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Abstract

Live peer-to-peer (P2P) streaming applications have
been successfully deployed in the Internet. With relatively
simple peer selection protocol design, modern live P2P
streaming applications are able to provide millions of con-
current users adequately satisfying viewing experiences.
That said, few existing research has provided sufficient in-
sights on the time-varying internal characteristics of P2P
topologies in live streaming. With 120 GB worth of traces in
late 2006 from a commercial P2P live streaming system of
UUSee Inc. in Beijing, this paper represents the first attempt
in the research community to explore topological properties
in practical P2P streaming, and how they behave over time.
Starting from classical graph metrics, such as degree, clus-
tering coefficient, and reciprocity, we explore and extend
them in specific perspectives of streaming applications. We
also compare our findings with existing insights from topo-
logical studies of P2P file sharing applications, which shed
new and unique insights specific to streaming. Our char-
acterization reveals the scalability of the commercial P2P
streaming application even in case of large flash crowds,
the clustering phenomenon of peers in each ISP, as well as
the reciprocal behavior among peers, all of which play im-
portant roles in achieving its current success.

1 Introduction

Based on the peer-to-peer (P2P) communication
paradigm, live P2P multimedia streaming applications have
been successfully deployed in the Internet with up to mil-
lions of users at any given time. Prominent examples that
are better known to the research community include Cool-
Streaming [19], PPLive [10] and TVAnts [16]. The success-
ful commercial deployment of P2P streaming applications
has made it possible to stream volumes of legal content to
the end users, with hundreds of live media channels.

As a commonly adopted design for most of the recent
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successful P2P live streaming applications, blocks of live
media contents are being delivered over a mesh overlay
topology, featuring reciprocal exchanges of useful content
blocks among multiple peers. It is also interesting to ob-
serve that most current-generation P2P streaming applica-
tions employ relatively simple peer selection and mesh con-
struction protocol designs. They typically use central track-
ing servers to gain initial knowledge of existing peers in
the channels, and periodically exchange peer lists among
peers themselves. As mesh-based streaming topologies play
an important role towards the commercial success of P2P
streaming, it is critical to acquire a thorough and in-depth
understanding of the topological characteristics of these
P2P meshes. It would be an intriguing research challenge
to investigate how the constructed topologies actually be-
have in practice, dynamically evolve over time, and react to
extreme scenarios such as huge flash crowds.

Unfortunately, although Internet topology has been char-
acterized extensively at the IP layer, there has been rel-
atively little literature on the discovery of application-
level P2P topologies, and most of them are on previous-
generation P2P file sharing applications [12, 15, 17]. Such
P2P applications bear fundamental differences when com-
pared to modern loosely-coupled P2P applications based on
block exchanges and long-lived meshes, leading to possibly
different topological properties. Furthermore, topological
characteristics in block-exchanging P2P streaming applica-
tions may well be different from their file-sharing counter-
parts, due to its biased peer selection protocol design to-
wards the timely delivery of media content.

With the objective of gaining in-depth insights and a
complete understanding of the P2P streaming characteris-
tics, we have launched the Magellan project, with collab-
orative efforts with UUSee Inc. [1], one of the main P2P
live streaming solution providers in mainland China. This
paper represents the first milestone of Magellan, presenting
our comprehensive insights from exploring graph theoreti-
cal properties in actually formed live streaming topologies,
based on over 120 GB of traces and 10 million unique IP
addresses that we have collected over a two-month period.



With emphasis on their evolutionary nature over a long
period of time, we have utilized and extended classical
graph measurement metrics — such as the degree, cluster-
ing coefficient, and reciprocity — to investigate various as-
pects of the streaming topologies at different times of the
day, in different days in a week, and in flash crowd sce-
narios. We also compare our discoveries with existing re-
sults related to file sharing applications, with further in-
sights unique to P2P streaming.

The original insights that we have brought forward in this
paper are the following. First, we show that the current-
generation P2P streaming platform scales very well, even
in large flash crowd scenarios. Second, we observe that
the degree distribution towards active neighbors in a peer-
to-peer mesh does not follow the power-law distribution.
Third, we argue that ISP-based clusters are formed from
the dynamic peer selection process, carried out during live
streaming sessions. Fourth, we believe that the high-level
reciprocity among peers in exchanging useful blocks plays
a key role towards the success of such P2P applications.

