
A Scalable Location Management Scheme in Mobile Ad-hoc Networks

Yuan Xue
�

Baochun Li
�

Klara Nahrstedt
�

Abstract

In ad-hoc networks, geographical routing protocols
take advantage of location information so that stateless
and efficient routing is feasible. However, such rout-
ing protocols are heavily dependent on the existence of
scalable location management services. In this paper,
we present a novel scheme to perform scalable location
management. With any location management schemes,
a specific node, A, in the network trusts a small subset
of nodes, namely its location servers, and periodically
updates them with its location. Our approach adopts a
similar strategy, but a different and original approach
to select such location servers. The main contributions
of the paper are: First, we present a selection algo-
rithm used to designate location servers of a node by its
identifier. Second, we propose a hierarchical addressing
model for mobile ad-hoc networks, where node locations
could be represented at different accuracy levels. With
this approach, different location servers may carry loca-
tion information of different levels of accuracy and only
a small set of location servers needs to be updated when
the node moves. Through rigorous theoretical analysis,
we are able to show that the control message overhead
is bounded under our scheme. Finally, simulation re-
sults are presented to demonstrate the performance of
our location management scheme.

1 Introduction

Wireless ad-hoc networks are dynamically formed
by mobile nodes with no pre-existing and fixed infras-

�
Yuan Xue and Klara Nahrstedt are affiliated with the Department

of Computer Science, University of Illinois at Urbana-Champaign.
Their email addresses are � xue,klara � @cs.uiuc.edu.�

Baochun Li is affiliated with the Department of Electrical and
Computer Engineering, University of Toronto. His email address is
bli@eecg.toronto.edu.�

This research was supported by the ONR MURI grant under grant
number 1-5-21394, and the NSF EIA 99-72884EQ grant under grant
number 1-5-31744. Any opinions, findings, and conclusions are those
of the authors and do not necessarily reflect the views of the above
agencies.

tructure. In order to provide end-to-end communication
throughout the network, mobile nodes must cooperate to
handle network functions, such as packet routing. The
nodes may be mobile with diverse mobility patterns.
Such observation poses significant challenge to design
scalable packet routing protocols while still accommo-
dating node mobility. Recent research on geographical
ad-hoc routing protocols takes advantage of such sim-
ilarity between physical and topological proximity to
cope with the problem of protocol scalability. The gen-
eral concept is that, each node only needs to know the
location of the destination and its neighbors’ locations
to make a forwarding decision. The self-describing na-
ture of location information is the key in achieving such
stateless properties. Examples of location-based rout-
ing protocols include Location-Aided Routing (LAR)
[3], Greedy Perimeter Stateless Routing (GPSR) [2],
DREAM [5] and GRID [4].

However, to be useful in a larger context, geograph-
ical ad-hoc routing protocols are heavily dependent on
the existence of scalable location management services,
which are able to provide the location of any host at
any time throughout the entire network. In LAR, nodes
will reactively flood position queries over the entire net-
work when they wish to find the position of a destina-
tion. In DREAM, each node needs to build a complete
position database for the entire network, mobile nodes
proactively flood their own position information over
the network and update the position databases through-
out the network. Even so, both methods still can not
scale to large-scale networks. In fact, scalable location
management is an inherently hard problem: First, when
one node requests the location of another node, it has no
prior knowledge beyond the identifier of the requested
node. It is impossible to maintain a static relation be-
tween the node’s identifier and its location, due to node
mobility. Second, the location management service it-
self must operate using only geographical ad-hoc rout-
ing protocols to distribute location information, which,
in turn, require location information in the first place,
forming a functional deadlock.

The general problem of location management has
been studied in [1, 4]. In the work of Haas et al. [1],

1

a distributed location management scheme is proposed
that utilizes location databases that form a virtual back-
bone, which is dynamically distributed among the net-
work nodes. These databases serve as containers for lo-
cation storage and retrieval. However, there is an un-
solved problem in this work which makes it unsuitable
to provide location information for geographical rout-
ing: it assumes that the virtual backbone nodes maintain
interconnections among themselves by a certain routing
method; yet, it is not clear what such routing method
is. If it is a particular geographical routing protocol,
the problem becomes how locations of virtual backbone
are acquired; if it is one of the basic routing protocols
(e.g. on-demand routing), it would not be of assistance
to provide location information for another geographi-
cal routing protocol, since it is not feasible to have two
redundant routing protocols in place. In the work of Li
et al. [4], a decentralized location service, referred to as
GLS, is introduced, which distributes location informa-
tion only by the support of geographical routing. Each
mobile node may designate nodes in each sibling region
with IDs “closest” to its own ID to serve as its location
servers. Such a scheme works fairly well in stationary
networks; however, when node mobility is considered,
it becomes less efficient. First, in order to find an appro-
priate location server, a node needs to potentially scan
the entire region to find out which node has the “closest”
ID. Second, with node mobility, a new node may appear
in a specific region and the original location server may
move away from this region; in order to keep the “clos-
est ID” property of location servers, the protocol needs
to check the entire region periodically and change loca-
tion servers accordingly. The work in its presented form
has not taken this scenario into consideration. Third, al-
though it briefly mentions that the location update rate
could be linked to the distance traveled in order to avoid
excessive amount of update traffic, the paper fails to dis-
cuss the details of such a “link”, particularly how the
threshold distance � is determined.

