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Abstract—At events such as conferences, indoor localization
are both contextual and ephemeral, in that localization is only
needed within the context of and for the duration of the event. As
such, the costs and requirements of providing such services need
to be minimal. In this paper, we design, implement, and evaluate
Tack, a new mobile application framework that is specifically
engineered to support such contextual and ephemeral indoor
localization during an event. To provide location-based services
with Tack, an event organizer only needs to bring and place a
small number of (reusable) beacons around the venue before the
event begins. As a system framework, Tack uses a combination
of known beacon locations, contacts over Bluetooth Low Energy,
crowdsourcing, and dead-reckoning to estimate and refine user
locations. To make our location estimates more accurate, we
embrace the inherent nature of beacons, design crowdsourcing-
based inference algorithms, and present an extensive evaluation
by running real-world experiments with iOS devices and beacons.
Tack has been implemented as an open-source framework on the
iOS platform, and can be used by mobile applications designed
for events with location-based services.

Index Terms—Smart devices, Bluetooth, Crowdsourcing, In-
door environments, Localization, Mobile Computing, Inference
Mechanisms, Particle filters

I. INTRODUCTION

There is often a need to provide location-based services
within the context of a large indoor event at a venue without
any infrastructure support for indoor localization. At a large
conference, for example, estimates of user locations are often
beneficial for spontaneous social interaction, in situ headcounts
in conference rooms, as well as location-specific push notifi-
cations. Such needs for indoor localization are both contextual
and ephemeral, in that location-based services are only needed
within the context of and for the duration of the event, rather
than permanently. As well, the incurred costs for the required
infrastructure, if any, will be borne by the event organizers.

While there exists a large volume of previous work in
the area of indoor localization, we found surprisingly few
that would be conceptually satisfactory for such contextual
and ephemeral indoor localization during an event. On one
end of the spectrum, some indoor localization schemes from
both academia and the industry have achieved a high degree
of accuracy, by relying on either specialized hardware such
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as antenna arrays [17], or extensive offline measurements of
wireless signal fingerprints [3]. It is certainly not realistic
to expect event attendees to own hardware more specialized
than off-the-shelf smartphones. The needs for fingerprinting or
war-driving (e.g., [3], [18]), on the other hand, are inherently
venue-specific, rather than event-specific. The labour and ma-
terial costs for such fingerprint measurements or war-driving
are too overwhelming for contextual and ephemeral indoor
localization.

On the other end of the spectrum, there has been a recent
trend in the literature to mitigate, or even completely avoid, the
costs incurred by fingerprinting or war-driving the venue [5],
[6], [13], [15], [20]. These existing works focused on mobile
devices, and used a combination of noisy dead-reckoning and
various types of calibrating signals, such as fixed beacons [5],
encounters [8], signal-based landmarks [13], or camera-based
[20] navigation. While these strategies offered inspiring ideas,
they were not immediately applicable in mobile applications
that require contextual and ephemeral indoor localization, due
to their additional assumptions on the venue (e.g., elevators)
or the user (e.g. permissions to use the camera).

In contextual and ephemeral localization, what do these
event organizers and their mobile applications need, anyway?
First, the costs for any infrastructure that needs to be estab-
lished by the event organizer before the event will need to be
minimal. Second, the energy costs to the attendees with their
smartphones have to be negligible, or else permissions will
not be granted. In this work, our fundamental objective is to
achieve the best possible localization accuracy within these
practical constraints.

In this paper, we design, implement, and evaluate Tack,
a new mobile application framework that is specifically en-
gineered to support such contextual and ephemeral indoor
localization during an event. When designing Tack, we share
the pessimism with existing work that pure dead-reckoning
using smartphone sensors is inherently noisy, and should only
be supplementary. To provide an initial infusion of accurate
location data, we recognize that Bluetooth Low energy (BLE)
has overwhelming advantages: it is energy-efficient; ubiquitous
in that it is supported by all modern smartphones; and above
all, used by the iBeacon-compatible transmitters [1] that can
be inexpensively acquired (less than $10 each), reusable, and
easily tacked out of sight at any indoor location. With Tack,
we take advantage of a collection of iBeacon-compatible
transmitters, referred to simply as beacons in this paper,
to provide accurate location data. To provide location-based
services with Tack, an event organizer only needs to bring
and place a small number of (reusable) beacons around the



venue before the event begins.

A unique advantage of a large indoor event is the density
of its attendees within a reasonably confined space, such as
a conference center or a hotel. Tack uses such density to its
advantage: thanks to the recent operating system support for
any smartphone to act as both a BLE advertiser and scanner
at the same time, Tack refines user location estimates using
crowdsourcing as they encounter one another. In the advertiser
mode, a device broadcasts its virtual beacon ID to nearby
BLE devices; while in the scanner mode, the device listens
to advertisements. Operating in both modes allows a pair of
devices to detect their ranges from each other, which is the
foundation for our crowdsourcing algorithm.

While promising, our design needs to be improved to
address new challenges that are unique to BLE beacons and
mobile devices. Due to its lower energy costs, the operating
range of BLE is only several meters, and distance estimates
using signal strengths are inherently noisy. Intuitively, the
number of beacons, each with known locations, will also affect
the accuracy of location estimates in a substantial way. The
critical challenge is how crowdsourcing, beacons, and dead-
reckoning can work together harmoniously towards improving
localization accuracy.

To overcome the lack of accuracy of distance estimates
with BLE beacons, we propose to formulate a maximum a
posteriori (MAP) inference problem based on graphical mod-
els to seamlessly integrate crowdsourcing, beacons, and dead-
reckoning. We present models that are progressively more
complicated as more empirical observations are incorporated,
with improved localization accuracy. Using real-world tests on
i0S devices and beacons, we have extensively evaluated Tack
with respect to its accuracy. In general, Tack has achieved an
accuracy of 2 to 4 metres with moderate energy costs and
latency in our experiments. Overall, Tack only relies on a few
beacons and does not require the support of external power
sources, thus is very easy and cost-efficient to deploy. Tack
has been implemented as an open-source framework on the
10S platform, and can be readily used by mobile applications
designed for events with location-based services.

II. RELATED WORK

The literature on indoor localization is vast, but the closely
related work to this paper falls into the following categories.

Fingerprinting-based localization. This line of work
utilizes the unique set of WiFi [7], [12], [18] or magnetic [16]
fingerprints to evaluate user locations. For WiFi fingerprinting,
a serious problem is that the user may unintentionally leak its
WiFi SSID, which threatens its privacy. Another issue with
such a system is that it assumes multiple access points are
present, which may not be true in reality. Magnetic fingerprint,
on the other hand, may not be unique in a large indoor
space and cannot withstand infrastructure changes. In our
localization system, we rely on the estimated distance instead
of any fingerprinting.