In what follows, we briefly review existing work in P2P
measurements and topology characterization in Sec. 2, and
outline the basics of UUSee peer selection protocol and
trace collection methods in Sec. 3. In Sec. 4, we analyze the
topological properties from a number of important perspec-
tives, and discuss the implications of our discoveries. We
summarize our findings and conclude the paper in Sec. 5.

2 Related Work

There have been a number of measurement studies on
various P2P applications in recent years. For KaZaA over-
lay, Gummadi et al. [8] characterized its workload, and
Liang et al. [13] studied its two-tier overlay structure and
dynamics. For the previous-generation Gnutella network,
earlier work [2, 12, 15] reported the discovery of power-
law degree distributions and strong “small-world” proper-
ties, i.e., small network diameter and peer clustering.

As one of the most pronounced work on unstructured
overlay topology characterization, Stutzbach et al. [17] re-
ported a detailed investigation of the topologies of modern
Gnutella networks. Utilizing their fast Gnutella crawler,
Cruiser, they captured back-to-back snapshots of Gnutella
network, which reflected more accurate graph properties
and dynamics of the topology. Comparing to earlier re-
ports on Gnutella topologies, they believed that the discov-
ery of power-law peer degree distribution is a result of dis-
torted snapshots captured by slow crawlers, while the de-
gree distribution is more accurately described as a two piece
power-law distribution with a spike in between the two seg-
ments. They also reported that modern Gnutella exhibits the
“small-world” phenomenon, but comparably less clustering
than the previous-generation Gnutella network.

The focus of Magellan has been on modern P2P live

streaming topologies, which is significantly different from
existing work on P2P topology characterization. First,
modern P2P live streaming applications are based on a
BitTorrent-like block exchange mechanism, over mesh
overlay topologies featuring dynamic reconfiguration. No
previous work exists for topology characterization of such
modern BitTorrent-like P2P applications. Second, mesh-
based P2P streaming has fundamentally different require-
ments as compared to BitTorrent-like file-sharing applica-
tions, with respect to peer selection and topology construc-
tion.

Topology characterization aside, towards measurements
of various modern P2P applications, Pouwelse [14], Izal
[11] and Guo [9] et al. have investigated the performance
of BitTorrent. Various aspects of Skype, a P2P VoIP appli-
cation, have been explored as well [4, 7].

Targeting commercial P2P live streaming applications,
Hei et al. [10] carried out detailed measurement studies of
PPLive, from both global views of peer distributions and
local views of media traffic characteristics. Their global
property investigation includes the evolution of peer num-
bers and peer geographic distributions, but does not in-
clude other topological properties. In addition, Silverston
et al. [16] studied the upload/download traffic generated by
another P2P IPTV system, TVAnts, while users were watch-
ing the last FIFA World Cup. Ali et al. [3] presented an
analysis of the control traffic, resource usage, locality, and
stability of two P2P live streaming applications: PPLive and
SOPCast. In addition, Cheng et al. [5] studied end user ex-
perience in a P2P video-on-demand system, GridCast.

To the best of our knowledge, this paper represents the
first attempt at topology characterization in large-scale P2P
streaming applications. Nevertheless, when applicable, we
also make attempts to compare our new insights with those
discovered with traditional P2P file sharing applications.

3 Background

3.1 UUSee P2P Streaming

Backed by venture capital funding from recognized in-
vestors, UUSee Inc. [1] is one of the leading P2P streaming
solution providers in mainland China, featuring exclusive
contractual rights to most of the channels of CCTV, the of-
ficial Chinese television network. With a large collection
of streaming servers around the world, it simultaneously
broadcasts over 800 channels to millions of peers, mostly
encoded to high quality streams around 400 Kbps.

Similar to all current-generation P2P streaming proto-
cols, UUSee’s streaming protocol design is based on the
principle of allowing peers to serve each other by exchang-
ing blocks of data in a sliding window of the media chan-
nel. After a new peer joins a channel in UUSee, the initial



set of a number of partners (up to 50) is supplied by one of
its tracking servers. The peer establishes TCP connections
with these partners, and buffer maps are exchanged period-
ically. During this process, it measures the round-trip delay
and TCP throughput of the connection, and then selects a
number of most suitable peers (around 30) from which it
actually requests media blocks.