In this paper, we propose a new and novel scheme to
perform location management and to address the above
open issues. For the sake of simplicity, our scheme is
referred to as Distributed Location Management (DLM)
in the remainder of this paper. The merits of our scheme
are summarized as the following. First, our location
management scheme, DLM, is fully distributed and fault
tolerant. Second, DLM scales well to a large number
of nodes. Finally, DLM could meet the challenges pre-
sented by node mobility. Similar to GLS [4], in our
scheme, the entire network is partitioned into a hierar-
chical grid; for a specific node � in the network, a small
subset of nodes, namely its location servers (each will be
responsible for a region in the grid), will be chosen and

periodically updated with � ’s location. However, our
scheme uses a different and original approach to select
such location servers. Our algorithm addresses existing
open problems in previous work in the following two as-
pects: First, instead of selecting the node in a partition at
a certain hierarchy which has the “closest“ ID to � ’s ID
as the location server, we use a hash function to map � ’s
ID directly to a set of locations in the network, and then
select nodes at those locations as the location servers of

� . Via this approach, location server selections may be
made without scanning the entire region, while elimi-
nating a considerable amount of update messages when
nodes are mobile. Second, we introduce a hierarchical
addressing model based on logical network partitions
(the definition of which should be distinguished from
actual network partitions caused by out-of-range node
groups). With this model, locations of nodes could be
represented at different accuracy levels, while different
location servers may carry location information of dif-
ferent levels of accuracy. Only a small set of location
servers needs to be updated when the node moves. Us-
ing such an approach, we are able to reason about the de-
tails with respect to how location updates may be linked
with the distance that a node travels.

The main contributions of this paper are two-fold:
First, we present a novel selection algorithm used to des-
ignate location servers of a node by its identifier. Sec-
ond, we propose a hierarchical addressing model for
mobile ad-hoc networks, where node locations could
be represented at different accuracy levels. With this
approach, different location servers may carry location
information of different levels of accuracy and only a
small set of location servers needs to be updated when
the node moves.

The remainder of this paper is organized as follows.
In Section 2, we clearly and formally define our hier-
archical addressing model. In Section 3, we show the
details of DLM, our Distributed Location Management
scheme. We present rigorous theoretical analysis of
DLM in Section 4. We show our preliminary simulation
results in Section 5. Section 6 concludes the paper.

2 Model

We model a wireless ad-hoc network as a set of wire-
less nodes deployed in a predetermined two-dimensional
area, which is referred to as the deployment region. We
assume each node has an unique ID, and it is aware of
its own position through the support of GPS devices. We
further assume that the nodes may be mobile, i.e., posi-
tions of nodes may change over time. Similar to GLS
[4], we partition the network into a hierarchy of grids
with squares of increasing size for the purpose of mo-

2

bility management. However, our partitioning scheme is
different, and we deploy a novel addressing model based
on such partitioning scheme of the network. In the forth-
coming discussions, we use the terms “partition” and
“region” interchangeably, referring to the logical parti-
tions as a result of our proposed partitioning scheme.

2.1 Partitioning Scheme

3-order
region
R3 (0,0)

2-order
region
 R2
(0,1)

1-order region
 R1

0-order region R0

0 1 2

0

1

(1,1)

2-order
region
 R4

A

1-order region
 R5

Figure 1. Global network partitioning

Figure 1 shows an example of our partitioning
scheme. As illustrated, the deployment region, which
is also referred to as the � -order region, is partitioned
into ����� square regions. Each of them is an � -order
region. � -order regions are further partitioned into �����
� -order regions, while these � -order regions are parti-
tioned into �	�
��� -order regions. Formally, our par-
titioning scheme is presented as follows. (a) The en-
tire deployment region is a � -order region; (b) Each � -
order region could be partitioned into
������������������ -
order rectangle regions of equal sizes, where
�� and ���
are partitioning parameters for instantiating � -order re-
gions. In our example,
������ and � �!�"� , while

�#$�!�%#&�'
�()�!��()�'� . If we assume the transmission
ranges of all nodes in the network are identical, the size
of the minimum partition should be fully covered by a
node’s transmission range, as shown in Figure 2. For
example, if a � -order region in Figure 1 is the minimum
partition, its diagonal measurement should be less than
the transmission range of a node. With such a definition
of minimum partitions, we use �+*-,�. to denote the or-
der number of the minimum partition. In the example of
Figure 1, �/*-,�.0��� .

