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Abstract—Cloud computing infrastructures need an effective
way to manage server resources so that performance can be
improved and costs can be reduced. Current solutions are
proprietary and not customizable. In this paper, we present
Anchor, a new resource management architecture that uses the
stable matching framework to decouple policies from mechanisms
when mapping virtual machines to physical servers. In Anchor,
cloud clients and operators are able to express a wide variety
of distinct resource management policies as they deem fit, and
these policies are expressed as preferences in a stable matching
framework. The highlight of Anchor is a new many-to-one
stable matching theory that efficiently matches multiple VMs
with heterogeneous resource needs to their servers, using a
multi-stage deferred acceptance algorithm to resolve conflicts
of interest. Our theoretical analysis shows the convergence and
optimality of the algorithm. Our experiments with a prototype
Anchor implementation and large-scale simulations demonstrate
that the architecture is general enough to realize a diverse set
of policy objectives, while providing superior performance and
practicality.

I. INTRODUCTION

Modern data centers heavily rely on virtualization [7] to
flexibly multiplex different applications onto physical servers,
in order to efficiently utilize their resources. With virtualiza-
tion, applications are packaged and run in the form of virtual
machines (VM) that share the server infrastructure. Due to the
multi-tenant nature of such virtualized data centers, resource
management becomes a major challenge for cloud operators to
achieve economies of scale. According to a 2010 survey [6],
it is the second most concerned problem that CTOs expressed
after security. VMs impose extremely diverse resource require-
ments that need to be accommodated, as they run completely
different applications owned by different clients. As such,
they are entitled to distinct resource management policies
depending on specific needs of their owners.

On the other hand, the infrastructure is managed as a whole
by the cloud operator, who relies on a common resource
management substrate, and has a wide variety of its own
objectives to achieve, such as workload consolidation, cost
minimization, and load balancing. Therefore, the resource
management substrate must accommodate and orchestrate the
needs and interests of both cloud operators and clients. How-
ever, current solutions provided by virtualization vendors are
far from satisfactory: they are proprietary, hard-coded, and not
easily customizable. There exists no interface for cloud clients
to express resource management needs in their applications.

In this paper, we present Anchor, a new architecture that de-
couples policies from mechanisms when it comes to managing
resources in the cloud. Stakeholders in the cloud, including
both cloud operators and their clients, are able to express
and configure their high-level resource management policies,
based on performance, cost, and network load, as they deem
fit. These policies serve as input to guide mechanisms that
manage cloud resources, so that conflicts of interest among
stakeholders can be resolved. The output is a mapping between
VMs and physical servers: Anchor allocates VMs to servers
before they are run, and, if necessary, migrates running VMs
away from their original hosts using live VM migration.
Anchor is designed to be scalable to support hundreds of
thousands of VMs and servers, to be expressive so that clients
and operators can specify a wide variety of their policies and
preferences with ease.

To achieve our design objectives with Anchor, it may be
tempting to formulate the problem as an optimization over
certain definitions of utility functions, each reflecting a corre-
sponding policy. However, optimization-based solutions suffer
from a number of important deficiencies. First, as system-wide
performance and costs are optimized, these solutions may not
be appealing to the potentially conflicting interests of cloud
clients. In this context, the cloud resembles a resource market
in which clients and operators are autonomous selfish agents:
individual rationality needs to be respected for the outcome
of the mechanism to be acceptable to all market participants.
Second, optimization solvers are computationally expensive
due to the combinatorial nature of the problem, and do not
scale well. The VMware Distributed Resource Scheduler, for
example, can only manage up to 32 servers and 1280 VM per
cluster [5].

Our design of the Anchor architecture is based on a stable
matching framework from economics theory, which elegantly
and efficiently addresses common and conflicting interests of
agents in a resource market. In our framework, the concept
of preferences is used to express various high-level policies
that stakeholders specify, and, rather than optimality, stabil-
ity is used as the central solution concept of the matching
mechanism. Merits of the stable matching framework lie in
its competitiveness of outcomes, generality of preferences,
efficiency and simplicity of its algorithmic implementations,
and most importantly, its overall practicality.

With the design of Anchor, this paper has made a number
of original contributions. The highlight of our work is a



new multi-stage deferred-acceptance algorithm that matches
multiple VMs of heterogeneous resource demands to a single
physical server, corresponding to a many-to-one stable match-
ing problem with size heterogeneity. In Sec. II, we present a
rigorous treatment of size heterogeneity by clarifying its theo-
retical ambiguity, proposing a new stability concept, develop-
ing algorithms to efficiently find stable matchings with respect
to the new stability definition, and prove the convergence and
optimality of our algorithms. In the context of stable matching,
we then present a simple interface where agents express their
policies by expressing how their preferences regarding the
opposite side of the market should be constructed. Finally,
we present our prototype implementation of Anchor on a 20-
node server cluster running Oracle VirtualBox [4], as well
as a detailed evaluation of its performance with a variety of
resource management policies, using both the experimental
testbed and large-scale simulations.

II. STABLE MATCHING

Our design objective of the Anchor architecture is simple:
virtual machines (VMs) with a variety of resource demands
need to be matched to a large number of physical servers
in modern data centers, and such matching should meet
the policies of both clients and operators of cloud services.
Resource availability on physical servers, including CPU,
memory, storage space, and network bandwidth, is known
a priori. Each physical server runs a hypervisor to monitor
and control all VMs that it hosts. The hypervisor provides a
management API for monitoring and controlling VMs.
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Fig. 1. The Anchor architecture.

Each VM is allocated a slice of resource on its hosting
server. Throughout the paper, we assume that the size of a slice
is a multiple of an atomic VM, which represents the smallest
amount of resources that a VM can demand. For example, if
the atomic VM has a 1 GHz equivalent CPU, 512 MB memory,
and 10 GB storage, a VM of size 2 means it has a 2 GHz CPU,
1 GB memory and 20 GB storage. The slicing of resources can
be achieved by assigning a weight to the VM. The underlying
hypervisor schedules resources proportional to its weight, a
feature widely supported by vendors. Note that this may seem
an oversimplification of the real-world scenarios, and some
may be concerned about the validity of this assumption. We
wish to point out that, in practice, such atomic sizing is a
common practice among cloud hosting companies such as

Amazon and Rackspace to reduce the overhead of managing
hundreds of thousands of VMs, and this assumption is thus
fairly practical for large-scale public clouds that we focus
on. In many related works, similar assumptions in order to
reduce the dimensionality of the problem has also been widely
adopted [19], [32].

The Anchor architecture consists of three main components:
a resource monitor, a policy manager, as well as a matching
engine, as shown in Fig. 1. The cloud operator configures
resource management policies as input to the policy engine.
When requests for allocating a new VM or migrating an
existing VM arrive, Anchor assumes that detailed information
about VM configurations and its own policy goals is available
at the time. The policy manager then queries information
required by both operator and client policies from the resource
monitor, which maintains resource usage information through
the management API, and translates these high-level objectives
into preferences for the VM. It also configures server prefer-
ences in a similar manner. These preferences are fed into the
matching engine that runs our stable matching mechanism.
The result determines the final matching between VMs and
servers, and is executed through the management API.

A. The Theory of Stable Matching: A Primer

We start by introducing the basic theory of stable matching
in the one-to-one marriage model. In this model, there are
two disjoint sets of agents, M = {m1,m2, . . . ,mn} and
W = {w1, w2, . . . , wp}, men and women. Each agent has a
transitive preference over individuals on the other side, and the
possibility of being unmatched [26]. Preferences can be repre-
sented as rank order lists of the form p(m1) = w4, w2, . . . , wi,
meaning that man m1’s first choice of partner is w4, second
choice is w2 and so on, until at some point he prefers to
be unmatched (i.e. matched to the void set). We use �i to
denote the ordering relationship of agent i (on either side of the
market). If i prefers to remain unmatched than being matched
to agent j, i.e. ∅ �i j, then j is said to be unacceptable
to i, and preferences can be represented just by the list of
acceptable partners. Preferences are strict if each agent is not
indifferent between any two acceptable partners.

