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Abstract— The highly stochastic nature of wireless environ-
ments makes it desirable to monitor link loss rates in wireless sen-
sor networks. In a wireless sensor network, link loss monitoring
is particularly supported by the data aggregation communication
paradigm of network traffic: the data collecting node can infer
link loss rates on all links in the network by exploiting whether
packets from various sensors are received, and there is no need
to actively inject probing packets for inference purposes. In
this paper, we present a low complexity algorithmic framework
for link loss monitoring based on the recent modelling and
computational methodology of factor graphs [2]. The proposed
algorithm iteratively updates the estimates of link losses upon
receiving (or detecting the loss of) recently sent packets by the
sensors. The algorithm exhibits good performance and scalability,
and can be easily adapted to different statistical models of
networking scenarios. In particular, due to its low complexity,
the algorithm is particularly suitable as a long-term monitoring
facility.

Index Terms— sensor networks, link loss monitoring, network
tomography, factor graphs, Sum-Product Algorithm

I. I NTRODUCTION

Recent technological advances have made it feasible to de-
ploy large-scale sensor networks using low-cost sensor nodes.
However, as the scale of sensor networks becomes larger, two
key challenges potentially arise. First,node failures. Due to
their inherent instability and energy constraints, sensornodes
are prone to failures. It would thus be useful to determine
which set of nodes or which geographical areas within the
network are experiencing high loss rates. Such informationis
potentially valuable to the design of fault-tolerant protocols
or monitoring mechanisms, so that the problem areas may be
re-deployed, and critical data may be rerouted to avoid these
failure-prone areas suffering high loss rates. Second,resource
constraints.Since sensor nodes have limited computational
resources, any algorithms developed for wireless sensor net-
works must not rely on the assumption of unlimited resources,
and must sparingly use the limited resources that do exist.
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Further, due to wireless characteristics such as fading and
interference, wireless sensor networks are subject to stringent
bandwidth resource constraints. One can not rely on the
use of active acknowledgments — which are not scalable
or bandwidth-efficient — in the design of sensor network
algorithms.

Motivated by the needs (fault-tolerance and reliability) and
constraints (bandwidth and computational power) illustrated
above, in this paper, we concentrate on the problem of effi-
ciently determining link loss rates in wireless sensor networks.
Particularly, we attempt to efficiently determine link lossrates
based on thedata aggregationcommunication paradigm in
sensor networks. Due to the obvious need of centralized
sensor data processing and monitoring, the paradigm of data
aggregation, also referred to asdata fusion, has been critical to
the effective operation of sensor networks. Work in this area
has been previously presented (refer to [1] as an example)
and continues to be actively researched. In the process of
data aggregation, a subset of nodes in the network attempts to
forward the sensor data they have collected back to acenter
(or sink) node via areverse multicast tree.

More specifically, in the process of data aggregation, before
a node sends its data to the next node in the path to thesink, it
waits to receive data from all of its child nodes in the reverse
multicast tree (or until a specified period of time has elapsed).
The node then aggregates its own data with the data it has
received from its child nodes, and forwards this aggregated
data to thesink via the reverse multicast tree. Information
about which nodes’ data is present in the aggregated data must
also be sent to thesink. Thus, data fusion saves communication
overhead at the cost of additional computation and memory
resources. Fig. 1 depicts a simple example of a sensor network
using the data aggregation paradigm.

In wireline networks, the field of network inference, also
referred to as network tomography, involves the estimation
of network performance parameters using measurements. In
wireline networks, inferring link losses requires either network
multicast support (which is not always the case), or sending
series of back-to-back packet pairs with unicast (see, e.g.,
[3], [4] and the references included therein). In the case
of multicast-based link loss inference, a center node sends
out a batch of multicast probing packets to all terminals
and, upon receiving the acknowledgments from the terminals
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Fig. 1. Data aggregation (fusion) in wireless sensor networks: an example.
Node B sends it data, (B), destined for the center node, to node A. Node C
similarly sends its data, (C), destined for the center node, to node A. Node
A then aggregates is own data, (A), with that of nodes B and C, and sends
the fused data, (A,B,C) to the center node. With data aggregation, each node
is only required to transmit once per data collection round. However, without
data aggregation, node A would have to transmit three times perdata collection
round: once to send its own data to the center node, once to forward node
B’s data, and once to forward node C’s data.

whether these probing packets are received, performs statistical
inference on the link loss rates. In addition to requiring the
multicast protocol to be supported by the network, such a
strategy perturbs the network by sending out extra packets
solely for the purpose of probing. Similar observations canalso
be made in the case of inference with unicast-based packet-
pair measurements, though it does not require specific support
from the network layer. Injecting additional traffic will further
aggravate the link losses at the loaded links, which makes
it impractical as a long-term monitoring daemon in sensor
networks, given existing resource constraints.