In addition, the UUSee peer selection protocol incorpo-
rates a number of strategies to maximally utilize peer up-
load bandwidth. Each peer estimates its maximum upload
capacity, and continuously monitors its aggregate instanta-
neous sending throughput to its partners during streaming.
If its aggregate sending throughput is lower than its upload
capacity for a sustained period of time, it will inform one
of the tracking servers that it is able to receive new connec-
tions. Each tracking server keeps a list of such peers, and
bootstraps new peers with peers randomly selected from this
set. During streaming, neighboring peers also recommend
known partners to each other, based on estimated availabil-
ity for them to assist each other. As a last resort, a peer will
contact a tracking server again to obtain additional partners,
if its playback rate is not sustained for a certain period of
time.

3.2 Collection of Traces

To discover and chart live P2P streaming topologies,
we have implemented detailed measurements within the
UUSee streaming protocol on each peer.

Each peer estimates its total download and upload band-
width capacities, and continuously monitors its instanta-
neous aggregate receiving and sending throughput, from
and to all its partners. For each active partner with which
it has a live TCP connection, it actively measures the num-
ber of sent/received segments over the TCP connection.

A standalone trace server is responsible for the collection
of measurement reports from existing peers. Each report in-
cludes basic information such as the peer’s IP address, the
channel it is watching, its buffer map, total download and
upload capacities, as well as its instantaneous aggregate re-
ceiving and sending throughput. In addition, the report also
includes a list of all its partners, with their corresponding IP
addresses, TCP/UDP ports, and number of segments sent to
or received from each partner.

Using UDP datagrams, a new peer sends its initial re-
port to the trace server after 20 minutes, and sends subse-
quent reports once every 10 minutes. This ensures that the
reports are sent by relatively long-lived peers in the chan-
nels. Even though the reporting peers represent only a sub-
set of all existing peers, they constitute a stable “backbone”
of the streaming topologies, and are more representative in
our topological studies. In addition, since each peer reports
a large number of its known partners, there is a high proba-
bility that transient peers may appear in the partner lists of

at least one reporting peer.
Since September 2006, we have commenced collecting

these measurements to UUSee’s trace server, by upgrading
all existing UUSee clients to the new release that produces
periodic reports. In a two-month span, we have collected
over 120 GB of traces with more than 10 million unique
IP addresses, constituting continuous-time snapshots of P2P
streaming topologies throughout this period.

4 Charting Large-scale P2P Streaming
Topologies

Taking advantage of the traces, we carry out an in-depth
investigation of global topological properties of the P2P
streaming overlay, and their evolutionary dynamics over
time. While we have studied the entire trace period, we are
constrained by space to show results obtained over such a
long time. Therefore, we choose two representative weeks,
from 12:00 a.m. October 1st, 2006 (GMT+8) to 11:50 p.m.
October 14th, 2006 (GMT+8), and show results from these
weeks in our figures. These selected periods, we believe,
present all the typical scenarios that we shall discover.

4.1 Scale of UUSee Topologies

As a natural first step, we investigate the scale and gen-
eral streaming performance of the UUSee application.

4.1.1 Overall number of simultaneous peers
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Figure 1. Daily peer number statistics.

To discover the number of concurrent online users in the
UUSee streaming overlay and the percentage of stable peers
(whose reports are received by the trace server) in the over-
all peer population, we summarize the IP addresses from
which reports were received and recorded in the traces, and
all the IP addresses that appeared in the traces, including
peers that have reported and peers in their partner lists. The
peer number statistics are shown in Fig. 1(A).

The statistics indicate that there are around 100, 000 con-
current peers at any time in the UUSee streaming overlay.
There is a daily peak around 9 p.m., and a second daily
peak around 1 p.m., which identify similar daily peer num-
ber patterns as that presented in a previous PPLive study



[10]. Different from [10], we observe only a slight number
increase over the weekend, considering the weekly variance
trend. In addition, we clearly observe a flash crowd scenario
around 9 p.m. on October 6, 2006, which was the mid-
autumn festival in China, and the flash crowd was caused
by the broadcast of a celebration TV show on a number of
CCTV channels.1 Comparing the number of stable peers
to the total number of peers, we discover that the former is
asymptotically 1/3 of the later.