2.2 Addressing

With such a partitioning scheme for the entire net-
work, the specific location of a node can be identified
by pointing out which region it resides. In order to ad-

A

minimum
partition

transmission
range of node A

Figure 2. Relationship between the trans-
mission range of a node and the minimum
partition of the network

dress nodes with this approach, we first need to label the
regions according to their orders and locations.

Definition 1: If an � -order region is partitioned into

1�2��3 -order regions ���5463�� , then the Relative Ad-
dress of the 3 -order region with respect to this � -order
region is a string �87 9;:�� , where 7=<?>��@9%�A9CBDBEBE9F
�GH�JI ,
:K<L>��@9%�A9CBDBEBE9M�NGO�JI . �87M9P:�� represents the relative po-
sition of this 3 -order region in the � -order region with
the upper left corner as the origin point. 7 identifies the
row; : identifies the column.

For example, in Figure 1, The relative address of the
� -order region Q)R with respect to the � -order region Q)S
is �8�@9F�T� . The relative address of the � -order region Q #
respect to the � -order region Q � is �U�A9%�V� .

Definition 2: The Region Address of an � -order re-
gion is a string defined as the following:

(1) if ���W� , the region address is an empty string X ;
(2) if ���Y� , the region address is a string Z � , where Z �

is the relative address of this � -order region with respect
to the � -order region it resides in;

(3) if � [� , the region address is a string
Z � B Z # BEBDB Z\��] # B Z\� , where string Z � B Z # BDBEBEBDB Z\��] # is the region
address of the ���^G_��� -order region where it resides, and
Z\� is the relative address of this � -order region with re-
spect to the ����G=��� -order region which it belongs to.

For Example, in Figure 1, the region address of
QNR is �`��9F�T��Ba�8�@9F�b�cBE�`��9M�b� ; the region address of Q (is
�8�@9F�b�cBE�`��9C��� ; the region address of Q � is X .

Based on the definition of the region address, we now
introduce a new addressing model for ad hoc networks
which provides the location information representation
at different accuracy levels.

Definition 3: The Full Length Node Address of a
node is a string identical to the region address of the
minimum partition in which it resides.

Definition 4: The � -level Partial Node Address of a
node is defined as a string that is identical to the region
address of the � -order region in which it resides, for �_[
� .

For Example, in Figure 1, node � ’s full length ad-
dress is �`��9C����Ba�8�@9%�V��Ba�\�A9M�b� , and its � -level partial node

3

address is �`��9C��� , its � -level partial node address is
�8�@9%�V��Ba�8��9C��� , its � -level partial node address is identical
to its full length node address. When the deployment
region and the partitioning scheme is determined, a mo-
bile node can easily convert its location information pro-
vided by GPS to its node address.

Theorem 1: Properties of Node Addresses
(1a) The Full Length Node Address of a node is able

to completely represent its location information for any
geographical ad hoc routing protocols.

Proof: Any two nodes with the same full length
node address reside within the same minimum partition.
Since the minimum partition will be fully covered by
a node’s transmission range, these two nodes are single-
hop neighbors. If one node could be reached by a certain
routing protocol within � hops, the other node could also
be reached by no more than �^�K� hops. ��

(1b) If two nodes �^9�� are both within an � -order re-
gion Q with a region address � , then the full length node
addresses of �09�� have the string � as their common pre-
fix, and vice versa.

(1c) An � -level partial address of a node is a prefix of
its full length node address.

Properties (1b) and (1c) could be trivially derived
from the definitions.

From the above discussions we may observe the fol-
lowing: First, the full length node address is the most
accurate location information representation of a node;
second, � -level partial node addresses are able to repre-
sent a node’s location information at different accuracy
levels. The larger the � is, the more accurate the repre-
sented location information.

2.3 Notations

Throughout this paper, we use various notations to
describe our proposed algorithms and analyze them the-
oretically. Table 1 summarizes all key parameters we
have introduced, as well as the notations we will intro-
duce in the forthcoming section.

3 Location Management Scheme

In this section, we present DLM, a novel Distributed
Location Management service that provides the location
of any host at any time throughout the network. Under
DLM, a specific node � in the network could query the
location of another node � with no prior knowledge be-
yond � ’s ID. DLM is decentralized and runs on the mo-
bile nodes themselves, requiring no fixed infrastructure
and underlying routing support other than geographical
forwarding.

� 9M3 General notations to denote specific order
levels of a region, e.g. an � -order region;
usually �_4K3 .

� *-,�. The order level of the minimum partition.

�� 9M��� An � -order region is partitioned into
����

��� ���W� -order regions.

