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Abstract—Dynamic spectrum access (DAS) is an efficient way
to redistribute spare channels among users. Conventionally,
dynamic spectrum access is conducted through (double) spectrum
auction, where a third-party auctioneer collects bids from buyers
and sellers, and determines the spectrum allocation. Rather than
placing bids only on individual channels, combinatorial spectrum
auction allows buyers to express their valuations for different
combinations of channels. However, auction mechanisms are
generally vulnerable to the collusion between the auctioneer and
buyers or sellers. Furthermore, to find the optimal allocation
in combinatorial auction is usually NP-hard. In this paper,
we propose to leverage a many-to-many matching framework
to realize combinatorial spectrum trading. Unlike traditional
many-to-many matching problem, spectrum matching is more
challenging, because spectrum allocation is interference-limited
rather than quota-limited. To deal with this problem, we propose
a novel matching algorithm, which takes buyers’ interference
relationship into consideration. We theoretically prove that the
matching result is individual rational, strong pairwise stable and
is a subgame-perfect Nash equilibrium of the corresponding
spectrum bargaining game. Simulation results show that the
proposed algorithm can converge to a stable matching within
a few iterations.

Index Terms—Dynamic spectrum access, spectrum trading,
spectrum matching

I. INTRODUCTION

Spectrum is an indispensible yet limited resource for wire-

less communication. With the rapid development of wireless

technologies, service providers are facing a critical spectrum

crunch thanks to the burgeoning growth of wireless applica-

tions and services. The acquisition of a spectrum license is one

of the most difficult and costly procedures for any new wireless

service and its market entry. In order to solve this dilemma,

most of the countries have specific departments to regulate

spectrum usage, e.g., Federal Communications Commission

in the U.S. [1] and Radio Administration Bureau (RAB)

in China [2]. Traditional spectrum allocation or auction is

usually conducted on a long-term basis over large geographical

regions. However, this will limit buyers’ participation because

of the large amount of capital required.

There is increasing evidence that spectrum resources are

not being efficiently utilized [3]. Dynamic spectrum access

(DAS), therefore, is proposed to cater to the increasing spec-

trum demand [4]. A wireless service provider can sell spare

spectrum or buy additional spectrum according her needs.

Spectrum auction is a common way to realize DAS. In a

(double) spectrum auction, a third-party auctioneer collects

bids from buyers and sellers, and then allocates spectrum

in a centralized manner. Combinatorial spectrum auction, a

special auction format, allows buyers to bid on combinations

of channels, rather than individual channels, which enables

buyers to express their preferences for different combinations.

For example, continuous channels are easier to manage than

non-continuous channels, and buyers may be willing to pay

a higher price for continuous channels. Unfortunately, finding

the optimal allocation in conventional combinatorial auction

is usually NP-hard. With spectrum heterogeneity and spatial

reusability, the combinatorial auction will become even more

complicated [5].

In this paper, we leverage matching as an alternative

framework for dynamic spectrum access. More specifically,

to realize a combinatorial auction alike spectrum market,

we propose to use many-to-many matching, where a buyer

can purchase multiple channels, and a seller’s channel can

be assigned to multiple non-interfering buyers. Instead of

maximizing social welfare, the aim of matching is to achieve a

stable status. The stability concept is attractive because it keeps

an equilibrium status for both sellers and buyers. Besides, the

matching process can be free from a third-party auctioneer,

avoiding potential collusions between the auctioneer and the

buyers or sellers. In fact, stable matching has been widely

applied to computer science, such as resource management in

the cloud [6].

Matching has been widely studied in the economics and

mathematics communities. In the pioneer work of Gale and

Shapley [7], deferred-acceptance algorithms are proposed to

reach a stable matching for the marriage problem (one-to-

one matching) and the college admission problem (many-

to-one matching). Compared with one-to-one matching and

many-to-one matching, many-to-many matching is much more

complicated, and it is more difficult to reach a stable matching

result. Based on the deferred-acceptance algorithm, in [8],

the authors proposed a competitive-adjustment process for

labor markets with perfect information. In [9], an iterative T-

algorithm is proposed, which can realize many nice properties,

such as pairwise stability, setwise stability and core stability.