Definition 1: An outcome of the market is a matching µ :
M × W → M × W such that w = µ(m) if and only if
µ(w) = m, and µ(m) ∈ W ∪ ∅, µ(w) ∈M∪ ∅, ∀m,w.

This implies that the outcome matches agents on one side
to those on the other side, or to the empty set. Agents’
preferences over outcomes are determined solely by their
preferences for their own partners in the matching.

It is clear that we need further criteria to distill a “good” set
of matchings from all the possible outcomes. The first obvious
criterion is individual rationality.

Definition 2: A matching is individual rational to all agents
of the market, if and only if there does not exist an agent i
who prefers being unmatched to being matched with µ(i), i.e.,
∅ �i µ(i).

This implies that for an agent that does have a partner in
the matching, its assigned partner should rank higher than the



empty set in its preference. Between a pair of matched agents,
they are not unacceptable to each other.

The second natural criterion is that a blocking set should
not occur in a good matching:

Definition 3: A matching µ is blocked by a pair of agents
(m,w) if they each prefer each other to the partner they receive
at µ. That is, w �m µ(m) and m �w µ(w). Such a pair is
called a blocking pair in general.
If there is a blocking pair in the matching, the agents have
an incentive to break up and form a new marriage. Therefore
such an “unstable” matching is not desirable.

Definition 4: A matching µ is stable if and only if it is
individual rational, and is not blocked by any pair of agents.

Theorem 1: A stable matching exists for every marriage
market.

This can be readily proved by the classic deferred accep-
tance algorithm (DA), or the Gale-Shapley algorithm proposed
in [11]. It works by having agents on one side of the market,
say men, propose to those on the other side, in order of
their preferences. As long as there exists a man, who is free
and has not yet proposed to every woman in his preference,
he proposes to the most preferred woman who has not yet
rejected him, or makes no proposal if no such choice remains.
The woman, if free, “holds” the proposal instead of directly
accepting it. In case she already has one proposal, she rejects
the less preferred. This continues until no proposal can be
made, at which point the algorithm stops and matches each
woman to the man (if any) whose proposal she is holding. The
woman-proposing version works in the same way by swapping
the roles of man and woman. It can be readily seen that the
order of which men propose is immaterial to the outcome.

The simple marriage model has been extended to more
general settings. The college admissions problem, where each
student seeks to be matched to one college and each college
seeks to recruit multiple students, is a well-known many-to-
one extension [11]. The stable roommates problem is a one-
sided variant, where each agent looks for a roommate from
a common set [27]. From a practical perspective, due to its
efficiency and simplicity, the deferred acceptance algorithm
has a profound influence on market design. It has been
adopted in a number of practical matching markets, prominent
examples of which include the National Resident Matching
Program of U.S. for medical school graduates, many medical
labor markets in Canada and Britain, and recently school
choice systems in Boston and New York City [26]. Due to
the richness of the literature on stable matching, it is bold to
even attempt a cursory survey of existing results. Instead, the
results we have presented are chosen to prepare for a better
understanding of our own theoretical development.

B. Models and Assumptions

Resource management in virtualized clouds can be naturally
cast as a stable matching problem, where the overall pattern of
common and conflicting interests between stakeholders can be
resolved by confining our attention to outcomes that are stable.
Broadly, it can be modelled as a college admissions problem

TABLE I
KEY NOTATIONS IN THE PAPER.

s(j) size of job j
p(j) preference list of job j
µ(j) job j’s assigned machine in the matching µ
c(m) capacity of machine m
p(m) preference list of machine m
µ(m) machine m’s assigned set of jobs in µ
J set of jobs
M set of machines

[11] where VMs are “students” and servers are “colleges,” and
they wish to be matched to each other. Preferences can be used
as an abstraction of distinct policies, no matter whether they
are defined over quantitative measures or qualitative terms.

One may now argue to use optimization that minimizes
the total rank sum of the matching as a better alternative.
Such an approach is not desirable because preferences embody
policies, and the ranking of agents — such as a priority order
defined by business contracts — has to be strictly enforced.
An optimization solution may match a low priority VM to
a machine reserved for high-priority clients, creating a policy
violation. Therefore it is not possible to arbitrarily optimize the
matching for the sole purpose of minimizing certain metrics.

In the traditional college admissions problem, each college
has a quota of the maximum number of students it can take.
Unfortunately, this cannot be directly applied to our scenario,
as each VM has a different “size,” corresponding to its demand
for CPU, memory, and storage resources. We cannot simply
define the quota of a server as the maximum number of VMs
it can take, due to their size heterogeneity.

We formulate VM allocation and migration as a job-machine
stable matching problem with size heterogeneous jobs. Specif-
ically, jobs has different sizes, and machines has different
capacities. Each machine can accommodate multiple jobs, as
long as the total size of jobs does not exceed its capacity.
Each job has a transitive preference of all the acceptable
machines that have sufficient capacities to hold it. Similarly,
each machine has a transitive preference regarding all the
acceptable jobs whose size is smaller than its capacity.

This is a more general many-to-one stable matching model,
in that the college admissions problem is a special case with
jobs of the same size (students). We also note that many other
networking problems can be cast into our model. For example,
job scheduling in distributed computing platforms such as
MapReduce [10] and Hadoop, where jobs submitted from
different clients can be of various sizes, and the infrastructure
may be privately or publicly shared. Our theoretical results are
thus widely applicable to scenarios beyond this paper.

C. Definitions and Challenges

We present theoretical challenges introduced by size hetero-
geneous jobs in this section. Before doing so, we summarize
frequently used notations in our subsequent analysis in Table I.



Definitions. Following convention, we can naturally define a
blocking pair in job-machine stable matching problems based
on the following intuition. In a matching µ, whenever a job
j prefers a machine m to its assigned machine µ(j) (can be
∅ which means it is unassigned), and m has vacant capacity
to admit j, or when m does not have enough capacity, but by
rejecting some or all of the assigned jobs that rank lower than
j, it will be able to admit j, j and m have strong incentive to
deviate from µ and form a new matching. Therefore,

Definition 5: A job-machine pair (j,m) is a blocking pair
if any of the two conditions holds: (1) c(m) ≥ s(j), j �m ∅,
and m �j µ(j). (2) c(m) < s(j), c(m) +

∑
j′ s(j

′) ≥ s(j),
where j′ ≺m j, j′ ∈ µ(m), and m �j µ(j).
Depending on whether a blocking pair satisfies condition (1)
or (2), we say it is a type-1 or type-2 blocking pair.

Definition 6: A job-machine matching is strongly stable if
it does not contain any blocking pair of job and machine.
For example, in a setting as shown in Figure 2, the matching
A− (a), B − ∅ contains two type-1 blocking pairs (b, B) and
(c,B), and one type-2 blocking pair (c, A).

It is clear that both types of blocking pairs are undesirable,
and we ought to find a strongly stable matching. However, such
a matching may not exist for some problem instances. Figure 2
shows one such example with three jobs and two machines. It
can be readily verified that every possible matching contains
either type-1 or type-2 blocking pairs.
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Fig. 2. A simple example where there is no strongly stable matching.

Therefore, we give a weaker definition below.
Definition 7: A matching is weakly stable if it does not

contain any type-2 blocking pair.
For example in Figure 2, A − (c), B − (b) is a weakly but
not strongly stable matching, because it has a type-1 blocking
pair (b, A). Thus, weakly stable matchings are a superset that
subsumes strongly stable matching. A matching is thus called
unstable if it is not weakly stable.