In this paper, we propose and examine a new and efficient
mechanism to monitor link losses in wireless sensor networks.
In a wireless sensor network, a set of terminal (sensor) nodes
send data, concerning some measurements of the physical
world, to a center (data-collecting) node via a set of wirelessly
connected links. We take advantage of the data aggregation
communication paradigm in sensor networks, where the data-
carrying traffic flows from the terminals to the center via a
reverse multicast tree. Such a characteristic potentiallyenables
the implementation of simple protocols and algorithms for
constant link loss monitoring at virtually no cost. Our original
contributions are two-fold: First, we present a novel algorithm
for the purpose of link loss inference, based on the recent
methodology of factor graphs and the Sum-Product Algorithm
[2]. We show that this algorithm has very low complexity,
and demonstrate by simulations its excellent performance
and scalability. Second, we are one of the first to consider
network inference exploiting reverse multicast trees for data
aggregation in sensor networks. Most existing research in
this area has dealt with the traditional multicast and unicast
communication paradigms in wireline networks, where probes
are sent from a single source to one or several receivers (see,

e.g., [3], [4], [13]–[16], [19], [26]).
The remainder of the paper is organized as follows. We will

first present the formulation of the problem in Section II, and
introduce the algorithm in Section III. We will then give the
simulation results and some discussion in Section IV and close
this paper with a brief conclusion in Section V.

II. M ODEL AND PROBLEM FORMULATION

We consider a sensor network as a directed graph, where
each node represents either a terminal (sensor), a router, or the
center (data collecting) node, each directed edge represents
the link between these nodes, and the direction of an edge
indicates the direction of the data flow on the link. Based on
the data aggregation paradigm, we consider a reverse multicast
tree rooted at the data collecting node, where messages are sent
from leaf nodes to the data collecting node. We will not allow,
except for the data collecting node, degree-two nodes in the
graph; that is, if a degree-two node is not the data collecting
node, it is suppressed in the graph. In this setting, what we
refer to as a “link” is not necessarily in its physical sense,
since a “link” can be a path consisting of several connected
physical links as long as no other paths are branched from an
intermediate node in the path. It can be verified that such a
notion of “link” is defined without loss of generality, as faras
loss rates are concerned. In this paper, the term “path” of a
network refers to a path that starts from a terminal node and
ends at the center node.

We assume that all terminal nodes send packets constantly,
in a synchronous manner, to the center node along the tree (in
Section IV, we will briefly discuss the possibility of relaxing
this assumption). Each intermediate node in the tree, upon
receiving the packets from its children, creates an aggregated
packet and forwards it to its parent. Here the notion of “packet”
is also more conceptual than implementational. For example,
we will not require packets sent by different nodes to have
the same size, and rather assume that the aggregated packet
sent by any intermediate node is large enough to “bundle” all
the information contained in its children’s packets. Throughout
this paper, a packet sent from a sensor is said to be “received”
or to “have arrived” if the data contained in the packet
is received by the data collecting node in the aggregated
packet. As part of the transmission protocol, for every packet
transmitted by a terminal node, the center node expects it to
arrive within a certain time frame; and if the packet is not
received within that time frame, then a packet loss is suggested
to have occurred on one of the links along the path. Based on
successive observations on whether packets from each terminal
have arrived, the center node can infer the link loss rates on
all links in the network.

Formally, we will useE to denote the set of links of the
network of interest, andW to denote all the paths in the
network. Associate to each linke ∈ E a state xe, taking
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values from{0, 1}; when link e is at state0 (“bad state”),
no packet will pass throughe, and when linke is at state1
(“good state”), all packets can pass throughe. For each path
w ∈ W , let its statexw be the logicAND of all the links
consisting ofw, for which we write

xw =
⊕

e∈w

xe,

where
⊕

denotes the logicAND operator and “e ∈ w” reads “e
is a link contained inw”. For example, in the toy example of a
sensor network in Figure 2, there are three linksa, b, andc, and
two paths{a, b} and{c, b}; and the links states and path states
are related byx{a,b} = xa⊕xb, andx{c,b} = xc⊕xb. Clearly,
if and only if when the statexw of pathw is 1 can packets pass
throughw. Then whether a packet will be received essentially
indicates the state of the path along which the packet is to
travel.

At any time instant, the statexe of every link e can be
regarded as a Bernoulli random variable with probabilityαe

taking value1 and with probability1 − αe taking value0. In
this paper, we use

B(x, α) =

{

α, x = 1,

1 − α, x = 0.

to denote the probability mass function of a Bernoulli random
variable parametrized byα.

We will assume thatαe at each link is quasi-static, namely,
over a relatively small time window in which hundreds or
thousands of packets may be sent by any terminal,αe stays
as a constant. Suppose that during a time window, there
aren batchesof synchronized packets transmitted from each
terminal to the center, where theith batch of packets are
transmitted at timeti, i = 1, 2, . . . , n, from all the terminals
synchronously. Letx(i)

e be the link state ofe at time ti, then
the path statex(i)

w of pathw at time ti is

x(i)
w =

⊕

x(i)
e ,

experienced by the packet transmitted atti and traveling along
w; the observation whether the packets in theith batch have
arrived indicates the states of all paths at timeti.