In this paper, we propose a novel many-to-many spec-

trum matching framework for combinatorial spectrum trad-

ing. Buyers can freely express their preferences for different

combinations of channels, and the same channel can be

reused by multiple non-interfering buyers. To address spectrum

heterogeneity, different interference graphs are constructed
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for different channels to determine spectrum reuse [10]. We

propose an algorithm, which can reach a stable matching

result, and also improve spectrum utilization through spectrum

reuse. We make the following key contributions:

• We propose a many-to-many spectrum matching frame-

work to realize combinatorial spectrum trading for dy-

namic spectrum access.

• We propose a new matching algorithm to address spec-

trum heterogeneity and spectrum reuse. We prove that

the matching result is individual rational, strong pairwise

stable, and is a subgame-perfect Nash equilibrium of the

corresponding spectrum bargaining game.

• We conduct extensive simulations to evaluate the perfor-

mance of the proposed many-to-many spectrum matching

framework. It is shown that it takes only a few iterations

for the proposed algorithm to reach a stable matching

result.

The rest of the paper is organized as follows. We describe

the system model in details in Section II. In Section III, we

present the many-to-many spectrum matching framework and

matching algorithm. Simulation results are shown in Section

IV. We briefly review the related work in Section V, and finally

summarize our work in Section VI.

II. SYSTEM MODEL

Assume there is a set of sellers M = {1, 2, ...,m} and a set

of buyers N = {1, 2, ..., n} in the market. Each seller owns

one channel, which can be matched to multiple non-interfering

buyers. Buyer j has a basic price offer for all channels Bj =
(b1,j , b2,j , ..., bm,j), in which bi,j is buyer j’s valuation for a

single channel i. For a bundle of channels A, buyer j may be

willing to pay more than the sum
∑

i∈A bi,j , for example, two

continuous channels may bring more benefit to a buyer. We

will express such complementariness of channels in buyers’

preference profiles.

The key feature of spectrum allocation is interference-

restricted spacial reuse. To characterize interference hetero-

geneity of different channels, we construct a series of interfer-

ence graphs {Gi = (V,Ei)}mi=1, in which each node v ∈ V
represents a buyer, and each edge ei ∈ Ei connects a pair of

interfering buyers on channel i. Let eij,j′ ∈ {0, 1} represent the

interference status between buyers j and j′ regarding channel

i.
The preference profile �i of seller i is a complete, reflexive,

and transitive binary relation on all sets of buyers 2N . Due to

the interference contraint, a seller prefers the empty set ∅ to

any buyer set that contains interfering buyers. For two buyer

sets that are both interference-free (not any two buyers in the

set interfere with each other), the seller prefers the one with

a higher aggregate basic offer price. Let S,S ′ ∈ 2N denote

buyer sets, we have:

• If S is interference-free, S �i ∅; if S is not interference

free, ∅ �i S .

• If S is interference-free, but S ′ is not, S �i S ′, vice

versa.

• If both of S and S ′ are interference-free, S �i S ′ ⇐⇒∑
j∈S bi,j >

∑
j′∈S′ bi,j′ .

• If neither of S and S ′ is interference-free, the seller

randomly decides the preference relation between S and

S ′.
The preference profile �j of buyer j is a complete, reflexive,

and transitive binary relation on all sets of channels (sellers)

2M. The preference profile on all sets of channels instead

of individual channels are quite expressive to cater to buyers’

requirements. First, buyers are able to express their preference

for certain bundles of channels. For example, buyer j may

have {s1, s2} �j {s1, s3}, which means that she prefers

the continuous channels {s1, s2} to non-continuous channels

{s1, s3}. Second, buyers can easily comply with their budget

constraints by an preferring empty set to large (therefore

expensive) channel bundles. For example, buyer j may have

∅ �j {s1, s2, s3} since the aggregate basic offer price of

{s1, s2, s3} exceeds her budget. Our proposed many-to-many

spectrum matching algorithm works with general preference

profiles without any restrictions.