 9M� An � -order region is partitioned into
 � �

3 -order regions (�14=3)1.� Density of location servers — there is one
location server in each of the � -order re-
gions.�
	
The location servers with a total number of� *-,�. (7 �Y�A9CB%B%B%9 � *-,�.).

Q 9FQ 	 9�� 9�� 	 A general notation to denote a region and a
minimum partition, respectively. 7�
=� .

7 � � �N� The identifier of node � .

Table 1. Key Notations

The basic ideas of DLM are the following. (1) Node
� maintains its current location at a small subset of the
network’s nodes, which are referred to as A’s location
servers. (2) The locations of location servers of � are
determined by � ’s ID so that any other node � could
know where to query � ’s location only with the knowl-
edge of � ’s ID. (3) Host addresses of different accuracy
levels are maintained at different location servers of the
same node, depending on the location of the location
server so that only a small number of location servers
need to be updated when the node moves.

3.1 Location Server Selection

One of the reasons why location management is in-
herently hard is that, for a specific node � , there is no
static relation between � ’s ID and � ’s location due to

� ’s mobility. However, any other node � who wishes
to contact � needs to know � ’s location with the only
knowledge of � ’s ID. In order to solve this contradic-
tion, � can either probe the information by flooding, or
ask some other nodes who know where � is. Appar-
ently, the second approach might lead to more efficient
solution than a full flooding. For the second approach,

� needs to designate some nodes, namely its location
servers, and update them with its location. More impor-
tantly, � needs to find out where � ’s location servers
are, strictly from � ’s ID.

Assume � designates a set of nodes
� 	 9U7 �

�A9CB%B%B%9 � *-,�. to be its location servers. Our approach is
to establish a certain relationship between locations of�
	

and � ’s ID. With this approach, � is able to ob-
tain (calculate) the locations of � ’s location servers di-

4

rectly from � ’s ID, and then proceed to contact these
servers for � ’s location. Here, the location server selec-
tion problem is converted to the problem of mapping � ’s
ID into a set of locations. With definitions of the host
address and region address, we observe that as long as
we can map � ’s ID into the region address of a partic-
ular minimum partition (the candidate location of a lo-
cation server of �), there is no difference which node in
this partition is selected as the location server. � could
use any node within the selected partition as its location
server.

In the remainder of this subsection, We focus on
how to map � ’s ID to a set of locations. We first as-
sume that location servers of � are uniformly distributed
throughout the network so that each query will be treated
equally. In addition, we assume that the density of lo-
cation servers is one server in each of the � -order re-
gions, such that we can use the parameter � to uniquely
identify such density. The greater the � , the higher the
server density. Within each � -order region, there are

 � � minimum partitions2.

In our location server selection algorithm, a hash
function is used to map � ’s ID to the relative address
of a minimum partition with respect to the � -order re-
gion, we denote this relative address as ��7 9;:�� . For a
specific � -order region Q , if there is at least one node
within the minimum partition addressed with ��7 9;:�� with
respect to Q , this region is selected as the region for a lo-
cation server. Otherwise, if there is no node within this
region, we claim that it is a “void” region. In this case,
a “backup” minimum partition for the location servers is
searched according to the following rules: (1) if : [O� ,
the backup partition’s relative address is ��7 9P:&G1��� ; (2) if
: ��� and 7 [=� , its relative address is ��7 G��A9 � G1�V� ; (3)
if : �'� and 7 �'� , its relative address is �`
^G=�A9 � G �V� .
Such a traversal procedure will continue until there is at
least one node in the traversed partition, or the entire � -
order region is traversed without finding a node. In the
latter case, as we will discuss later, no location servers
are needed in this region, since none of the nodes will
submit queries within the region. The selection algo-
rithm for location server regions is formally presented
in Table 2.

As a concrete example, Figure 3 shows a distribution
of location servers of node � . In this figure, the � -order
region is partitioned into four � -order regions, referred
to as Q # 9FQ)(A9MQ R 9FQ S , respectively. The parameters for
the partitioning scheme are:
��2� � � �?
�#_� �C#1�

�(��6��(��6� . In addition, the server density is set at� � � , where
=� ����� , and 7 � � �N� � ��� . � ’s lo-
cation servers are marked with

� # 9 � (9 � RJ9 � S in the fig-

2Note that the definitions for �����	��
���
 and ������
�
 are different. Re-
fer to Table 1 for clarity.

