
Privacy-Preserving Inference
in Crowdsourcing Systems

Liyao Xiang† Baochun Li† Bo Li‡
† Department of Electrical and Computer Engineering, University of Toronto

‡ Department of Computer Science, Hong Kong University of Science and Technology

Abstract—Machine learning has widely been used in crowd-
sourcing systems to analyze the behavior of their mobile users.
However, it naturally raises privacy concerns, as personal data
needs to be collected and analyzed in the cloud, and results need
to be sent back to the users to improve their local estimates. In
this paper, we focus on the use of a specific type of learning
algorithms, called maximum a posteriori (MAP) inference, in
crowdsourcing systems, and use a crowdsourced localization
system as an example. With MAP inference, the accuracy of each
estimate of the user state may be improved by analyzing other
users’ estimates. Naturally, the privacy of the user state needs
to be protected. Within the general framework of differential
privacy, we show how private user states can be perturbed while
preserving statistically accurate results. For the crowdsourcing
system, we design a non-interactive mechanism for a group of
users to perform inference without revealing their true states
to any other party. The mechanism is implemented and verified
in an indoor localization system. By comparing with the state-
of-the-art, we have shown that our proposed privacy-preserving
mechanism produces highly accurate results efficiently.

I. INTRODUCTION

To develop an in-depth understanding of the user behavior, it
has become a norm to analyze individual data in a collective
scenario. Customer feedback is more accurately understood
by analyzing crowdsourced reviews; the average of personal
health condition can only be obtained with joined health
reports. A number of crowdsourcing systems such as [1]–
[3], rely on the collected wireless signal fingerprints, sensor
signatures, or trajectories to localize the mobile users.

While various machine learning techniques can be applied
to the crowdsourced data to achieve an impressive level of
learning accuracy, the privacy of such data is not guaranteed.
A participant has no choice but to give up its privacy to
participate in crowdsourcing. For example, with crowdsourced
indoor localization, each user has to contribute its local
estimate, as well as peripheral observation, such as wireless
signal strengths, encounters, and sensor readings to the crowd-
sourcing server, to retrieve an accurate estimate of its position.
This poses a significant threat to the privacy of a user, as it
allows adversaries to infer her private location even without
any permission [4].

Although the demand of preserving user privacy is immi-
nent, progress towards this objective has not been encouraging
due to the complexity of the learning models. It is important
to keep the two-way communication private along both di-

rections: both the local estimates and peripheral observations
uploaded by the users to the crowdsourcing server, and the
learning results returned by the server, have to be kept secret
from any other party except for the contributing user. As an
intuitive solution, homomorphic encryption can be applied:
the crowdsourcing server runs machine learning algorithms on
the encrypted data, from which the server learns nothing but
returns the learning result that, when decrypted by the users,
matches the result of operations performed on the plaintext.
Such encryption depends on the specific types of operations
whereas general operations in the encrypted domain are only
supported by full homomorphic cryptosystems, and are too
computation-intensive to be deployed on mobile devices.

In this paper, we study the problem of privacy preservation
for a category of learning algorithms called maximum a
posteriori (MAP) inference in crowdsourcing systems, and
show how it applies to an indoor localization case. MAP
inference is used to obtain an estimation of the unobserved
state on the basis of collective observations. By multiplying a
prior distribution of the state with the likelihood evaluated on
the observations, a posterior distribution of the state can be
obtained. In a crowdsourcing system, it is typical for a user
to require that its individual states be kept secret from other
parties, but still obtaining a correct posterior, by evaluating
against observations contributed by others. In indoor localiza-
tion, for example, the state is each user’s location, and the
prior distribution is the user’s local guesses of its location. In
this context, the crowdsourcing algorithm returns the posterior
distribution of all users based on their observations, such as
their encounters.

We propose a general approach to preserve user privacy
when running the MAP inference algorithm in crowdsourcing
systems. The approach encrypts user observations by a partial
homomorphic encryption scheme, and perturbs the user states
in a differentially private fashion. We explicitly define user
privacy following the definition of differential privacy. The
definition ensures that an adversary cannot distinguish the true
user state with high probabilities. The privacy-preserving MAP
inference algorithm runs on the server, and returns encrypted
partial results to the users. By decryption, each user is able
to obtain the inference result in the form of the posterior
distribution of its state.

We deployed a practical crowdsourcing indoor localization

978-1-5386-0683-4/17/$31.00 2017 IEEE

system based on the proposed privacy-preserving MAP infer-
ence algorithm. We choose such system because 1) privacy
in crowdsourcing-based localization is critical; 2) the system
demonstrates how feasible our privacy-preserving approach
is in practice. Although deployed to an indoor localization
system, the algorithm can also be applied to other cases, as
long as each likelihood can be expressed as a function of the
distance between a pair of user states.

Highlights of our original contributions are as follows. First,
we designed an efficient privacy-preserving MAP inference
algorithm based on the Paillier homomorphic cryptosystem.
Users only need to encrypt once in each round of the update,
and remain offline until the retrieval of results from the
server. Second, we define user privacy based on the most
recently proposed differential privacy concept, and show how
the perturbation preserves pairwise distance while satisfying
the privacy guarantee. Last but not the least, we deploy
our privacy-preserving MAP mechanism to a crowdsourcing
indoor localization system, and demonstrate its effectiveness
with a real-world implementation on iOS devices. With our
experimental results, we verify that our privacy-preserving
mechanism achieves a high level of privacy guarantee with
modest sacrifice on accuracy.

II. RELATED WORK

In this section, we discuss our contributions in the context
of closely related work in the literature, which can be divided
into three categories.

