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Abstract—The accelerated convergence of digital and real-
world lifestyles has imposed unprecedented demands on today’s
wireless network architectures, as it is highly desirable for such
architectures to support wireless devices everywhere with high
capacity and minimal signaling overhead. Conventional architec-
tures, such as cellular architectures, are not able to satisfy these
requirements simultaneously, and are thus no longer suitable for
the future era. In this paper, we propose a capacity-centric (C2)
architecture for future wireless networking. It is designed based
on the principles of maximizing the number of non-overlapping
clusters with the average cluster capacity guaranteed to be higher
than a certain threshold, and thus provides a flexible way to
balance the capacity requirement against the signaling overhead.
Our analytical results reveal that C2 has superior generality,
wherein both the cellular and the fully coordinated architectures
can be viewed as its extreme cases. Simulation results show that
the average capacity of C2 is at least three times higher compared
to that of the cellular architecture. More importantly, different
from the widely adopted conventional wisdom that base-station
distributions dominate architecture designs, we find that the C2

architecture is not over-reliant on base-station distributions, and
instead the user-side information plays a vital role and cannot
be ignored.

Index Terms—B5G/6G networking architectures, capacity cen-
tric (C2), clustering, scalability.

I. INTRODUCTION

With 5G maturing as the global standard for wireless
communications, we are not only experiencing an explosive
increase of mobile data traffic, but also witnessing the fusion of
real and digital worlds [1], [2]. This phenomenon is anticipated
to make our lifestyles more intelligent and automated in the
coming era. Various types of intelligent services are emerging,
such as autonomous vehicles, immersive media, smart homes,
remote healthcare, and factory automation. In the first global
6G Wireless Summit, the concept of ubiquitous wireless
intelligence was introduced; wireless connectivity as a part of
a critical infrastructure will provide services for both human
and non-human users everywhere seamlessly through smart
devices and applications [3], [4]. Nevertheless, despite all the
initiatives emerging around next-generation wireless systems,
its fundamental architecture remains largely undefined.
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Cellular networks, which have been commercialized till
5G, are the most classic architectures. A cellular network
consists of multiple cells, with each cell corresponding to
the coverage area of a base station (BS) [5]. Theoretically,
we often use a simplified model of hexagonal cell with a BS
in the middle to represent cellular networks [6]. In practice,
the locations of deployed BSs are irregular. The coverage
map of a cellular network with randomly-located BSs is a
Voronoi tessellation [7]–[9], as illustrated in Table I. A cellular
architecture is BS-centric, and its main drawback is its poor
signal quality at cell edges, where useful signals are affected
by heavy interference from other cells. To mitigate the cell-
edge problem, an improved architecture called Coordinated
Multi-Point transmission (CoMP) was proposed [10]. With
CoMP, several closely-located BSs are grouped as a cluster to
serve users in a coordinated fashion, illustrated in Table I. A
user moving inside a cluster enjoys continuous service, with
the cell-edge problem avoided. However, heavy interference
still exists at the cluster edges, since CoMP is BS-centric as
well. As a result, neither the cellular architecture nor the CoMP
architecture is suitable for future wireless systems, given that
they cannot guarantee wireless services good enough for users
densely located everywhere.

An alternative architecture designed to eliminate the cell-
edge problem is a fully coordinated network, where all the
BSs are inter-connected for information to be exchanged and
optimal decisions to be made [11], [12]. Unfortunately, though
such an architecture works in theory, it is not feasible in real-
world deployments due to its lack of scalability. In a fully
coordinated network, all BSs take part in serving all users
with one or several central processing units [13]. The volume
of information to be exchanged over fronthaul/backhaul links
[14]–[16] expands significantly faster than the increase in
the number of network nodes (BSs and users). A substantial
amount of signaling overhead and time cost on information
delivery, processing, and decision-making will be provoked.
This is the reason why the number of inter-connected BSs is al-
ways limited in practice. At the late stages of 5G development,
a new architecture called cell-free massive MIMO (multiple-
input and multiple-output) was proposed and quickly became
an active research topic [17]. The basic idea of being “cell
free” is to eliminate cell boundaries through interconnecting
all the massive MIMO antennas distributed in a geographic
area to serve users coherently [18]. There are no cells and thus
no cell-edge problems [13], [19]. However, the essence of such
an architecture goes back to the design of a fully coordinated
network. Although some ideas have been proposed to partially
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TABLE I
COMPARISON OF FOUR WIRELESS NETWORK ARCHITECTURES

Architecture Cellular CoMP Fully Coordinated Capacity Centric (C2)

Toy example
of the coverage
map

Design
principle

Coverage area of a
single BS is a cluster

Several closely-
located BSs form
a cluster

All BSs participated
in serving all users

Average cluster capacity
guaranteed and signaling
overhead minimized

Architecture
type BS centric Capacity centric

Architecture
robustness

Low
The architecture changes with different BS distributions High

Tessellation Voronoi Tessellation BS-centric
Tessellation – C2 Tessellation

(C2T)
Relationship
with C2T

Extreme case of C2T
(M = L)†

– Extreme case of C2T
(M = 1) C2T

Scalability High Medium Low High
Signaling
overhead Low Medium High Low

Capacity The average cluster capacity per BS can be determined according to Theorem 1.
† M denotes the number of clusters. L denotes the number of BSs.

mitigate the lack of scalability [20], such an architecture is still
far from being deployed in practice.

In 2017, an idea of decomposing all the BSs and users into
non-overlapping clusters was proposed [21]. In this work, the
bipartite graph is utilized to model a wireless network, and
a network decomposition algorithm was designed based on
graph theory. There are also some follow-up works utilizing
the bipartite graphs to model wireless networks and designing
network decomposition schemes by graph partition algorithms
[22], [23]. However, analytical results on the network decom-
position as well as the capacity analysis are still missing. To
decompose all the network nodes into non-overlapping clusters
is a promising approach for wireless architecture designs. In
this paper, we first derive a closed-form expression on the
average cluster capacity, by introducing continuous density
functions to model the discrete locations of BSs and users in
ultra-dense networks. Based on our average cluster capacity
theorem, we design a novel capacity-centric (C2) architecture.
Different from the conventional BS-centric architectures which
only decompose all the BSs into clusters and suffer from
the cluster-edge problem, the C2 architecture can optimally
decompose the BSs and users jointly by guaranteeing both
high average cluster capacity and superior scalability simulta-
neously.

The major contributions of this paper are summarized as
follows.