III. SPECTRUM MATCHING

A. Preliminaries

We formally define many-to-many spectrum matching as

follows.

Definition 1. (Many-to-Many Spectrum Matching). Given the
set of sellers M and the set of buyers N , a many-to-many
spectrum matching is a mapping μ from the set M⋃N into
the set of all subsets of M⋃N (i.e., 2M

⋃N ), such that
• For every seller i ∈ M, μ(i) ⊆ 2N ;
• For every buyer j ∈ N , μ(j) ⊆ 2M;
• For every seller i and buyer j, j ⊆ μ(i) if and only if
i ⊆ μ(j).

We also define the pre-matching, which will be the inter-

mediate result in our proposed matching algorithm.

Definition 2. (Pre-matching). A pre-matching is a pair ν =
(νm, νn), in which νm is a mapping from the seller set M
into all subsets of buyers 2N , and νn is a mapping from the
buyer set N into all subsets of seller 2M, that is,

• For every seller i ∈ M, νm(i) ∈ 2N ;
• For every buyer j ∈ N , νn(j) ∈ 2M.

Note that a pre-matching is a matching if ν is such that

νm(i) = j if and only if νn(j) = i for all i ∈ M, j ∈ N .

Given a buyer j and a set of sellers S , let Ch(S,�j)
denote buyers j’s most preferred subset of S according to

j’s preference relation �j . More specifically, Ch(S,�j) is

the unique subset S ′ of S such that S ′ �j S ′′ for all

S ′′ ⊆ S,S ′′ �= S ′. Similarly ,given seller i and a set of buyers

S , Ch(S,�i) is seller i’s most preferred subset of S according

to i’s preference relation �i.

B. Matching Algorithm

We propose a many-to-many matching algorithm to realize

a stable and interference-free spectrum matching, as shown in

Algorithm 1. The key component in the matching algorithm

is the T (·) operation on the pre-matching ν. We iteratively
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perform the T (·) operation until we reached a fixed point

(T (ν) = ν) or the number iterations reached the threshold.

To define the T (·), we first introduce two sets. Given a pre-

matching ν = (νm, νn), we have:

U(i, ν) = {j ∈ N : i ∈ Ch(νn(j) ∪ {i},�j)}
V (j, ν) = {i ∈ M : j ∈ Ch(νm(i) ∪ {j},�i)}

(1)

The set U(i, ν) is the set of buyers who are willing to obtain

seller i’s channel, given their currently matched channels.

Similarly, the set V (j, ν) is the set of sellers who are willing

to sell their channels to buyer j, given their currently matched

buyers (and their interference relationships).

Now, we can define the T (·) operation as:

T (ν) =

{
Ch(U(i, ν),�i), ∀i ∈ M
Ch(V (j, ν),�j), ∀j ∈ N (2)

The purpose of the T (·) operation on seller i is to find the

optimal set of buyers among those, who are willing to purchase

seller i’s channel. Likewise, the purpose the T (·) operation on

buyer j is to find the optimal set of sellers (channels) among

those, who are willing to sell their channels to buyer j.

Though similar to the definition in [9], the T (·) operation is

quite different for spectrum matching. The main reason is that

spectrum matching exhibits buyer externality: the matching

result of a buyer will affect those of other buyers. More

specifically, if a buyer is matched to a seller, her interfering

neighbors will be unwilling to be matched to the same seller,

even if they have a high preference for that seller’s channel.

For the same reason, when choosing the optimal set of buyers,

a seller not only consider their basic offer price, but also their

interference relationship.

In (2), the operation Ch(U(i, ν),�i) requires seller i to

find the optimal set of buyers with the highest total basic

offer price, given the set U(i, ν). This is equivalent to find-

ing the maximum weighted independent set (MWIS) on the

interference graph Gi regarding buyers in U(i, ν). However,

it has been proved that the MWIS problem is NP-hard. A

naive brute-force solution is to exhaustively search all possible

subsets of U(i, ν), resulting in exponential running time. To

address this problem, we adopt the greedy algorithm in [11].