Privacy-preserving data mining. Previous privacy-
preserving learning frameworks [5], [6] using differential
privacy focused on learning a parametric model by distributed
incremental optimization. Their approaches protected privacy
by perturbing the parameters uploaded to the server.
However, a large portion of the learning problems cannot
be parameterized, such as clustering, latent variable models,
posterior distribution estimation, etc. For the first time to our
knowledge, we propose a privacy-preserving MAP inference
approach to the posterior estimation problem, by perturbing
the prior distribution while preserving the likelihood to
compute the posterior.

Distance-preserving space transformation. The techniques
of pairwise distance preserving data transformation have long
been studied. A typical example is random projection based
perturbation [7]. It uses a multiplicative random projection
matrix R to construct a new representation of the data, while
statistical characteristics, such as the expectation of the inner
product and the expectation of the pairwise Euclidean distance,
are preserved in the new representation. Given the transformed
data, and even the multiplicative random matrix, it would be
impossible to find the exact values of the original data. It
utilizes the principle that the solution is never unique for an
underdetermined system of linear equations. However, such
perturbation does not clearly define privacy, nor is it secure:
as pointed by [8], the random projection based perturbation
can be breached by the known input-output attack and the
known sample attack.

Another scheme [9] projects the two-dimensional data to a
collection of scalars by Hilbert curves. The curve serves as a
one-way transformation so that the adversary cannot acquire
the original data from the transformed data. We will illustrate
more details about this scheme and compare with it in Sec. VII.

Location privacy. In the specific example of localization, a
variety of techniques have been proposed to support location
privacy, such as k-anonymity [10], indistinguishable locations
[11]–[13], and space transformations [9], [14], to name just
a few. Our definition of privacy is inspired by the work
of indistinguishable locations [11]–[13]. Yet, these existing
approaches have assumptions that do not hold in the crowd-
sourced localization. They assume each mobile user uploads
a perturbed position to the server to use the location-based
service. In our case, the user uploads an estimate of its location
to retrieve a finer estimate. Obviously, the perturbation cannot
be arbitrary and has to ensure that accurate output is produced
with the inference algorithm.

III. PRELIMINARIES

In this section, we first briefly introduce the fundamentals
for the MAP inference algorithm, and show the specific
example of a crowdsourcing-based indoor localization system.
The homomorphic encryption scheme and the background of
differential privacy are also formally introduced.

A. Particle Filters
Particle filters are used to improve the tracking accuracy of

time-varying variables of interest, by constructing a sample-
based representation of the targeted variables’ probability den-
sity function (pdf). Assuming each user state varies with time,
the state of user i at time t can be represented as a variable Zi,t.
And Zi,t is denoted by R particles: Zi,t = (zt1, ..., z

t
R). Each

particle ztr is a possible state, and is associated with a weight
wtr — the likelihood of that particular state. For example, if a
state is represented by (z1, z2, z3) associated with probabilities
(0.6, 0.2, 0.2), then we know the state is more likely to be z1
than z3.

In the indoor localization case, each state is denoted by a
two-dimensional vector (x, y) representing a pair of coordi-
nates on the floorplan. In each round, the particle filter goes
through the following steps to update the distribution of the
variable.
♦ Initialization. At time slot 0, all particles of the state

variable are randomly initialized and are assigned the same
weight. From time slot 1 onwards, the initial state of time t
is the last state of time t− 1.
♦ Local Update. Whenever a user moves, its state gets

locally updated by moving all of its particles by its dis-
placement. We decompose the displacement to two orthogonal
components: the distance traveled βt and the heading direction
θt. Each particle’s state is updated without changing its weight:

ztr =

(
xtr
ytr

)
=

(
xt−1r + βt cos θt

yt−1r + βt sin θt

)
. (1)

♦ Global Update. A user updates its particle weights with
regard to the observation of the relative distances between it

and other users or access points. The access points can be WiFi
access points or Bluetooth beacons, of which their positions
can be measured and acquired. Let Zj,t denote the state of
user/access point j. Assuming the observed relative distance
between i and j is Dij,t, which can be translated from the
WiFi received signal strength, or peer-to-peer Bluetooth signal
strength, the likelihood of each pair of particles zi,r and zj,s
— the r-th particle of i and the s-th particle of j, can be
represented as:

p(Dij,t|zi,r, zj,s) ∝ exp
(
− (||zi,r − zj,s||2 −Dij,t)

2

2τ2

)
. (2)

Letting N (i) denote the set of users or access points observed
by user i, the weight of particle zi,r is updated as:

wi,r =
∏

j∈N (i)

∏
s∈{1,...,R}

p(Dij,t|zi,r, zj,s). (3)

Apparently, if the position of Zj,t is known, or has a higher
confidence level than Zi,t, user i is able to refine its state
estimate against Zj,t. And any other user who encounters user
i is also able to take advantage of its refined state estimate.
Crowdsourcing takes effect by propagating the location knowl-
edge from a few known places to the unknown.
♦ Resampling. In this step, each user first normalizes its par-

ticles’ weights. After normalization, some particles may drift
far enough that their weights can be ignored. By eliminating
those particles, and duplicating ones with higher weights, the
distribution of each user’s state is adjusted towards a more
precise estimation.

Zi,t-2 Zi,t

Dij,t-2

Zi,t-1

Zj,t-2 Zj,t-1 Zj,t

Dij,t-1 Dij,t

Time t

window T = 3

Zk,t-2 Zk,tZk,t-1

Dik,t-2 Dik,t-1

Dk,t

Fig. 1: A graph model for the crowdsourcing-based indoor
localization system.