Failure of the DA Algorithm. As our first theoretical
challenge, how do we find a weakly stable matching, and
does it always exist? If we can design an algorithm that
produces a weakly stable solution for any given instance, then
its existence is clear. It may be tempted to say that the deferred
acceptance algorithm (DA) can be readily applied here for
this purpose. Jobs propose to machines following the order
in their preferences. We randomly pick any free job that has
not proposed to every machine on its preference to propose to
its current favorite machine that has not yet rejected it. That
machine accepts the offer if capacity allows, or capacity is
not enough but can be made enough by rejecting several less

desirable offers, and rejects it otherwise. Unfortunately, we
show that this may fail to be effective.

Figure 3 shows an example similar to Figure 2. Say we
first let job a, b, c propose until they cannot. The result is A−
(a), B − (b), since b would be rejected by A and c rejected
by B. Then we let c propose to A. The result becomes A −
(c), B − (b), and a is rejected by A. At this point, only d
can propose to A, and A holds the offer. The final result is
A− (c, d), B − (b). This is clearly type-2 blocked by (b, A),
as A prefers b to d and b prefers A to B.
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Fig. 3. An example where a possible execution of the DA algorithm produces
a type-2 blocking pair (b, A).

On the other hand, if we let d propose to A first before a
and b, and keep the rest of execution unchanged, the result
becomes A− (c), B − (b), which is weakly stable.

This example demonstrates two problems when applying
the DA algorithm to job-machine stable matching. First, the
execution sequence is no longer immaterial to the outcome.
Second, it may yield an unstable matching. This creates
considerable difficulties since we cannot determine which
proposing sequence yields the weakly stable matching for an
arbitrary problem.

The DA algorithm fails precisely due to the size hetero-
geneity of jobs. Recall that a machine will reject offers only
when its capacity is used up. In the traditional setting with
jobs of the same size, this ensures that whenever an offer is
rejected, it must be the case that the machine’s capacity is
used up, and thus any offer made from a less preferred job
will never be accepted, i.e. the outcome is stable. However,
rejection due to capacity is problematic in our case, since
a machine’s remaining capacity may be increased, and its
previously rejected job may be favorable again.

Optimal Weakly Stable Matching. Our second challenge
is that, there may be many weakly stable matchings for a given
problem. Which one should we choose to operate the system
with? Based on the philosophy that cloud operators exist for
companies to ease the pain of IT investment and management,
rather than the other way around, it is desirable if we can
find a job-optimal weakly stable matching if it exists, in the
sense that every job is assigned its best machine possible in
all matchings. For the same reason above, the DA algorithm
is again not applicable in this regard, because it may produce
type-1 blocking pairs even when the problem admits strongly
stable matchings. Thus, our main objective in the following
is to design an algorithm that yields the job-optimal weakly



stable matching to serve as the underlying mechanism for the
Anchor architecture.

D. Algorithms

We first propose a revised DA algorithm, shown in Algo-
rithm 1, that is guaranteed to find a weakly stable matching.
The key idea is to ensure that, whenever a job is rejected, any
job less preferred than it will not be accepted by the machine,
even though the machine has capacity to take it.

The algorithm starts with the set of jobs denoted as J
and the set of machines M. Every machine’s offer queue
is initialized to be empty, and every job to be free. Then it
enters a propose-reject procedure. Whenever there is a free
job that has not proposed to every machine, we pick it to
propose to the machine at the top of p(j), which contains all
the machines that has not yet rejected it. If the machine has
sufficient capacity, it holds the offer. If not, it sequentially
rejects offers that are less preferable than this one from its
queue, in order of its preference, until it can take the offer.
If it still cannot take the offer even after rejecting all the less
preferable offers, the offer is rejected. Whenever a machine
rejects a job, it removes the job, and all the jobs ranked lower
than this one if any, from its preference. The machine also
removes itself from the preferences of its rejected jobs, as it
will never accept their offers.

Data: c(m), p(m), µ(m), ∀m ∈ M, s(j), p(j), µ(j), ∀j ∈ J .
begin

stop = False, µ′ = µ, free = J
while free.isEmpty() ! = True do

j = free.pop()
m = p(j).pop()
if c(m) ≥ s(j) then

µ(m).add(j), µ(j) = m, c(m)− = s(j)
else

j′ = µ(m).last
if j′ �m j then

free.add(j), µ(j) = ∅
else

while j′ 6= ∅, j′ ≺m j, c(m) < s(j) do
µ(m).remove(j′), c(m)+ = s(j′)
µ(j′) = ∅, free.add(j′)
best rejected = j′

j′ = µ(m).last()
if c(m) ≥ s(j) then

µ(m).add(j), µ(j) = m, c(m)− = s(j)
else

free.add(j), best rejected = j′

for j ∈ p(m), j ≺m best rejected do
p(j).remove(m), p(m).remove(j)

return µ, c(m)∀m ∈ M

Algorithm 1: The revised deferred acceptance algorithm.

A pseudo-code implementation is shown in Algorithm 1.
We can readily see that the order in which free jobs propose
in Algorithm 1 is immaterial to the outcome, similar to the
original DA algorithm. Moreover, we can prove that the
revised DA algorithm guarantees that type-2 blocking pairs
will never occur in the result.

Lemma 1: Algorithm 1, in any execution order, produces a
unique weakly stable matching among the set of jobs J and
the set of machines M.

Proof: The proof of uniqueness is essentially the same as
that for the DA algorithm in the seminal paper [11]. We prove

the weak stability of the outcome by contradiction. Suppose
that Algorithm 1 produces a matching µ with a type-2 blocking
pair (j,m), i.e. there is at least one job j′ worse than j to m
in µ(m). Since m �j µ(j), j must have proposed to m and
been rejected. When j was rejected, all the jobs with ranking
lower than j is ensured to be removed from m’s preference
p(m). Thus m will not accept any job worse than j. Thus,
j′ = ∅. This contradicts with the assumption.

This also proves the existence of weakly stable matchings,
as the revised DA algorithm clearly terminates within O(|J |2).

Theorem 2: Weakly stable matchings always exist for job-
machine matching problems.

Naturally, the revised DA algorithm will still produce type-
1 blocking pairs, and the result may not be the job-optimal
weakly stable matching as we have defined in Sec. II-C. In
order to find the job-optimal matching, an intuitives idea is
to run the revised DA algorithm multiple times, each time
with those type-1 blocking jobs proposing to their desirable
machines that form blocking pairs with them. The intuition
is that, type-1 blocking jobs can be possibly improved at no
expense of other jobs. However, simply doing so may make
the matching unstable, because when a machine has both type-
1 blocking jobs leaving from and proposing to it, it may have
more capacity available to take jobs better than those it accepts
according to its capacity before the jobs leaving.

To give an example, let us take a look at the problem in
Figure 4. We now run the revised DA algorithm over this
example. The result will then be A − (d), B − (e), C − (a).
Clearly there are two type-1 blocking pairs, (a,A) and (b, C).
Say we fix this by letting a propose to A and b propose to
C. Then we have a new type-2 blocking pair (c, C) due to
the removal of job a from C, where c prefers C to being
unassigned, and C prefers c to b and by rejecting b it has
enough capacity to admit c. This is a result of C wrongly
accepting b when it actually has more capacity after a leaves.
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Fig. 4. An example where simply running the revised DA algorithm multiple
times will produce a new type-2 blocking pair (c, C).

We now design a multi-stage deferred acceptance algorithm
to iteratively find a better weakly stable matching with respect
to jobs. The algorithm proceeds in stages. Whenever there is
a type-1 blocking pair (j,m) in the result of previous stage
µt−1, the algorithm enters the next stage where the blocking



machine m will accept new offers. The blocking job j is
removed from its previous machine, so that it can make new
offers to machines that have rejected it in previous stages.
The machine µt−1(j)’s capacity is also updated accordingly.
Moreover, to account for the effect of job removal, all jobs that
can potentially form type-1 blocking pairs with j’s previous
machine µt−1(j) if j leaves (there may be other machines
that j form type-1 blocking pairs with) are also removed
from their machines and allowed to propose in the next stage.
This ensures that the algorithm does not produce new type-2
blocking pairs during the course, as we shall prove soon. In
each stage, we run the revised DA algorithm with the selected
set of proposing jobs J ′ possible to improve their matching,
and the entire set of machines with updated capacity cpret (m).
The entire procedure is shown in Algorithm 2.