1) A C2 architecture for future wireless networking is
proposed. It decomposes all the BSs and users into non-
overlapping clusters, with the objective of maximizing
the number of clusters and guaranteeing the average
cluster capacity per BS (or per user) larger than a
predefined threshold. On one hand, by guaranteeing the
average cluster capacity per BS (or per user) larger
than a predefined threshold, all the users can enjoy
good-enough wireless services, and the edge problem

in BS-centric architectures is therefore solved in C2.
On the other hand, by maximizing the number of non-
overlapping clusters, the network possesses high scal-
ability with the signaling overhead kept at a minimal
level. This is because only BSs belonging to the same
cluster are coordinated, and adding or removing network
nodes in a cluster will not affect the signaling overhead
of other clusters. The unscalability problem in fully
coordinated architectures can be solved in C2 as well.
Thus, the C2 architecture illustrates its potential to im-
prove the overall network performance, while keeps the
signaling overhead and computation complexity under
control.

2) A general and simplified method to determine the capac-
ity is proposed. Specifically, a novel expression of the
average cluster capacity per BS (or per user) under the
assumption that the numbers of BSs and users approach
infinity is derived, as detailed later in Section II-C. This
expression is one of the most important foundations of
our C2 architecture, and is widely applicable for wireless
systems with different BS and user distributions. Based
on this new expression, the capacity region and related
performance metrics of an ultra-dense network can be
derived with a much lower complexity.

3) A comprehensive comparison of different network ar-
chitectures is presented, and the superiority of our C2

architecture is shown through performance evaluation.
Table I summarizes the characteristics of four differ-
ent architectures: cellular, CoMP, fully coordinated and
C2. Our C2 architecture design takes the information
of both BSs and users into consideration, since the
capacity is determined by BSs and users jointly. This
is the major difference between C2 and conventional
BS-centric architectures (cellular and CoMP), since the
latter is designed to focus on the BS-side information
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only. In Section III, the generality of the C2 architecture
is presented. Specifically, C2 can cover almost all the
network configurations, wherein the cellular and the
fully coordinated architectures can be regarded as two
extreme cases. Our simulation results in Section V
show that the C2 architecture outperforms cellular and
CoMP networks, with performance gains of at least
300% and 17%, respectively. More importantly, both
our theoretical and simulation results disclose that the
user distribution plays a non-negligible role in network
design. For this reason, conventional BS-centric designs
ignoring the user distribution may no longer suitable for
future wireless communication systems.

The following content of the paper is organized as follows.
The basics of C2 architecture designs, including the system
model, the problem formulation, and the average capacity
theorem are introduced in Section II. Section III elaborates
the procedures to determine the C2 architectures with specific
network settings, where we take the setting of a constant
user density as an example. Section IV visualizes the C2

architectures based on theoretical results, and derives the
capacity region of C2. Simulation results on performance
comparison across C2, CoMP, and cellular architectures are
shown in Section V. Section VI concludes the paper, and some
detailed proofs are relegated to appendices.

Notation: In this paper, scalars and matrices are represented
by lowercase and bold uppercase letters, like h and H,
respectively, and the (i, j)-th entry of H is denoted by [H]i,j .
Bold lowercase letters x and y denotes the location coordinates
of the BSs and the users, respectively. Other bold lowercase
letters, like h, represents the vectors. Scripts such as B denote
the sets. Notation CN (µ,Γ) refers to a complex normal
distribution with mean µ and variance Γ. Operators (.)H ,
det(.) and E{.} represent the Hermitian transpose, determinant
and expectation, respectively.

II. C2 DESIGN PRINCIPLES AND AVERAGE CAPACITY
THEOREM

A. System Model

Consider a wireless communication network that constitutes
two kinds of nodes: L single-antenna BSs (or access points in
distributed-antenna systems [24]–[27]) and K single-antenna
users [27], [28]. Denote the set of BSs as B = {b1, b2, ..., bL},
and the set of users as U = {u1, u2, ..., uK}. Assume there
are total M clusters in this network. For the jth cluster, we
use Cj to denote the union set of BSs and users in it. The
number of BSs in Cj is denoted by Lj , and the number of
users in Cj is denoted by Kj . The network architecture is
denoted by M = {C1, C2, . . . , CM}, where {C1, C2, . . . , CM}
forms a partition of B ∪ U .

The channel gain between BS bl ∈ Cj and user uk ∈ U is
hjlk, which can be calculated according to

hjlk = `jlk × gjlk. (1)

Here, gjlk ∼ CN (0, 1) is the small-scale fading. `jlk is
the large-scale fading, which describes the signal attenuation

between BS bl and user uk as a function of the signal
propagation distance [29], defined as

`jlk =
(
θd−αjlk

)1/2

, (2)

where djlk is the Euclidean distance between bl and uk.
Parameters θ and α are constants and can take different values
based on different path-loss models. In this paper, we use the
general form of `jlk (2) for theoretical analysis, and choose
an example path-loss model with specific values of θ and α
[29] for simulation in Section IV.

The uplink signal model of cluster j is given by

yj =
∑
uk∈Cj

hjksk +
∑

uκ∈U\Cj

hjκsκ + zj , (3)

where hjk is an Lj × 1 vector, whose l-th entry is hjlk. sk ∼
CN (0, P ) is the information-bearing signal of the user uk,
with P as the transmit power of each user. zj ∼ CN (0, N0I)
is the additive white Gaussian noise (AWGN) vector.

The average capacity per BS of cluster j is [6], [30]

Cj=E

1

Lj
log det

I+P (N0I +P
∑

uκ∈U\Cj

hjκh
H
jκ)−1HjH

H
j

 ,

(4)
where Hj is the channel gain matrix of cluster j, with
[Hj ]l,k = hjlk. This expression is equivalent to

Cj=E
{

1

Lj
log det

(
I+P (N0I+Σj)

− 1
2HjH

H
j (N0I+Σj)

− 1
2

)}
,

(5)
where Σj denotes the inter-cluster interference, and can be
regarded as a diagonal matrix with the l-th diagonal entry as

[Σj ]l,l=
∑

uκ∈U\Cj

E
{
|hjlκ|2

}
P =P

∑
uκ∈U\Cj

`2jlκ=P
∑

uκ∈U\Cj

θd−αjlκ .

(6)
If we define the equivalent channel gain matrix H̃j as

H̃j = (N0I + Σj)
− 1

2 Hj . (7)

The average cluster capacity per BS (5) becomes

Cj = E
[

1

Lj
log det

(
I + P H̃jH̃

H
j

)]
. (8)

To capture the ultra-dense characteristics of future networks,
we assume that both K and L approach infinity, and the ratio
between K and L is denoted as β. Similarly, for the cluster j,
we assume both Kj and Lj approach infinity with Kj

Lj
= βj .

Denote C∞j as the average cluster capacity per BS under such
asymptotic assumptions, and we have

C∞j = lim
Kj,Lj→∞
Kj/Lj=βj

Cj= lim
Kj,Lj→∞
Kj/Lj=βj

E
[

1

Lj
log det

(
I+P H̃jH̃

H
j

)]
.