A

L1

L2

L3

L4

R1 R2

R3 R4

Figure 3. Location server distribution of
node �

SelectServerRegion(
 , � , � , 7 � � �N�)
>
For each � -order region Q
>
// Hash function to resolve �87 9;:�� from 7 � � �)�
7 ��� 7 � � �N��� �8
����%�����)
 ;
: ��� 7 � � �N��� �8
����%�����
 ;
Consider the minimum partition � whose relative
address is �87 9;:�� with respect to Q ;
while (� is not marked as void) do >

if there is at least one node in �O>
� is selected as a partition for the location server;
break;

I
else >

// none of the nodes is found in �
Mark region � as void;
if �D: [=�T�@: �
:^G
� ;
else if ��7 [=�b� >C7 �W7+G=� ; : �'� G
� ; I
else >
7 ��
0G=� ; : ��� G=� ;

I
Consider the next partition � ;

I
I

I
I

Table 2. Selection algorithm for location
server regions

5

ure. Since ��� � �8
����c� � �
, the relative address of the

region where
� #�9 � S reside with respect to its � -order re-

gion Q # 9FQNS respectively, is �`��9M�b� , where ��� � ��� and
��� � � � .

� (is located in the region whose relative
address is �U�A9M�b� , since the region whose relative address
is �`��9F�T� with respect to Q (is a “void” region; Similarly,� R is located in the region �\�A9 �A� , since region �;��9M�b� ,
�\�b9F�T� within Q R are both “void”.

3.2 Location Information Update

In order to keep the information at each location
server up-to-date, each of the mobile nodes needs to up-
date its location servers with its new location when it
moves around. We need to address three key issues with
respect to location update: (1) when to update? (2) what
servers are updated? (3) How to update these servers?

When to update? As shown in Section 2, the loca-
tion information required by any geographical ad-hoc
routing protocol is completely represented without loss
of information by the use of full length node addresses.
Thus, the node only needs to update its location servers
when its full length node address is changed, i.e., when
it moves away from its current minimum partition.

What servers are updated? How to update these
servers? In order to explain how location information
is updated, we first need to understand how location in-
formation is represented at each of the servers. Two al-
ternative policies are discussed as follows.

A
L1

L2

L3

L4

(0,1).(1,1).(0,0)

(0,1).(0,1).(1,0)

Figure 4. Location updates under the full
length address policy

3.2.1 Full Length Address Policy

Under this policy, the mobile node updates all its loca-
tion servers with its full length node address when it
moves away from its current minimum partition. For
example, In Figure 4, node � is moving from address

�8�@9%���cBE�`��9C����Ba�\�b9F�T� to address �`��9%�V��Ba�\�b9%���cBE�`��9M�b� . It will
update all its location servers

� # 9 � (J9 � R 9 � S with its
new location �`��9%�V��Ba�\�b9%���cBE�`��9M�b� .

This policy performs well when the speed of mobile
nodes is low and the resulting update frequency is low.
However, it may lead to much higher update message
overheads if nodes are moving relatively fast. One al-
ternative, the partial address policy, is introduced to ad-
dress this problem, and to fully integrate with the pro-
posed addressing model in Section 2.

L1
L2

L3L3 L4

L5

L6

L7

R1

R2

L8

L9 L10 �
��� L12

L13

L14
L15

l'l'

l''

l'''

Figure 5. Location updates under the par-
tial address policy

3.2.2 Partial Address Policy

Under this policy, the mobile node only updates a sub-
set of its location servers with its partial node address,
whenever it moves away from its residing minimum par-
tition. In order to clearly explain the policy, we intro-
duce the following additional definition.

Definition 5: The smallest common region of two
nodes � and � is the smallest region that is able to con-
tain both nodes. For example, in Figure 5, the smallest
common region of node � and

� R is the � -order region
Q # , and the smallest common region of � and

� # is the
entire � -order region.

I. Basic Policy
In the partial address policy, there are two rules: (1)

Assuming the density of location servers is one server
for each � -order region, for a specific node � and one of
its location servers

� 	
, if their smallest common region

is an � -order region, then
� 	

stores � ’s full length node
address; (2) Otherwise, if the smallest common region
of node � and its location server

� 	
is an � -order region

(��4 �), then
� 	

only stores � ’s ��� �O��� -level partial
node address.

For Example, we consider Figure 5, where � � � ,
and 7 � � �N�1� ��� . Its location server

� #V9%BCB%BC9 � #�� are

6

shown in the figure3. � ’s full length node address is
�8�@9%�V��Ba�8��9M�b�cBE�U�A9F�T��Ba�8�@9%��� . Since the smallest common
region of

� # and � is the � -order region,
� # only stores

� ’s � -level partial node address which is �8�@9%�V� . The
same location information is also stored at location
servers

� (9 � � 9 ��� 9 ��� 9 � #\� 9 � #M# 9 � #U(9 � # RA9 � # SA9 � #�� .
The smallest common region of

� S and � is the � -order
region Q)(, hence

� S will only store � ’s � -level partial
address �`��9C����Ba�8�@9F�T� ; so will

���
and

���
. Since � �5� ,

and the smallest common region of � and
� R is the

� -order region Q0# , � R stores � ’s full length address
�8�@9%�V��Ba�8��9M�b�cBE�U�A9F�T��Ba�8�@9%��� .