The key idea of the greedy algorithm is to select the buyer

with the maximum price/degree ratio, remove her and all her

neighbors, and repeat this process until the graph becomes

empty. The selected buyers at all iterations is the output

independent set.

It is proved in [9] that the fixed point ν = T (ν) is a

matching, that is, νm(i) = j if and only if νn(j) = i for

all i ∈ M and j ∈ N . However, due to the complexity of

spectrum matching, it is analytically difficult to prove that

this property can still be preserved. Our simulation results in

Section IV numerically show that the output of Algorithm 1

is indeed a matching, the properties of which we will analyze

in Section III-C. We will work on theoretically proving this

in our future work.

In Algorithm 1, the input pre-matching ν is not spec-

ified. The simplest way is to initiate the pre-matching as

νm(i) = ∅, νn(j) = ∅, ∀i ∈ M, j ∈ N . An alternative way

is to randomly assign one buyer to one channel at the start

(assuming there are more buyers than sellers), i.e., νm(i) =
j, ∀i ∈ M; νn(j) = i, if ∃i, νm(i) = j, otherwise, νn(j) = ∅.

Now we give a toy example to show how the proposed

algorithm works.

Algorithm 1 Many-to-many Spectrum Matching

Input: Preference relation �; interference graphs {Gi}Mi=1;

interference-free pre-matching ν0; iteration threshold

Num.

Output: An interference-free (pre-)matching ν
1: iteration = 0.

2: ν = T (ν0).
3: while ν �= ν0 or iteration ≤ Num do
4: ν0 = ν.

5: ν = T (ν0).
6: iteration = iteration+ 1.

7: end while

Toy example. Suppose the set of sellers is M = {i1, i2, i3}
and the set of buyers is N = {j1, j2, j3, j4}. The basic offer

of buyer j1 is (1, 3, 5), of buyer j2 is (5, 1, 3), of buyer j3 is

(1, 5, 3), of buyer j4 is (3, 5, 1). Therefore, we can construct

the buyers’ preference profiles as:

�j1 : {i2, i3} �j1 {i1, i3} �j1 {i1, i2} �j1 i3 �j1 i2 �j1 i1

�j2 : {i1, i3} �j2 {i1, i2} �j2 {i2, i3} �j2 i1 �j2 i3 �j2 i2

�j3 : {i2, i3} �j3 {i1, i2} �j3 {i1, i3} �j3 i2 �j3 i3 �j3 i1

�j4 : {i1, i2} �j4 {i2, i3} �j4 {i1, i3} �j4 i2 �j4 i1 �j4 i3
(3)

We assume that no buyer can afford the set {i1, i2, i3}, so

we omit this set, which is less preferred than the empty set due

to budget constraint. The buyers’ interference graph is shown

in Fig. 1,so we can construct the sellers’ preference profiles

are:

�i1 : {j2, j4} �i1 j2 �i1 j4 �i1 {j1, j3} �i1 j1 �i1 j3

�i2 : {j1, j3} �i2 {j2, j4} �i2 j3 �i2 j4 �i2 j1 �i2 j2

�i3 : {j1, j3} �i3 j1 �i3 {j2, j4} �i3 j2 �i3 j3 �i3 j4

(4)

We assume that the pre-matching is νm(i) = νn(j) =
∅, ∀i, j. In the first iteration, for seller i1, U(i1, ν) = N ,

and it can be easily found that the optimal buyer set is

νm(i1) = {j2, j4}; for buyer j1, V (j1, ν) = M, so that after

the T (·) operation, we have νn(j1) = {i2, i3}. The results

after the first iteration is shown in the third row of Table I.

Similarly, we can proceed through the second iteration, whose

result can be checked as a fixed point and a matching.