(9)

B. Design Principles and Problem Formulation

Our objective is to design a network architectureM, which
not only provides high-quality wireless services everywhere,
but also possesses good scalablility suitable for real-world
deployments. Thus, our design principles of a brand-new
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architecture towards future wireless communications include
the following two aspects. On one hand, to guarantee high-
quality wireless services everywhere, we set the average
cluster capacity larger than a predetermined threshold CTh.
This threshold can be designed based on specific requirements
in practice. On the other hand, to achieve good scalability, we
organize all the network nodes into M (1 ≤M ≤ L) disjoint
clusters. BSs in the same cluster coordinate to serve the users,
but work independently if located in different clusters. As
such, information is exchanged inside each cluster. The scale
of the induced signaling overhead is restricted by the cluster
size. Different from a fully coordinated network, the signaling
overhead of the entire network will not fluctuate substantially
due to the increase or decrease of a single network node. More
specifically, we should maximize the number of clusters M ,
since the larger M corresponds to the smaller cluster size and
the less signaling overhead. In what follows, we will present a
detailed theoretical study that incorporate these principles for
designing our C2 architecture.

First, the problem of maximizing the number of clusters
while satisfying the capacity requirement can be formulated
in a concise form as

P1 : max
M

M,

s.t. C∞j ≥ CTh, ∀j ∈ {1, 2, . . . ,M},
(10)

Note that C∞j is the average cluster capacity per BS, and
the average cluster capacity per user is C∞j /βj , which is a
scaled version of C∞j . Thus, the constraint in P1 guarantees
the communication quality of each BS or each user larger
than a predefined threshold. Next, to solve P1, we start from
analyzing C∞j .

C. Average Cluster Capacity Theorem
It can be observed from (9) that high-dimensional matrix

manipulation should be performed in order to determine C∞j .
This will lead to high difficulty and complexity to solve P1.
In the following, we will introduce our proposed theorem to
determine C∞j in a much simplified and ingenious way.

Lemma 1: If Kj , Lj → ∞ with Kj
Lj

= βj , H̃jH̃
H
j become

a diagonal matrix, and its asymptotic behavior is given by

lim
Kj,Lj→∞
Kj/Lj=βj

H̃jH̃
H
j

p.−→ diag
(
λ1j , λ2j , . . . , λLjj

)
, (11)

where
p.−→ denotes the convergence in probability, and λlj is

given by

λlj =

∑
uk∈Uj `

2
jlk

N0 +
∑
uκ∈U\Cj `

2
jlκP

, ∀ l ∈ {1, 2, ..., Lj}. (12)

Proof: Please see Appendix A.
Based on Lemma 1 and the concavity of the log-determinant

function, we have

C∞j = lim
Kj,Lj→∞
Kj/Lj=βj

E
[

1

Lj
log det

(
I + P H̃jH̃

H
j

)]

= lim
Kj,Lj→∞
Kj/Lj=βj

1

Lj

Lj∑
l=1

log (1 + Pλlj) .

(13)

For further analysis, with the asymptotic assumptions, the
expression (12) can be transformed by replacing the discrete
distributions of the network nodes by continuous density as
follows.

Let D0 denote the two-dimensional region spanning the
entire network, and let Dj ⊆ D0 denote the region spanned
by the j-th cluster. Note that the set {D1,D2, . . . ,DM} is
a partition of D0. With a slight abuse of notation, we use
|D0| to denote the area of D0, and |Dj | to denote the area of
Dj . Assume BSs and users are distributed over D0 according
to continuous density functions ρb(x) and ρu(y), with x and
y representing the location coordinates of the BSs and users,
respectively. Then λlj (12) can be represented by a continuous
form as

λlj=

∫
y∈Dj f(x− y)ρu(y)dy

N0 + P
∫

y∈D0\Dj f(x− y)ρu(y)dy
, (l = 1, 2, ..., Lj),

(14)
where

f(x− y) = θd−αxy , (15)

defined as the square of large-scale fading, with dxy denoting
the Euclidean distance between the BS with coordinates x and
the user with coordinates y. Similarly, by transforming other
items in (13) from discrete forms into continuous ones, and
based on Cauchy’s Mean Value Theorem [31], we derive a
new expression to determine C∞j as follows.

Theorem 1 (Average cluster capacity): Conditioning on the
number of BSs and the number of users approaching infinity,
the average cluster capacity per BS is given by

C∞j = log

N0

P +
∫

y∈D0
f(xjl − y)ρu(y)dy

N0

P +
∫

y∈D0\Dj f(xjl − y)ρu(y)dy
, (16)

for some BS bl in the jth cluster with coordinate denoted by
xjl.

Proof: By transforming all the items in (13) from discrete
forms into continuous ones, including replacing the discrete
distributions of the network nodes by continuous distributions,
and replacing the summation by the integral, we have

C∞j = lim
Kj,Lj→∞
Kj/Lj=βj

1

Lj

Lj∑
l=1

log (1 + Pλlj)

= lim
Kj,Lj→∞
Kj/Lj=βj

1

Lj

Lj∑
l=1

log

(
N0

P +
∑
uk∈U `

2
jlk

N0

P +
∑
uk∈U\Cj `

2
jlk

)

=
1∫

x∈Djρb(x)dx

∫
x∈Dj
ρb(x)log

N0

P +
∫

y∈D0
f(x−y)ρu(y)dy

N0

P +
∫

y∈D0\Djf(x−y)ρu(y)dy
dx

= log

N0

P +
∫

y∈D0
f(xjl − y)ρu(y)dy

N0

P +
∫

y∈D0\Dj f(xjl − y)ρu(y)dy
,

(17)
for some xjl ∈ Dj , where the last equation follows Cauchy’s
Mean Value Theorem [31].

Theorem 1 provides a substantially simplified expression
to determine C∞j , where neither the high-dimensional matrix
manipulation nor the eigenvalue derivation is needed. This
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expression is sufficiently general to be applied in various
networks, since it does not have any constraints on the
network node distributions, the network area, and the cluster
areas. In addition, Theorem 1 reveals that the user density
function ρu(y) plays an important role in determining C∞j ,
and thus further affects the network architecture design M.
Conventional BS-centric architectures have their disadvantages
such as cell-edge problems, due to the missing role from the
user’s side.

III. THE C2 ARCHITECTURE WITH A CONSTANT USER
DENSITY

In this section, we will elaborate how a C2 architecture is to
be derived with a specific network setting. As aforementioned,
both the problem formulation P1 and Theorem 1 are adaptive
to different network settings. In the following, we will take
the setting of a constant user density as an example case to
derive the C2 architecture.