Range-based localization. In these schemes, absolute
point-to-point distance or angle estimates are used for cal-
culating positions. Depending on the characteristics of wire-
less signals, methods of obtaining ranges vary from Time

of Arrival, Angle of Arrival, to Received Signal Strength
Indicator (RSSI) values. Approaches include multilateration
[3], probability inference, and wireless signal model based
methods [4]. These localization systems mostly suffer from
multi-path fading, background interference, and other irregular
signal propagation characteristics over long distances and
large spaces. In our localization framework, we address this
drawback by using raw distance estimates only when the
beacons are in close proximity to each other when the distance
estimate is most likely to be accurate, and complement it with
the technique of dead reckoning, contacts, and crowdsourcing.
Moreover, we are among the first works that adopt the BLE
virtual beacon mode for each user’s device to obtain user-to-
user distance observations in a localization framework.

Dead reckoning with landmarks. Traditionally, we com-
pute the motion trajectory of a smartphone by using its ac-
celerometer and compass. Due to the inherent noise in mobile
sensors, the trajectories are often accurate at the beginning,
and gradually drift away. Landmarks with known location are
usually provided to reposition the user from time to time to
cancel out the cumulative error, in typical ways as [2], [11],
[13] do. The accuracy of localization is naturally higher as the
density of deployed repositioning anchors is higher. [2], [13]
proposed to use sensor signatures that are unique in the WiFi-
subspace as landmarks; however, this kind of landmarks is not
consistent across different smartphone platforms. WiFi-Marks
[11] are special locations where the received WiFi signal
strength changes from increasing to decreasing, representing
the nearest position to a WiFi access point. But one never
knows its actual position relative to the access point even at
the tipping point, let alone the fact that such landmarks are
few and occur opportunistically anyway.

In contrast, we combine nearby beacons with contacts over
BLE to reposition users in our framework, greatly improving
repositioning opportunities throughout time and space, and
expanding the influence range of the repositioning effect
to users beyond the one in contact. Such a positive effect
increases with larger crowds roaming the venue. These virtual
landmarks are not only device-independent, but also observed
frequently.

Localization using contacts. Opportunistic user interac-
tions are used to develop human escort services [5] or to
improve indoor localization [8]. In previous works [8], [14],
contact is used in a “macro” environment to select the path a
user takes or the location it resides at; we inherit the method
and improve it to integrate with particle filters. In previous
implementations, contacts can be spotted by a real person, or
detected by audio or wireless signals, which are subjective
to environmental noise. Classic Bluetooth for contacts was
claimed to be slow in discovering short-lived encounters
(around 100 ms). BLE, on the other hand, significantly reduces
the discovering latency (6 ms for the non-connection state). In
Tack, contacts via BLE is not only faster, but also free — each
user acts as a virtual beacon, broadcasting its own location
estimates.

Crowdsourcing for indoor localization. In existing crowd-
sourcing schemes [9], [15], a central server is designed to
collect wireless signal fingerprints, sensor signatures, or user



trajectories from different users to alleviate the effort of
the offline training phase. One important problem of these
schemes is that the localization service cannot be provided
instantaneously: they typically need a “warm-up” phase for
collecting some user trajectories to train a model of the
wireless fingerprints or sensor signatures. Our crowdsourcing
approach allows the localization system to work effectively as
soon as some user data are collected.

III. TACK: OVERVIEW AND CHALLENGES

Overview. Existing works have all assumed a dense deploy-
ment of beacons, precisely because the accuracy of distance
estimates is only acceptable when the devices to be localized
are very close to the beacons. Yet, for our purpose of contex-
tual and ephemeral localization with a large number of users, it
would not be economical to deploy a high density of beacons
across the venue of an event. However, if we place beacons
sparsely in the venue, the fast-decaying BLE signals would
make it almost impossible for all users to position themselves.

We extend the horizon using dead reckoning (DR). DR is
a navigation process of calculating one’s current position by
advancing from a previously determined position based on the
number of steps of a user, and each step’s direction headings.
In Tack, we designed a software step counter by filtering the
accelerometer readings. Step counters are also supported by
modern smartphone hardware, such as the M7/M8 processors
on recent iOS devices. The heading direction can be easily
obtained from the magnetometer reading on smartphones.

However, when dead reckoning is used independently with-
out repositioning, the localization result can easily drift away
due to accumulated error. Thus, we propose to combine DR
with BLE beacons through particle filters: while DR tracks
users’ positions, the BLE signals observed from beacons
or mobile devices are adopted to correct users’ trajectories.
Particle filters will be thoroughly introduced in Sec. IV-A.

To take advantage of crowdsourcing, we further introduced
virtual beacons to enhance the density of beacons. In Tack,
each fixed beacon is configured with its own geo coordinates
on the given floor plan. At the very beginning, each mobile
user pulls all beacons’ coordinates from the server and turns
on Bluetooth dual mode to broadcast as a virtual beacon,
and to detect both fixed beacons and other mobile users
in its vicinity. When running the service, all mobile users
upload their data to the server and download other users’
data from the server periodically. Our crowdsourcing algorithm
takes all data as input, and outputs the position estimate of
the user. Computation can be performed either at the server
or locally on the user device. In our prototype system, we
choose to compute locally and accelerate the computation by
using the hardware-assisted Accelerate framework on the
i0S platform.

Fig. 1 shows an architectural overview of our design. The
key issue in Tack is how to combine different parts — dead
reckoning, BLE signals, and virtual beacons all together to
allow each mobile user to locate itself as accurately as possible
while minimizing the deployment costs. We will introduce the
challenges in each part respectively, and show how our design

overcomes these drawbacks to make all parts work seamlessly
together to deliver position estimates that are as accurate as
possible.
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Fig. 1. Tack: Architectural overview.

Challenge 1: Noisy distance estimates. Even though the
use of beacons for indoor localization has been explored
by both industry (such as Estimote and Indoo.rs Inc.) and
academia [19], it is a problem that remains elusive and far from
solved. The primary reason is simple: due to the low energy
consumption imposed by BLE, any distance estimates based
on Received Signal Strength Indication (RSSI) are inherently
noisy, and are thus not suitable for triangulation or similar
algorithms that are designed for localization using multiple
transmitters.