TABLE I: A Toy Example

νm(i1) νm(i2) νm(i3) νn(j1) νn(j2) νn(j3) νn(j4)
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 {j2, j4} {j1, j3} {j1, j3} {i2, i3} {i1, i3} {i2, i3} {i1, i2}
2 {j2, j4} {j1, j3} {j1, j3} {i2, i3} i1 {i2, i3} i1
3 {j2, j4} {j1, j3} {j1, j3} {i2, i3} i1 {i2, i3} i1
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The interference graph.

Fig. 1: A Toy example.

C. Properties

In this section, we first prove that the matching result of

the proposed Algorithm 1 is individual rational in general

cases. Then, we show that with specific preference profiles, the

matching result is strong pairwise stable, and is a subgame-

perfect Nash equilibrium of the corresponding spectrum bar-

gaining game.

Definition 3. (Individual rational).
A matching result is blocked by seller i if she prefers not to

be matched to some of her currently matched buyers. In other
words, ∃S ⊆ μ(i),

(
μ(i) \ S) �i μ(i).

A matching result is blocked by buyer j if she prefers not to
be matched to some of her currently matched sellers. In other
words, ∃S ⊆ μ(j),

(
μ(j) \ S) �j μ(j).

A matching result is individual rational if it is not blocked
by any buyer or seller.

Proposition 1. The matching result of the proposed Algorithm
1 is individual rational.

Proof. let μ be the matching result. μ is a fixed point of the

T (·) operation. So for any buyers j ∈ N :

Ch(μn(j),�j) = Ch(U(Ch(U(j, μ),�j)),�j)

= Ch(U(j, μ),�j) = μn(j)
(5)

Ch(μn(j),�j) = μn(j) indicates that there is no block for

buyers. The proof for sellers is similar. Therefore, the matching

result of the proposed Algorithm 1 is individual rational.

Now, we consider a special constraint, substitutability, on

buyers’ preference profiles. First introduced in [8], substi-

tutability is widely studied in the matching literature.

Definition 4. (Substitutability). A buyer j’s preference profile
�j satisfies substitutability, if for any seller set S and S′ ⊆ S,
i ∈ Ch(S ∪ i,�j) ⇒ i ∈ Ch(S′ ∪ i,�j).

An interpretation of substitutability is that, if buyer j
wants to have channel i among an available channel set

S ∪ i, then she still wants channel i among a smaller

channel set S′ ∪ i. Substitutable preference profile can be

easily satisfied, as shown by the following example. There

are three sellers/channels {i1, i2, i3}, buyer j’s basic offer is

(bii,j , bi2,j , bi3,j) = (1, 2, 3). For any two-channel bundles of

i and i′, buyer j is willing to pay 1.1∗(bi,j+bi′,j). The three-

channel bundle exceeds buyer j’s budget constraint. Following

this logic, buyer j’s preference profile is:

{i2, i3} �j {i1, i3} �j {i1, i2} �j i3

�j i2 �j i1 �j ∅ �j {i1, i2, i3}
(6)

It can be easily checked that this preference profile is

substitutable. When all buyers’ preference profiles satisfy

substitutability, the matching results of the proposed Algorithm

1 is strong pairwise stable and is a subgame-perfect nash

equilibrium of the corresponding spectrum bargaining game.

Definition 5. (Strong pairwise stability).
A matching result is blocked by a pair (S, j) ∈ 2M × N

in which S �= ∅, if S ∩ μ(j) = ∅, S ⊆ Ch(μ(j) ∪ S,�j), and
j ∈ Ch(μ(i) ∪ j,�i) for all i ∈ S .

A matching result is strong pairwise stable if it is not
blocked by any pair of buyer and seller and individual
rational.

Proposition 2. The matching result of the proposed Algorithm
1 is strong pairwise stable.

Proof. Assume there is a block pair (S, j) and S �= ∅. Since

j ∈ Ch(μ(i) ∪ j,�i), ∀i ∈ S, by definition of V (j, μ),
we have S ⊆ V (j, μ). Thus, for any subset A ⊆ μ(j),
as μ(j) ⊆ V (j, μ), we have A ∪ S ⊆ V (j, μ). Due to

individual rationality, μ(j) = Ch(V (j, μ),�j). So μ(j) �j

Ch(A∪S,�j) �j A∪S, in which �j means that the two sets

may be the same. This contradicts the fact that S ∩ μ(j) = ∅
and S ⊆ Ch(μ(j) ∪ S,�j). Therefore, there can not be any

blocks in the matching result μ.