Collectively, we denoteX(i)
E := {x

(i)
e : e ∈ E}, X

(i)
W :=

{x
(i)
w : w ∈ W}, X

(l,m)
E := {X

(i)
E : l ≤ i ≤ m},

X
(l,m)
W := {X

(i)
W : l ≤ i ≤ m}, and αE := {αe : e ∈ E}.

The problem of link loss inference in the network is then the
problem of estimatingαE based on the observation ofX

(1,n)
W .

In this paper, we set up the problem as, for eache ∈ E, finding
α̂e that maximizes the posterior probabilityP [αe|X

(1,n)
W ] of

αe conditioned on the observationX(1,n)
W . In addition, it is

important to realize thatαe changes with time. Thus we ideally
desire an algorithm to have a sufficiently low complexity so
as to serve as a daemon tracking the link loss rates constantly.

a c

b

Fig. 2. A toy example of a sensor network.

III. T HE FACTOR GRAPH APPROACH

Link loss inference belongs to the relatively recent area of
networking research, network tomography (see [3], [4], [13]–
[22], [26], [27] etc.). Typical network tomography problems
include the inference of link loss or delay characteristics
from end-to-end measurements [3], [13]–[19], [22], [26], [27],
the estimation of origin-destination traffic intensities from
link measurements [23]–[25], and the inference of network
topology [20], [21].

Prior to this work, most of the literature on link loss
inference concerns wireline networks, where multicast pack-
ets are sent actively to probe the network. When multicast
addressing is not supported by the network, there have been
alternative proposals on link loss inference based on sending
unicast probing packets, where clever protocols (for example,
using back-to-back packets) are incorporated which essentially
turns the inference problem to a multicast problem (see, for
example, [13], [14]).

For the multicast link loss inference problem, Cacereset al.
[3] present an ML (maximum likelihood) estimator for the link
loss rates that isasymptotic optimal(namely, approaching the
true ML estimator for asymptotically large number of probes).
The Expectation-Maximization algorithm is also presentedas
a solution to this problem [15], [26]. It may be arguable
that these techniques can be applied to link loss inference
in wireless sensor networks, a main perspective of this paper
is however the concern of the algorithm complexity when
it is used as a long-term monitoring daemon. Comparing
with previous works, the factor graph approach we present,
although sub-optimal, demonstrates good performance and
most importantly, very low complexity.

In this section, we will first give a brief introduction on
the factor-graph framework as an modeling inference method-
ology, and then proceed to introduce our algorithm. The
performance of the algorithm will be shown in the next section.

A. Factor Graphs and the Sum-Product Algorithm

Recently, the notion of factor graphs has attracted intense
research interest in areas of electrical engineering and com-
puter science, since it was recognized that the framework
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Fig. 3. The factor graph representingf1(x1, x2)f2(x2, x3)f3(x2, x4).

of factor graphs and an iterative algorithm, call the Sum-
Product Algorithm, operating on factor graphs unify a variety
of previously discovered important algorithms, such as the
Viterbi algorithm, BCJR algorithm, Kalman filtering, FFT,
belief propagation, forward-backward algorithm etc. In partic-
ular, in the community of error correction coding, it is shown
that factor graphs and the Sum-Product Algorithm underlie
the methodology of the most celebrated error control coding
schemes, turbo codes [8] and low-density parity-check codes
[9]–[11].

To date, the notion of factor graphs includes multiplicative
factor graphs and convolutional factor graphs [2], [5], [6].
In this paper, we will mainly deal with multiplicative factor
graphs, referred to as factor graphs from here on, for simplic-
ity.

A factor graph is a bi-partite graph representing the fac-
torization structure of a multivariate function into a product
of functions (factors), each involving only a subset of the
variables. There are two types of vertices in the graph, variable
vertices, representing the variables of the global multivariate
function, and function vertices, representing the factorsin
the factorization; a variable vertex is connected to a function
vertex by an edge if the variable is an argument of the
factor. For example, Figure 3 is a factor graph representing
the factorizationf1(x1, x2)f2(x2, x3)f3(x2, x4), where each
square box is a function vertex representing factorf1, f2 or
f3, and each circle is a variable vertex representing variable
x1, x2, x3 or x4.

A factor graph can be used as a probabilistic graphical
model which represents a joint probability mass function
(PMF)1 of random variables. In this case, each variable node
represents a random variable, and each factor represents either
the joint or conditional joint PMF (PDF) of a subset of
random variables, and conditioned upon any subset of random
variables corresponding to a cut-set of the graph, the separated
two subgraphs (induced by removing the cut-set vertices) are
independent. For example, letX1, X2, X3 and X4 be a
set of random variables where conditioned onX2, random
variablesX1, X3 and X4 are independent of each other.

1or probability density function (PDF). For simplicity, we will often omit
mentioning the term PDF.