With a constant user density, ρu(y) can be simplified as ρu,
unrelated to user location coordinates y. Such a distribution is
also known as a Poisson distribution. By substituting ρu for
ρu(y) in (16), and focusing on the interference-limited regime
where the background noise can be ignored, we can determine
the average cluster capacity per BS according to the following
corollary.

Corollary 1 (Average cluster capacity with a constant user
density): Conditioning on a constant user density, and the
number of BSs and users approaching infinity, the average
cluster capacity per BS is given by

C∞j = log

∫
y∈D0

f(xjl − y)dy∫
y∈D0\Dj f(xjl − y)dy

, (18)

for some BS bl in the jth cluster with coordinates denoted by
xjl.

Corollary 1 reveals that with a constant user density and
a given cluster region, C∞j is determined by a certain BS
location inside this cluster. In addition, it reveals that C∞j
is positively correlated to the cluster area |Dj |. As such,
the constraints in P1 can be transformed to the cluster area
|Dj | larger than a given area threshold |DTh|. The problem
of maximizing the number of clusters while satisfying the
capacity requirement under the condition of a constant user
density can be reformulated as

P2 : max
M

M,

s.t. |Dj | ≥ |DTh| , ∀j ∈ {1, 2, . . . ,M}.
(19)

Combining the constraint in P2 and the fact of
∑M
j=1 |Dj | =

|D0|, we can obtain the optimal number of clusters M∗ and
the optimal cluster area |D∗j | as

M∗ =

⌊
|D0|
|DTh|

⌋
, |D∗j | = |DTh|, (20)

where bxc is the floor function giving the greatest integer
less than or equal to the input value x. We can conclude that
an optimal network architecture keeps the signaling overhead

at a minimal level while guaranteeing good-enough wireless
services, and can be designed based on (20).

Let’s go a step further to analyze the optimal solutions
(20). If we set |DTh| to be equal to |D0|, the extreme
case M∗ = 1 arises, corresponding to a fully coordinated
network architecture, with a maximized network capacity but
the highest signaling overhead. If |DTh| = |D0|/L, another
extreme case M∗ = L arises, corresponding to the cellular
architecture, with the number of clusters equal to the number
of BSs. The cluster capacity in this case is the worst, but the
signaling overhead of each cluster is the lowest. As such, we
can claim that our C2 architecture is sufficiently general, in
which both the cellular and fully coordinated networks can be
regarded as extreme cases.

Another important finding is that with a fixed user density,
the C2 architecture can be determined directly according
to (20), not over-reliant on the BS distributions. Thus, the
user-side information plays a vital role in determining C2

architectures, and should not be ignored in future wireless
architecture designs.

IV. C2 VISUALIZATION AND CAPACITY REGION ANALYSIS

Based on our derived results in Section III, we now visualize
the C2 architectures and perform the capacity analysis with
more explicit network settings, including the path-loss param-
eters, the shapes of the network region D0 and the cluster
region Dj .

A. Visualization of C2 Architectures

Assume both D0 and Dj are round with radius denoted
by R0 and Rj , respectively. The centers of D0 and Dj
are denoted as O0 and Oj , with coordinates xO0 and xOj ,
respectively. With a constant user density, the optimal number
of clusters M∗ and the optimal cluster radius R∗j for all
j ∈ {1, 2, . . . ,M} can be derived based on (20) as

M∗ =

⌊
R2

0

R2
Th

⌋
, R∗j = RTh. (21)

Note that these results are obtained without constraints on the
distribution of BSs.

For visualization, we plot two C2 architectures in Fig. 1.
The case of BSs deployed with a constant density ρu is
shown in Fig. 1(a). The case of BSs deployed centrally dense
and peripherally sparse is shown in Fig. 1(b). Specifically,
to simulate the latter case, we divide the entire round net-
work region D0 into three concentric subregions, with radius
intervals

[
0, 1

3R0

)
,
[

1
3R0,

2
3R0

)
, and

[
2
3R0, R0

]
, respectively.

With a given ρu, ρb can be calculated according to ρb = ρu/β.
Then, we choose three different BS densities: 5

9ρb,
3
9ρb,

1
9ρb,

and allocate them to the three concentric subregions from the
innermost to the outermost sequentially. Such a setting is to
emulate real-world scenarios with a larger number of BSs in
the central urban area, and fewer BSs in the surrounding rural
area. It can be observed from Fig. 1 that both M∗ and R∗j
are the same for the above two cases. It implies that the C2

architecture is unrelated to the BS distributions, as long as the
users are distributed with a constant density.
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(a)

(b)

Fig. 1. Visualization of C2 architectures with a constant user density
but different BS densities. Triangles are BSs. Circles are users. Each cluster
is presented as a group of inter-connected nodes by lines in the same color.
(a) C2 architecture with a constant BS density. (b) C2 architecture with an
inconstant BS density. BSs are centrally dense and peripherally sparse.

B. Cluster Capacity Region of C2 Architectures

The capacity region is one of the most important per-
formance metrics for wireless networks, but its derivation
is always complex and difficult. In this subsection, we will
study the minimum and maximum values for C∞j . Denote the
maximum value of C∞j as C∞j

∣∣
max

, and the minimum value
of C∞j as C∞j

∣∣
min

. To derive the expressions of C∞j
∣∣
max

and
C∞j

∣∣
min

, concrete path-loss model should be given. In this
paper, we consider a three-slope model [29], with path-loss
parameters θ and α defined as

θ =


1, dxy > d1,

d−1.5
1 , d0 < dxy ≤ d1,

d−1.5
1 d−2

0 , 0 < dxy ≤ d0,

α =

 3.5, dxy > d1,
2, d0 < dxy ≤ d1,
0, 0 < dxy ≤ d0,

(22)

where d0 and d1 can be interpreted as the near-field boundary
and the far-field boundary, respectively.

According to our Corollary 1, both C∞j
∣∣
max

and C∞j
∣∣
min

can be determined if we find their corresponding BS locations.
The process to determine C∞j

∣∣
max

and C∞j
∣∣
min

are elaborated
as follows. Based on (13), we define

C∞j = log Λj , (23)

where

Λj = lim
Kj ,Lj→∞

 Lj∏
l=1

(1 + Pλlj)

 1
Lj

. (24)

To determine the range of C∞j , we start from analyzing Λj .
Based on Corollary 1 and (23), we have

1

Λj
=

∫
y∈D0\Dj f(xjl − y)dy∫

y∈D0
f(xjl − y)dy

= 1−

∫
y∈Dj f(xjl − y)dy∫
y∈D0

f(xjl − y)dy
,

(25)
for some BS bl with coordinates xjl ∈ Dj . Then we define a
function for all the BSs in Dj , as

Vj(x) = 1−

∫
y∈Dj f(x− y)dy∫
y∈D0

f(x− y)dy
, ∀ x ∈ Dj . (26)

The range of 1
Λj

is a subset of the range of Vj(x), and can be
expressed as

Vj(x)|min ≤
1

Λj
≤ Vj(x)|max , (27)

where Vj(x)|min and Vj(x)|max are the minimum value and
maximum value of Vj(x), respectively. The properties of
Vj(x)|min and Vj(x)|max are summarized in the below two
lemmas.