Now we regard the spectrum matching as a non-cooperative

bargaining game. To begin with, every buyer j proposes a set

of channels ηj ⊆ M. After observing the proposals ,every

seller i proposes a set of buyers ξi ⊆ N . All buyers or sellers

make the proposals simultaneously. A buyer and a seller will

be matched if seller i proposes to buyer j and buyer j proposes

to seller i. The strategy space for buyer j is ηj ⊆ M, for

seller i is ξi(η) ⊆ N . Now we define Subgame-Perfect Nash
Equilibrium(SPNE) for such a bargaining game.

Definition 6. (Subgame-Perfect Nash Equilibrium). Given
the preference profiles � of buyers and sellers, a strategy
profile (η∗, ξ∗) is called a Subgame-Perfect Nash Equilibrium
(SPNE), if ∀i ∈ M, j ∈ N ,

η∗j ∩ {i : j ∈ ξ∗i (η
∗)} �i P ∩ {i : j ∈ ξ∗i (P, η

∗
−j)}, ∀P ⊆ M

ξ∗i (η) ∩ {j : i ∈ η∗j } �j S, ∀S ⊆ {j : i ∈ η∗j }
(7)

In other words, (η∗, ξ∗) is SPNE if η∗j is optimal given other
buyers’ proposal η∗−j , and ξ∗i (η

∗) is an optimal proposal given
all buyers’ proposal η∗.

Proposition 3. The matching result of the proposed Algorithm
1 is an SPNE of the spectrum bargaining game.

Proof. Let μ be the matching result of the proposed Algorithm

1. Define (η∗, ξ∗) as η∗j = μ(j) and ξ∗i (η
∗) = Ch({j : i ∈

η∗j },�i). Let μ′ be the outcome of the strategy (η∗, ξ∗) .Now

we show that (η∗, ξ∗) is an SPNE and μ′ = μ.
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Fig. 2: Social welfare of the proposed many-to-many matching algorithm. (a) M = 10; (b) N = 25; (c) M = 8, N = 30.

10 20 30 40
6

7

8

9

10

11

Number of buyers

A
ve

ra
ge

 it
er

at
io

n 
tim

es

(a)

5 6 7 8 9 10
4

6

8

10

12

Number of sellers

A
ve

ra
ge

 it
er

at
io

n 
tim

es

(b)

2 3 4 5
4

5

6

7

8

Budget constraint
A

ve
ra

ge
 it

er
at

io
n 

tim
es

(c)

Fig. 3: Iteration times of the proposed many-to-many matching algorithm. (a) M = 10; (b) N = 25; (c) M = 8, N = 30.

For any i and j, {j : i ∈ η∗j } ∪ j = μ(i) ∪ j, therefore,

{i : j ∈ Ch({j : i ∈ η∗j } ∪ j,�i)}
= {i : j ∈ Ch(μ(i) ∪ j),�i} = U(i, μ).

(8)

So we have η∗j = μ(j) = Ch(U(j, μ),�j), which means that

η∗j is optimal given η∗−j . By definitions we know that ξ∗i (η
′)

is optimal, given η∗. Thus (η∗, ξ∗) is an SPNE.

Since μ is a matching, we have j ∈ μ(i) if and only if

i ∈ μ(j) = η∗j , so that {j : i ∈ η∗j } = μ(i). According to

individual rationality, we have ξ∗i (η
∗) = Ch({j : i ∈ η∗j },�i

) = Ch(μ(i),�i) = μ(i). Therefore, i ∈ μ′(j) if and only if

i ∈ η∗j = μ(j), and j ∈ μ′(i) if and only if j ∈ ξ∗i = μ(i).
This proves that μ′ = μ.