Then the joint PMF of the four random variables may be
represented by the factor graph in Figure 3, where we may
interpretf1(x1, x2) as the joint PMF ofX1 andX2, f2(x2, x3)

as the conditional PMF ofX3 given X2, and f3(x2, x4)

as the conditional PMF ofX4 given X2. We note that the
interpretation off1, f2 and f3 is in general not unique; for
example,f1(x1, x2) may represent the conditional PMF ofX1

given X2, f2(x2, x3) may represent the conditional PMF of
X3 given X2, and f3(x2, x4) may represents the joint PMF
of X2 and X4. That is, as a probabilistic model, a factor
graph representing a joint PMF fundamentally specifies a set
of conditional independence relationships and the functions
(factors) represented by the function vertices may take an
arbitrary scale, subject to the constraint that the productof
the functions satisfy as a PMF or PDF (the sum or integral of
the product over all variables equals to1).

A useful function for representing a deterministic constraint
in a factor graph is the constraint indicator function: letC(x)

be a constraint (a boolean proposition) on a possibly vector-
valued variablex, then the constraint indicator function of
C(x) is defined as:

δ[C(x)] :=

{

1, if C(x),

0, otherwise.

That is, the constraint indicator function evaluates to1 if the
constraint is satisfied, and to0 otherwise.

Unifying various algorithms, the Sum-Product Algorithm
is an algorithm that operates iteratively on a factor graph
by “passing messages” between function vertices and vari-
able vertices. The “messages” are essentially functions (for
continuous-valued variables) or tables (for discrete valued
variables) computed in the intermediate steps of the algo-
rithm. If f(x1, x2, . . . , xm) is a function that factors ac-
cording to a factor graph having no cycles, it is known
that the Sum-Product Algorithm can simultaneously com-
pute

∑

∼x1
f(x1, . . . , xm),

∑

∼x2
f(x1, . . . , xm), . . . , and

∑

∼xm
f(x1, . . . , xm) in parallel, where

∑

∼xi
, refers to

summation 2 over all variables exceptxi. For a concrete
understanding of the Sum-Product Algorithm, the reader is
referred to [2] and [7]. In essence, what underlies the Sum-
Product Algorithm is the distributive law between multipli-
cation and summation (or the generalized distributive law
on any semiring, with arbitrarily defined multiplication and
summation [7]).

When the functionf(x1, . . . , xm) represented by the factor
graph is a joint (or conditional joint) PMF, then the objective
of the Sum-Product Algorithm coincides with the objective of
many inference problems, i.e., finding the maximizing config-

2In fact the summation operation here can be made more general. In
particular, if the summation operation is themax operation, the Sum-Product
Algorithm is referred to as the Max-Product Algorithm. See also footnote 3
below.
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uration for marginal PMF
∑

∼xi
f(x1, . . . , xm)3. Clearly, our

formulation for the link-loss inference problem in the previous
section is such an example.

When the factor graph representing the function
f(x1, . . . , xm) contains cycles, it has been shown in
various recent works that the Sum-Product Algorithm can still
be used as an excellent approximation algorithm, particularly
when the objective is to find the maximizing configuration for
∑

∼xi
f(x1, . . . , xm) and not the maximum itself. In fact, the

decoding methods for turbo codes [8] and low-density parity-
check codes (see e.g., [11]) are precisely the Sum-Product
Algorithm applied on factor graphs with cycles, and the
performance of the Sum-Product Algorithms enables these
codes to achieve the Shannon limit of digital communications.
An intuitive explanation on why the algorithm works so
well is that the factor graphs used in these schemes are
large and sparse, and the effects of cycles fades away after
a few iterations. Also due to the fact that the graphs are
sparse, the complexity of the algorithm is essentially linear
in the average vertex degree, which make the Sum-Product
Algorithm highly scalable.

In the cases when the factor graph contains cycles the
passing of messages in the factor graph may be carried out
in various orders, typically referred to as theschedulesof
the algorithm [2], [28]. For example, a popular schedule,
known as the “flooding” schedule, is that in each iteration,
all variable vertices first pass messages and then all function
vertices pass messages, where the message-passing rules (the
definitions of the messages) stay the same. Summary messages
may also be computed at each iteration for the purpose of
identifying convergence. The algorithm is usually terminated
upon convergence of the summary messages or upon reaching
a pre-set number of iterations.

It should be noted that when the factor graph contains cy-
cles, any schedule of the Sum-Product Algorithm will lead to
a sub-optimal solution to the maximization problem. However,
it has been reported that by adjusting the schedule of the
algorithm there can be extra gain in the sub-optimality, i.e., the
found solution can be closer to the true optimal configuration
[28].

B. Proposed Algorithm

We assume thatαe for eache takes discrete values from set
S := {1/L, 2/L, . . . , 1}, whereL is a positive integer. With
no a priori knowledge, we assign to eachαe a uniform prior
over S.