To illustrate these challenges quantitatively, we have con-
ducted several experiments on Estimote beacons and iPhones
to gain a better understanding of BLE and beacons. The Core
Location framework on the iOS platform has conveniently
provided an estimate of distance based on RSSI measurements,
called accuracy, in the unit of meters from the beacon.
Besides the estimate, the CLBeacon class also provides raw
RSSI measurements called rssi. To find out which one is a
better indicator of distance, we translate rssi into a measured
distance D using the standard free-space radio propagation
formula:

RSSI,,, = RSSIy — 10nlog,, D + x4 (1)

Here, RSSI,, is the measured RSS on the user’s phone, RSSIj
is the RSS from the beacon at a distance of one meter,
n is the rate at which RSS falls with distance depending
on the local environment, and z, is a lognormal distributed
random variable accounting for the slow-fading phenomenon.
We adopt the recommended values for these parameters.

Our experiments are conducted in a hallway with no ob-
stacles in sight and no other BLE devices turned on. In the
two groups of experiments, we fix the position of a beacon
or an iOS device, have the testing phone (iPhone 6S) placed
at certain distances from it, and measure accuracy and rssi.
We collect samples for multiple runs to compute the mean and
standard deviation of the distance errors.

When measuring distances from a beacon, as Fig. 2(a)
shows, the distance error obtained from the accuracy value is
smaller with a modest standard deviation than that translated
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Fig. 2. Distance estimates using BLE (Sensors) are inherently noisy.

from rssi. On the contrary, when measuring distances from a
phone, Fig. 2(b) shows that the translated distance using rssi
enjoys a smaller error than using the accuracy value. This is
because the accuracy value provided by the iOS framework
is tuned for beacons rather than a smartphone; a smartphone
normally has a higher transmission power than a beacon, and
as a result, the distance it reports is usually less than the ground
truth.

Despite the difference between the values reported by
accuracy and rssi, we are also curious about the distance
errors when there are obstacles in the environment. We further
measured the distances reported by accuracy in the same
hallway with the beacon (phone) blocked by obstacles. The
result is depicted in Fig. 2(c). As we can tell, compared to the
open space, the reported values are mostly above the ground
truth, but are still close to them, particularly when the actual
distance is less than 10 meters in between.

But regardless of the situation, the overall bad news is that
we are not able to assume that distance estimates are accurate
unless the actual distance is small. Moreover, in the presence
of a beacon, the accuracy value is generally a better indicator
of the distance estimate. This is because accuracy is tuned
considering the surrounding environment, and is usually used
to distinguish different objects in the same region of a beacon,
according to Apple’s document. Although quite noisy, the
distance estimate is sufficiently accurate for our localization
algorithm as we will discuss later.

Challenge 2: Noisy sensor readings. Besides noisy dis-
tance estimates, sensors used in DR pose another significant
challenge. We have conducted new experiments to quantify
the errors in the heading direction from magnetometer sensors
on smartphones. Fig. 2(d) shows the error when turning the
smartphone’s heading from the true north. The true north is
obtained by the compass and is recorded beforehand. As we
can observe, the direction error reaches 20 degrees when the
direction change is 120 to 180 degrees. Overall, the heading
direction measured using a magnetometer has an error of
around 5 degrees on average when the user holds it in her
hand, and the error is slightly higher (around 10 degrees) when
the phone is placed flat on a desk.

The step counter may also be another source of error. To
quantitatively measure this source of error, we have conducted
an experiment by asking 5 users to hold their phones and walk
at different paces repeatedly. As shown in Fig. 3(a), a steady
pace introduces the least amount of error, mainly because the
filter parameter in the step counter is tuned according to a
normal speed. On average, the error is only 1.5 steps for every
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50 steps. In the worst case, the error is fewer than 3.5 steps.
Such errors are not significant since indoor users usually take
fewer than 50 steps before they are repositioned by contacts
with beacons.

Our experiments so far have clearly shown that, with
both noisy distance estimates and noisy sensor readings, new
algorithms need to be designed to compute position estimates
as accurately as possible, taking such noise into account.

IV. A LoCAL VIEW: A PROBABILISTIC APPROACH

To introduce the localization inference system, we first take
a single user’s view. Each position is represented by a multi-
dimensional variable. Some variables have more significant
prior than others; for example, the fixed beacons with known
positions can be represented as a Dirac delta distribution. Since
the initial positions of the mobile users are unknown, their
positions can be considered as uniform distributions over the
floor plan. We use particles to represent each geo-distribution
and propose augmented particle filters like the model in [9].

A. Augmented Particle Filters

In control theory, particle filters are used to improve the
tracking accuracy of time-varying variables of interest, by
constructing a sample-based representation of the targeted
variables’ probability density function (pdf). In particular, its
performance exceeds other filtering methods, such as Kalman
filters, in cases where variables are non-linear and non-
Gaussian. In our localization system, as most of the previous
work, we are interested in tracking the locations of users with
their smartphones, represented by (x,y) coordinates in the
floorplan of the venue.

We begin our discussions from the principles of DR. We
consider a set of particles S = (S1,...,Sn) as a discrete
representation of the probability distribution of locations. Let
Sk = {aF yk Ik d¥ wF} denote the rth particle at the kth
iteration. Here (x,,y,) jointly represents the geo-coordinate,
I denotes the disturbance in stride length of each step, d, is
the disturbance in user’s heading direction and w, means the
weight of the rth particle, suggesting how likely it represents
the true user location.

Particle filtering implements a recursive Bayesian filter
using the Sequential Monte-Carlo method. In the context of
dead reckoning using smartphone sensors, the algorithm goes
iteratively through the following four phases in each time slot
to estimate user locations:

& Initialization. At time slot 0, each particle’s position
(zr,yr) is initialized to be uniformly distributed on the entire
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region with equivalent weight. If the starting location is
given, the position is normally distributed around the starting
location. From time slot 1 onwards, the initial position is the
result from the last time slot.

< Prediction. As the user takes a step, we decompose the
step into two orthogonal components: the distance traveled and
the orientation of the step. The distance traveled is computed
with 8 + [,., where [ is the average length of the user stride,
and [, denotes the disturbance in each step.