Data: c(m), p(m), ∀m ∈ M, s(j), p(j), ∀j ∈ J .
begin

µ0 = ∅, t = 0, stop = False, J ′ = ∅.
while stop == False do

t = t+ 1, µ′ = µt−1

for m ∈ M do cpret (m) = ct−1(m)
while Ω = find type-1(µ′, cpret , J ′) do

for j ∈ Ω do
if µ′(j)! = ∅ then

cpret (µ′(j))+ = s(j)
µ′(s).remove(j), µ′(j) = ∅
J ′.add(j)

else
J ′.add(j)

if J ′ == ∅ then
break

(µt, ct(m)) = RevisedDA(cpret (m), p(m), s(j), p(j), µ′,J ′)
if µt == µt−1 then

stop = True
return µt

Algorithm 2: The multi-stage deferred acceptance algo-
rithm.

E. Analysis

We now rigorously prove key properties of Algorithm 2: its
correctness, convergence, and job-optimality.

Correctness. First we establish the correctness of our
algorithm.

Theorem 3: There is no type-2 blocking pair in the match-
ings produced at any stage in Algorithm 2. For a given prob-
lem, Algorithm 2 produces a unique weakly stable matching
in each stage, no matter what the execution order is.

Proof: This can be proved by induction. As the base case,
we already proved that there is no type-2 blocking pair after
the first stage of Algorithm 2 in Lemma 1.

Given there is no type-2 blocking pair after stage t, we need
to show that after stage t+1, there is still no type-2 blocking
pair. Suppose after t+1, there is a type-2 blocking pair (j,m),
i.e., ct+1(m) < s(j), ct+1(m) +

∑
j′ s(j

′) ≥ s(j), where
j′ ≺m j, j′ ∈ µt(m),m �j µt+1(j). If cpret+1(m) ≥ s(j), then
by Algorithm 2 j must have proposed to m and been rejected.
Thus it is impossible for m to accept any job j′ less preferable
than j in t+ 1.

If cpret+1(m) < s(j), then j did not propose to m in t + 1.
Since there is no type-2 blocking pairs after t, j′ must be

accepted in t+1. Now since cpret+1(m) < s(j), the sum of the
remaining capacity and total size of newly accepted jobs after
t+1 must be less than cpret+1(m), i.e. ct+1(m)+

∑
j′′ s(j

′′) ≤
cpret+1(m) < s(j), where j′′ denotes the newly accepted jobs
in t+1. This contradicts with the assumption that ct+1(m)+∑
j′ s(j

′) ≥ s(j) since {j′} ⊆ {j′′}.
If cpret+1(m) = 0, then m only has jobs leaving from it. Since

there is no type-2 blocking pair after t, clearly there cannot
be any type-2 blocking pair in t+ 1.

Therefore, type-2 blocking pairs do not exist in any stage
of Algorithm 2. The uniqueness of the matching result at each
stage is readily implied from Lemma 1. The lemma holds.

Convergence. Next we prove the convergence of Algo-
rithm 2. The key observation is that our multi-stage algorithm
produces a weakly stable matching at least as well as that at
the previous stage from the job perspective.

Lemma 2: At any consecutive stages t and t + 1 of Algo-
rithm 2, µt+1(j) �j µt(j),∀j ∈ J .

Proof: This is a direct result of the algorithm design, since
in t + 1 every proposing job proposes to machines that have
previously rejected it. If any of these machines accepted it,
µt+1(j) �j µt(j). If none of these machines accepted it, it
will for sure be able to propose to its previous machine µt(j)
since cpret+1(µt(j)) must be no smaller than s(j). µt(j) will for
sure accept j at t+1, because it will only receive offers from
jobs that it previously rejected, possibly also from other jobs
that it previously accepted if they propose to other machines
and are rejected in t+1. j remains favorable to m, even when
all of m’s accepted jobs in t proposed to m in t+1 again.

Therefore, Algorithm 2 always tries to improve the weakly
stable matching it found in the previous stage, whenever there
is such a theoretical possibility suggested by the existence of
type-1 blocking pairs. However, from Lemma 2 it is possible
that a job’s machine at t+1 remains the same as in the previous
stage. In fact, it is possible that the entire matching is the same
as the one in previous stage, i.e. µt+1 = µt. This can be easily
verified by using the example of Figure 2. After the first stage,
the weakly stable matching is A− (c), B− (b). First b wishes
to propose to A in the second stage. Then we assign b to ∅ and
B has capacity of 1 again. c then wishes to propose to B too.
After we remove c from A and update A’s capacity, a now
wishes to propose to A. Thus at the next stage, the same set of
jobs a, b, c will propose to the same set of machines with same
set of capacity, and the result will be the same matching as in
the first stage. In this case, Algorithm 2 will terminate with
the final matching that it cannot improve upon as its output.
We thus have:

Theorem 4: Algorithm 2 always terminates in finite time.
Job-Optimality. We can rigorously prove the job-optimality
of the weakly stable matching that Algorithm 2 produces. That
is, no matter how the algorithm terminates, it always produces
the job-optimal weakly stable matching as its output.

Theorem 5: Algorithm 2 always produces the job-optimal
weakly stable matching when it terminates, in the sense that
every job is at least as well off in the weakly stable matching
produced when the algorithm terminates as it would be in any



TABLE II
Anchor’S POLICY INTERFACE.

Functionality Anchor API Call
create a operator policy group g o = create(’operator’)

create a client policy group g c = create(’client’)
add/delete server to/from a group add/delete(g o, s)
add/delete VM to/from a group add/delete(g c, v)

set ranking factors set factors(g, factor1, ...)
set placement constraints limit(g c, server list)

other weakly stable matching.
Proof: Algorithm 2 terminates at stage t when either

there is no type-1 blocking pair, or there is at least one type-
1 blocking pair but µt = µt−1. For the former case, we
show that our algorithm only permanently rejects jobs from
machines that are impossible to accept them in all weakly
stable matchings, when the jobs cannot participate any further.
The resulting assignment is therefore optimal. For the latter
case, we can also show that it is impossible for jobs that
participated in t to obtain a better machine. A detailed proof
is postponed to the Appendix of this paper.

Finally, we present another fact regarding the outcome of
our algorithm.

Theorem 6: For a given problem instance, Algorithm 2
produces a unique job-optimal strongly stable matching when
it terminates with no job proposing.

Proof: This can be easily proved by contradiction. As-
sume that the matching produced when the algorithm termi-
nates is not strongly stable. Thus, we must be able to find
a type-1 blocking pair, say (j,m), as implied by Lemma 3.
m will participate in the next stage, and j will be willing to
propose to m, and our algorithm will continue to run, rather
than terminating. This contradicts with our assumption.
We conjecture that when the algorithm terminates with type-1
blocking pairs, the problem does not admit a strongly stable
solution. The proof is, however, not immediate and is left for
future work.

III. RESOURCE MANAGEMENT POLICIES

As the underlying mechanism of Anchor, we have just
presented two new algorithms to produce a stable matching
between multiple VMs of various sizes, as jobs, and their
physical servers, as machines, given their preferences. We
now introduce the policy engine in the Anchor architecture,
which constructs preference lists according to various resource
management policies. The cloud operator and clients interact
with the policy engine through its API, as shown in Table II.