B. MAP Inference

Given all state variables represented by particles, we now
formulate the crowdsourcing-based indoor localization as an
inference problem over a graph model. Fig. 1 depicts the
graph model. Each white node stands for a state variable.
User i’s displacement from t − 1 to t is represented as
Di,t. The grey node Dij,t denotes the distance observation
between user i and j at time t. Assuming there are M
users in total, the prior distribution for all users at t is
Zt−1 = {Z1,t−1, Z2,t−1, ..., ZM,t−1}. Given the prior Zt−1

and the observations D, our goal is to estimate the most likely
posterior distribution Z∗t :

Z∗t = arg max
Zt

P (Zt|Zt−1,D), (4)

where the joint probability P (Zt|Zt−1,D) can be broken
down as the product of the probabilities of all white nodes.
Each probability is expressed as the product of two parts —
the probability result of the local update and the conditional
probabilities between the node and its neighbors. Formally,

P (Zt|Zt−1,D) ∝
M∏
i=1

∏
j∈N (i)

p(Zi,t|Zi,t−1)︸ ︷︷ ︸
local update.

p(Dij,t|Zi,t, Zj,t)︸ ︷︷ ︸
global update.

.

(5)
To solve Eqn. (4), iterated conditional modes [15] is tradi-

tionally used. We combine that method with the particle filter:
The update of p(Zi,t|Zi,t−1) is completed by Eqn. 1, while
the probability of p(Dij,t|Zi,t, Zj,t) is updated in two steps:
calculating the weight of each particle per user by Eqn. (3)
and resampling the particles according to their weights. By
iteratively running the particle filter until convergence, the
most likely posterior distribution of the user state is obtained.

In each iteration, every user calculates locally its prior
distribution, and uploads its prior with the observations w.r.t.
other users/access points, to the crowdsourcing server. The
server runs an MAP inference algorithm to solve Eqn. (4).
As a final step, users retrieve the posterior estimate of its
position from the server. Although the paper discusses the
crowdsourcing-based indoor localization as an example, the
model is actually very general and suits other cases as well.
For example, letting Z represent the spoken words, and D be
the pronunciation sequence, similar graph model can be trained
for acoustic recognition. As another example, letting Z be the
user preference, and D be the different types of advertisement
read by users, the model can be used to inspect users’ reading
behaviors in a recommendation system.

C. Paillier Cryptosystem

To enable homomorphic computation performing MAP in-
ference on the crowdsourcing server, we choose the Paillier
cryptosystem due to its efficiency in ciphertext size and in
performing homomorphic operations. Its limitation lies in that
it only supports addition and multiplication operations over
encrypted data. There are two types of keys involved: public
key pk and private key sk. The public key is used to encrypt
the plaintext m and the private key is used for decryption. The
plaintext m ∈ Zn, where n is a large positive integer and Zn
is the set of integers modulo n. We denote the encryption of m
with public key pk as Epk(m) and the decryption of ciphertext
c using secret key sk as E−1sk (c). The homomorphic properties
of the cryptosystem can be described as

Epk(m1 +m2) = Epk(m1) · Epk(m2), (6)

Epk(a ·m1) = Epk(m1)a, (7)

where a is a constant that a ∈ Zn. Later we will show how
we apply the above properties to our privacy-preserving MAP
inference algorithm.

D. Differential Privacy

Differential privacy is to ensure the ability of an adversary
to inflict on any set of users should be close, independent of
whether any individual opts in to, or out of the dataset ([16]).
Such ability is expressed by the probabilities of neighboring
inputs given the output. The privacy guarantee is evaluated as
the ratio between the two probabilities when adjacent inputs
are fed into the privacy mechanism. Adjacent inputs can be
two datasets differing in one row, or two input values with
one unit difference. Formally, letting I and I ′ be the inputs,
O be the output set such that O ⊆ O, and K be the private
mechanism, then

Definition 1: A mechanism K is (ε, δ)-differentially private
if for all adjacent inputs I and I ′, and all possible output O,

Pr[K(I) ∈ O] ≤ eε · Pr[K(I ′) ∈ O] + δ.

In the special case of δ = 0, we call K ε-differentially private.
An intuitive interpretation of the differential privacy concept

above is that, with the definition, we are constraining how well
an adversary can distinguish the input I from I ′ given only
the output of K(I) and K(I ′). We later extend the definition
to a more general setting.

IV. THREAT MODEL AND PRIVACY GOAL

In the crowdsourcing system described in Sec. III-B, both
users and the server can be potentially adversarial. We assume
all parties are “honest-but-curious”, i.e., they follow the pro-
tocol correctly, but are curious about others’ data. This makes
sense in a crowdsourcing system where users rarely know each
other, but only care about any intermediate or final result they
receive. In this case, there are two types of data shared by
users — the prior states Z and the distance observations D.
If an adversary acquires Z, the user positions get exposed. If
the observations is intercepted without Z, the adversary is still
able to figure out the positions by launching a triangulation
attack to the victim.

Our privacy objective is to prevent any other party from
learning the exact user position, as well as preventing the leak
of observations D. Each user position is represented by its
distribution which includes two parts — the set of particles
{zt1, ..., ztR} and each particles’ weight {w1, ..., wR}. It would
be ideal to encrypt both parts so that nothing can be learned
about the user’s position at all, but that would be highly
impracticable for an inference algorithm. Instead of hiding
away the entire position probability distribution, if we only
consider keeping each particle’s weight secret, the true position
of the user will be hidden in a set of seemingly random
particles.

However, two problems remain: first, an adversary still has
1/R of chances of guessing the true user position; second,
the server will have to update posterior without knowing the
particles’ weights. To tackle the first issue, we choose to

perturb the actual state of each particle with a differential
privacy mechanism so that the true user state is never leaked.
One may wonder how the perturbed particle states would
influence the final inference results. As we verify analytically
in a later section, our differential privacy mechanism can return
statistically correct results given the perturbed states. For the
second issue, we devised a privacy protocol based on the
Paillier cryptosystem to enable the server to update particle
weights blindly, only with access to the encrypted D and the
perturbed states of particles.