IV. SIMULATION

A. Simulation Settings

We assume that buyers are located in a 10 × 10 square.

The transmission range of a channel is randomly chosen in the

range (0, 5]. Based on buyers’ locations and the transmission

range of a channel, we can construct an interference graph

of all channels. Preference profiles are generated as follows.

We first assume that buyers’ basic offer prices for individual

channels are uniformly distributed in (0, 10], based on which

we can construct sellers’ preference profiles according to

Section II. Then, we assume that for a combination of channels

S, buyer j is willing to pay α
∑

i∈S bi,j , in which α > 1 is

a gain factor. If the number of channels in the combination is

higher, α is higher. But there is a threshold on the size of a

combination, beyond which we assume that the buyer is not

willing to purchase the combination due to budget constraints.

Buyers’ preference profiles are based on their willingness to

pay for a combination of channels.

B. Performance of the Proposed Matching Algorithm

The influence of the number of buyers, the number of sellers

and the budget contraint (the threshold on the size of channel

combinations) on social welfare of the matching result is

shown in Fig. 2. When the number of buyers increases, social

welfare grows quickly at first, then slows down because more

buyers compete for a limited number of channels, and the

chance of obtaining channels becomes smaller. Social welfare

also goes up with the number of sellers because more channels

are available for the buyers to acquire. As buyers have higher

budgets, social welfare improves, because buyers can attain

more channels with higher budgets. We have checked that all

fixed points of the simulation results are matching (instead of

pre-matching), and the iteration times of the proposed many-

to-many matching algorithm is shown in Fig. 3. We can see

that the proposed algorithm can converge to the fixed-point

within a few iterations. The iteration times are mainly affected

by the number of buyers and the number of sellers. Changes in
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budget constraints do not have a significant impact on iteration

times as the number of buyers and sellers stay the same.

V. RELATED WORK

Matching-based resource allocation. In 1963, Gale and

Shapley [7] first proposed the deferred-acceptance algorithm

to reach stable matching results for marriage problem (one-to-

one matching) and college admission problem (many-to-one

matching). Existence of pairwise-stable matching in many-

to-many matching has been studied by previous literature

[12], [13]. In [9], the authors proposed a fixed-point based T-

algorithm to realize strong pairwise-stable matching in many-

to-many matching. The concept of fixed-point matching is also

used in matching contexts by [14], [15] Matching has been

widely applied in computer science. In [6], the authors pro-

posed online and offline algorithms to match virtual machines

and heterogeneous sized jobs in the cloud. In [16], the authors

proposed to match Device-to-Device users to cellular users

for resource sharing. In [17], the authors proposed to match

secondary users to primary users for data relay. However,

none of these matching framework can be applied to spectrum

matching, which features interference constraint based spatial

reuse.

Combinatorial auction. There are many previous works on

combinatorial auction. Due to the intractibility of combinatori-

al auctions, a number of greedy algorithms have been proposed

with bounded approximation ratio [18]–[20]. Combinatorial

spectrum auction is studied in [21], [22]. However, the com-

binatorial auction has the disadvantage of intractibility and

collusion, which can be addressed by the spectrum matching

framework.

VI. CONCLUSION

In this paper, we propose the first many-to-many matching

framework for combinatorial spectrum trading. Compared with

combinatorial auction which is usually NP-hard, spectrum

matching is easier to implement and is immune to collusion

between the auctioneer and buyers or sellers. In many-to-many

spectrum matching, buyers are given the freedom to express

their preference for different combinations of channels. Spa-

tial reuse is considered based on heterogeneous interference

graphs, making spectrum matching different from all other

traditional matching problems. We propose a matching algo-

rithm, which generates an interference-free matching result.

We theoretically prove that the matching result is individual

rational, strong pairwise stable and is a subgame-perfect Nash

equilibrium of the corresponding spectrum bargaining game.

We conducted extensive simulations to evaluate the perfor-

mance of the proposed many-to-many matching framework.

It is shown that social welfare increases with the number of

buyers or sellers, as well as buyers’ budget constraints.
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