II. Address Compression
From the example, we observe that all partial node

addresses of node � at location servers
� S 9 ��� 9 ��� have

the same prefix �8�@9%��� , which is the same as the � -order
region address in which these location servers reside.
Hence, � ’s partial node address that these servers store
may be further compressed by removing this prefix with-
out information loss. For

� SA9 � � 9 � � , the compressed
node partial address is �`��9F�T� ; the compression level is
� . Similarly, for

� R , the compressed node partial ad-
dress is �U�A9M�b��Ba�8�@9%�V� ; the compression level is � . For the
rest of location servers, the stored information contains
the compressed node partial address �`��9%�V� , and the com-
pression level is � . The compression level will also be
provided with the compressed address when the location
information is requested so that a full address could be
restored.

Thus, under the partial address policy, each time
when � moves, only a subset of its location servers
needs to be updated. Particularly, if a portion of � ’s full
length node address is changed due to its own mobility,
then only those location servers that store that portion of
the address need to be updated. An Example is shown in
Figure 5. When node � moves from its original location
addressed with �`��9%�V��Ba�8�@9F�b�cBE�U�A9M�b��Ba�8�@9%�V� to the new lo-
cation

���
with address �8��9C���cBE�`��9F�T��Ba�8�@9%���cBE�`��9M�b� , only

� R
will be updated; when it moves to location

��� �
with ad-

dress �`��9%�V��Ba�\�b9F�b�cBE�U�A9C����Ba�8�@9F�T� , only
� R 9 � S 9 ��� 9 ��� need

to be updated; when it moves to location
�	� � �

with address
�\�b9F�T��Ba�8��9C���cBE�U�A9%�V��Ba�8�@9F�b� , all the location servers need to
be updated. Moreover, the update message will only
carry the compressed node partial address, reducing the
update message overhead.

To summarize, under the full length address policy,
each time when a specific node � attempts to update its
location information, it will first run the server selection
algorithm to select appropriate minimum partitions for
location servers, then check whether there exists a node
that already stores the location information for � . If so,

3Note that there are no location servers in the bottom-right corner
region, since it is a “void” region.

it means that this node is � ’s location server, which is
selected to continue as a location server for � . Other-
wise, a random node within the region will be selected
as the location server. Finally, � will update the location
servers with its new full length address. On the other
hand, under the partial address policy, each time when a
node moves away from its original partition, it first uses
the selection algorithm to decide in which regions the
location servers need to be updated, then selects the lo-
cation servers in the selected regions, and finally updates
them with the corresponding compressed addresses.

3.3 Location Information Query

A
L1

L2

L3

L4

(0,1).(0,1).(1,0)

B

Figure 6. Node B queries A’s location infor-
mation under the full length address policy

How does a node � query another node � ’s address
under either of our alternative policies? Our discussions
are divided as follows with respect to each of the poli-
cies.

3.3.1 Queries under the Full Length Address Policy

As shown in Figure 6, under the full length address pol-
icy, � will first locate � ’s location server

� R in its own� -order region using the selection algorithm.
� R will

then reply � with � ’s full length address, � will use
this address to contact � , if it succeeds, � will reply to
� with its accurate location information.

3.3.2 Queries under the Partial Address Policy

As shown in Figure 7, under the partial address pol-
icy, � will first locate � ’s location server

� #\� in its
own � -order region using the selection algorithm.

� #\�
will then reply to � with � ’s compressed partial ad-
dress �`��9%�V� with compression level � . With this infor-
mation, � will continue to find a location server in any

7

L1
L2

L3 L4

L5

L6
L7

A

L8

L9 L10 �
� � L12

L13

L14
L15

B

Figure 7. Node B queries A’s location in-
formation under partial address policy

� -order region within the region addressed with �`��9%�V�
using the selection algorithm. As shown in the figure,
assume

� S is the location server � finds.
� S will re-

ply to � with � ’s compressed partial address �`��9F�T� with
compression level � . � will then locate

� R as � ’s loca-
tion server within the region addressed with �8��9C���cBE�`��9F�T� ,� R will reply to � with � ’s compressed partial address
�\�b9F�T��Ba�8��9C��� with compression level � . With the above
information, � is able to conclude that � ’s full length
node address is �`��9C����Ba�8�@9F�T��Ba�\�A9M�b�cBE�`��9%�V� . Similar to the
full length address policy, with this address, � will con-
tact � for its accurate location information.