Lemma 2: Conditioning on a round network area with a
constant user density, and a given three-slope path-loss model
(22), the properties of Vj(x)|min are listed as follows:

• Vj(x)|min ≤ Vj(xOj ),
• The upper bound of Vj(x)|min is

Vj(x)|min ≤



2
3R
−1.5
j

d−1.5
1

(
7
6 +ln

d1
d0

) , d1 < Rj ≤ 2R0,

ln
d1
Rj

+ 2
3

ln
d1
d0

+ 7
6

, d0 < Rj ≤ d1,

1− R2
j

2d0
(

ln
d1
d0

+ 7
6

) , 0 < Rj ≤ d0.

(28)

Proof: Please see Appendix B.
Lemma 2 reveals that the upper bound of Vj(x)|min is
achieved when x = xOj , which is the center point of Dj . By
substituting x = xOj into (26) and with further manipulation,
the upper bound of Vj(x)|min is derived as (28) shown.

Lemma 3: Conditioning on a round network area with a
constant user density, and a given three-slope path-loss model
(22), the properties of Vj(x)|max are listed as follows:

• Vj(x)|max = Vj(x′), where x′ is the coordinates of the
point located at the boundary of Dj and closest to O0.



7

40 60 80 100 120 140 160 180 200 220

Cluster radius R
j
 (m)

0

1

2

3

4

5

6

7

8

C
j

 (
b
it
/s

/H
z
)

Theoretical lower bound of C
j

|
max

Mean of two theoretical bounds

Theoretical lower bound of C
j

|
min

Simulation, =7,    constant BS density

Simulation, =3,    constant BS density

Simulation, =1,    constant BS density

Simulation, =0.8, constant BS density

Simulation, =7,    inconstant BS density

Simulation, =3,    inconstant BS density

Simulation, =1,    inconstant BS density

Simulation, =0.8, inconstant BS density

Fig. 2. Theoretical and simulation results for the average cluster capacity per BS versus cluster radius with a constant user density. Simulation
results (8 dashed lines) contain the scenarios of constant and inconstant BS densities, and four different ratios between the number of users and the number
of BSs (β = 0.8, 1, 3, 7).

• The upper bound of Vj(x)|max is

Vj(x)|max ≤ 1− q(Rj)

2πd−1.5
1

(
ln d1

d0
+ 7

6

) , (29)

where q(Rj) =
∫

y∈Dj f(x′ − y)dy is an increasing func-

tion of Rj , and 0 < q(Rj) ≤ πd−1.5
1

(
ln d1

d0
+ 7

6

)
.

• 0 < Vj(x)|max ≤ 1.
• Vj(x)|max ≥

1
2 for Rj ≤ R0/2.

Proof: Please see Appendix C.
Lemma 3 shows that Vj(x)|max is achieved when x = x′.

Through substituting x = x′ into (26) and with further manip-
ulation, the upper bound of Vj(x)|max can be determined as
(29) shown.

Since (27) is equivalent to

1

Vj(x)|max
≤ Λj ≤

1

Vj(x)|min
, (30)

the range of C∞j can be expressed as

log
1

Vj(x)|max
≤ C∞j ≤ log

1

Vj(x)|min
, (31)

which means

C∞j |min = log
1

Vj(x)|max
, C∞j |max = log

1

Vj(x)|min
. (32)

Combining (32) with Lemma 2 and Lemma 3, we get the
following theorem for C∞j |min and C∞j |max:

Theorem 2 (Average cluster capacity region): Conditioning
on a round network area with a constant user density, and a

given three-slope path-loss model (22), the lower bound of
C∞j

∣∣
max

for a round cluster can be determined by

C∞j
∣∣
max
≥


log
[
Rj

1.5d1
−1.5

(
3
2 ln d1

d0
+7

4

)]
, d1<Rj≤2R0,

log
(

ln d1
d0

+ 7
6

)
−log

(
ln d1

Rj
+2

3

)
, d0<Rj≤d1,

−log

[
1− R2

j

2d20

(
ln
d1
d0

+ 7
6

)] , 0<Rj≤d0.

(33)
The lower bound of C∞j

∣∣
min

can be determined by

C∞j
∣∣
min
≥ log

2πd−1.5
1

(
ln d1

d0
+ 7

6

)
2πd−1.5

1

(
ln d1

d0
+ 7

6

)
− q(Rj)

. (34)

It can be observed that both the bounds for C∞j
∣∣
max

and
C∞j

∣∣
min

are increasing functions of the cluster radius Rj ,
consistent with the aforementioned result that C∞j and cluster
area |Dj | are positively correlated. The physical insight is that
the more nodes in a cluster performing coordinated commu-
nications, the larger cluster capacity achieved. Moreover, by
substituting R∗j for Rj in (33) and (34), we can obtain the
lower bounds for C∞j

∣∣
max

and C∞j
∣∣
min

of a C2 architecture.
As such, Theorem 2 provides a substantially simplified way
to determine the region of average cluster capacity, reducing
the complexity from high-dimensional matrix manipulation
(shown as (9)) to pure numerical calculation. In practice,
Theorem 2 can be applied for evaluating real-world networks,
whose region can be regarded as round and users are dis-
tributed with a constant density.
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(a)

(b)

Fig. 3. Heatmaps of the average cluster capacity per BS of every cluster in C2, CoMP, and cellular architectures. The region circled with a black
boundary is a cluster. R0 = 1000m, β = 3, RTh = 175m. Users are distributed with a constant density ρu = 6×10−3 m−2. Two types of BS distributions
are considered. (a) BSs are distributed with a constant density. (b) BSs are distributed with an inconstant density, which is centrally dense and peripherally
sparse.