The orientation consists of the heading offset 6, the real-time
magnetometer reading ¥, and its disturbance d,.. In practice
the heading direction is obtained as follows. Before localiza-
tion, we record the magnetometer reading when placing the
device parallel to Y axis. This value is the heading offset
that does not vary much throughout the same venue. During
localization, we obtain o by the magnetometer reading. The
sum (difference) of 6 and o is the current heading direction
from Y axis. Both [/, and d, are drawn from the empirical
distribution according to our previous test results in Sec. III.
When a user takes a single step, all the variables in each
particle are updated to its predicted state. After the kth step,
the rth possible location (¥, y¥) is predicted as:

) 2

o\ (2Ft (B + 1) cos(0 + oF + d,)

y* ) T \yEt+ (B + 1) sin(0 + oF + d,.)
$ Update. The weight of each particle w” is now recal-
culated as the likelihood that the particle S* represents the

actual location of the user:

wy' = p(Sy). 3)
k

In traditional robotic localization, w,;’ is computed using a
joint Gaussian error model for the sensor data [10]; in [9],

particles violating map constraints are assigned a weight of
zero. In our system, the weight of each particle is determined
by the probability distribution of the user location, which
is conditional upon the beacons’ locations and the measured
distances in between. We will later explain how to update the
particle weight.

& Resampling. With the weight of each particle updated,
some particles have drifted far enough that their weights are
too small to contribute to the probability distribution of the
user location. The particle population is then resampled by
eliminating the ones with small weights and duplicating the
ones with higher weights. Mere duplication will lead to the
depletion of particles, so we actually generate a new particle
drawn from a random distribution centered around the chosen
particle. After repeating this step several iterations, most of the
particles should be converged to an area. The user’s position
at the current time slot can be estimated by averaging over its
particle set.

B. Location Probabilities

From the viewpoint of a user, its position distribution
p(S¥) is computed as the product of distance errors from
any observed users and beacons. Intuitively, the smaller the
distance error, the more probable that a position represents
the ground truth.

There may be one or multiple fixed beacons or mobile users
in the proximity of a user. The geo-locations of the fixed
beacons are known a priori, and we assume the positions of
nearby mobile users have already been computed recursively.
Suppose that a nearby beacon or the reference user with a
known position is located at (x;,y;), and we probabilistically



infer the unknown user’s location by using distance estimates,
denoted as Dj, from the reference points. For each potential
location (z,.,y,), let its distance to the jth reference point be
D,;, and the distance estimate error is Dj - D,;.

We assume that the error in distance estimates is normally
distributed with zero mean, which is a reasonable assumption
according to the experimental results in Sec. III. With respect
to the jth reference point, the probability that the location
(2r,yr) represents the true location is:

1 (D; — D, ;)2
pi (@, yr) = Tors exp(—%

) “4)

When multiple independent reference points exist, the proba-
bility p(x,., y,-) for the location (.., y,-) to be the true location
is:

p(Sr) = Hpj($r7yr)7 Vr € {17"'7N}' )

jeref

Whenever a user finds at least one nearby reference point, the
weights of all its particles can then be computed during the
update phase by using Eqn. (3) and (5). Then the potential
locations for this user can quickly be narrowed down.

C. Resampling with Beacons

In the implementation of our augmented particle filters, we
are curious about the convergence criteria and how they affect
the resulting accuracy. Thus we run a series of small-scale
experiments to verify our assumptions.

In a typical office environment, we record the particles of
a user per iteration under the influence of nearby beacons.
We vary the number of beacons and the average distances to
them to figure out how these factors affect convergence and
the resulting accuracy.

Fig. 3(b)-3(d) show the resampling effect of the user when it
has an average of 3m to each beacon, with 2, 3 and 4 beacons
in presence respectively. Because the scanning interval is set
to be ~ 300ms, a user usually obtains multiple groups of
distance estimates each second. For a more accurate estimate,
we collect 4 contiguous groups and compute 5 iterations for
each group.

Looking at the standard deviation of particle distributions,
and comparing to the result under 10 iterations (Fig. 3(e)),
we can tell that particles converge with 5 iterations. However,
when only 2 beacons are present, the result does not converge,
mainly because the position cannot be uniquely determined
geometrically with 2 beacons. With 3+ beacons, the result
converges with an error around 0.5m. We also run tests with
an increase of the average distance to beacons to ~ 6m, and
found the final averaged error converges to ~ 2m. Essentially,
with more beacons around and smaller average distances to
them, the error becomes smaller.

The experiments above not only provide clues to the conver-
gence criteria, but also provides an empirical understanding of
the confidence level of user position estimates. For example, if
a user is repositioned by 3+ beacons, or if its average distance
to beacons is small, its position estimate is closer to the ground
truth with high probability. These empirical properties serve
as an important basis for our upcoming discussions.

V. A GLOBAL VIEW: HIDDEN
MARKOV MODEL REPRESENTATION

In the previous section, we have shown the method of
computing an unknown position based on the locations of
nearby beacons and users, whose positions are assumed to be
calculated beforehand. However, if none of the positions are
known, we would encounter a cold start problem. To avoid this
problem, we place beacons at locations where the users are
most likely to pass by for the location information to properly
propagate from known points to unknown places.

Despite these efforts, we found that the hurdle lies funda-
mentally in the constraints that each user can only observe
nearby BLE devices, thus the impact of the observations is
local. Can we expand such a local view to a more global view
including all the users, in order to more accurately infer each
user’s position? The answer to this question is our proposed
statistical crowdsourcing framework, to be presented in this
section.

A. A Graphical View

We describe Tack by using a graph G. In G, we assume there
are a total of M users or beacons scattered in the region, and
each of them is represented by a node with its probability
distribution. Let z; = (x;, y;) denote the location distribution
of user ¢ or the known position of a fixed beacon. For any user
1, it scans a noisy distance observation D;; from its neighbor
user j, or does not observe j at all. Each location variable z;
is associated with a prior distribution p(z;), which represents
the location distribution over the planar region R = {(x,y) €
R?2:a; <z <agb <y< ba}. Node z; and z; are related
to each other by the observed distance between them, so we
should describe them in pairs.

For ease of computation, we use a particles-based sam-
pling technique to represent continuous pairwise conditional
dependencies. To avoid confusion, we use .S; to denote an
arbitrary particle of user ¢, and .S;,- to denote the rth particle
of user i. Let the distance between particle S; and S; be
D;j, ie., D;j = ||S; — S;||. We assume the distance estimate
error D;; — Dij follows a normal distribution with zero mean,
which respects the results in Sec. III. The probability that the
observed distance represents the true distance between user
and j, given the positions of two particles .S; and 5}, is:

1 (Dij — Dy;)?

p(Dij|Si, Sj) = EQXP(* 952

when D;; is observed. If user ¢ does not observe j, the
probability distribution should preclude area where j is. Let
Dyax be the maximum range that BLE signal reaches, then

), (©)

p("Dyj|Si, S5) =1 —

when D;; is not observed.