Let the joint PMF ofX(i)
E parametrized byαE be denoted

by BE(XE , αE). Upon the assumption that each link suffers

3In some inference problems, the objective is to find the maximizing
configuration for the joint PMFf(x1, . . . , xm); this can be solved using
the Max-Product Algorithm on the factor graph representingf ; see [2].

from independent link loss rates, we have

BE(XE , αE) =
∏

e∈E

B(xe, αe). (1)

Then the joint PMF ofαE , X
(1,n)
E andX

(1,n)
W factors as

P (αE ,X
(1,n)
E ,X

(1,n)
W ) ∝

n
∏

i=1

BE(X
(i)
E , αE)PW |E(X

(i)
W ,X

(i)
E ),

(2)

where PW |E(X
(i)
W ,X

(i)
E ) is a the conditional PMF ofX(i)

W

given X
(i)
E , and in fact,

PW |E(X
(i)
W ,X

(i)
E ) =

∏

w∈W

δ[x(i)
w =

⊕

e∈w

x(i)
e ]. (3)

Then our objective becomes findinĝαe for eache ∈ E that
maximizes

P [αe|X
(1,n)
W ] ∝

∑

∼αe

P [αE ,X
(1,n)
E ,X

(1,n)
W ]

∝
∑

∼αe

n
∏

i=1

BE(X
(i)
E , αE)PW |E(X

(i)
W ,X

(i)
E ).

(4)

Notice that the objective of finding for eache ∈ E, the
maximizing α̂e for function

∑

∼αe

n
∏

i=1

BE(X
(i)
E , αE)PW |E(X

(i)
W ,X

(i)
E )

precisely coincides with the objective of the Sum-Product
algorithm 4, and function

n
∏

i=1

BE(X
(i)
E , αE)PW |E(X

(i)
W ,X

(i)
E ) (5)

is also ready to be represented by a factor graph as of Figure
4 (a). That is, the sum-product algorithm can be used to
simultaneously find̂αe for all e ∈ E in parallel.

If we further express the factorsPW |E(·) andBE(·) in (5)
according to (3) and (1), the factor graph can be expanded to
a form similar to Figure 4 (b). Note that in the factor graph
of Figure 4 (b), we consider the case wheren = 2 and the
network takes the topology in Figure 2 to simplify the factor
graph, merely for illustration purpose.

The Sum-Product Algorithm will be applied on the factor
graph in Figure 4 (b) to obtain the estimatêαe of αe for
each e which maximizes (4). Although the factor graph in
Figure 4 (a) is cycle-free, typically its expanded form as of
Figure 4 (b) contains cycles. This makes the application of the
Sum-Product algorithm an approximation algorithm. Noticein
Figure 4 (b), the factor graph consists of “layers” of subgraphs,
each corresponding to a time instantti. This allows a natural
schedule for message-passing in the Sum-Product Algorithm,
i.e., first passing messages in each layer, which we refer to

4More rigorously speaking, the objective of the Sum-Product Algorithm is
to find the marginals, not the maximum of the marginals.
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W X

(i)
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PW |E PW |E PW |E

BE BE

(a)

αa

αc

αb

x
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c
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b

x
(1)
a
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(2)
a

x
(2)
b

x
(2)
c

x
(2)
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(2)
{c,b}

x
(1)
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x
(1)
{c,b}δ[·]

δ[·]

δ[·]

δ[·]

B

B

B

B

B

B
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Fig. 4. (a) The factor graph representing the function
Q

n

i=1 BE(X
(i)
E

, αE)PW |E(X
(i)
W

, X
(i)
E

) and (b) its expanded form,
by letting n = 2 and taking the network as of Figure 2.

as “intra-layer” message passing, and upon convergence, each
layer of the graph passes messages to the vertices representing
αe, which we refer to as “inter-layer” message passing. With
such a schedule, the processing of the path state at each time
instant can be carried out independently, this will serve to
significantly reduce the complexity in long-term monitoring,
as will be addressed in Section IV.

We now present the algorithm.
Step 1. Intra-Layer Message Passing. The goal of this step

can be understood as obtaining the posterior distribution for
each link state at time instantti, conditioned upon observation
on theith batch of packets. In each layer, we use a “flooding”
schedule similar to what was explained in Subsection III-A.
One may follow the recipe discussed in [2] for the derivation
the message-passing rule, where for theith layer, the involved
vertices are variable vertices representingx

(i)
e andx

(i)
w and the

function vertices representingδ[·]. Following the derivation,
one should see that the message-passing rule can be in fact
made more compact by, in each layer, disregarding the vertices
representingx

(i)
w and passing messages only between the

δ[·] function vertices and thex(i)
e vertices — note that the

messages passed from thex
(i)
w vertices stay as constant from

iteration to iteration; this is simply because thex
(i)
w vertices

are leaf vertices. We will then usew to denote function vertex
δ[·] that connects tox(i)

w , e to denote variable vertexx(i)
e .

The message-passing rule for Step 1 is summarized as
follows, where each message is a single number representing
the (posterior) probability of a link taking state1 (this is
possible since each message is originally a function defined
on {0, 1}, but since the values of the function at0 and at1
are dependent, i.e., summing to 1, one can reformulate the
message as a single number).