Even though the MAP inference runs on the perturbed states
iteratively, one does not need to worry whether the perturbed
particles would eventually converge and reveal the true state.
We modified the procedure of the particle filter, so that the
less likely particles would remain in the particle set without
affecting the true probability distribution. Without knowing
their weights, the particle set looks like a bunch of randomly
selected particles at all times. Further, in the case that the user
has significant prior knowledge about its state, for example,
it is close to a known access point or a signature spot, or its
position estimate has just converged, the differential privacy
mechanism guarantees that the user’s position is not compro-
mised by crowdsourcing, thus encouraging user participation.

V. PRIVACY-PRESERVING INFERENCE

As we pointed out in Sec. IV, each user’s state is prone
to be breached in the crowdsourcing system under our threat
model. In this section, we propose a privacy-preserving MAP
inference mechanism to achieve our privacy goals.

A. Overview

In the privacy-preserving framework of MAP inference, we
assume that the Paillier cryptosystem has been established by
a trusted party to the crowdsourcing server and each user
beforehand. We also assume that there exists a cryptographic
service provider who distributes the key pair (pk, sk) to each
user through secure channels in the setup. After setup, the
following steps are conducted iteratively. An overview of the
framework is shown in Fig. 2.

In the first step, the user perturbs its prior particle states
with the data perturbation scheme, encrypts particle weights
and observations, and uploads them to the server. In the second
step, the crowdsourcing server runs the privacy-preserving
MAP inference algorithm. The server computes the joint
probability in ciphertext and returns each user a partial result.
In the final step, each user decrypts the partial result, computes
the likelihood for each particle, resamples the particles and
eventually obtains its posterior estimates. In each iteration,
the user only sends/receives once to/from the server, and no
further actions from the user are required. Apart from that, the
additional computational overhead only involves encryption
and decryption, no operations on the encrypted domain is
performed at the user end. Hence, the communication and
computation overhead is reasonable for users.

Users

1. perturbed prior states, encrypted

particle weights and observations

2. privacy-preserving
 MAP inference

Partial results3. decryption and posterior
 estimates update

Fig. 2: A privacy-preserving framework for MAP inference.

B. Data Perturbation and Encryption

As the first step, each user perturbs its particle states with
the data perturbation scheme described in Alg. 1. The general
strategy is to add Gaussian noise to the prior state of the
particle set Z = (z1, ..., zR), and release it as Y = (y1, ..., yR).
As a generic data perturbation scheme, we let each particle’s
dimension be L. For ease of presentation, we rewrite the
particle set Z as an R×L matrix of which each row represents
a particle, and each column denotes one dimension of all
particles. In the indoor localization example, L = 2.

Algorithm 1 Data Perturbation

Input: R×L matrix Zi,t, ∀i ∈ {1, ...,M}, privacy parameters
ε and δ.

Output: Perturbed matrix Yi,t, ∀i ∈ {1, ...,M}.
1: for i ∈ {1, ...,M} do
2: Construct a random R×L noise matrix ∆i,t with each

entry drawn from N (0, σ2) where σ is decided by ε, δ.
3: Yi,t = Zi,t + ∆i,t.
4: Upload Yi,t to the server.
5: end for

As we will illustrate in the next section, the data perturbation
scheme guarantees (ε, δ)-differential privacy for the prior
estimates. We will also show how the value of σ is determined
by the privacy parameters. Intuitively, a lower privacy level
leads to a smaller σ, but the estimate would be more accurate.

Apart from the data perturbation, each user also encrypts
the particle weights and observations with pk. Assuming the
r-th particle of user i has weight wi,r as the result of the
previous iteration, the user uploads the encrypted weight for
each particle: Epk(lnwi,r),∀r. Likewise, if user i has an
observation Dij w.r.t. its neighbor j ∈ N (i), the user uploads
Epk(Dij) and Epk(D2

ij) to the server. The server will utilize
the above data to perform privacy-preserving MAP inference.

C. Privacy-preserving MAP Inference

With the perturbed prior states of all users Yt =
{Y1,t, ..., YM,t}, and the encrypted data, the server iterates
through all users in a random order to compute the posterior
for each. Specifically, for user i, the server begins with
computing the pairwise distance between each of its particles

and the particles of j ∈ N (i). For instance, the distance
between perturbed particles yi,r and yj,s is calculated as:

d̃(yi,r, yj,s) =
√
||yi,r − yj,s||22 − 2Lσ2. (8)

If yj,s is unperturbed, the bias is Lσ2 instead of 2Lσ2. As we
will later prove, Eqn. (8) is statistically equivalent to ||zi,r −
zj,s||2. For ease of denotation, we let djs , ||zi,r−zj,s||2 and
d̃js , d̃(yi,r, yj,s) by dropping the notation of i and r. We
will show in the next section that E[djs] = E[d̃js].

The privacy-preserving inference scheme made the follow-
ing changes to the original MAP inference algorithm: 1)
Each user keeps particles as well as their weights. Instead
of eliminating and duplicating particles, they only re-calculate
the particles weights. 2) Accordingly, the likelihood of each
pair of particles computed in plaintext is:

p(Dij,t|yi,r, yj,s) ∝ wj,s exp
(
− (d̃(yi,r, yj,s)−Dij,t)

2

2τ2

)
.

(9)
By attaching a coefficient, the likelihood carries the particles

weights from the previous iteration. Obviously, particles with
larger weights in the previous iteration are more likely to
be assigned higher weights in the current iteration. Eqn. (9)
corresponds to two steps: calculating each particle’s weight
by Eqn. (3), and resampling the particles w.r.t. their respec-
tive weights. 3) Since weights are contained within, we do
not eliminate any particle in the resampling step, but only
randomly generate new ones based on the original ones.