The probabilities of Eqn. (6) and (7) are the probabilities
before normalization. p(D;;|S;, S;) can be seen as a discrete
representation of the pairwise potential p(D;;|z;,2;). This
pairwise potential represents the probability distribution of the
observed distance given the two users’ positions, and will be
used in our Hidden Markov Model (HMM).

I(DU < Dmax)7 (7)



B. Hidden Markov Model

With the notations in Sec. V-A, all users’ positions at time
t are considered collectively state Z; of the system. If we
only consider the pairwise distance observations at each time
t, then all users’ positions at time ¢ are independent of their
respective positions from time 1 to ¢ — 2 given their state
at time ¢ — 1. Thus we could describe each user’s trajectory
with a Markov chain. However, since each user’s position is
not directly visible, we introduce a Hidden Markov Model to
describe our system.

Considering that the observation of the system often in-
volves multiple users rather than a single user, we cannot
use multiple independent Markov chains to describe Tack.
Instead, we use a vectorized state Z; = {z1¢,....,2p1} tO
describe users’ states at time ¢ in coalesce, with each variable
representing each user’s position. The distance observations
are denoted by D;, which essentially consists of all pairwise
distances detected between users.

Fig. 4. Tack: A Hidden Markov Model.

Fig. 4 is an illustration of the system model, with the hori-
zontal arrow representing the transition between states, and the
vertical arrow denoting that the observation is conditioned on
its state. We formulate the localization problem as maximizing
the conditional probability of a state given the sequence of
observations as follows:

Z; = arg mza}xp(Zt|D1, o Dy) = argmz%xp(Zt,Dl, ey D).

®)

Theoretically, the problem above can be solved by a variant

of the Viterbi algorithm. The algorithm is a dynamic pro-

gramming algorithm for searching the most likely sequence

of hidden states that results in a sequence of observed events
in HMMs. Let

p1(Ze) = maxp(Zy, Dy, ..., Dy), 9)
then the recurrence equation is

wi(Zy) = mZaxp(Dt |Z)p(Z|Zp—1 ) p1y—1(Zy—1). (10)

In hidden markov model terms, p(D;|Z;) is the Emission
Probability representing the probability of D; conditioned on
Z:. And p(Z|Z;_+) is the Transition Probability, which is
the probability of the current state conditioned on its previous
state.

The major challenge of this problem is to implement the
dynamic programming algorithm within our framework. As
we found out, the particle representation of each position, the
pairwise dependencies, and the resampling procedure based
on them has an innate dynamic programming structure: the

prediction step is equivalent to computing the joint probabil-
ity distribution of p(Z:|Z:_1)pt—1(Z+—1) by updating each
particle using Eqn. (2). The update step is to calculate the
conditional likelihood of the Emission Probability, which is

p(D|z; ) = Hp(D|zi,t, Zj+), Vi, (11)
J#i

by combining Eqn. (6) and (7). Last but not the least,
resampling particles’ weights can be considered as multiplying
the likelihood to the probability distribution.

Different from the augmented particle filters in Sec. IV-A,
we consider the joint probability of all user positions with
respect to the observed distances in between them. Note that
in the recurrence equation, the Transition Probability does not
involve any crossing term of more than one entry, and can
thus be computed locally on each user’s phone. The Emission
Probability deals with more than one entry, so for every time
t, each user needs to collect all other users’ data to update its
position distribution using Eqn. (10).

C. Resampling with A Global View

One may naturally wonder what the advantage of resam-
pling with a global view is, as opposed to using the local view
only. We show the effect from two aspects: first, having global
information improves localization accuracy; second, global
information solves the “cold start” problem, i.e., even if no
one knows its exact position at the beginning, a global view
can quickly narrow down each user’s possible location range.

We run a few field tests to verify that global informa-
tion helps to improve positioning accuracy. In an office of
8m x 12m, which is similar to a typical conference room, we
place two beacons and run the positioning algorithm with each
particle’s behavior recorded. We then repeat the experiment by
adding two more virtual beacons. Fig. 5(a) and 5(b) show the
respective results with particles in each iteration represented
by pink circles. Two diamonds denote two fixed beacons,
while a triangle, square, and star represent the ground truth
locations of User 1, 2, 3, respectively. We found that with
additional two other users, the particles of User 2 converges
more quickly towards its ground truth position. The result
shows User 2’s performance indeed improves in the presence
of other users. Note that in all the tests, user positions are
not known beforehand, so User 1 and 3 are not equivalent
to beacons. This experiment confirmed our motivation that a
global view helps propagate the repositioning effect to devices
that are farther away.

Compared to our previous local approach in Sec. IV, the
global view method does not assume that locations of nearby
users are known. In other words, the method can still improve
one’s location estimate even if it observes no other users
around. To verify the effect, we run a simulation on a 50 x 50
floor plan, with 4 fixed beacons, and 10 roaming users for
5 time slots. We compare three methods: resampling with
fixed beacons, implying that each user only uses positions
of beacons that it encountered to reposition itself; resampling
with a local view, in that each user adopts the positions of
both encountered beacons and users to reposition itself; and



User 2: 1st iteration. User 2: 5th iteration. User 2: 10th iteration.  User 2: 15th iteration.

o5 o5 o5 o5

User 2: 1st iteration.
5

S 5 5, 5

User 2: 5th iteration. User 2: 10th iteration.  User 2: 15th iteration.
25 5 25

25 S

° o oc

% 25 30 35 %0 25 30 35 %0 25 30 35 %0 25 30 35
X(m) X(m)

% 25 30 35 %0 25 30 3 20 25 30 3 0 25 30 35
) X(m) X(m) X(m)

(a) The way that User 2’s particles converge when only 2 beacons are (b) The way that User 2’s particles converge when 2 beacons and 2 other

presented.

Fig. 5. Position estimates are improved with a global view for User 2.
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Fig. 6. A global view solves the “cold start” problem.

resampling with a global view, which collects information
about all other users to assist localization.

Fig. 6 illustrates the average position error for 5 contiguous
time slots using the three methods. For resampling with a
global view, the figure shows the error per iteration per time
slot. It is obvious that with all three methods, the error is
highest in the first time slot, and gradually decreases. This is
due to the fact that no prior information is obtained by any user
at the outset. Within each time slot, the three methods show
approximately the same position error at the beginning, except
that the error of resampling with a global view decreases
dramatically after a few iterations.