In the initialization phase, each vertexe passes message
µe→w representing the uniform distribution over the link state
xe to every adjacentδ[·] function vertexw ∈ N (e). That is,
µe→w = 1/2.

In the propagation phase, then messages are passed iter-
atively between the variable verticese ∈ E and function
vertices w ∈ W . Similar to the “flooding” schedule in
Subsection III-A, each iteration begins with every function
vertexw passing messages to all its adjacent variable vertices
N (w); then every variable vertexe passes messages to its
adjacent verticesN (e); the message sent from any vertexu

to any of its neighbor vertexv is calculated using only the
incoming messages fromN (u) \ {v}. The message passed
from a function vertexw to a variable vertexe is given by

µw→e =











1, if x
(i)
w = 1,

1−
Q

e′∈N(w)\{e}

µ
e′→w

2−
Q

e′∈N(w)\{e}

µ
e′→w

, if x
(i)
w = 0.

(6)

and the message passed from a variable vertexe to a function
vertexw is given by

µe→w =

∏

w′∈N (e)\{w}

µw′→e

∏

w′∈N (e)\{w}

µw′→e +
∏

w′∈N (e)\{w}

(1 − µw′→e)
.

(7)
At the end of each iteration, a summary messageµe is com-
puted for each variable vertexe using all incoming messages
to e, as

µe =

∏

x
w′∈N (e⋆)

µw′→e

∏

x
w′∈N (e⋆)

µw′→e +
∏

x
w′∈N (e⋆)

(1 − µw′→e)
. (8)

The iterative process is terminated when the summary mes-
sages converge to a steady state or when a pre-set maximum
number of iterations is reached.

We will denote the computed valueµe in the ith layer of
the graph byµ(i)

e . One may verify that when each layer of
the factor graph is cycle-free, then the algorithm converges
definitely with a finite number of iterations, and the computed
µ

(i)
e is precisely the posterior ofxe given the observationX(i)

W .
Step 2. Inter-Layer Message Passing. In this step, we ap-

ply the Sum-Product algorithm by passing-messages from
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network size links/path paths/link
5000 2.97 2.72
10000 3.71 3.46
20000 7.41 7.10
50000 6.33 6.16

TABLE I

THE AVERAGE NUMBER OF LINKS THAT A PATH CONTAINS AND THE

AVERAGED NUMBER OF PATHS THAT A LINK JOINS.

every layer of the graph to vertices{αe : e ∈ E} (through the
vertices representing functionB(·)), to compute the posterior
P [αe|X

(1,n)
W ]. Due to the simple cycle-free graph structure at

this level (that shown in Figure 4 (a)), this step of the Sum-
product algorithm can be in fact formulated in the following
closed form:

P [αe|X
(1,n)
W ] ∝

∏

i=1...n

(

µ(i)
e αe + (1 − µ(i)

e )(1 − αe)
)

. (9)

We then choosêαe that maximizes (9) as the estimate of
αe. This can be done by evaluating the function for every
element ofS = {1/L, 2/L, . . . , 1} numerically and finding
the maximizing valuêαe ∈ S.

IV. SIMULATION AND DISCUSSION

A. Simulation Setup

To investigate the performance and the scalability of the
proposed algorithm, we generate sensor networks with random
tree topologies, consisting of5000, 10000, 20000, and50000

nodes. Table I lists the averaged number of links that a path
contains in a network and the averaged number of paths that
a link joins.

To each edge (link)e in the network, a random loss rate
(1 − αe) is assigned, whereαe is drawn from distribution
with probability density function

f(α) = λα(λ−1), α ∈ (0, 1].

Easy to generate and tune, this random variable has the
expected valueλ/(1 + λ).

At time instantti, the statex(i)
e of edgee is generated from

the Bernoulli distribution parametrized byαe, and the state
x

(i)
w of each pathw is observed by the center node via theith

batch of packets. In each simulation, the numbern of packet
batches is chosen as50, 100, 200, 500, 1000, and 2000, and
the average valuēα of αe over all the links of each network
is chosen as0.9, 0.92, 0.94, 0.96, and0.98.

For Step 1 of the algorithm, we conservatively set the
maximum number of iterations to30 (we observe in simulation
that in the majority of cases, the algorithm converges within
a small number of iterations, within 10-15 iterations.). In
the second step of the algorithm, we discretizeαe to L =

100 levels. Estimation error is computed for each link as

αe − α̂e. For each simulated network, the root mean square
error (RMSE) is computed as

RMSE =

(

∑

e∈E

|αe − α̂e|2

|E|

)1/2

.

B. Simulation Results

Figure 5 and Figure 6 show the RMSE as a function of the
numbern of batches, and as a function of theᾱ, respectively,
for each simulated network. These results exhibit the general
performance trend of this algorithm, which is also observed
in other parameter settings of our simulations.

First, the estimation error decreases as the number of
batches increases. However, it is worth noting that error will
have a lower bound of1/2L, the quantization error ofαe. If
we can infinitely quantizeαe, as the number of packet batches
n approaches infinity, we expectα̂e approaches the actualαe.