In order to reduce the overhead of resource management, we
use policy groups in the design of the policy engine. They can
be created with the create() API call for both the operator
and the clients. Each policy group contains a set of servers
or VMs that are entitled to one specific policy. The policy is
configured by the set factors() call that informs the policy
engine what the factors to be considered are, in descending
order of importance. Anchor then performs a multi-pass sorting
procedure, first based on the least important factor, then the

second least, and so on, to produce preferences that adhere to
the policy. With policy groups, only a common preference list
is needed for all members in the group whenever possible.
Membership of policy groups is maintained by add() and
delete(). The limit() call is used to set placement constraints
as we will discuss in Sec. III-C.

In practice, it is possible for the cloud operator to configure
policies on behalf of its clients, in case they do not explicitly
specify any. This is indicated by enrolling clients in the default
policy group.

A. VM Allocation

We begin our examination from the perspective of cloud
operators, who rely on Anchor to optimally assign VMs to
servers before any cloud service can run. What they con-
sider “optimal” can differ substantially: some may seek to
consolidate the workload, some may wish to balance the load
across servers to handle time-varying dynamics, and some may
even employ a more sophisticated cost model that incorporates
energy costs. We show that these preferences can all be
expressed and realized using the policy API of Anchor.

Server consolidation/packing. Cloud operators usually
wish to consolidate the workload by packing VMs into a small
number of highly utilized servers, so that idle servers can be
powered down to conserve operational costs. To realize this
policy through Anchor, servers should be configured to prefer
a VM with a larger size, since the operator wishes to maximize
utilization. This can be done with a call to set factors (g o,
-vm size) or set factors(g o, 1/vm size). For VMs that
belong to the default policy group, their preferences are
ranked in the descending order of server load. One may use
the total size of active VMs as the metric of load (set factors
(g c, 1/server utilization)). Alternatively, the total number of
active VMs can also serve as a heuristic metric (set factors
(g c, 1/num of vm)).

Notice that consolidation is closely related to packing, and
the above configuration also resembles the first fit decreasing
heuristic widely used to solve packing problems by iteratively
assigning the largest item to the first bin that fits.

Memory consolidation. Other techniques to consolidate
load can also be incorporated into Anchor. In-memory page
sharing [22], [30], [33], for example, is a recently proposed
methodology that consolidates the memory footprint of VMs.
When a set of similar VMs (e.g., with identical guest operating
systems) are running on the same server, a large number of
memory pages can be identical. Page sharing searches for
identical pages and maintains only a shared copy among a
set of VMs.

Due to privacy or confidentiality concerns, cloud operators
are only able to identify the type of guest operating systems
that client VMs run, and may not have access to more
detailed information about applications running inside VMs.
Based on observations made in previous work [22], [30],
we assume that a VM’s page sharing potential on a server
can be qualitatively ranked, and such ranking is affected
first by the sharing potential of its guest operating system,



represented by vm os sharing (higher values imply that
more aggressive sharing is feasible), and then by the size of
the VM. In this case, an operator can use set factors(g o,
1/vm os sharing, 1/vm size) to incorporate in-memory
page sharing and to consolidate memory utilization.

Load balancing. Another popular resource management
policy is load balancing, which distributes VMs across all the
servers to mitigate performance degradation due to application
dynamics over time. This can be seen as the opposite of
consolidation. In this case, we can configure the server pref-
erence with a call to set factors(g o, vm size), implying
that servers prefer VMs of smaller sizes. VMs in the default
policy group are configured by a call to set factors(g c,
server utilization), such that they prefer less utilized servers.
This can be seen as a worst fit increasing heuristic. An-
other possible load balancing metric is server temperature.
A lower temperature in a server typically implies that the
server is lightly loaded. If this is the case, set factors(g c,
server temperature) can be used to configure VM prefer-
ences.

From the perspective of cloud clients, other than choosing
to join the default policy group and follow the operator’s
configuration, cloud clients can also express their unique
policies.

Resource hunting. Depending on the resource demand of
applications, VMs can be CPU, memory, or bandwidth-bound,
or even resource-intensive along a combination of multiple
resource dimensions. Though resources are sliced into fixed
slivers, most modern hypervisors support the dynamic resizing
of VMs, as long as there are resources available at the server.
For example, if a VM is allocated 50% CPU on a server when
its workload increases, the hypervisor may allow a temporarily
burst to beyond 50%, provided that such a burst does not
affect other co-existing VMs. With respect to memory, with a
technique known as memory ballooning, the hypervisor is able
to dynamically reduce the memory footprints of idle VMs, so
that memory allocated to more heavily loaded VMs can be
increased.

With servers supporting these features, clients may wish
to configure their policies according to the resource us-
age pattern of their VMs, which is unknown to the
operator. CPU-bound VMs can be added to a CPU-
bound policy group, which is configured with a call to
set factors(g c, 1/server freecpu). Their preferences are
then ranked in the descending order of the server’s avail-
able CPU cycles. Similarly, memory-bound and bandwidth-
bound policy groups may be configured with the call
set factors(g c, 1/server freemem) and set factors(g c,
1/server freebw), respectively. If a client wishes to jointly
consider resources along multiple dimensions, say, both CPU
and memory, a call to set factors(g c, 1/server freemem,
1/server freecpu) implies that preferences of VMs in this
policy group are ranked first by server’s available memory,
and then by available CPU cycles.

B. VM Migration

With support for live migration of virtual machines across
the boundary of servers in existing products such as Xen-
Motion [9], the mapping between VMs and servers can be
updated to better balance the workload, or to perform server
maintenance. The VM migration policies for both the cloud
operator and its clients can be configured so that they are
similar to their VM allocation policies, with a focus on
performance.

However, rather than solely considering the performance af-
ter migration completes, the performance during the migration
process may also be an important concern to both the operator
and its clients, since live VM migration involves transferring
memory states of running VMs across a network.

Network-aware migration. Though there are a number of
new data center network designs proposed in the literature
[13], [15], [23], to a large extent, production data center
networks still follow a three-tier tree architecture as shown in
Figure 5. Packets transferred within the same subnet traverse
only the router in the access tier, with no load to the upper
tier routers. Traffic across the boundary of subnets, in contrast,
has to traverse more hierarchies and is more costly. Live
migration of VMs requires bulk transfers of disk images that
are bandwidth-intensive [32], yet we wish to minimize the
imposed traffic footprint as data center networks are already
fraught with scalability and efficiency issues [13], [15]. Thus
it is of the cloud operator’s interest to be network-aware,
and migrate VMs to servers in the topological vicinity, which
mitigates the traffic load on the network. The cloud operator
also needs to be concerned with the sizes of VM memory
images, as they determine the migration overhead on the
network.

1 2 3 4 5 6 7 8 13 14 15 16

Core tier

Aggretation tier

Access tier

......

Fig. 5. A three-tier data center network topology.

On the other hand, cloud clients have their own consid-
erations. They are more concerned with available bandwidth
on servers, since they wish to minimize the time required for
the migration process [9]. This reflects a conflict of interest
between the operator, who prefers to minimize load on its
network, and its clients, who prefers to minimize migration
time.

Anchor relies on the concept of stability to resolve such a
conflict. The operator can set its policy by set factors(g o,
num of hops, vm memsize), implying that servers prefer
to minimize the migration overhead by migrating VMs over a
smaller number of hops in the network, and by preferring those
with a smaller memory footprint. Clients may configure their



migration policies with set factors (g c, 1/server freebw),
implying that they prefer to migrate their VMs to servers with
more available bandwidth.

Energy minimization. Energy constitutes a major part of
the operator’s costs [12]. To minimize energy consumption, a
recent study proposed new methodologies based on a work-
load analysis of a production data center [29]. The idea is
to measure the workload correlation of VMs, and identify
those whose workloads do not peak at the same time. By
dynamically migrating and consolidating VMs with uncor-
related workloads, servers can be put into low-energy state
more often without violating individual client’s SLA. Such a
strategy can be readily implemented by having the resource
monitor collect and compute workload correlation statistics,
and setting the operator’s policy group by set factors(g o,
vm correlation). Each server’s preference is then ranked in
an ascending order of the workload correlation between its
existing VMs and the target VM to be migrated.