Essentially, at each update, resampling with a local view
only provides the user whatever the current position estimate is
for every encountered user — no matter the estimate is updated
in the current time slot or not. This is because the user can
only collect the estimates of those users that it encounters. By
resampling with a global view, on the other hand, we are able
to iterate through each user several times in a single update,
since the location estimates of all other users are provided.
Thus, as we can tell from Fig. 6, comparing to resampling
with only a local view, the global view not only improves
accuracy but also solves the “cold start” issue.

From our small-scale field tests and simulations, we found
that resampling with a global view can improve localization
performance from the perspective of accuracy and efficiency.
However, such advantages are not obtained for free. A draw-
back of this approach lies in its implementation: a user

users are presented.

will need all other users’ data to compute its own position
estimate, which incurs communication overhead. The scale of
the particles from all the users may also introduce a significant
computation overhead. We will introduce our unique imple-
mentation technique to address this challenge in Sec. VII-B.

VI. A SPATIO-TEMPORAL VIEW:
CONDITIONAL RANDOM FIELDS

In our experiments, we found that both dead reckoning
and RSS-based observation introduced a substantial amount
of noise to the localization system. Insights gained from our
experiments implied that the most effective way to eliminate
such noise is through immediate contacts with beacons or users
with significant prior knowledge about its location. To improve
the overall localization accuracy, a proper inference mecha-
nism should be designed to maximize the influence of those
positions with significant priors, and effectively propagate their
information to other nodes in the system.

We run a series of simulations to verify this point. First, in
the setting of 50 x 50 floor plan, we run the HMM algorithm
as shown in Sec. V with 4 fixed beacons and 10 roaming users
without any prior knowledge. Among these users, we replace
User 3, 5, 6, 9 with beacons located at the same coordinates
but with the positions known as prior. The resulting positioning
error is shown in Fig. 7(a), 7(b) and 7(c), where 8 beacons
and 6 users represent the scenario after the replacement.
Obviously, when the locations of more beacons are known, the
overall error is smaller. Fig. 7(b) and 7(c) show the average
positioning error for each user throughout time slots. User 1,
2, 8 remain after replacement while User 3, 6, 9 are replaced
in Fig. 7(c). Examined more closely, the positioning results
of User 2 and User 8 deteriorate with crowdsourcing if no
prior knowledge of users’ positions is learned beforehand.
Other users’ positioning results are not shown due to space
constraints.

Knowing that the significant prior can greatly improve
localization accuracy, how should we utilize it in Tack? The
problem lies in three aspects: first, how to define nodes
with significant prior information; second, how to increase
the number of nodes with such auxiliary information in the
system; and finally, how to utilize that extra bit of information
to improve positioning accuracy. We will answer each question
respectively.
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partial results are shown).

Since the nodes with prior known are sparsely scattered in
the venue, or along a user’s trajectory, it would be beneficial
to jointly consider time and space for increasing the number of
such nodes in the system. Thus, we introduce a more powerful
and general graphical tool called Conditional Random Field
(CRF) to describe our localization system from a theoretical
perspective. With a spatio-temporal view, we would be able
to incorporate more features that help localization.

But the advantage is gained without its unique challenge. In
the previous HMM-based approach, due to the “memoryless”
property of Markov chains, one computes its position only
based on the current state and one state before. With CREF,
we essentially incorporate more time-related features when
inferring user positions. To achieve that, we need to file the
history data collected from all users within a certain window.
We would elaborate on the features and the implementation
detail in this section.

A. Conditional Random Fields

Conditional random fields (CRFs) can be considered gen-
eralization of HMMs. They are undirected graphical models
that encode a conditional probability distribution p(Z|D) using
a given set of features. While HMM treats the observations
across different times as conditionally independent given
the position states, CRF needs no independence assumption
between the observation variables. CRFs have been widely
used in applications such as robot navigation and speech
recognition. By eliminating the independence assumptions
between observations, the model is more flexible and capable
of describing many more features.

In this section, we first transform our system HMM model
to a CRF model and show how these features are implemented
in Tack.

From HMM to CREF. Different from HMMs, CRFs are
more flexible in describing systems with arbitrary features.
Each feature takes in as input: the observations across all
times D, the current time ¢, the current state Z;, and the
previous state Z;_;. To compute the conditional probability
p(Z|D) on an undirected graph, we use cliques potentials
rather than the product of conditional distributions as in a
directed model. A clique is a subgraph of which every pair
of nodes is connected by an edge. In CRF presentation, we
consider that all observations are represented as an entirety
D, which is linked with any state node like in Fig. 8. In that
figure, node Z;_1, Z;, and D form a clique.

a clique

Fig. 8. Tack: A Conditional Random Field Model.

Let C' = {z.} be the set of cliques in G. Then CRFs define
the conditional probability of state variables as follows:

H@ch

where @ is the potential function defined over a clique, and
P(D) is the partition function that is a normalization factor
over all variables states. We assume the potentials factorize
according to a set of feature functions { fj }, to each of which
a real-valued weight \j is attached. Thus,

p(ZD) = (12)

K
) = H exp(Ak fr(D, z.)).

k=1

(D, z, (13)

To extend HMM with the time dimension, we “unroll” the
model in time and present Tack using an undirected graph G as
in Fig. 9. All clear circles represent state nodes which describe
position distribution, and the grey circles are observations
nodes. HMM requires observations are independent of each
other given the state, thus it is unable to describe feature like
user displacement D; ;_; across different times.

Since all states are connected to a common observation,
a typical clique contains D, Z;_; and Z,. The conditional
probability can be further derived as:

T K
p(ZID) o [T TT expArfe(t. D, Zi—1,Zy)).
t=1k=1

(14)

Our objective is to find the set of states Z that maximizes
the conditional probability in Eqn. (14) by converting HMM
into CRF without losing the advantage of HMM. To incorpo-



rate both Transition and Emission probabilities into the CRF
model, we introduce two corresponding features:

[i(t, D, 21, Zy) = I(Dy 1)1 (Zy—1)1(Zy),
fo(t,D,Zs1,Zy) = 1(Dy)[(Zy),
and their respective weights are:
A1 = logp(Dy-1|Zs—1,Zy),
A2 = log p(D¢|Zy).

5)

(16)

The weight of the first feature is the conditional potential of
the displacement observation given positions Z;_; and Z;.
Essentially, the higher the likelihood, the more weight will
be assigned to the position pairs. And the second feature
corresponds to the likelihood of observations given certain
position probability distribution.

Time Slice t

window T =3

Fig. 9. Tack: A Spatio-temporal View.