Secondly, the algorithm favors large networks. That is,
in general, the larger the network, the better the algorithm
performs. This is because, as the network grows, the factor
graph corresponding to the network becomes more sparsely
connected; to a certain extent, Table I indicates the sparsity of
the factor graphs. This result is consistent with the observation
of the Sum-Product Algorithm in other applications where
the factor graph graph contains cycles (see, for example,
[11]), since the independence assumption [2] of the incoming
messages in that case is a closer approximation.

Thirdly, without the need of increasing the number of
batches, the same or better estimation accuracy can be
achieved for large networks. For practical purposes, our simu-
lations suggest that500-2000 packet batches are sufficient for
inferring the link loss rates in large networks.

Furthermore, the estimation error decreases asᾱ increases.
This implies that more batches are required for the same
estimation error, as the average loss rate increases. In another
experiment, we observe that in the50000-node network, based
on the observations of2000 batches of packets, the RMSE
increases from0.03 to 0.11, as ᾱ decreases from0.8 to 0.7.
That is, significantly more batches are needed for an accurate
inference of the latter loss rates. This is consistent with the
discussion in [3], [15]. Fortunately, in reality, action should
have been taken before the network experiences such heavy
link losses, and there is unlikely a need for inferring the link
losses for these cases.

In summary, the simulation results suggest that the loss-rate
estimates obtained from the proposed algorithm are sufficiently
accurate for any practical purpose.

C. Implementation and Complexity

The complexity of this factor-graph based algorithm is linear
in the numbern of batches and in the number|E| of links. This
is in the same order as the existing algorithms (e.g., [3] and
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Fig. 5. RMSE forᾱ = 0.9 (left) and for ᾱ = 0.98 (right), as a function of the numbern of batches.

Fig. 6. RMSE withn = 2000 (left) and withn = 500 (right), as a function of̄α.

others). However, as we will explain next, when the algorithm
is implemented as a constantly-running monitoring daemon,
its complexity for inferring loss ratesat any time instantis
in fact independent of the number of packet batches,n. This
makes the proposed algorithm much more suited for long-term
monitoring purpose, as compared with other algorithms. We
describe this implementation next.

As one may notice, a salient feature of this algorithm
is its independent processing of the path states obtained by
observing each batch of packets. That is, in practice, we may
implement the link-loss monitoring daemon based on the path
states obtained by observing a moving window of the most
recentn batches of packets, and little computation is in fact
needed to infer the current link loss rates. In detail, we mayfix
a choice ofn; then as the monitoring daemon is initiated, upon
observing the arrival or loss of the packets in theith batch,
we start computingµ(i)

e (for all e ∈ E), for i = 1, 2, . . . , n,
sequentially. This only involves Step 1 of the algorithm. After
obtaining the arrival or loss of the packets in thenth batch,
we finish computingµ(n)

E . Then we move to Step 2 of the
algorithm and for eache ∈ E, compute the the posterior

P [αe|X
(1,n)
W ] ∝

∏

i=1...n

(

µ(i)
e αe + (1 − µ(i)

e )(1 − αe)
)

(10)

and find the maximizinĝαe. After this initial computation, at
any later time instanttk, k > n, the posterior of the link-loss
rate for any linke can be simply updated recursively by

P [αe|X
(k−n+1,k)
W ] = P [αe|X

(k−n,k−1)
W ]×

µ
(k)
e αe + (1 − µ

(k)
e )(1 − αe)

µ
(k−n)
e αe + (1 − µ

(k−n)
e )(1 − αe)

.

That is, at any time instanttk, we only need to compute
µ

(k)
e according to Step 1, and reuse the previously computed

posterior ofαe. This significantly decreases the required com-
putation. In this implementation, the computational complexity
for inferring link loss rates at any time instant becomes
independent ofn. Comparing with other existing algorithms
as mentioned earlier (the complexity of which all increases
with n), this translates to an appealing computational saving
of hundreds or thousands of folds, if the algorithm is to be
implementated as a monitoring daemon.

It is worth noting that with this “moving window” imple-
mentation, one should expect a trade-off between the estima-
tion accuracy and the estimation sensitivity to the change of
link-loss rates. That is, for a small window sizen, the estimate
is less accurate, but can better track the change ofαe with
time; whereas for a large window sizen, the estimate is more
accurate (provided the link loss rates stay static), but is less
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sensitive to the change of link loss rates.