With d̃js,∀s ∈ {1, ..., R},∀j ∈ N (i) and the encrypted
data, the server evaluates each particle’s probability for user
i. Since the server has limited computation capability on
ciphertexts, it just returns a partial result to the user. In fact,
the server returns an encrypted summation of the squared
differences to user i. Essentially, the server computes ci,r as
follows for the r-th particle of user i:

ci,r =
∏

j∈N (i)

∏
s∈{1,...,R}

Epk(lnwj,s) · Epk(d̃2js)
− 1

2τ2

· Epk(Dij)
d̃js

τ2 · Epk(D2
ij)
− 1

2τ2

= Epk[
∑

j∈N (i)

∑
s∈{1,...,R}

(lnwj,s − (d̃js −Dij)
2/2τ2)].

By decrypting with sk, the weight wi,r is updated by user
i:

wki,r = wk−1i,r exp[Esk(ci,r)]

= wk−1i,r exp[
∑

j∈N (i)

∑
s∈{1,...,R}

(lnwj,s − (d̃js −Dij)
2/2τ2)]

= wk−1i,r

∏
j∈N (i)

∏
s∈{1,...,R}

exp(lnwj,s − (d̃js −Dij)
2/2τ2)

= wk−1i,r

∏
j∈N (i)

∏
s∈{1,...,R}

wj,s · exp
(
− (d̃js −Dij)

2

2τ2

)
' wk−1i,r

∏
j∈N (i)

∏
s∈{1,...,R}

p(Dij,t|zi,r, zj,s).

wki,r represents the particle weight of k-th iteration. In the last
equation, we use ' to indicate a statistical equivalence as a
result of data perturbation. After each user has recalculated the
particle weights, it resamples particles for the next iteration.
In practice, 1 ∼ 3 iterations per time slot would sufficiently
filter the most likely state for the user. From the user’s
perspective, its estimate is gradually refined by resampling
and re-weighting the particles. But as long as the particle
weights are kept private, nothing about the user is revealed.
The complete procedures are described in Alg. 2.

Algorithm 2 Privacy-preserving MAP Inference

Input: Yt = {Yi,t}, Epk(lnwi,r), Epk(Dij), Epk(D2
ij), ∀r ∈

{1, ..., R},∀j ∈ N (i) and i ∈ {1, ...,M}.
Output: Y∗t

1: repeat
2: Server:
3: for all i s.t. 1 ≤ i ≤M and r s.t. 1 ≤ r ≤ R do
4: for all j s.t. j ∈ N (i) and s s.t. 1 ≤ s ≤ R do
5: Compute d̃js according to Eqn. (8).
6: end for
7: Compute ci,r =

∏
j

∏
sEpk(lnwj,s) ·Epk(d̃2js)

− 1
2τ2 ·

Epk(Dij)
d̃js

τ2 · Epk(D2
ij)
− 1

2τ2 .
8: end for
9: Send ci,r,∀r respectively to user i, ∀i ∈ {1, ...,M}.

10: User i:
11: for all r such that 1 ≤ r ≤ R do
12: Compute wi,r = wi,r exp[Esk(ci,r)].
13: end for
14: Normalize the probabilities wi,r across all particles.
15: Resample prior estimates Yi,t.
16: until Yt converges.

VI. PRIVACY AND UTILITY ANALYSIS

In this section, we show the privacy guarantee of the data
perturbation scheme, as well as the properties that ensure the
correctness of the MAP inference.

A. Privacy Guarantee

Equipped with the threat model and the privacy objective,
we explicitly define state differential privacy, which is a gen-
eralized version of the zero-concentrated differential privacy
[17]. The latter is a variant of differential privacy [16] that
enjoys higher utility with composition. The corresponding
physical meaning of state differential privacy will be described
in the indoor localization context.

1) State Differential Privacy: The main idea is that, in a
multi-dimensional space, letting a point be at most r away
from its neighboring points, then anyone can distinguish the
point from its neighboring points with at most a probability
proportional to r2. More specifically, letting z and z′ be two
arbitrary points in the L-dimensional space, and d(z, z′) be the
Euclidean distance between them, a randomized mechanism K
projects z, z′ onto Y ⊆ Y such that, the smaller the distance

d(z, z′) is, the closer the two corresponding distributions are.
Formally,

Definition 2: (ε, δ)-differential privacy. A mechanism K
satisfies (ε, δ)-differential privacy iff for all z, z′ that are
d(z, z′) apart:

Pr[K(z) ∈ Y] ≤ eεPr[K(z′) ∈ Y] + δ,

and
ε = ρd2(z, z′) + 2

√
ρ log(1/δ)d(z, z′),

where ρ is a constant specific to K.
We show how the above conceptual definition can be

materialized, by using the indoor localization example. In
the example, L = 2. In Fig. 3, z and z′ are two points on
the floorplan with distance d(z, z′) in between. The privacy
mechanism can be considered as a randomized function which
projects z, z′ to the same output subspace that the probabilities
of such projection are different by at most a factor ε depending
on d2(z, z′). The distance d(z, z′) carves a circle in the input
space separating the points within that distance from z and
the points otherwise. The probabilities of all points within
the circle can be distinguished from each other by at most ε.
The fact is the perturbation points on the same circle centered
around z share the same privacy level. As the radius grows
larger, ε becomes larger and the privacy level decreases as a
result. A decreasing privacy level means that an adversary can
tell z apart from z′ with a higher probability.

z

d
(z

, z
’)

z’
K(z)(Y) K(z’)(Y) K(z’’)(Y)

z”

d(z, z”)

Fig. 3: (ε, δ)-differential privacy between the state z and z′.