3.4 Mobility of Location Servers

In the above discussions, We have not taken into con-
sideration the mobility of location servers themselves.
For example,

�
is the location server of node � in an� -order region Q . It moves away from its original min-

imum partition, where the location server should reside.
In this case,

�
is no longer eligible to be � ’s location

server.
There are two solutions for this problem. (1)

�
is

responsible to find a new location server for � in Q
according to the given selection algorithm, and move
the location information of � to the new server. This
approach is necessary when the location information

�
carries is updated infrequently. (2)

�
just discards the

location information of � , when it moves away from Q .
Each time when � updates its location, it may check
whether the original location server is still in region Q .
If it is, � will update this server with its new location.
Otherwise, � will choose a new server using the selec-
tion algorithm. This approach works well when location
information is updated frequently. Due to node mobility,
there might also be a scenario as follows: In the location

server selection phase, the first selected region is “void”,
then a node in one of the backup regions is selected as
location server. During the next round of location up-
date, a node has moved to the original “void” region. In
this case, the selection algorithm will select this node as
the new location server and update it with new location
information, and the original location server may not re-
ceive further updates. In such a scenario, we may make
use of a timed lease in the stored location information.
If the lease expires, the entire location entry should be
discarded.

4 Analysis

In this section, we analyze the message exchange
overhead, or the protocol costs, under DLM. For any lo-
cation management schemes, there are costs associated
with two important operations: the location information
update and location information query. There is an ob-
vious tradeoff between the costs involved in querying
and in updating the location information: reducing the
cost of one of them may lead to an increase in the other.
In DLM, the location server density � is the parameter
to tune with respect to the tradeoff between these two
operations.

We present an intuitive cost analysis for both address
policies, respectively. A comparison of two policies
in terms of efficiency is also given. For the sake of
clarity, we reiterate our notations listed in Table 1. In
our model, each � -order region is partitioned into four
(
 � � � � � �) �8���Y��� -order regions. The minimum
partition is an � *-,�. -order partition. Thus, the entire
network has � (minimum partitions where �
� � ������� .
For each region that contains a location server, if it con-
tains � (number of minimum partitions, its order level is� � �/*-,�.0G �	��
 (�	� � . The expected time for a mobile
node to traverse across a minimum partition is � seconds.
This is a parameter to indicate the degree of node mobil-
ity. We assume for the analysis that there are no “void”
regions in the network.

I. Full Length Address Policy
The updating cost under the full length address policy

is analyzed by the following theorem:
Theorem 2: The expected number of update mes-

sages initiated by each node per second under the full
length node address policy is ��� �
� � (� � .

Proof: The number of location servers for each node
is ��� �
� � (. Since the expected time to traverse across a
minimum partition is � seconds, Under the full length
address policy, each time a node traverses across a mini-
mum partition, it needs to update all its location servers.
Assume there are no “void” regions in the network,
which means that each location update may succeed

8

with one trial. The expected number of update messages
initiated by each node per second under the full length
node address policy is thus � ��� � � (� � . ��

Furthermore, for each update, the packet needs to
contain the full length node address, the length of which
is proportional to � *-,�. . In order to evaluate the query-
ing costs, we first introduce one additional definition.

Definition 6: One query step is the procedure a
location-requesting node submits its request to a loca-
tion server.

Theorem 3: The upper bound of the number of query
steps needed to locate a node is � , using full length host
addresses.

This is trivially true from the description of the full
length address policy. However, the number of hops
it takes for each query step depends on the location
server density: the higher the density is, the more likely
the query will be replied within a smaller local region.
From the above analysis, we are able to conclude, the
full length address policy is more suitable for networks
where nodes move slowly and location query frequency
is relatively high.

II. Partial Address Policy
The update cost under the partial address policy is

significantly less than that under full length address pol-
icy, due to two reasons: First, only a subset of loca-
tion servers is updated each time when the node tra-
verses across a minimum partition, depending on por-
tions changed in the partial node address. Second, the
update packet only contains the compressed node ad-
dress, which is equivalent to the changing part of the
address. The query cost analysis is shown in the follow-
ing theorem.

Theorem 4: The upper bound of query steps needed
to locate a node under the partial node address policy is
� *-,�. .

Proof: Consider node � queries the location of node
� , and the smallest common region of these two nodes
is a � -order region (��� �). For the first location request,
� ’s location server will reply to � with a � � �!��� -level
partial node address if � 4 �+*-,�. G �	��
 (� � � , or a full
length node address if �
 � * ,c.�G � ��
 (�	� � . Gener-
ally, if the 3 th request is replied with a � -level partial
node address (� 4 � * ,c.), the 3�� � th request will
be replied with a ���L� -level partial node address. In
the worst case, the smallest common region of � and �
is a � -order region, and the first replied address is a � -
level partial address. Note that an � *-,�. -level address is
the full length address. Thus, the maximum number of
query steps needed to retrieve a full length node address
is �/*-,�. . ��

We may derive the following conclusion from the
above discussions: the partial length address policy is

more suitable for ad-hoc networks where nodes move
rapidly.