To verify Theorem 2, we plot both of our derived theoretical
bounds and a series of simulated C∞j in Fig. 2. We set
the network radius as R0 = 1000 m, changing the cluster
radius Rj from 20 m to 220 m, and plot the lower bounds
of C∞j |max and C∞j |min for each Rj as a blue curve and
a red curve, respectively. The arithmetic mean of these two
bounds is plotted as a black curve. Note that Theorem 2 only
restricts the user density as a constant, but does not have
any constraint on BS distributions. We fix the user density as
ρu = 6× 10−3 m−2, and generate a series of C2 architectures
with different parameter settings on BS distributions, to plot
the simulated C∞j according to its original definition (9). The
parameter settings include four values of β and two kinds of
BS densities, one is constant and the other is centrally dense
and peripherally sparse (please refer to Section IV-A for de-
tails). It can be observed that the theoretical bounds of C∞j |max

and C∞j |min indeed bound the range of simulated C∞j with
various parameter settings, and thus can be directly utilized
to evaluate the network performance in practice. Moreover,
the simulated C∞j is positively correlated to the ratio β for a
given BS distribution; C∞j approaches the bound of C∞j |max

as β increases, while approaches the bound of C∞j |min as β
decreases. It means the bound of C∞j |max becomes tighter as β
increases, and the bound of C∞j |min is tighter as β decreases.
This is because the larger β corresponds to the fewer BSs,
and C∞j is inversely proportional to the number of BSs as

defined in (9). Another observation that we wish to point out
is that, the simulated C∞j approaches the black curve as β
approaches 1. This implies that the average value of the two
theoretical bounds can be regarded as an approximation on
C∞j for real-world networks with similar numbers of BSs and
users.

V. PERFORMANCE COMPARISON ACROSS C2, COMP, AND
CELLULAR ARCHITECTURES

In this section, we will compare the performance of three
network architectures, including our proposed C2 architecture
and two conventional BS-centric architectures: CoMP and
cellular.

In simulation, we set up a round network region with
radius R0 = 1000 m, where we generate users and BSs
with location coordinates randomly chosen from continuous
uniform distributions, with densities of ρu = 6×10−3 m−2 and
ρb = ρu/β, respectively. Parameters of the near-field boundary
and the far-field boundary are chosen as d0 = 10 m and
d1 = 50 m, respectively. The way to emulate three different
architectures are briefly introduced below:
• The cellular architecture is BS-centric and emulated

through each user attaching to its nearest BS, forming
the Voronoi tessellation [32].

• The CoMP architecture is an enhanced version of the cel-
lular architecture, and is BS-centric as well. We emulate
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it through choosing a datum BS randomly, assembling
surrounding BSs within distance RCoMP to this datum
as a cluster. Then we choose another datum BS randomly
in the remaining BSs and repeat the clustering steps until
no BSs remain. Each user attaches to its nearest BS and
thus belongs to the cluster this BS is located in.

• The C2 architecture can be plotted directly based on our
derived optimal cluster number M∗ and optimal cluster
radius R∗j with a given cluster radius threshold RTh1. For
fair comparisons, RCoMP in CoMP is chosen to be the
same as R∗j in C2. We name the coverage map of the C2

architecture ‘C2 tessellation’.
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Fig. 4. Comparison across C2, CoMP, and cellular architectures in terms
of the overall network average capacity per BS versus network radius.
β = 2, RTh = 100m. Users are distributed with a constant density ρu =
6 × 10−3 m−2. Two different BS distributions are considered. (a) BSs are
distributed with a constant density. (b) BSs are distributed with an inconstant
density, which is centrally dense and peripherally sparse.

In Fig. 3, we plot the heatmaps of C∞j of every cluster
in C2, CoMP, and cellular architectures to compare their

1Clusters are arranged according to the circle packing in a circle. There may
be a few nodes not belonging to any cluster. For these nodes, we perform a
fine-grained tuning in simulation by assigning each node to the cluster with
minimum distance between the cluster center and this node.

performance. Users are distributed with a constant density
ρu = 6 × 10−3 m−2. Two types of BS distributions are
considered, including the constant density and the inconstant
density, shown in Fig. 3(a) and Fig. 3(b), respectively. The
inconstant density case refers to BSs deployed centrally dense
and peripherally sparse, and please refer to Section IV-A for
details. It can be observed that the C2 architecture is not over-
reliant on BS distributions: the optimal number of clusters
M∗ = 24, and the size of each cluster is the same under dif-
ferent BS distributions. In addition, the C2 architecture has the
highest C∞j compared to its two alternatives, guaranteeing that
each BS/user has the highest communication quality. Different
from C2, CoMP and cellular are BS-centric architectures, and
thus exhibit different forms under different BS distributions
in Fig. 3. Compared to C2, CoMP has a larger difference in
cluster size and C∞j , which implies that it can not guarantee
a sufficient communication quality everywhere. As for the
cellular architecture, each cluster corresponds to the coverage
area of a single BS. Its cluster area is the smallest, and its
C∞j is the lowest. As we previously analyzed, cellular can be
regarded as an extreme case of our C2 architecture, with the
number of clusters taking its maximum value L. As a brief
summary, the C2 architecture provides the highest average
cluster capacity per BS/user, and is also the most robust one.
Even though the BS distribution is changed, the clusters under
the C2 architecture do not change.

After evaluating the cluster performance, we take a step
further to evaluate the performance of the overall network. The
overall network average capacity per BS, denoted by CBS , can
be derived based on the average cluster capacity per BS C∞j
as

CBS =

∑M
j=1 C

∞
j Lj

L
. (35)

The overall network average capacity per user is Cu = CBS
β ,

only with a difference of constant β compared to CBS . Here,
we choose CBS as the performance metric without losing
the generality, since Cu and CBS have the same trends.
A comparison across three network architectures in terms
of CBS versus the network radius R0 is shown in Fig. 4.
Our simulation results show that in the case of constant BS
density, C2 outperforms CoMP and cellular with gains of at
least 21.2% and 383%, respectively. In the case of inconstant
BS density, which is centrally dense and peripherally sparse
(please refer to Section IV-A for details), C2 outperforms
CoMP and cellular with gains of at least 17.5% and 315%,
respectively.

VI. CONCLUSION

In this paper, we proposed a C2 architecture for future
wireless networking. It guarantees high capacity for each BS
and each user, and exhibits superior scalability with minimal
signaling overhead simultaneously. The C2 architecture is
designed based on our average cluster capacity theorem, which
eliminates high-dimensional matrix calculations and is adap-
tive to different networks. The C2 architecture has excellent
generality; both the commercialized cellular architecture and
the idealized fully coordinated architecture are its extreme
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cases. Simulation results showed that the C2 architecture has
the highest overall network average capacity per BS (or per
user). It outperforms cellular and CoMP architectures with
performance gains of at least 300% and 17.5%, respectively.
Last but not the least, the C2 architecture is fixed if the user
distribution is fixed, not over-reliant on BS distributions. On
one hand, it means that C2 has excellent robustness with
a given user distribution, in the sense that its clusters will
not change even if the BS distribution is changed. On the
other hand, it implies the user-side information should not be
ignored and deserves more attention in future network designs.
All of these findings can be applied in a wide variety of
wireless scenarios for networking architecture designs, such
as 6G, Wi-Fi, vehicle to everything (V2X) and Industry 4.0,
etc.
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APPENDIX A
PROOF OF LEMMA 1