Revisiting Transition Probability. The transform above
from HMM to CREF is not sufficient. Note that the transition
probability in HMM is the probability of the state conditioned
on its previous state, which is not only invalid on an undirected
graph but also precludes the possibility of backward propaga-
tion, i.e., to let the current state influence the past state.

To make the feature more expressive, we adopt pairwise
potential functions to describe the bidirectional transition
probability between node z; ;1 and z; ;. We build the pairwise
potential function based on the kinematic model using the DR
results. In the kinematic model, we calculate user displacement
depending on the combined results of the step counter and
magnetometer. To calculate the displacement from time ¢ — 1
to ¢, we accumulate the displacement of each step in between:

Az;\ zkAxf _ Zkﬁicos(G—i—af) 17
Ay) T\Sak) TS pisin0 +ab).) 1P

f3; is the average stride length, and o is the heading orienta-
tion per step of user .

We assume the user displacement in Eqn. (17) follows the
Gaussian distribution around the true value according to the

results in Sec. III. Based on that, we compute the pairwise
potential between node z; ;1 and z;;. As usual, a discrete
representation of the distribution is adopted in the form of
pairwise potential between two particles S;¢—1 and S;; as
follows. Again, S;; represents an arbitrary particle of user 4
at time ¢.

1 (it — Tig—1 — Ax;)?
Dy 1|Sit-1,8i4) = ——= —— :
p( ot 1| =1 ,t) Y02 eXP( 202 )
it — Yit1 — Ay;)?
xexp(—(yl’t Yit—1 y) )
202
(18)

By using Eqn. (18), we are allowed to express the transition
probability on the undirected graph. We will show the power
of this expression in the following section.

Reviewing Fig. 9, Conditional dependencies between vari-
ables representing different users at the same time slice can be
expressed in the form of pairwise relationship as depicted in
Eqn. (6). The edge across different time slices is formulated
as the pairwise potential function Eqn. (18). The figure shows
an example where the time window is 3.

Equipped with CRF, we not only preserve the advantage
of HMM by directly importing the transition and emission
probabilities, but also are able to describe more spatial or
temporal features.

B. Confidence and Trend

We now try to answer the question of how to determine
nodes with more significant prior than others, and how to
integrate the feature within the CRF framework.

By significant prior, we essentially wish that a node with a
higher confidence about its position will influence a node with
a lower confidence, but not the other way around to prevent the
estimation error from propagating. For example, a node that
is close to a fixed beacon has a higher confidence about its
position estimate than a node not observing anything. More
specifically, having examined the property in Sec. IV-C, we
can distinguish the nodes with a higher confidence by using
criteria such as the number of nearby beacons and the distance
to the beacons. In Tack, we implement more than such an
intuition. Each user maintains a weight account to estimate its
confidence level. The weight account is assigned a high value
whenever the user gets repositioned with nearby fixed beacons,
representing high confidence about its estimated position; one
point is deducted from the account when the user takes a
step implying the confidence level reduces as the user position
drifts.

The “confidence” feature is special in CRF in that we do
not usually specify the inference direction over an undirected
graph. However, in the inference algorithm to be illustrated
later, we will show that the feature can be implemented
without violating the problem structure. We define the feature
as follows. Letting W, ; be the weight left in the account of
user ¢ at time ¢,

eXp(fk*)i (t7 Da Z’L,t7 Zk,t)) - I(Wk,t > Wi,t)7
exp(fi—15¢t(t, D, 2 4,24 0—1)) = I(Wip—1 > Wiy).



Our simulations (with the same settings as our previous
ones) show the effect before, indicated by HMM, and after,
represented by CREF, the “confidence” feature is implemented.
With some prior knowledge about each user’s estimates, the
overall error is reduced by almost 2m, as shown in Fig. 7(a).
Examining more closely, User 2, 3 and 8 respectively improves
accuracy without deteriorating other users’ accuracy, if we
compare Fig. 7(c) and 7(d).

Apart from the “confidence” feature, we can do far more
with CRF. For example, BLE trends measured from continuous
BLE signals across time slots can be considered as a feature. A
user’s position change should be consistent with the wireless
signal trend: when the signal trend shows that a user is
approaching a beacon, its trajectory cannot go the opposite
way. This feature is derived from our empirical observation
that the trend of the wireless signal strength is far more reliable
than the strength itself, and existing work [11] echos our
approach. For user ¢ and fixed beacon j, the feature function
is defined as follows:

exp(f3(t, Dijt, Dijt—1,%it,Zit—1)) =
Sign(Dij,t - Dz‘j,tﬂ)

sign(||zi — 2| — [|Zi,.—1 — 2;])

> 0).

where z;; represents the position of user 7 at time ¢ and
z; is the known position of the fixed beacon j. When user
i is observed to approach a fixed beacon, the feature assigns
a value of 1 if its position estimate reflects the approaching
trend, and O otherwise. The same feature applies when user @
goes the other way around.

Such a trend feature takes advantage of the powerful presen-
tation of CRF over HMM: it is able to describe overlapping
portions of the observation sequence. An HMM with such
overlapping feature is no longer a proper generative model,
nor is the likelihood function correct.

Backward Propagation. One may naturally wonder what
the benefit is to take the historical trajectories and observations
into account in CRF while our system possesses the Markov
property and HMM seems to be a fit. In fact, historical
data helps to improve the overall positioning accuracy by
increasing the number of nodes on the undirected graph that
have significant prior distributions. We achieve this through
forward and backward propagation between nodes at different
time instances.

Fig. 9 gives such an example: when user ¢ encounters a
fixed beacon at time ¢, it successfully corrects its position
and introduces significant prior knowledge into the undirected
graph. If we only consider adopting the approach in Sec. V,
the corrected position z;; may never affect zj, for the
broken link in between. Even if user k is somehow connected
with user 7 through other users, z; ; can only be influenced
indirectly by z,, via other nodes. By incorporating historical
data, nodes can affect each other through different paths.
For example, the message from z;, can propagate to z; ;1
through backward induction, then z; ;_; affects z; ;_; through
pairwise potential, and finally, z, ; receives the message from
zj ;—1 to adjust its distribution through forward induction.

The CRF model is able to correct location estimates in
the past, and that correction helps to deduct a more accurate
current estimates overall, even in the case that the users are
not currently in contact with each other. By incorporating the
history information, the inference algorithm over the graphical
model is able to yield a more accurate result for each user.

C. Inference on CRF

In our problem, since we aim at estimating the position
variables for all users, which are represented by particles, with
all the features, the combinations over such a large domain
is exponential. This makes exact inference computationally
intractable for Tack, especially in the case that location track-
ing is needed. Therefore, we choose to apply an approximate
inference algorithm to solve it.