5 Simulation

0

20

40

60

80

100

120

140

100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 q

ue
ry

 p
ac

ke
ts

number of nodes

Full Length Address Policy
Partial Address Policy

Figure 8. Node Density vs. Cost of Loca-
tion Queries

0

20

40

60

80

100

120

140

100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 u

pd
at

e
pa

ck
et

s

number of nodes

Full Length Address Policy
Partial Address Policy

Figure 9. Node Density vs. Cost of Loca-
tion Updates

For proof-of-concept purposes, we have conducted
some preliminary simulation experiments with our loca-
tion management scheme (DLM), under relatively ideal
scenarios. In our simulation of DLM, we assume that
each node’s transmission range has a ���A� meter radius,
and the minimum partition is an ����� �2����� � (square.
The entire deployment region is a square with � � �b� m
on each side. It is partitioned into four � -order square
regions, and the same partition method is applied for
each hierarchy until the � -order region (the minimum
partition). Each node moves using the random waypoint
node mobility model. In this model, a node chooses a
random destination and moves towards it with a constant
speed uniformly distributed between zero and a maxi-
mum speed. When the node reaches the destination, it
chooses a new destination and begins moving towards it

9

immediately without any “pause” time. Each node will
initiate � location queries to random destinations every
minute.

Figure 8 and 9 illustrates a comparison between the
two alternative update and query policies, with respect
to their protocol costs with a varying node density in the
network. In this scenario, the speed of mobile nodes
are set at ��� m/s. When the total number of nodes in
the network varies from �C�A� to �J�b� , both policies show
a reduced packet exchange overhead in the ad-hoc net-
work in terms of both queries and updates. For loca-
tion updates (Figure 9), the partial address policy out-
performs the full length address policy; in comparison,
for location queries (Figure 8), the full length address
policy holds the upper hand. These results conform to
the theoretical analysis given in the previous section, and
demonstrate the delicate tradeoff between two policies.

0

50

100

150

200

250

10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 q

ue
ry

 p
ac

ke
ts

speed (m/s)

Full Length Address Policy
Partial Address Policy

Figure 10. Node Mobility vs. Cost of Loca-
tion Queries

0

200

400

600

800

1000

1200

1400

10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 u

pd
at

e
pa

ck
et

s

speed (m/s)

Full Length Address Policy
Partial Address Policy

Figure 11. Node Mobility vs. Cost of Loca-
tion Updates

On the other hand, Figure 10 and 11 illustrates a
comparison between the two alternative policies when
it comes to changing node mobility levels. In this case,
the speed of mobile nodes vary from ��� to �A� m/s, and

there are a total number of �C�b� nodes in the ad-hoc net-
work. Again, with respect to both update and query
costs, both policies show an increasing packet overhead
as nodes move more rapidly. In the case of query over-
heads, the full length address policy outperforms the par-
tial address policy; while with respect to location update
costs, the partial address policy actually performs better
at any levels of node mobility. This is especially the case
when node moves very rapidly, where the full length ad-
dress policy shows a significant increase in its update
overhead, which should be avoided in these scenarios.
Overall, these results conform to the analytical results
previously shown.

6 Conclusion

In this paper, we have presented DLM, a new and
novel scheme to perform location management. Our ap-
proach includes a new hierarchical addressing model for
the nodes by partitioning the network hierarchically, and
introduces a novel server selection mechanism based on
hash functions. We also propose two different alterna-
tives of location update and query operations (suitable
for different node mobility levels), and analyze their be-
haviors both theoretically and experimentally. With our
address compression techniques and partial location in-
formation policy, we are able to derive satisfying update
and query performance under our scheme.

References

[1] Z. J. Haas and B. Liang. Ad Hoc Mobility Management
with Uniform Quorum Systems. IEEE/ACM Transactions
on Networking, 7(2):228–240, April 1999.

[2] B. Karp and H. Kung. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In Proceedings of the
Sixth Annual International Conference on Mobile Com-
puting and Networking (MOBICOM ’00), pages 243–254,
2000.

[3] Y. Ko and N. Vaidya. Location-Aided Routing (LAR) in
Mobile Ad Hoc Networks. In Proceedings of the Fourth
Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM ’98), pages 66–
75, 1998.

[4] J. Li, J. Jannotti, D. Couto, D. R. Karger, and R. Mor-
ris. A Scalable Location Service for Geographic Ad Hoc
Routing. In Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MO-
BICOM ’00), pages 120–130, 2000.

[5] S.Basagni, I. Chalamtac, V. R. Syrotiuk, and B. A. Wood-
ward. A Distance Routing Effect Algorithm for Mobility
(DREAM). In Proceedings of the Fourth Annual Interna-
tional Conference on Mobile Computing and Networking
(MOBICOM ’98), pages 76–84, 1998.

10

