allows appealing combinatorial interpretations.
We now present the primal subgradient solution in three
steps: the dualization strategy, subgradient iterations,and
maximum rate computation.

A. The dualization strategy

Consider the dual linear program given in Sec.III-C
for the maximum multicast rate problem. We choose
to relax constraint group (5), which corresponds to
primal variablesc(

→
uv). Recall thatc(

→
uv) specifies the

capacity of each directed link, and therefore determines
an orientation of the original undirected network. The
objective function is modified to:

∑

uv C(uv)x(uv) +
∑

→

uv
c(

→
uv)(

∑

i yi(
→
uv) − x(uv))

=
∑

uv x(uv)(C(uv) − c(
→
uv) − c(

→
vu))

+
∑

→

uv
(c(

→
uv)

∑

i yi(
→
uv))

=
∑

i

∑

→

uv
c(

→
uv)yi(

→
uv) −

∑

uv x(uv)∆(uv)

Note when ∆(uv) > 0 for any uv, the modified
objective function does not have a lower bound, with
x(uv) freely chosen from[0,∞). Therefore dual feasi-
bility requires∆ ≤ 0, i.e., c(

→
uv)+c(

→
vu) ≤ C(uv), ∀uv.

The Lagrangian dual we obtain is then:

Maximize L(c)

Subject to:
{

c(
→
uv) + c(

→
vu) ≤ C(uv) ∀uv

c(
→
uv) ≥ 0 ∀

→
uv

where

L(c) = MinP2

∑

i

∑

→

uv

c(
→
uv)yi(

→
uv) (5.1)

with P2 being the polytope:

P2 :



















yi(
→
uv) + pi(v) ≥ pi(u) ∀i,∀

→
uv 6=

→
TiS

pi(Ti) − pi(S) ≥ zi ∀i
∑

i zi ≥ 1

yi(
→
uv), zi ≥ 0 ∀i,∀

→
uv

Two critical observations justify our choice of the
dualization strategy above. First, the price variables
introduced through relaxation and optimized through
subgradient iteration,c, is exactly the orientation of
the network, the optimal values of which is essential
to decide the maximum multicast rate and the optimal
routing strategy. Second, the minimization subproblem
(5.1) is separable, and may be decomposed intok min-
cut computations. We shall come back to these two facts
in the presentation of the subgradient iterations and the
maximum rate computation, respectively.

B. Subgradient iterations

Choosing the initial primal solution

To start the subgradient iterations, we need a valid set
of initial values forc(

→
uv), i.e., an initial orientation of the

multicast network. A possible choice that is promising
both in theory and in practice, is to setc[0](

→
uv) =

1
2C(uv), ∀

→
uv. Using Nash-Williams’ graph orientation

theorem (strong version) [20], it can be shown that
such a balanced orientation is 2-competitive,i.e., if the
maximum multicast rate in an optimal orientation isχ∗,
then the balanced orientation may support a rate of at
least 1

2χ∗ [3].

Updating dual variables

During each roundk, given current values ofc[k] we
solve subproblem (5.1) to obtain new dual values iny[k].
As previously mentioned, this subproblem has a nice
separable structure, in the form of a weighted minimum
cut computation. Note that when

∑

i zi = 1,

L(c) = MinP2

∑

i

∑

→

uv
c(

→
uv)yi(

→
uv)

= Mini[MinP3

∑

→

uv
c(

→
uv)yi(

→
uv)]



whereP3 is the standard cut polytope:

P3 :











y(
→
uv) + p(v) ≥ p(u) ∀

→
uv 6=

→
TiS

p(Ti) − p(S) ≥ 1

y(
→
uv) ≥ 0 ∀

→
uv

i.e., the weighted minimum cut equals to the mini-
mum cut when all weights sum to1. Further note that
∑

i zi = 1 must be satisfied in any optimal solution,
since dual complementary slackness conditions require
χ(

∑

i zi − 1) = 0. Therefore, for our specific problem,
we can computey[k] by first computingk minimum cuts,
i.e., one minimum cut between the senderS and each
receiverTi:

y∗i = argminy∈P3

∑

→

uv

c[k](
→
uv)y(

→
uv)

Then letj = argmini
∑

→

uv
c[k](

→
uv)y∗i (

→
uv), we update

y as follows:
yj [k] = y∗j , and

yi[k] = 0,∀i 6= j.