C. Additional Examples

With examples we have illustrated so far, it is evident
that the policy engine in Anchor is very flexible when it
comes to expressing the needs and preferences of both the
operator and its clients. Such versatility can be further shown
in the following two examples, which are applicable in both
scenarios of VM allocation and migration.

Tiered service. It is common practice to implement tiered
services in an operational cloud, by associating each VM
with its priority class. For example, Amazon EC2 offers
three tiers of VMs to use: reserved, on-demand, and spot
instances, with a descending order of priority and price. It is
straightforward to incorporate tiered services when configuring
operator policies in Anchor: one just needs to configure servers
so that they prefer VMs with higher priority classes, with a
call to set factors(g o, priority).

Incomplete preferences. Due to upgrades and cost con-
cerns, a data center typically contains several generations of
servers in operation at the same time. It is therefore possible
that some VMs can only be placed on a subset of servers, due
to hardware constraints. Such placement limitations can be
accommodated in Anchor, as the list of preferences does not
need to contain a complete set of servers. The policy engine in
Anchor supports an additional API call limit(g c, server list)
so that VM preferences in a client policy group g c explicitly
exclude any server outside of server list.

Dynamically changing preferences and VM sizes. It is
common that the servers’ and VM’s preferences may change
over time. Anchor also supports dynamically changing pref-
erences and VM sizes. Whenever such a change occurs, the
corresponding party automatically leaves its current partner
and becomes unassigned, which yields a type-1 blocking pair.
The matching then becomes unstable, and the multi-stage DA
algorithm as shown in Algorithm 2 can readily run to produce
a new stable matching with respect to the updated preferences
and VM sizes.

IV. IMPLEMENTATION AND EVALUATION

We are now ready to investigate the effectiveness and
performance of the Anchor architecture. We begin with a
prototype implementation of Anchor with about 1500 LOC in
the Python language. Our implementation is based on Oracle
VirtualBox 3.2.10 [4].

The resource monitor is implemented as a Python appli-
cation that maintains resource statistics of servers and VMs
using SQLite, a lightweight database engine. The sqlite3
Python bundle is utilized to update records in the database.
The resource monitor periodically listens for usage reports
— once per second — from a daemon in each physical
server, which we have implemented for the sole purpose
of collecting measurements of CPU and memory usage, via
the VirtualBox management API (VBoxManage metrics).
Our daemon utilizes the iptraf tool to detect the available
bandwidth of each server, since VirtualBox does not provide
suitable APIs for this purpose.

The policy manager also utilizes SQLite to manage policy
groups for both the operator and cloud clients, and updates its
databases upon receiving an Anchor API call. For efficiency, it
maintains all the preferences in memory. When an allocation
or migration request arrives, it obtains necessary information
from the resources monitor’s database, and sends sorted pref-
erences to the matching engine.

The matching engine implements both the revised and the
multi-stage deferred acceptance algorithms in Python. We
preprocess server preferences (with a complexity of O(n)) to
obtain an inverse of the list indexed by rank. Each subsequent
rank comparison can thus be performed in constant time. For
maximum efficiency, we use numpy in Python to implement
the data structure of preferences. The matching engine utilizes
the VirtualBox management API to start or migrate VMs
according to matching results.

Our evaluation of Anchor is based on a prototype data center
consisting of 20 Dual Dual-Core Intel Xeon 3.0 GHz machines
connected over gigabit ethernet. Each machine has 2 GB
memory. Thus, we define the atomic VM of size 1 to have 1.5
GHz CPU and 256 MB memory. Each server has maximum
capacity of 7 in terms of atomic VM (since the hypervisor also
consumes server resources). All machines run Ubuntu 8.04.4
LTS with Linux 2.6.24-28 server. A cluster of Dual Intel Xeon
2.4 Ghz servers are used to generate workload for some of the
experiments. One node in the cluster is designated to run the
Anchor control plane, while others host VMs. Our VMs, if not
otherwise noted, run Ubuntu 8.10 server with Apache 2.2.9,
PHP 5.2.6, and MySQL 5.0.67.

Results from our experimental evaluation are presented in
four categories. Sec. IV-A investigates the effectiveness of
Anchor on enforcing policies. Sec. IV-B uses the resource
hunting policy for clients to evaluate the efficiency of resource
allocation in Anchor. Sec. IV-C evaluates Anchor’s ability
to resolve conflicts of interest between cloud operators and
clients, and Sec. IV-D shows the scalability and practicality
of our algorithms using simulations at larger scales.



1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7

Server

O
cc

up
an

cy existing VMs
new VMs1

2

3

4
5

6

7
8

9

10

Fig. 6. Consolidation.
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Fig. 7. Load Balancing.

A. Effectiveness of Realizing Policies

Our first set of experiments uses both consolidation and
load balancing policies for VM allocation to demonstrate
the effectiveness of Anchor in realizing resource management
policies specified by its clients. We assume that clients follow
the operator’s default policy in all our experiments in this
category, so there is no conflicting interest involved.

The first experiment is to use Anchor to allocate 10 VM
to 10 servers, the first four of which are configured with an
utilization of 2, 1, 1, 2, respectively. Figure 6 shows the result
of using the consolidation policy, where VM preference is
ranked in descending order of server utilization, and server
preference is ranked in descending order of VM size. We
observe that all the VMs are packed into the first five servers,
whose utilization are thus maximized. On the other hand,
the load balancing policy strips the VMs across the idle
servers, resulting in a more balanced server load as shown
in Figure 7. Algorithm 2 takes 3 iterations to converge to the
strongly stable matching of Figure 6 for the former case, and
2 iterations for the latter.

We then experiment a more complex scenario where 5
allocations are performed at 30, 60, 90, 120, and 150 seconds,
respectively, each time with 10 VMs. Each server is configured
to be empty before the experiment. Figure 8 shows a time
series comparison of the number of active servers resulted
from using the two policies in this scenario. Clearly, the con-
solidation policy consistently requires less number of servers
except for the first allocation, the result of which is identical
since each server is initially empty in both cases.

Finally, we incorporate page sharing potential into servers’
preferences, i.e., we configure them with set factors(g o,
1/vm os sharing, 1/vm os) as in Sec. III-A. The same set
of 5 allocations are performed as in the last experiment. Since
VirtualBox supports page sharing only for Windows guests,
we configure the second and third batches of VMs to run
Windows XP 64-bit instead of Ubuntu. Figure 9 shows the
memory consolidated by page sharing averaged over servers,
which is calculated by multiplying the number of Windows
VMs and total memory shared between them. We observe that
when page sharing potential is considered, on average around
400 MB more memory is saved on each server, translating to
a 100% improvement over a simple consolidation policy.

Result: Anchor effectively realizes the desired resource
management policies as specified by the cloud operator.

B. Efficiency of Resource Allocation
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Fig. 8. Time series of the number
of active servers.
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Fig. 9. The effect of page sharing.
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Fig. 10. VM1 CPU usage on S1.
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Fig. 11. VM1 CPU usage on S2.

We then evaluate the efficiency of Anchor resource alloca-
tion, by allowing clients to use resources hunting policies in
Sec. III-A. We enable memory ballooning in VirtualBox to
allow the temporary burst of memory use. CPU-bound VMs
are configured to run a 20 newsgroups Bayesian classification
job with 20,000 newsgroups documents, based on the Apache
Mahout machine learning library [1]. Memory-bound VMs run
a facebook-like Web 2.0 application called Olio that allows
users to add and edit social events and share with others
[3]. Its MySQL database is loaded with a large amount of
data so that performance is memory critical. We use Faban,
a benchmarking tool for tiered web applications, to inject
workload and measure Olio’s performance [2].