Based on (1), the channel gain matrix of cluster j can be
written as

Hj = Lj ◦Gj , (36)

where “◦” denotes the Hadamard product. Gj is the small-
scale fading matrix, which is complex Gaussian. Lj is the
path-loss matrix, and is deterministic. The equivalent channel
gain matrix H̃j can be written as

H̃j =
1√
Kj

√
Kj(N0I + Σj)

− 1
2 Lj ◦Gj =

1√
Kj

Tj ◦Gj

(37)
where

Tj =
√
Kj(N0I + Σj)

− 1
2 Lj . (38)

The (l, k)-th entry of Tj is given by

[Tj ]l,k =

√
Kj × `2jlk

N0 +
∑
uκ∈U\Cj `

2
jlkP

, (39)

whose value is limited. Then the matrix H̃jH̃
H
j can be written

as
H̃jH̃

H
j =

1

Kj
Tj ◦GjG

H
j ◦TH

j . (40)

Since the matrix Tj is determined, and its entries can be
regarded as fixed parameters, our objective becomes to inves-
tigate the asymptotic properties of the complex random matrix
1
Kj

GjG
H
j as Kj , Lj →∞, KjLj = βj ∈ (0,∞).

Denote Q = 1
Kj

GjG
H
j , and Q̂ = diag(q1, q2, . . . , qLj ),

with ql = E[ 1
Kj

∑Kj
k=1 gjlkgjlk], (l = 1, 2, . . . , Lj). In the

following, we will prove Q approaches Q̂ as Kj , Lj → ∞,
Kj
Lj

= βj ∈ (0,∞), by analyzing its diagonal entries and
off-diagonal entries, respectively. The mathematical tool we

mainly use is the concentration inequality: if random variables
{Xi}∞i=1

i.i.d∼ N (0, 1), then
∑n
i=1X

2
i ∼ X 2

n , and

P

(∣∣∣∣∣ 1n
n∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ ε
)

= P
(∣∣∣∣ 1nX 2

n − 1

∣∣∣∣ ≥ ε)
≤ 2 exp

(
−1

8
ε2n

)
,

(41)

where X 2
n denotes the chi-square distribution with n degrees

of freedom.

A. Diagonal Entries Analysis

Define complex random variables {Zi = Xi + iYi}∞i=1,
where Xi, Yi

i.i.d∼ N (0, 1), Xi and Yi are pairwise indepen-
dent.

P

(∣∣∣∣∣ 1n
n∑
i=1

ZiZi − E

[
1

n

n∑
i=1

ZiZi

]∣∣∣∣∣ ≥ ε
)

=P

(∣∣∣∣∣ 1n
n∑
i=1

(
X2
i + Y 2

i

)
− 2

∣∣∣∣∣ ≥ ε
)

≤P

(∣∣∣∣∣ 1n
n∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ ε

2

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

Y 2
i − 1

∣∣∣∣∣ ≥ ε

2

)

≤4 exp

(
− 1

32
ε2n

)
.

(42)
Therefore, for the diagonal entries, we have

P
(∣∣∣[Q]l,l − [Q̂]l,l

∣∣∣ ≥ ε) ≤ 4 exp

(
− 1

32
ε2Kj

)
, (43)

where l = 1, 2, . . . , Lj .

B. Off-Diagonal Entries Analysis

Consider {Ui = Wi + iVi}∞i=1, {Zi = Xi + iYi}∞i=1, where
Wi, Vi, Xi, Yi

i.i.d∼ N (0, 1), and Wi, Vi, Xi, Yi are pairwise
independent.

P

(∣∣∣∣∣ 1n
n∑
i=1

UiZi

∣∣∣∣∣ ≥ ε
)

=P

(∣∣∣∣∣ 1n
[(

n∑
i=1

WiXi + ViYi

)
+i

(
n∑
i=1

ViXi−WiYi

)]∣∣∣∣∣≥ε
)

≤P

(∣∣∣∣∣ 1n
n∑
i=1

WiXi

∣∣∣∣∣≥
√

2ε

4

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

ViYi

∣∣∣∣∣ ≥
√

2ε

2

)
+

P

(∣∣∣∣∣ 1n
n∑
i=1

ViXi

∣∣∣∣∣ ≥
√

2ε

4

)
+ P

(∣∣∣∣∣ 1n
n∑
i=1

WiYi

∣∣∣∣∣ ≥
√

2ε

2

)

=4P

(∣∣∣∣∣ 1n
n∑
i=1

WiXi

∣∣∣∣∣ ≥
√

2ε

4

)
.

(44)
Deriving the above probability is equivalent to the following
problem: If {Xi}∞i=1

i.i.d∼ N (0, 1), {Yi}∞i=1
i.i.d∼ N (0, 1),

Xi and Yi are pairwise independent, what’s the probability
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of P
(∣∣ 1
n

∑n
i=1XiYi

∣∣ ≥ ε). Then we perform the following
transformation:

n∑
i=1

XiYi =
1

2

[
n∑
i=1

(Xi + Yi)
2 −

n∑
i=1

(X2
i + Y 2

i )

]

=
1

2

[(
n∑
i=1

(Xi+Yi)
2−2n

)
−

(
n∑
i=1

X2
i−n

)
−

(
n∑
i=1

Y 2
i −n

)]
,

(45)
and thus

P

(∣∣∣∣∣ 1n
n∑
i=1

XiYi

∣∣∣∣∣ ≥ ε
)

=P

[∣∣∣∣∣
(

1

n

n∑
i=1

(
Xi+Yi√

2

)2

−1

)
−

(
1

2n

n∑
i=1

X2
i +

1

2n

n∑
i=1

Y 2
i −1

)∣∣∣∣∣≥ε
]

≤P

(∣∣∣∣∣ 1n
n∑
i=1

(
Xi + Yi√

2

)2

− 1

∣∣∣∣∣ ≥ ε

2

)
+

P

(∣∣∣∣∣ 1

2n

n∑
i=1

X2
i +

1

2n

n∑
i=1

Y 2
i − 1

∣∣∣∣∣ ≥ ε

2

)
.

(46)
Since Xi + Yi ∼ N (0, 2), Xi+Yi√

2
∼ N (0, 1), and Xi, Yi are

pairwise independent, then we have
∑n
i=1

(
Xi+Yi√

2

)2

∼ X 2
n .

Moreover, 1
2n

(∑n
i=1X

2
i +

∑n
i=1 Y

2
i

)
∼ X 2

2n. According to
(41), we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(
Xi + Yi√

2

)2

− 1

∣∣∣∣∣ ≥ ε

2

)
≤ 2 exp

(
− 1

32
ε2n

)
,

P

(∣∣∣∣∣ 1

2n

n∑
i=1

(
X2
i + Y 2

i

)
− 1

∣∣∣∣∣ ≥ ε

2

)
≤ 2 exp

(
− 1

16
ε2n

)
.