We further summarize the number of distinct IP ad-
dresses that appeared in the traces on a daily basis in
Fig. 1(B). The statistics exhibit that UUSee serves up to 1
million different users each day.

4.1.2 Number of simultaneous peers in different ISPs

Throughout the paper, we also emphasize on the mapping of
the abstract streaming topology to the real world scenario,
with respect to the ISP each peer is located at. For this
purpose, we have obtained a mapping database from UUSee
Inc. that translates ranges of IP addresses to their ISPs. For
each IP address in China, the database provides the China
ISP it belongs to; for IP addresses out of China, it provides
a general code indicating foreign ISPs.

China Telecom

China Netcom

China Unicom
China Tietong
China otherss

China Edu

Oversea ISPs

Figure 2. Peer number statistics for different
ISPs.
Using this mapping database, we have determined the

ISP membership of simultaneous peers at any time, and dis-
covered that the ISP distributions of peers do not vary sig-
nificantly over the two-month period. Therefore, we only
show the averaged shares of peers in major ISPs over the
trace period in Fig. 2. We observe that while users in China
dominate the UUSee streaming network, there still exist a
substantial number of peers from overseas. In our subse-
quent studies, when we explore characteristics of global
topologies, we include all peers from all ISPs; when we
investigate ISP-based topology properties, we will mainly
focus on the ISPs inside China.

4.1.3 Streaming quality

To explore the streaming quality of UUSee, we make use
of the aggregate instantaneous receiving throughput mea-

1In all the figures throughout the paper that present the temporal evolu-
tion of a metric, a small arrow is drawn to indicate the occurrence time of
this flash crowd.

sured at each peer in different channels. We select two of
the most popular channels broadcast by UUSee, CCTV1
and CCTV4 (both from the official Chinese television net-
work). Fig. 3 shows the percentage of peers in both chan-
nels whose receiving throughput is higher than 90% of the
channel streaming rate. Although we have found that the
numbers of concurrent peers in CCTV1 and CCTV4 differ
significantly2, we see that around 3/4 of all viewers in both
channels can achieve satisfactory streaming rates, and the
percentages are quite consistent over time. In addition, it is
a bit surprising to find that, the percentages are generally a
bit higher at the peak hours of a day. Especially, during the
flash crowd scenario on October 6, 2006, the percentages of
CCTV4 viewers with satisfactory streaming rates represent
a sharp increase. We explain this phenomenon as that, as
UUSee aims to maximally utilize peer upload capacity to
assist each other, when more peers are online, they are able
to effectively utilize the available upload capacities in the
entire network. This shows that the P2P streaming protocol
scales well to a large number of peers.
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Figure 3. Percentage of peers with satisfac-
tory streaming rates.

4.2 Degree Distribution

In our traces, each stable peer reports IP addresses in
its list of partners, as well as the number of segments sent
(received) to (from) each of the partners. With this infor-
mation, we are able to categorize partners of each peer into
three classes: (1) active supplying partners, from which the
number of received segments is larger than a certain thresh-
old (10 segments); (2) active receiving partners, to which
the number of sent segments is larger than the threshold;
(3) nonactive partner, otherwise.

With reports from stable peers in the streaming overlay,
we investigate their degree distributions with respect to the
number of active supplying partners (indegree), the num-
ber of active receiving partners (outdegree), and the total

2CCTV1 concurrent viewers are 5 times more than those of CCTV4,
with the number of the former around 30, 000 at any time and that for the
latter around 6, 000.
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Figure 4. Degree distributions of stable peers in the global topology.

number of partners in the partner list including both active
and nonactive partners. Note that in a mesh network, it is
common for a partner to be both a supplying partner and a
receiving parter of a peer at the same time. In this case, it is
counted into both peer active indegree and active outdegree.