Our first experiment comprises of 2 servers (S1, S2) and 2
VM (VM1 and VM2). S1 runs a memory-bound VM of size 5,
and S2 runs a CPU-bound VM of the same size before alloca-
tion. VM1 is CPU-bound with size 1 while VM2 is memory-
bound with size 2. Assuming servers adopt a consolidation
policy, we run Anchor first with the resources hunting policy,
followed by another run with the default consolidation policy
for the two VMs. In the first run, Anchor matches VM1 to S1
and VM2 to S2, since VM1 prefers S1 with more available
CPU and VM2 prefers S2 with more memory. In the second
run, Anchor matches VM2 to S1 and VM1 to S2 by virtue of
consolidation.

We now compare CPU utilization of VM1 in these two
matchings as shown in Figure 10 and 11, respectively. From
Figure 10, we can see that as VM1 starts the learning task
at around 20 sec, it quickly hogs its allocated CPU share
of 12.5%, and bursts to approximately 40% on S1 (80%-
40%). Some may wonder why it does not saturate S1’s CPU.
We conjecture that the reason may be related to VirtualBox’s
implementation that limits CPU resources allocated to a single
VM. In the case it is matched to S2, it can only consume up
to about 30% CPU, while the rest is taken by S2’s existing
VM as seen in Figure 11. We also observe that the learning
task takes about 600 sec to complete on S2, compared to 460
sec on S1, a performance penalty of 30%.
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Fig. 12. VM2 memory usage on S1
and S2.
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Fig. 13. S1 CPU and memory usage.

We then look at the memory-bound VM2. Figure 12 shows
a time series of memory allocation comparison between the
two matchings. Recall that VM2 has size 2, and should be
allocated 512 MB memory. By the resources hunting policy,
it is matched to S2, and obtains its fair share as soon as it is
started at around 10 sec. When we start the Faban workload
generator at 50 sec, its memory allocation steadily increases
as an effect of memory ballooning to cope with the increasing
workload. At steady state it utilizes about 900 MB memory. On
the other hand, when it is matched to S1 by the consolidation
policy, it only has 400 MB memory after startup. The deficit
of 112 MB is allocated to the other memory hungry VM that
S1 is running before the allocation. VM2 gradually reclaims
its fair share as the workload of Olio database rises, but cannot
get any extra resource beyond that point.

We also compare Faban benchmark results for Olio in
the two matchings. Table III shows Olio’s 90-th percentile
response time of various operations measured by Faban. A sig-
nificant performance improvement is observed when VM2 is
matched to S2 in all categories. Specifically, for the memory-
intensive TagSearch and EventDetail operations, the response
times are two orders of magnitude shorter. This clearly demon-
strates the advantage of allowing clients to express policies
specific to their resource usage pattern compared to not doing
so.

Client resource hunting policy serves also to the benefit of
the operator and its servers. Figure 13 shows S1’s resource
utilization during the period [100, 200] sec. When resource
hunting policy is used, i.e. when S1 is assigned VM1, its
total CPU and memory utilization are aligned at around 60%,
because VM1’s CPU-bound nature is complementary to the
memory-bound nature of S1’s existing VM. However, when
S1 is assigned the memory-bound VM2 by the consolidation
policy, its memory utilization surges to nearly 100% while
CPU utilization lags at only 50%. A similar observation can
be made for S2.

Result: Anchor enables efficient resource utilization of the
infrastructure and improves performance of its VMs, by allow-
ing individual client to express policies specific to its resource
needs through its flexible API.

C. Resolving Conflicting Interests

We now conduct experiments to evaluate Anchor in address-
ing the conflicts of interest between operator and clients. We
consider a migration scenarios where servers and VMs have
distinct and possibly conflicting goals.

TABLE III
OLIO’S 90TH% RESPONSE TIME COMPARISON (IN SEC).

Type On S2 On S1 Required
HomePage 0.2 9.2 1.0

Login 0.12 4.7 1.0
TagSearch 0.42 >19.8 2.0

EventDetail 0.28 >19.8 2.0
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Fig. 14. Anchor based on stable
matching migrates VM1 to S1 and
VM2 to S2.
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Fig. 15. Optimization migrates VM1
to S2 and VM2 to S1.

Our setup involves two VMs to be migrated, VM1 and
VM2, and two servers S1 and S2 as the potential destination.
Both VMs are initially hosted at the same server, whose hop
distance to S1 and S2 is 1 and 2, respectively. VM1 has 512
MB memory, and VM2 768 MB. Both servers are configured
to have a free capacity of 3. To emulate server bandwidth
discrepancy, we use the default token bucket implementation
in Linux (tc) to limit the bandwidth of S1 to 500 Mbps, and
that of S2 to 800 Mbps. VMs’ preferences are configured with
a call to set factors(g c, 1/servers freebw), and servers’
by set factors(g o, num of hops, vm memsize) as in
Sec. III-B.

With the above setup, Anchor matches VM1 to S1 and VM2
to S2 by Algorithm 2. We compare this stable outcome with
the result of an optimization that minimizes total utility of the
matching. Utility here is defined for a pair of VM and server
by (vm size × num of hops) / server freebw, in order to
jointly consider the interest of operator and clients. This can be
seen as the processing time needed for the network to migrate
the VM to the given server, and the optimization can then
be regarded as a minimum weighted bipartite matching that
minimizes the total processing time of migration. This leads
to the matching of VM1-S2 and VM2-S1, as can be obtained
from calculating and comparing the total utility of all possible
matchings.

We then conduct a performance comparison from the cloud
clients’ perspective. We run the Faban workload generator
during the course of migration on both VMs, and plot the re-
sponse time for displaying Olio homepage as the performance
indicator. The migration of VM1 starts at 10 sec, and that of
VM2 starts at 60 sec. As shown in Figure 14 for Anchor, at 20
sec there is a 1-sec burst of response time. This corresponds
to the last stage of live migration where the VM is suspended
with the delta of its memory pages since the last transfer being
sent to the target server. In total it takes 11 sec to migrate VM1
to S1. A 1-sec down time is also observed for VM2, and it
takes 21 sec to migrate VM2 to S2. For the matching produced
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Fig. 16. Anchor outperforms OPT
in migration time.
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Fig. 17. OPT outperforms Anchor
in overhead.

by the optimization, it takes 26 sec to migrate VM2 to S1 as
shown in Figure 15, which is about 25% worse. Thus from
VM perspective, Anchor based on stable matching is favorable
to optimization.

We also compare migration performance from the operator’s
perspective. We measure the total amount of traffic during
migration by using the /proc/net/dev interface on the source
server, and multiply the total bytes sent by the hop distance
(recall both VMs are hosted in the same source server).
Though this includes some background traffic, its effect is
negligible compared to the bulky migration traffic. We observe
that optimization results in a total of 2342 MB overhead, about
12% less than the stable matching approach of Anchor which
is 2629MB.

The reason for the observed performance discrepancy is
that, optimization tries to “arbitrate” the conflicting interest
of the operator and its clients by considering all the factors
in its utility metric. Anchor, on the other hand, uses the
stability concept to resolve this issue. The VM-proposing
Algorithm 2 yields the VM-optimal stable outcomes as proved
in Sec. II-E. Therefore the overall performance is favorable to
VMs compared to that of optimization.

To further validate this intuition, we conduct simulations
based on the three-tier data center network topology of
Figure 5. The quota of each server is uniformly distributed
in [1, 7]. The hop distance between servers is generated by
assuming the fan-out of access routers to be 4, and the fan-
out of aggregation routers to be 8. The initial placement of
VMs on servers is random. The size of VM’s memory image
is uniformly distributed in [256, 1024] MB, and the available
server bandwidth is uniformly distributed in [0.5, 1.5] Gbps.
The results, as shown in Figure 16 and 17, are consistent
with our experiments: Anchor offers 15% shorter migration
time on average over 100 runs, while optimization reduces
the overhead by 15%.