The definition has its corresponding meaning in reality.
When two locations are close, for example, within the same
room, the definition requires the two locations can hardly be
distinguished from one another. But when the two locations
are far apart, the distinguishing probability between them is
relatively higher while the possible area also grows larger. This
privacy definition works in our designed privacy scheme by
distinguishing the true position from the unlikely locations,
but confusing the adversary with approximate locations.

2) User Differential Privacy: The proposed (ε, δ)-
differential privacy in the preceding section quantifies the
privacy of a perturbed state. However, a user state variable, as
described in Sec. III-A, consists of a number of particles as
well as their weights. We quantify the privacy a user enjoys
by user differential privacy.

Assume a privacy mechanism K takes as the input a set
of particles Z = (z1, ..., zR) and reports Y = (y1, ..., yR) by
applying the mechanism K to each particle individually. Since

the particles are independently generated, the probability can
be written as:

Pr[K(Z) = Y] =

R∏
i=1

Pr[K(zi) = yi]. (10)

Since Z and Y are ordered sets of particles, the privacy
mechanism applied to each individual particle does not have
any effect on other particles. We partition the input domain to
a set of disjoint subsets each of which contains precisely one
of the particles. Thus K is a parallel composition [18] of K.
By Def. 2 and the parallel composition law in [18], we can
derive the following theorem of user differential privacy. We
omit its formal proof due to the space constraint.

Theorem 1: User Differential Privacy. For any particle set
Z = (z1, ..., zR), Alg. 1 satisfies (ε∗, δ)-differential privacy
such that for all δ > 0,

ε∗ = ρd2(Z,Z ′) + 2
√
ρ log(1/δ)d2(Z,Z ′), (11)

where
ρ ≥ 1/(2σ2),

and

d2(Z,Z ′) =

R∑
r=1

d2(zr, z
′
r).

Note that in Thm. (1), we define the distance between the
two particle sets Z and Z ′ as the Euclidean distance between
the multi-dimensional variables Z and Z ′.

However, since the particles are not actually drawn from
independent distributions, the real privacy level is less than
Eqn. (11). There may be particles generated from the same
original particle, then their respective reported values are
correlated, which is equivalent to multiple times release of
the same particle. It will lead to a reduction of the privacy
level of K. Thus the overall user differential privacy is less or
equal to Eqn. (11).

B. Utility Analysis

As mentioned previously, we show in this section that the
data perturbation mechanism in Alg. 1 satisfies differential
privacy guarantee without distorting the inference result too
much. Since the weighted likelihood of Eqn. (9) depends on
the Euclidean distance between a pair of states, we need
to show the pairwise distance does not vary much after
perturbation.

As a general result, we have
Theorem 2: Let z, z′ ∈ Z be two arbitrary particles, and

y, y′ ∈ Y be their respective perturbation as the result of
Alg. 1. Let dZ = ||z − z′||2 and dY = d̃(y, y′) according to
Eqn. (8). Then dY is an unbiased estimator of dZ . Specifically,
the following properties hold:
• Unbiased estimator: E[d2Y] = E[d2Z].
• Variance:

Var[d2Y] = 8d2Zσ
2 + 8Lσ4.

• Probability bound:

Pr(|d2Y − d2Z | ≥ λd2Z) ≤ 8

λ2

[(σ
dZ

)2
+ L

(σ
dZ

)4]
.

Proof Let z = y + ∆1 and z′ = y′ + ∆2 where ∆1,∆2 ∼
NL(0, σ2). NL(0, σ2) denotes an L-dimensional vector of
random variables drawn from N (0, σ2). Then by Eqn. (8),

d2Y = ||y − y′||22 − 2Lσ2

= ||(z − z′) + (∆1 −∆2)||22 − 2Lσ2

= d2Z + 2〈z − z′,∆1 −∆2〉+ ||∆1 −∆2||22 − 2Lσ2

= d2Z + 2N (0, 2σ2d2Z) + 2σ2χ2
L − 2Lσ2.

χ2
L represents a chi-squared distribution with L degrees of

freedom. The equation is obtained from the scaling and addi-
tive property of the Gaussian distribution, and the definition
of the chi-squared distribution. In the expectation we have:

E[d2Y] = E[d2Z] + 2σ2 × L− 2Lσ2 = E[d2Z],

Var[d2Y] = E[d4Y]− E2[d2Y]

= (d2Z − 2Lσ2)2 + 8d2Zσ
2 + 4σ4E[(χ2

L)2]

+ 4(d2Z − 2Lσ2)Lσ2 − d4Z
= 8d2Zσ

2 + 8Lσ4.

Finally, we apply Chebyshev’s inequality to variable d2Y to
obtain the probability bound. This completes the proof.

Since the weighted likelihood in Eqn. (9) is a function
of the pairwise distance, thus each particle weight based on
the perturbed particles is an unbiased estimator of the weight
calculated from the original particles:

E[wi,r] =
∏

j∈N (i)

∏
s∈{1,...,R}

E[p(Dij,t|yi,r, yj,s)]

∝
∏
j

∏
s

wj,s

[
exp

(
− (E[d̃js]−Dij,t)

2

2τ2

)]
=
∏
j

∏
s

wj,s

[
exp

(
− (E[djs]−Dij,t)

2

2τ2

)]
.

We update the weight for each particle which is an unbiased
estimator of the true weight. Combined with the homomorphic
encryption scheme, each user is able to obtain a correct infer-
ence result without revealing either its true prior or posterior
estimates.

VII. PERFORMANCE EVALUATION

Despite of the privacy guarantee that our approach offers,
one may naturally wonder how practical it is. We begin to
evaluate the performance of the scheme by analyzing its
computation overhead.