4.2.1 Degree distribution in the global topology

Most existing research on peer-to-peer topologies reported
power-law degree distributions. In their study for modern
Gnutella topology, Stutzbach et al. [17] pointed out that
its degree distribution does not follow a power-law or two-
segment power-law distribution, but has a spike around 30,
as the Gnutella client software tries to maintain 30 neigh-
bors for each peer. From Fig. 4(A), we observe that the dis-
tributions of total number of partners at the stable peers in
the UUSee network do not follow power-law distributions
either, with spikes whose corresponding degrees vary at dif-
ferent times. For the distributions observed in the morning,
the spikes lie around a partner number of 10; for those ob-
served in the daily peak hour, 9 p.m. at night, the spikes
are located at larger values. During the flash crowd sce-
nario around 9 p.m., October 6, 2006, the distribution peaks
around 25. These reveal that at peak times, each peer is
engaged with more partners. In addition, recall that each
peer has an initial set of up to 50 partners upon initial join-
ing. These observations exhibit that the number of partners
decreases at most peers during streaming, due to partner de-
partures or failures.

For the peer indegree distribution shown in Fig. 4(B),
we observe spikes around 10, and the spike is at a slightly
larger degree in the flash crowd scenario. For indegree dis-
tributions at all times, they drop abruptly when the indegree
reaches about 23. According to the UUSee peer selection
protocol, a peer only accepts new upload connections when
it still has spare upload capacity, and thus the bandwidth on
each upload link is guaranteed. Besides, during streaming,
the aggregated download rate is limited by the streaming
rate in the UUSee application. All these explain the obser-
vation that the number of supplying partners at each peer,

which guarantees a satisfactory streaming rate, is relatively
small in the UUSee overlay, as compared to other file shar-
ing applications.

The peer outdegree distributions in Fig. 4(C) are closer
to two-segment power-law distributions, with a joint point
around degree 10. The curves for peak times exhibit a flatter
first segment, which implies that peers have higher outde-
grees when there are more requesting peers in the network.

4.2.2 Degree evolution in the global topology
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Figure 5. Evolution of average degrees for
stable peers in the global topology.

We next show the evolution of average degrees of sta-
ble peers during the two-week period in Fig. 5. We observe
that the averaged total number of partners peaks at the peak
times, but the average peer indegree is consistently around
10. Given that the UUSee protocol does not explicitly im-
pose such an upper bound for active incoming connections
at each peer, we explain this discovery as follows: At peak
times with a large number of peers in the network, there
are abundant supplies of upload bandwidth, considering the
streaming rate around 400 Kbps is lower than the upload ca-
pacity of most ADSL/cable modem peers, which constitute
the majority of UUSee users. Combining with our previous
results that large portions of peers can achieve satisfactory



streaming rates at the peak hours, we conjecture that many
peers will be able to offer help to others, and thus “vol-
unteer” themselves at the tracking server, or become rec-
ognized by other peers when peers exchange their useful
partner lists. This leads to the result that each peer knows a
large number of other peers. Nevertheless, each peer does
not actually need to stream from more peers to sustain a
satisfactory streaming rate.

4.2.3 Intra-ISP degree evolution
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Figure 6. Evolution of average intra-ISP de-
grees for stable peers in the network.

To better understand the connectivity among peers in the
same ISP and across different ISPs, we further investigate
the active indegrees and outdegrees at each peer that are
from and to peers in the same ISP. At each stable peer, we
calculate the proportion of indegrees from partners in the
same ISP to the total indegree of the peer, and the proportion
of outdegrees toward partners in the same ISP to its total
outdegree, respectively.

Fig. 6 plots the evolution of the intra-ISP degree per-
centage, averaged over all stable peers in the network at
each time. We observe that the percentages for both in-
degrees and outdegrees are around 0.4. Considering that
many ISPs coexist, this exhibits that the majority of supply-
ing/receiving partners of each peer are within the same ISP.
As the UUSee protocol does not take ISP membership into
consideration when the tracking server assigns new partners
to a peer and neighboring peers exchange partners, this ex-
hibits the “natural clustering” effects in the P2P streaming
overlay over each ISP. The reason behind such clustering is
that, as connections between peers in the same ISPs have
generally higher throughput and smaller delay than those
across ISPs, they are more inclined to be chosen as active
connections.