Result: Anchor is capable of resolving the conflicting in-
terest between the participants of the resource market in the
cloud. Its overall performance is competitive against that of
optimization, with desirable properties of stability and VM-
optimality of the outcome.

D. Anchor at Scale

Finally, we evaluate the scalability of Anchor using both
experiments and simulation. We conduct a medium-scale ex-
periment involving all of our 20 machines. We orchestrate
a complex scenario with 4 batches of allocation requests,
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Fig. 19. Running time.

each with 20 VMs of various sizes, followed by 2 batches
of migration requests, each with 10 VMs of various sizes.
Servers are initially empty with capacity of 7. VMs use
distinct policies for both allocation and migration, and servers
adopt a consolidation policy for allocation and an overhead-
minimization policy for migration.

Since different agents have different objectives, we use the
rank of the assigned partner in percentage as performance
metric that reflects one’s “happiness” about the matching. For
servers, their happiness is the average rank of the matched
VMs. From the experiment we find that VMs obtain their
top 10% partner on average while servers only get their top
50% VMs. The reason is that the number of VMs is too
small compared to servers’ total capacity, and most of VMs’
proposals can be directly accepted.

We then conduct large-scale simulations with the same
setting. We vary the numbers of VMs and servers but keep
their ratio constant, and evaluate the happiness statistics. The
result is shown in Figure 18. On average VMs obtain their top
7% choice, while servers get their top 15-20% choices. Thus,
we can conclude that Anchor remains effective in realizing
clients’ policies and resolving conflicting interest in large-scale
problems.

We also plot the running time of Algorithm 2 in simula-
tions to demonstrate the scalability of our algorithms. From
Figure 19 we can see that the running time is less than 1 sec
for problems of up to 8,000 VMs, and less than 8 sec when the
problem size scales up to 12,000 VMs. Moreover, we observe
that Algorithm 2 takes less than 4 stages to converge in most
of the cases, and 7 stages maximum in simulations.

Result: Anchor effectively realizes resource management
policies in large-scale problems. Its multi-stage DA algorithm
scales up to tens of thousands of VMs and takes less than 4
stages to converge in most cases.

V. RELATED WORK

Stable Matching. Since the seminal work of [11], a signif-
icant body of research in economics has examined different
variants of stable matching, from one-to-one, many-to-one, to
many-to-many models (see [26], [27] and references therein).
Algorithmic aspects of stable matching have also been studied
in computer science [16], [20]. However, the use of stable
matching in networking is fairly limited. [18] uses a variant of
the DA algorithm to map input to output queues in switching.
Our recent work [34], [35] advocates stable matching as a
general framework to solve networking problems. To our



knowledge, all these work assumed a traditional uni-size job
model.

VM Allocation. VM allocation on a shared infrastructure
has been extensively studied in the literature. [8], [28] pre-
sented methods to provision computation resources in data
centers. [19] considered storage resources in addition and
the resulted coupled placement problem. [24], [29] studied
VM allocation from an energy perspective. Further, there are
also studies to consider the correlation of network traffic
between VMs and its effect on intelligent placement [21].
These work considered specific facets of the problem and
proposed specifically crafted algorithms to deal with them.
They are very complementary to Anchor, as the insights and
strategies can be incorporated as policies to serve different
purposes without the need to design another set of algorithms
from ground up.

VM Migration. Besides efforts to enable efficient live
migration of VM from an implementation perspective [9], [25],
[31], there are also studies to develop automated strategies
in determining which VM should be migrated to which
servers [32]. In [14] automated VM migration is employed
for scientific nano-technology workloads on federated grid
environments. Shirako, a leasing contract based resource man-
agement system for a federated cluster environment, also used
migrations to enable dynamic placement decisions [17].

VI. CONCLUDING REMARKS

We presented Anchor as a unifying fabric for resource
management in clouds, where policies are decoupled from the
management mechanisms by the stable matching framework.
We demonstrated the use of stable matching as a better alter-
native to conventional optimization, by first developing a new
theory of job-machine stable matching with size heterogeneous
jobs as the underlying matching mechanism to resolve any
conflict of interest between the cloud operator and cloud
clients. We then showcased the versatility of the preference
abstraction for a wide spectrum of resource management
policies through a simple API. We described the design and
implementation of the Anchor prototype system, and used a
20-node cluster testbed as well as large-scale simulations to
evaluate its effectiveness, efficiency, flexibility, and scalability.

Our attempt of advocating stable matching in favor of
optimization approaches here may seem ambitious. Yet, we
believe that stable matching has unique merits, particularly
its practicality, in solving problems in computer networking
domain. It has potential, as a general framework, to offer fresh
perspectives to the community. Towards this vision, we plan to
explore Anchor’s applicability in other areas, such as resource
management in federated computing, and job scheduling of
MapReduce and Hadoop.

VII. APPENDIX

To prove Theorem 5 we need the following lemmas.
Lemma 3: If a particular job j participates in stage t + 1,

it must have participated in stage t.

Proof: It is a direct result of our algorithm design. When
a job stops participating in t+1, it does not form any blocking
pair with any of the machines no matter how the rest of jobs
participated in t are matched.

Lemma 4: If a set of jobs do not participate in a particular
stage t in Algorithm 2, then they are assigned to their best
possible machine in all weakly stable matchings after t.

Proof: Let us call a machine “possible” for a given job if
there is a weakly stable matching that assigns it there. We can
prove this lemma by induction. It is clear that when we pick
up all the jobs that can participate, it is equivalent to pick up
those that definitely cannot participate. We can easily do so by
first finding jobs that cannot participate unless some jobs that
did not participate in previous stage participate, marking them,
and finding the rest that cannot participate unless some jobs
that were marked in this stage or previous stages participate,
until there is no such job.

Assume that up to a certain point of Algorithm 2, the
lemma holds, i.e. no marked job was permanently rejected
by a possible machine (since it cannot propose any more).
Now suppose we mark job j, which is (permanently) rejected
by a possible machine m in a hypothetical matching µ′. Since
j is marked, m must have accepted a set of jobs Jm that are
preferable than j and marked before. Then, in µ′, at least one
of the jobs from Jm must be sent to a less desirable machine,
since all machines preferable than m is impossible for it by
assumption. This clearly forms a type-2 blocking pair in µ′,
and contradicts with the assumption. Thus the proof.
This shows that our algorithm only permanently rejects jobs
from machines that are impossible to accept them in all weakly
stable matchings, when the jobs cannot participate any further.
The resulting assignment is therefore optimal.

Lemma 5: If µt = µt−1 in Algorithm 2, then the set of
participating jobs at t are assigned their best possible machine
in all weakly stable matchings.

Proof: Assume that at a given point of the algorithm
execution at t, every job matched to its previous machine
µt−1(j) is given its best possible machine. Suppose now, j
is rejected by all machines better than µt−1(m), while there
is a hypothetical weakly stable matching µ′ that sends j to
a better machine m. Thus j must have proposed to and been
rejected by m. m rejected j because it accepted j1, j2, · · · ,
each of which is preferable than j. If ji did not participate in
t, by Lemma 4 m is its best possible machine. If ji participated
in t, by assumption m is impossible for it. Thus in µ′, for m
to have j, at least one of ji has to be sent to a less desirable
machine, which causes a type-2 blocking pair (ji,m) in µ′,
which contradicts the assumption.

Now we can prove Theorem 5.
of Theorem 5: There are two possible cases when

Algorithm 2 terminates.
If the algorithm terminates when there is no type-1 blocking

pair, i.e. no job can, or wishes to if it can, participate by
proposing to a better machine. Then by Lemma 4, all these
jobs are assigned to their best possible machine. Therefore the
resulting matching is job-optimal.



If the algorithm terminates at stage t where µt = µt−1, then
by Lemma 4 all jobs that did not participate in t are assigned
the best machine. By Lemma 5 all jobs that participated in t
are also sent to their best machine. Hence the matching is also
the job-optimal weakly stable matching.
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