A. Computation Cost and Convergence

We implemented the privacy-preserving MAP inference
algorithm based on a Java Paillier crypto library called
javallier [19], which provides additive homomorphic op-
erations for float numbers and negative numbers. A virtual

machine with 8 VCPU and 16 GB RAM is deployed as the
crowdsourcing server. To get the best out of the performance,
Java multi-threading is implemented to speed up the server
execution. We used a key size of 512 bits throughout the
experiment. All results reported are averaged over a sufficient
number of repeated tests.

10 20 30 40 50

2000

7000

12000

Number of Users

A
v
e

ra
g

e
 R

u
n

n
in

g
 T

im
e

 (
m

s
)

Running Time of the MAP Inference

R = 50

R = 75

R = 100

(a) Running time w.r.t. Crowd Sizes

0 20 40 60 80
0

0.2

0.4

0.6

0.8

H
ig

h
e

s
t

P
a

rt
ic

le
 W

e
ig

h
t

No. of Iterations (5 Iterations × 15 Timeslots)

Convergence of the Particle Distribution

(b) Convergence w.r.t. Iterations

Fig. 4: Computation costs and convergence.

We observe that the running time of the privacy-preserving
MAP inference algorithm grows as the particle number R
or the crowd size increases, as shown in Fig. 4-(a). Overall,
they are within a reasonable response time (0 ∼ 7 seconds).
The convergence of the particles is evaluated by the weight
of the most likely particle throughout 15 time slots with 5
iterations per slot. Fig. 4-(b) shows that the highest particle
weight is able to reach as high as 0.2 within a few iterations,
representing the posterior distribution of the user state gets
efficiently refined.

B. Privacy and Utility

We further evaluate the privacy and utility of the constructed
scheme. Privacy metrics include the chosen parameters: ε, δ
and σ, while utility metrics are the pairwise distance error
||dY − dZ ||2 and the resulting position error.

To find the feasible ranges of the privacy parameters, we plot
Fig. 5(a) for varying ε, δ and σ according to Theorem 1. For a
more straightforward illustration, we let d(Z,Z ′) = 1. Given a
fixed δ, as σ2 grows, ε decreases, suggesting a higher privacy
level. An ideal privacy-utility tradeoff is achieved when δ, ε
and σ2 are very small. Thus we select a few groups of values
from the left lower corner of the figure for the experiments.

As the simulation setting, we generate 20 users’ traces
within a 50× 50 area by the random way point model. Each
user’s observations are randomly generated by the Gaussian
model. We collect the pairwise distance error and the position
error for different σs and numbers of particles R. This is
because, according to Thm. 1, the user differential privacy
is determined both by the privacy parameter and the number
of particles (implied by d(Z,Z ′)).

Fig. 5(b) and Fig. 5(c) show the cumulative distribution
function (cdf) of the errors with varying σ when R = 100.
We found when σ = 2.3, most of the pairwise distance
errors fall below zero. The reason is that we pose boundary
constraints on the particle perturbation as the area is limited.
In general, smaller σ leads to less pairwise distance error.
Fig. 5(c) indicates 75%, 76%, 69%, 74% of the errors are
within 5m respectively for the unperturbed, σ = 0.2, 0.7, 1.0

cases. The general trend is the smaller the σ, the higher the
position accuracy. But the randomization of particles allow
slight violation of such trend.

We also compared the position error with varying particle
numbers by fixing σ = 0.5. As Fig. 5(d) shows, a higher
number of particles leads to less error. 53%, 70%, 72%,
79%, 75% of the total errors are within 5m respectively for
R = 50, 75, 100, 125, 150. In combined with the computation
overhead, the value of R needs to be carefully chosen in
practice.

Last but not the least, we compare the utility of our
distance-invariant additive data perturbation scheme with other
distance-preserving data transformation technique by embed-
ding them to the MAP inference algorithm. The compared
technique, proposed by [9], uses Hilbert curves as an efficient
one-way transformation to map the 2D data to 1D data while
respecting the properties of distance and proximity. Users
encrypt their 2D data with a “secret key” which consists of
the curve’s starting point, curve orientation, curve order and
curve scale factor. Once the “secret key” is discretized, one
cannot reverse the 1D data to 2D data without the key.

In our comparison experiments, we project each point on the
floor plan to a corresponding scalar in a vector and keep their
relative distances as much as possible. As shown in Fig. 5(e),
the positioning accuracy is as low as the case when σ = 10.0.
And even we adjust the curve order n, the position error is not
any better. This is because the data transformation based on
Hilbert Curves suffers from the effect of “missed sides” that
are not covered by the curve, and the number of such “missed
sides” grows exponentially with the curve order.

C. Real-World Experiments

To verify the privacy-preserving MAP inference algorithm
works in the real world, we implemented the algorithm on iOS
and evaluated the experiment in a building of 40m×60m with
7 Bluetooth beacons deployed as the access points. To acquire
the ground truth, we record several arbitrary user traces, and
randomly place markers along each of them with an average
1.5m between neighboring ones. In the experiment, we ask 7
users carrying smartphones to move simultaneously along the
trajectories, and report their estimation upon each marker. The
particle number is set as 100. The average sequential position
errors with different privacy parameters are demonstrated in
Fig. 5(f). It shows that the average error is highest at the
beginning, as none of the users know its position. And the
error gradually goes down as more users refine their position
estimates, which reflects the spirit of crowdsourcing. We found
the position error is actually less than the simulation results
based on the random way point model. It is probably due to
the area that the user actually resides is limited by physical
constraints in reality.

VIII. CONCLUSION

We study the privacy issue for a category of learning
algorithms called MAP inference in crowdsourcing systems.
With our designed privacy-preserving MAP inference scheme,

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Feasible Values for δ, ε, and σ
2
.