D. Extension to Other Models

Until this point, we have assumed that packets are constantly
sent from the terminals to the center in a synchronous man-
ner. In fact, the proposed approach can be adapted to other
network scenarios where packets are sent by the terminals
asynchronously, or when the terminals do not send packets
continuously. However, in those cases, there will be a need
of a reliable signaling mechanism from the terminals to the
center, or a delicate protocol that allows the center to be aware
of a packet sent from a terminal. For example, an out-of-band
signaling mechanism may be employed whereby each terminal
node informs the center node directly or via multiple hops
when it transmits a packet to the center. Then the center node
will expect the arrival of the packets sent from the terminals;
upon receiving (or not receiving) the packets, the center node
can perform link-loss inference using the method presented
in this paper. Alternatively, similar mechnisms may be made
possible via higher-level protocols. For example, with TCP,
when a short series of out-of-order packets are received, con-
gestion is assumed to have occurred and source transmission
rates are reduced using window-based flow control. Built on
TCP, by checking the order of the received packets, a node
(intermediate node or center node) can decide whether an
expected packet has arrived — it is safe to assume, with high
probability, that an expected packet is lost, if a number of out-
of-order packets are received. With this strategy, the details of
such a protocol will depend on the data-fusion mechanism
employed in the sensor network.

The i.i.d assumption of link losses in our model is perhaps
in reality over simplified. In those cases, direct application of
the algorithm presented in this paper may lead to less accurate
estimates. Nevertheless we note that the frameowork of factor
graphs is a universal language for probabilistic modeling,and
can be applied to models with arbitrary dependency structure.
By using the simple i.i.d assumption, this paper establishes a
“proof of concept” for applying factor graph-based approaches
to link-loss inference in sensor networks. To demonstrate how
to extend the presented method to more realistic (non-i.i.d)
loss models, we give a small contrived example: in the the
toy example shown in Figure 2, we will allow loss rates of
link a and link b to be dependent. Then this dependency can
be modeled by introducing a functionφab(αa, αb) to the joint
distributionP (αE ,X

(1,n)
E ,X

(1,n)
W ), i.e.,

P (αE ,X
(1,n)
E ,X

(1,n)
W ) ∝

φab(αa, αb)

n
∏

i=1

BE(X
(i)
E , αE)PW |E(X

(i)
W ,X

(i)
E ),

where functionφab accounts for the dependency betweenαa

and αb. By properly choosing functionφab, one can obtain
any desired dependence model betweenαa andαb. The factor

αa

αc

αb

x
(1)
c

x
(1)
b

x
(1)
a

x
(2)
a

x
(2)
b

x
(2)
c

x
(2)
{a,b}

x
(2)
{b,c}

x
(1)
{a,b}

x
(1)
{b,c}δ[·]

δ[·]

δ[·]

δ[·]

B

B

B

B

B

B
φab

Fig. 7. The factor graph for the example in Figure 2 whereαa andαb are
modeled as dependent. The function nodeφab is to model this dependency.

graph representing the above factorization is shown in Figure
7. For real networks, it is possible that the loss rates at a
number of links have dependency. This would correspond to
function node(s) in the factor graph connecting the variable
nodes representing the loss rates at these links.

The Sum-Product Algorithm can be derived similarly on
such a graph for the inference ofαE . Specifically, one may
notice as in Figure 7 that such a factor graph still con-
tains “intra-layer” connections and “inter-layer” connections.
However, it is possible in this case that the structure of
“inter-layer” connections contains cycles (Figure 7 isnot
such an example; if we introduced two extra function nodes
φbc connectingαb and αc and φac connectingαa and αc,
the resulting graph would be such an example). On such
a graph, one may still carry out the two-step passing of
messages for the Sum-Product Algorithm. The “intra-layer”
message passing may remain the same as we presented earlier,
whereas the “inter-layer” message-passing may potentially
need modification. Alternatively, one may consider different
message-passing schedules. We expect the trade-off between
estimation accuracy and computational complexity to depend
on the structure of the graph and the choice of message-passing
schedules. In practice, more careful investigation for this trade-
off is likely to be necessary.

Finally we remark that the Sum-Product Algorithm is not
the only algorithm for factor-graph based inference. Other
algorithms, such as the Max-Product algorithm, the EM al-
gorithm and various variational methods5 have also been
developed in the framework of factor graphs (see, e.g., [2],
[29]). The performance and complexity of these algorithms
for solving the problem of this paper certainly deserve further
investigation.

5In fact, it has been shown that in a variational formulation, the Sum-
Product Algorithm on factor graphs with cycles may be understood as iterative
maximization of Bethe free energy [30]. Such a nature appears similar to
the method of [31], where the true likelihood function is approximated by a
“pseudo likelihood function” for computational tractability.
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V. CONCLUSION

In this paper, we exploit the data-aggregation characteristic
of wireless sensor networks in the implementation of a link-
loss monitoring daemon, where the network-wide link loss
rates are inferred upon observing whether packets sent from
terminals have arrived. We present a factor-graph based algo-
rithm for this purpose. We show that with very low complexity,
this algorithm gives a good estimation of link loss rates,
and the algorithm scales particularly well for large networks.
We are one of the first to explore the design space towards
efficient network inference algorithms in large-scale sensor
networks with respect to link loss rates, and the first to use
the factor-graph model and the Sum-Product Algorithm to
derive suboptimal but computationally lightweight inference
mechanisms. We also take the communication paradigm of
data aggregation into consideration in our design, which leads
to the development of a network inference algorithm with
virtually no costs of active probes.
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