In addition, Fig. 6 shows that the percentages for both
indegree and outdegree peak at the daily peak hours and
during the flash crowd scenario. This implies that each peer

has more partner choices when the network is large, and it
is always able to choose high throughput connections which
are largely intra-ISP.

4.3 Clustering
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Figure 7. (A) Small-world metrics for the en-
tire stable-peer graph; (B) Small-world met-
rics for ISP — China Netcom — subgraph.

Studies on Gnutella network have pointed out that both
previous and current generation Gnutella networks exhibit
“small-world” properties, i.e., peers are highly clustered
with small pairwise shortest path lengths, as compared
to random networks of similar peer numbers and link
densities. To investigate whether a graph g is a small-
world graph, a clustering coefficient is calculated as Cg =
1
n

∑n
i=1 Ci, where n is the total number of vertices in the

graph, and Ci is the clustering coefficient for vertex i, cal-
culated as the proportion of edges between vertices within
its neighborhood to the number of edges that could possibly
exist between them [18]. A graph is identified as a small
world if (1) it has a small average pairwise shortest path
length Lg , close to that of a corresponding random graph
Lr; and (2) a large clustering coefficient Cg , which is orders
of magnitude larger than that of the corresponding random
graph Cr.

Based on the traces, we construct a subgraph of the en-
tire UUSee topology at each time, by only including the sta-
ble peers and the active links among them. We investigate
small-world properties of such stable-peer graphs, and be-
lieve they may reveal the connectivity of the original topolo-
gies as well.

Fig. 7(A) plots the clustering coefficients and average
pairwise shortest path lengths of the stable-peer graph over
the two-week period. We observe that its clustering coef-
ficients are consistently more than an order of magnitude
larger than those of a corresponding random graph, while
their average path lengths are similar. This implies that the
stable-peer graph does exhibit small-world properties. Be-
sides, we observe slight decreases of clustering coefficients
and slight increases of path lengths at peak hours of each
day, which may be explained by the more relaxed choice of



partners at each peer in larger networks at peak times.
In Sec. 4.2.3, we have observed ISP-based peer cluster-

ing. Here, we wish to further validate this finding by cal-
culating the clustering coefficient and average path length
for the subgraph composed of stable peers in the same ISP
and active links among them. A representative result is
shown in Fig. 7(B) with respect to a major China ISP —
China Netcom. Comparing Fig. 7(B) with Fig. 7(A), we
conclude that the ISP subgraph has more clustering than the
complete topology of stable peers, with (1) closer average
path lengths to those of the random graphs, and (2) larger
clustering coefficient difference from those of the random
graphs. Similar properties were observed for sub topologies
for other ISPs as well.

Another observation we can make from these figures
is that, the average pairwise shortest path length is quite
steady, consistently around 5 at all times. This implies low
network diameters in such stable-peer topologies. Consid-
ering that transient peers are connected to one or more sta-
ble peers with high probability, we conjecture that the pair-
wise path lengths in the original UUSee topologies should
be close to those in the stable-peer graphs. Therefore, the
overall UUSee streaming network may represent a low net-
work diameter, which facilitates the quick distribution of
media segments throughout the entire topology.

4.4 Reciprocity

In a modern P2P streaming application such as UUSee,
a mesh streaming topology is constructed and BitTorrent-
like block distribution is employed over the mesh. How-
ever, as all media segments originate from a collection of
dedicated streaming servers and then propagate throughout
the network, one may wonder: Is the media content prop-
agating in a tree-like fashion, i.e., a peer retrieves from a
set of peers closer to the servers and further serves another
group of peers farther away from servers? Or does such
mesh-based streaming really benefit from reciprocal media
segment exchanges between pairs of peers? If it is the latter
case, to what extent are the peers reciprocal to each other?