Updating primal variables

Primal variables in the orientationc are updated in
two steps. First, we compute a new orientation vectorc′

as follows:

c′ = c[k] + θ[k]
∑

i

yi[k] (5.2)

where θ is a prescribed sequence of step sizes. The
new vectorc′ is not feasible in general. Therefore we
need to project it into the feasible simplex, to obtain a
valid new vector for updatingc. One possible way of
projection is to take a feasible point that is nearest toc′:

c[k + 1] = argminc≥0,∆≤0||c − c′|| (5.3)

Here ||l|| denotes the geometrical length of a vector
l, i.e., for l = (l1, . . . , lh), ||l|| = (

∑h
i=1 l2i )

1/2. Another
simpler way of projection, is to normalizec′ according
to:

c[k + 1](
→
uv) =







c′(
→
uv) ∆′(uv) ≤ 0
c′(

→

uv)

c′(
→

uv)+c′(
→

vu)
C(uv) ∆′(uv) > 0

(5.4)

where∆′(uv) = c′(
→
uv) + c′(

→
vu)−C(uv). After both

primal and dual variables are updated, the next iteration
starts.

Step size selection and convergence

Step size rules play an important role in subgradient
optimization. It governs both the ultimate convergence in
theory, and the speed of convergence to optimal solution
in practice. Large step sizes may be unstable, while small
step sizes lead to slow convergence speed. Therefore it
is common practice to use varying step sizes: take a
small number of large steps to reach the proximity of
the optimal solution, then switch to small steps to avoid
overhitting. In our case, where the original program is
linear, designing step sizes that satisfy the following
conditions will guarantee convergence:

θ[k] ≥ 0, lim
k→∞

θ[k] = 0, and
∞

∑

k=1

θ[k] = ∞

One simple sequence that satisfies the conditions
above, isθ[k] = a/(bk + c), for some positive constants
a, b and c. Below we give an example to illustrate
the input, output, and convergence of the proposed
algorithm.
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Fig. 2. A test case of the subgradient algorithm: input network,
output orientation, and convergence sequence.

In the example shown in Fig. 2,S is the multicast
sender,T1 andT2 are the multicast receivers. The max-
imum multicast rate possible is13.5. Rate computed by
the subgradient algorithm converges to range[13.4, 13.5]
within 100 iterations. The network in this example is
actually among the most adversary to our algorithm, in
that network flows towards different receivers constantly



compete for link bandwidth in opposite directions. Our
experiences show that the convergence speed is usually
much faster for randomly generated multicast networks.

Algorithm interpretation

We now take a retrospect at the subgradient algorithm
just presented, and show that it has a very appealing
combinatorial interpretation. First, the algorithm takes a
guessed orientation of the network as a starting point.
Then during each iteration, it updates the orientation
according to (5.2), (5.3) and (5.4). In (5.2), larger values
for

∑

i yi[k] leads to larger values forc′, which in turn
leads to larger values forc[k + 1] in (5.3)(5.4). Note
that non-zero values foryi(

→
uv) means the linkuv is

in the S-Ti min-cut, and is therefore the “bottleneck”
for the S→Ti transmission. From the flow perspective,
non-zero values ofy(

→
uv) meansf(

→
uv) = c(

→
uv), since

dual complementary slackness conditions requireyi(
→
uv

)(f(
→
uv) − c(

→
uv)) = 0. Therefore links with non-zeroyi

values are saturated links in theS→Ti max-flow. We
conclude that the new capacity allocation in (5.2), (5.3)
and (5.4) favors links with larger

∑

i yi[k] values, which
are links that are more saturated.

Therefore, during each iteration of orientation re-
finement, the algorithm computes the max-flow/min-cut
from the sender to each receiver, and increases the
capacity share for more saturated links, while decreases
the capacity share for under-utilized links. This has been
summarized in Table I.