σ
2

ε

δ = 1e−01

δ = 1e−02

δ = 1e−03

(a) Feasible Privacy Parameters

−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1

Pairwise Distance Error (m)

C
D

F

Pairwise Distance Error of 20 Users (δ = 0.1)

σ = 0.2, ε = 23.23

σ = 0.7, ε = 4.09

σ = 1.0, ε = 2.65

σ = 2.3, ε = 1.03

(b) Pairwise Distance Error w.r.t. σs

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Position Error (m)

C
D

F

Position Error of 20 Users(R = 100)

Unperturbed

σ = 0.2

σ = 0.7

σ = 1.0

σ = 1.5

σ = 2.3

(c) Position Error w.r.t. σs

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Position Error (m)

C
D

F

Position Error of 20 Users(σ = 0.5)

R = 50

R = 75

R = 100

R = 125

R = 150

(d) Position Error w.r.t. Particle Numbers

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Position Error (m)

C
D

F

Comparison with Hilbert Curves on RWP Model

Hilbert Curves (n = 64)

Hilbert Curves (n = 512)

Private Inference (σ = 5.0)

Private Inference (σ = 10.0)

(e) Comparison with Hilbert Curves

0 5 10 15
0

2

4

6

8

10

Sequence number

A
v
e

ra
g

e
 P

o
s
it
io

n
 E

rr
o

r(
m

)

Average Position Error of 7 Users in Different Settings

Unperturbed

σ = 0.2, ε = 23.23

σ = 0.7, ε = 4.09

σ = 1.0, ε = 2.65

σ = 2.3, ε = 1.03

(f) Instantaneous Position Error

Fig. 5: Simulation results on random way point model and experimental results.

crowdsourcing participants only need to upload their perturbed
prior estimates and encrypted observations to the server. The
server computes blindly to return result which is, when de-
crypted by the user, the posterior estimate for each user. During
the process, only the user state is exposed, but also protected
by the differential privacy mechanism. We further show the
proposed mechanism is efficient, and achieves desired privacy
guarantee with high utility.

REFERENCES

[1] L. Xiang, T.-Y. Tai, B. Li, and B. Li, “Tack: Learning Towards
Contextual and Ephemeral Indoor Localization with Crowdsourcing,”
IEEE Journal on Selected Areas in Communications, 2017.

[2] C. Wu, Z. Yang, and Y. Liu, “Smartphones Based Crowdsourcing for
Indoor Localization,” Mobile Computing, IEEE Transactions on, vol. 14,
no. 2, pp. 444–457, 2015.

[3] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
Zero-effort Crowdsourcing for Indoor Localization,” in Proc. of the
21st Annual International Conf. on Mobile Computing and Networking
(MobiCom). ACM, 2012, pp. 293–304.

[4] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring User
Routes and Locations using Zero-Permission Mobile Sensors,” in Se-
curity and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp.
397–413.

[5] J. Hamm, A. C. Champion, G. Chen, M. Belkin, and D. Xuan, “Crowd-
ML: A Privacy-preserving Learning Framework for a Crowd of Smart
Devices,” in Distributed Computing Systems (ICDCS), 2015 IEEE 35th
International Conference on. IEEE, 2015, pp. 11–20.

[6] R. Shokri and V. Shmatikov, “Privacy-preserving Deep Learning,” in
Proc. of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). ACM, 2015, pp. 1310–1321.

[7] K. Liu, H. Kargupta, and J. Ryan, “Random Projection-based Multiplica-
tive Data Perturbation for Privacy Preserving Distributed Data Mining,”
IEEE Transactions on knowledge and Data Engineering, vol. 18, no. 1,
pp. 92–106, 2006.

[8] K. Liu, C. Giannella, and H. Kargupta, “An Attackers View of Distance
Preserving Maps for Privacy Preserving Data Mining,” in European
Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 2006, pp. 297–308.

[9] A. Khoshgozaran and C. Shahabi, “Blind Evaluation of Nearest Meigh-
bor Queries using Space Transformation to Preserve Location Pri-
vacy,” in International Symposium on Spatial and Temporal Databases.
Springer, 2007, pp. 239–257.

[10] L. Sweeney, “k-anonymity: A Model for Protecting Privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[11] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: Differential Privacy for Location-based Sys-
tems,” in Proc. of the 2013 ACM SIGSAC Conf. on Computer &
Communications Security (CCS). ACM, 2013, pp. 901–914.

[12] K. Fawaz and K. G. Shin, “Location Privacy Protection for Smartphone
Users,” in Proc. of the 2013 ACM SIGSAC Conf. on Computer &
Communications Security (CCS). ACM, 2014, pp. 239–250.

[13] Y. Xiao and L. Xiong, “Protecting Locations with Differential Privacy
under Temporal Correlations,” in Proc. of the 2013 ACM SIGSAC Conf.
on Computer & Communications Security (CCS). ACM, 2015, pp.
1298–1309.

[14] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan,
“Private Queries in Location Based Services: Anonymizers are not
Necessary,” in Proc. of the 2008 ACM SIGMOD International Conf.
on Management of Data. ACM, 2008, pp. 121–132.

[15] J. Besag, “On the Statistical Analysis of Dirty Pictures,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 259–302, 1986.

[16] C. Dwork, “A Firm Foundation for Private Data Analysis,” Communi-
cations of the ACM, vol. 54, no. 1, pp. 86–95, 2011.

[17] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifica-
tions, extensions, and lower bounds,” arXiv preprint arXiv:1605.02065,
2016.

[18] F. D. McSherry, “Privacy Integrated Queries: An Extensible Platform
for Privacy-preserving Data Analysis,” in Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. ACM,
2009, pp. 19–30.

[19] “n1analytics/javallier,” https://github.com/n1analytics/javallier,
accessed: 2017-04-11.