To answer these questions, we investigate another graph
property on the P2P streaming topology — edge reciprocity.
In a directed graph g, an edge (i, j) is reciprocal if vertex j
is also linked to vertex i in the reverse direction, i.e., (j, i)
is also an edge in the graph. A simple way to obtain reci-
procity of a graph is to compute the fraction of bilateral
edges over total number of edges in the graph:

r =

∑
i�=j aijaji

M
, (1)

where aij’s are entries of the adjacency matrix of graph g
(aij = 1 if an edge exists from i to j, and aij = 0 if not),
and M is the total number of edges in the graph. How-
ever, this simple reciprocity metric cannot distinguish be-
tween networks with high reciprocity and random networks

with high link density, which tend to have a large number
of reciprocal links as well, due exclusively to random fac-
tors. Therefore, we utilize another more accurate edge reci-
procity metric proposed by Garlaschelli et al. [6]:

ρ =
r − ā

1 − ā
, (2)

where r is defined in (1), and ā is the ratio of existing to
possible directed links in the graph, i.e., ā = M

N(N−1) =
P

i�=j aij

N(N−1) with N being the total number of vertices. Since
in a random network, the probability of finding a reciprocal
link between two connected nodes is equal to the probability
of finding a link between any two nodes, ā represents the
reciprocity computed with (1), of a random graph with the
same number of vertices and edges as g. Therefore, the
edge reciprocity defined in (2) is an absolute quantity, in
the sense that: if ρ > 0, the graph has larger reciprocity
than a corresponding random graph, i.e., it is a reciprocal
graph; if ρ < 0, the network has smaller reciprocity than its
random version, i.e., it is an antireciprocal graph.

To compute the reciprocity among all the peers in the
UUSee topology at one time, we use all the directed active
links among peers that appeared in the trace at the time. If
streaming in the UUSee network takes place in a tree-like
fashion, the computed edge reciprocity should be negative,
as its r = 0 and ρ = − ā

1−ā < 0. If there is no strong corre-
lation between the sets of supplying and receiving partners
at each peer, the edge reciprocity will be around 0, i.e., the
case of a random network. If peers do help each other mate-
rially by exchanging media segments, the edge reciprocity
should be larger than 0.
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Figure 8. (A) Edge reciprocity for the entire
topology; (B) Reciprocity for edges in the
same ISP and across different ISPs.

Fig. 8(A) plots evolution of edge reciprocity in the en-
tire UUSee topology. The consistent greater-than-zero edge
reciprocity reveals significant reciprocal exchanges of avail-
able segments among pairs of peers in such mesh-based
streaming. It also implies that the sets of supplying and
receiving partners at each peer are strongly correlated, as
compared to a purely random network. Furthermore, the
reciprocity exhibits daily variance patterns with peaks at the
peak hours as well.



We have discovered ISP-based clustering of the peers in
previous sections, where the direction of P2P links is not
considered. We now further investigate the reciprocity of
links connecting peers in the same ISP and those among
peers across different ISPs. For this purpose, we derive two
sub topologies from each topology we used in the previous
reciprocity investigation: one contains links among peers in
the same ISPs and their incident peers, and the other con-
sists of links across different ISPs and the incident peers.
Fig. 8(B) shows edge reciprocities of the two sub topolo-
gies. For the purpose of comparison, it also plots the edge
reciprocities of the entire topology. We observe a higher
reciprocity for the intra-ISP sub topology and a lower reci-
procity for the inter-ISP sub topology, as compared to that
of the complete topology. This implies that the streaming
topology in each ISP is a densely connected cluster with
large portions of bilateral links among the peers.

5 Conclusion

This paper presents Magellan, our first effort to charac-
terize topologies of modern large-scale peer-to-peer stream-
ing networks, with abundant traces from a successful com-
mercial P2P streaming application, UUSee. Utilizing a
number of meaningful graph metrics, we discover the struc-
tural properties of the streaming topologies at short time
scales, as well as their dynamics over time. We have found
that, even with a simple peer selection protocol, modern
P2P streaming applications are able to sustain an accept-
able streaming performance, even in the case of large flash
crowds. We also discover that the topologies of modern
P2P streaming overlays do not possess similar properties as
those obtained from early Internet or AS-level topological
studies, such as power-law degree distributions. Neverthe-
less, an interesting discovery is that the streaming topolo-
gies naturally evolve into clusters inside each ISP. In addi-
tion, the peers are reciprocal to each other to a great extent,
which contributes to the stable performance of streaming in
such mesh networks. We believe that our findings bring im-
portant insights towards a complete understanding of large-
scale practical P2P streaming applications, and will be in-
strumental towards further improvements of P2P streaming
protocol design. Such improvements have indeed been part
of our ongoing work and future plans.
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