TABLE I

MAXIMUM MULTICAST RATE : SOLUTION SUMMARY

(1) Choose initial orientation (e.g., balanced orientation)

(2) Repeat
ComputeS→Ti max-flow,∀i
Refine orientation:

increase bandwidth share for saturated links
decrease bandwidth share for under-utilized links

Until convergence
→ optimal orientation obtained

(3) ComputeS→Ti max-flow,∀i
→ optimal multicast rate and routing strategy obtained

(4) Randomized code assignment
→ complete transmission strategy obtained

C. Computing the maximum rate

When the subgradient algorithm converges, it yields
optimal primal values inc, but not necessarily optimal
dual values iny — the dual values upon convergence
may not even be feasible. Although there exist convex
combination techniques to recover these optimal dual
values [9], [21], it is not necessary in our solution. We
can directly recover the whole set of optimal primal
values from optimal values inc.

Recall that a feasible vectorc specifies an orientation
of the undirected network. Therefore optimal values
of c give an optimal orientation. Once the orientation
is determined, the undirected maximum multicast rate
problem boils down to a directed one,i.e., computing
the maximum multicast rate in a directed network. By
the result on directed multicast rate feasibility proven
by Ahlswede et al. and Koetter et al., this can be
accomplished by invoking a maximum flow computation
from senderS to each of thek receiversTi. Let f∗

i

denote the resultingS→Ti flow vector, and|f∗
i | denote

the corresponding flow rate. Then our final solution to
the maximum multicast rate problem is:

• maximum multicast rate:χ = mini |fi|
• optimal routing strategy of information flows:f∗,

wheref∗(
→
uv) = maxi fi(

→
uv), ∀

→
uv∈ A

As an illustration, the two network flows computed in
the previous example are shown in Fig. 3.
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Fig. 3. Output network flow to each multicast receiver.

D. Discussions on distributed implementation

Beside simplicity and efficiency, the potential for dis-
tributed implementation remained as another goal during
our design of the subgradient algorithm. After all, all
protocols that work in real-world networks need to be
decentralized. we now take a step-by-step examination
of the entire solution, and discuss how each step can
be transferred into distributed, pure local computations,
where each node maintains only local information about
its incident links and one-hop neighbors.



In the initialization phase of the dual subgradient
algorithm, it is sufficient to have each nodeu compute its
local orientation, by settingc(

→
uv) = c(

→
vu) = 1

2C(uv),
for each of its incident linkuv.

Primal variable update is achieved through pure local
computation, since each node can update the capacity
of an incident directed link

→
uv according to (5.2), based

on current values of local variablesc[k](
→
uv), θ[k] and

y[k](
→
uv).

Most computation in the subgradient algorithm is
performed in dual variable updates, and in the final
maximum flow rate computation. Each of these steps
translates intok max-flow/min-cut computations. As
previously mentioned, various efficient algorithms exist
for the classical max-flow/min-cut problem, some of
which permits natural distributed implementations, such
as the push-relabel algorithm [5] and theǫ-relaxation
algorithm [8]. For example, throughout the execution
of the distributed version of the push-relabel algorithm,
each node exchanges messages with its direct neighbors
only, and maintains information about capacities and
flow rates on its incident links, plus distance labels of
its neighbors and its own.

So far we have shown that our algorithm for com-
puting the optimal multicast routing strategy can be
implemented in a distributed fashion. In order to utilize
such optimal routing strategy in data transmission, we
need to further decide how each node linearly combines
its incoming information flows to form its outgoing
information flows. A simple distributed solution to this
code assignment problem is randomized coding [22],
in which each node just locally generates a random
code matrix, without any message-passing required at
all. With mild assumptions on the size of the base field
for coding operations, the chance of generating a conflict
is negligibly small [22].

VI. CONCLUSION

The main problem of interest in this paper is to
achieve the maximum multicast transmission rate in an
undirected network. We first formulate the problem as
linear network optimization. We then apply Lagrangian
relaxation on the primal problem, and derive a nec-
essary and sufficient condition for multicast rate fea-
sibility. Our condition is a generalization of the well-
known conditions for the unicast case and the broadcast
case. We next construct a subgradient algorithm that
solves the undirected version of the maximum multicast
rate problem in an efficient and distributed manner,

by decomposing the problem into a sequence of max-
flow/min-cut computations. Combined with randomized
code assignment, which incurs essentially zero overhead
in both computation and communication, our algorithm
constitutes a promising approach for generating the en-
tire maximum-rate multicast strategy.
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