(47)
Thus

P

(∣∣∣∣∣ 1n
n∑
i=1

XiYi

∣∣∣∣∣ ≥ε
)
≤2 exp

(
− 1

32
ε2n

)
+2 exp

(
− 1

16
ε2n

)
≤ 4 exp

(
− 1

32
ε2n

)
,

(48)
and

P

(∣∣∣∣∣ 1n
n∑
i=1

UiZi

∣∣∣∣∣ ≥ ε
)
≤ 4 P

(∣∣∣∣∣ 1n
n∑
i=1

WiXi

∣∣∣∣∣ ≥
√

2ε

4

)

≤ 16 exp

(
− 1

256
ε2n

)
.

(49)
Therefore, for the off-diagonal entries, we have

P
(∣∣∣[Q]l,k − [Q̂]l,k

∣∣∣ ≥ ε) ≤ 16 exp

(
− 1

256
ε2Kj

)
, (l 6= k).

(50)

In summary, we have

P
(
‖Q− Q̂‖∞≥ ε

)
= lim

Kj,Lj→∞
Kj/Lj=βj

P
(

max
l,k

∣∣∣[Q]l,k−[Q̂]l,k

∣∣∣≥ε)

= lim
Kj,Lj→∞
Kj/Lj=βj

P
(
∪
l,k

∣∣∣[Q]l,k−[Q̂]l,k

∣∣∣≥ε)

≤ lim
Kj,Lj→∞
Kj/Lj=βj

P
(

max
l,k

∣∣∣[Q]l,k−[Q̂]l,k

∣∣∣ ≥ ε)

≤ lim
Kj,Lj→∞
Kj/Lj=βj

16L2
j exp

(
− 1

256
ε2Kj

)
= 0,

(51)
which means limKj ,Lj→∞,Kj/Lj=βj Q

p.−→ Q̂. Combining
this result with (39) and (40), we have

lim
Kj,Lj→∞
Kj/Lj=βj

H̃jH̃
H
j

p.−→ diag

( ∑
uk∈Uj `

2
j1k

N0+
∑
uκ∈U\Cj `

2
j1κP

,

∑
uk∈Uj `

2
j2k

N0+
∑
uκ∈U\Cj `

2
j2κP

, . . . ,

∑
uk∈Uj `

2
jLjk

N0+
∑
uκ∈U\Cj `

2
jLjκ

P

)
.

(52)
The proof of Lemma 1 is completed.

APPENDIX B
PROOF OF LEMMA 2

Based on the fact that Vj(x)|min is less than or equal to
Vj(xOj ), we have

Vj(x)|min ≤ Vj(xOj )

=

∫
y∈D0−Dj f

(
xOj − y

)
dy∫

y∈D0
f(xOj − y)dy

≤

∫
y∈D0−Dj f(xOj − y)dy

∣∣∣
D0→∞∫

y∈D0
f(xOj − y)dy

∣∣∣
D0→∞

,

(53)

where the denominator can be calculated as∫
y∈D0

f(xOj − y)dy
∣∣∣∣
D0→∞

= 2πρud
−1.5
1

(
7

6
+ ln

d1

d0

)
,

(54)
and the numerator is derived as∫

y∈D0−Dj
f(xOj − y)dy

∣∣∣∣∣
D0→∞

=
4
3πρuR

−1.5
j , d1 < Rj ≤ 2R0,

2πρud
−1.5
1

(
ln d1

Rj
+ 2

3

)
, d0 < Rj ≤ d1,

2πρud
−1.5
1

[
1
2

(
1− R2

j

d20

)
+ ln d1

d0
+ 2

3

]
, 0 < Rj ≤ d0.

(55)
Thus,

Vj(x)|min ≤



2
3R
−1.5
j

d−1.5
1

(
7
6 +ln

d1
d0

) , d1 < Rj ≤ 2R0,

ln
d1
Rj

+ 2
3

ln
d1
d0

+ 7
6

, d0 < Rj ≤ d1,

1− R2
j

2d20

(
ln
d1
d0

+ 7
6

) , 0 < Rj ≤ d0.

(56)
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The proof of Lemma 2 is completed.

APPENDIX C
PROOF OF LEMMA 3

Denote Fj(x) =
∫

y∈Dj f(x−y)dy, and F (x) =
∫

y∈D0
f(x−

y)dy, so that

Vj(x) = 1− Fj(x)

F (x)
, ∀ x ∈ Dj . (57)

It can be obtained that ∀ x ∈ Dj , Fj(x) is a constant for
R0 ≤ d0

2 . Fj(x)|min = Fj(x′) =
∫

y∈Dj f(x′ − y)dy for
R0 > d0

2 , since Fj(x) decreases as the distance between
x and xOj increases. Moreover, ∀x ∈ Dj , F (x)|max =
F (x′) =

∫
y∈D0

f(x′ − y)dy since F (x) decreases as the
distance between x and xOo increases. Thus, Vj(x)|max =

1− Fj(x′)
F (x′) = Vj(x′). Define

q(Rj) =

∫
y∈Dj

f(x′ − y)dy,

we have

Vj(x)|max =

∫
y∈D0−Dj f (x′ − y) dy∫

y∈D0
f(x′ − y)dy

≤

∫
y∈D0−Dj f(x′ − y)dy

∣∣∣
D0→∞∫

y∈D0
f(x′ − y)dy

∣∣∣
D0→∞

= 1− q(Rj)

2πd−1.5
1

(
ln d1

d0
+ 7

6

) .
It can be derived that d

dRj
q(Rj) > 0, which means q(Rj) is

an increasing function of Rj . Thus, the lower bound and upper
bound of q(Rj) can be determined as Rj → 0 and Rj → +∞,
respectively, as

q(Rj)≥ lim
Rj→0

∫
y∈Dj

f(x′ − y)dy = lim
Rj→0

πR2
jd
−1.5
1 d−2

0 = 0,

q(Rj)≤ lim
Rj→∞

∫
y∈Dj

f(x′ − y)dy = πd−1.5
1

(
ln
d1

d0
+

7

6

)
.

As such,

1

2
≤ 1− q(Rj)

2πd−1.5
1

(
ln d1

d0
+ 7

6

) ≤ 1,

which means
0 < Vj(x)|max ≤ 1,

Moreover, if R0 ≥ 2Rj , it can be derived that

Vj(x)|max =

∫
y∈Dj f (x′ − y) dy +

∫
y∈D0−2Dj f (x′ − y) dy

2
∫

y∈Dj f(x′ − y)dy +
∫

y∈D0−2Dj f (x′ − y) dy

≥ q(Rj)

2q(Rj)
=

1

2
.

The proof of Lemma 3 is completed.
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