We wish to solve the problem of computing the unobserved
variables z; ; for all users at different time points within the
window to maximize the joint conditional probability of Eqn.
(12). The problem can be solved by inference, which is a
particular type of learning, aiming at searching the instances
of the hidden variables that maximizes their probability con-
ditioned on all observed data points. Learning a CRF can be
done by any inference algorithm for undirected models, such
as iterated conditional modes, Gibbs sampling, loopy belief
propagation, etc.

We choose to use Gibbs sampling as our approximate infer-
ence algorithm due to the Markov property of the system. The
method is a Markov chain Monte Carlo (MCMC) algorithm for
obtaining a sequence of samples which are approximated from
a specified multivariate probability distribution. It generates a
Markov chain of samples, each of which is correlated with
nearby samples.

Initially, we randomize all users’ positions over a planar
region, and then repeat the following procedures for multiple
iterations until convergence. In each iteration, we compute the
probability distribution of each node conditioned on all other
nodes in the graph, and then sample from the distribution. As
defined by the local Markov property, the conditional proba-
bility of p(z;¢|D,Z\z;+) can be expressed as the probability
conditioned on its neighbors N, ,. For example, in Fig. 9,
the neighbors of node z; ;; are Zi7t,2, Zit, Zjt—1, and zp ;.
The conditional probability is computed based on the feature
functions, and we wish to find the most likely joint states
probabilities. For each node z; ;, we compute:

(2D, Z\z; ;) = p(2i D, Ny, ,)
X H Hexp()\kfk(DaZi,tvzj,s))a

zj=S€Nzi,t k
Vi, j € [1, M],Vt, s € [1,T].

19)

Then we sample z;; from p(z;:|D,Z\z;;). We repeat the
probability computation and sampling procedure for each
hidden state node on G until convergence. Upon convergence,
the joint states probability of all nodes is maximized, and
the probability distribution for each node represents the most
likely distribution of the positions.



VII. IMPLEMENTATION AND EVALUATIONS

We have conducted both large-scale simulations and real-
world experiments using iOS devices, based on our real-world
implementation of Tack.

A. Simulations

In simulations, we attempt to emulate the real-world crowds
as much as possible to reveal how Tack works against large
crowds with different approaches. We use a random waypoint
model to generate user traces on a 50 x 50 floor plan for
20 contiguous time slots, with a minimum velocity of 1.0, a
maximum velocity of 4.0, and a maximum waiting time of 2.0.
Fig. 10(a) illustrates an example of visualized user trajectories
throughout 20 time slots for 15 users. Based on those traces,
we further generate the displacement, user-to-user, and user-
to-beacon distance observations, according to each respective
model in Sec. IIl. For instance, with respect to the user-to-
beacon distance observation, we draw the observed value from
a Gaussian distribution centered around the true value, with a
standard deviation linearly increasing with the true distance,
and a maximum observable range 13.0. Other observations are
generated accordingly as well.

As we try to understand how the crowd sizes and different
methods affect the position error statistically, we test 4 crowd
sizes — 7, 15, 30 and 45 users, using three methods — the
HMM algorithm, and the CRF algorithm with window size
being 3 and 5, respectively. In all the settings above, we place
6 beacons to each, and each setting is tested for 30+ runs.

TABLE I
MEAN / STANDARD DEVIATION OF ERRORS (METERS)

7 Users 15 Users 30 Users 45 Users

HMM 3.63/2.14 | 4.02/1.97 | 4.45/1.78 | 7.16/3.13

CRF (window = 3) | 3.55/1.76 | 3.78/1.90 | 3.63/1.54 | 4.77/1.95
CRF (window = 5) | 3.54/1.85 | 3.69/1.50 | 3.55/1.65 | 4.73/1.93

Results. Due to space constraints, not all our results can
be included in the figures. Readers may refer to Table I for
complete results. Fig. 10(b) and 10(c) show the position error
at each time slot for different crowd sizes when applying
different methods.

The general trend is that the CRF algorithm has better
accuracy than HMM, and the accuracy improves with larger
window sizes. Comparing the errors across different crowd
sizes, we surprisingly find that the error does not necessarily
decrease as the crowd size gets larger where more data fed into
the system. For HMM, the error increases as the crowd size
gets larger. For CRF, the error almost remains the same when
the user number varies from 7 to 30, but increases by almost 1
meter when the crowd size is 45. The reason is that with more
data input, more errors are introduced into the system. The
pairwise dependencies between users propagate not only the
genuine location information but also the errors in the system.
Fortunately, CRF can prevent such error propagation to some
extent by incorporating features and side observations. Thus,
we observe a relatively mild increase in errors with CRF as
the crowd size increases.

Fig. 10(d) and 10(e) illustrates the error distributions for
varying crowd sizes with different methods. For HMM, 70%
of errors are within 4.0m, 4.1m, 5.1m and 9.8m for user
number is 7, 15, 30 and 45. For CRF with a window size
of 3, the corresponding results are 4.15m, 4.15m, 4.0m and
5.4bm respectively. Finally, we vary the number of beacons
to see how it affects the resulting accuracy. Fig. 10(f) shows
the error distribution when the number of users is 30, and the
running algorithm is CRF with a window size of 3. Overall,
given the same setting, the more beacons, the higher the
resulting accuracy. For 6, 8, and 9 beacons, 70% of errors
are within 4.0m, 3.27m and 2.84m respectively. The costs
of deployment should be considered when pursuing a higher
localization accuracy in practice.

B. Implementation

1) A Software Framework: As a prototype system, we adopt
i0S as the mobile development platform, and Parse server
as the mobile backend for collecting and broadcasting user
data. Considering the scale of our experiment is not very large
(~ 10 users), we implement all computing functions on mobile
devices for fast prototyping. The performance cost will be
discussed in later sections.

The interface of Tack is shown in Fig. 11.The left part
of the figure is our main interface. In the upper middle of
the screen, the real-time location is displayed in the form of
(z,y) coordinates. The steps taken are shown at the bottom
left corner while the confident level sits at the bottom right
corner. When the user presses the “Report” button, its current
position is recorded. A user can also intuitively get its position
by the moving yellow dot on the map, as shown in the right
part of the figure.

We have implemented the main body of our crowdsourcing
algorithm as a framework in the Swift programming language
on the i0OS platform, called LocationKit. An application can
easily import LocationKit as a library in order to provide its
indoor localization service. LocationKit incorporates several
components: particle filter, dead reckoning, communication,
and the inference algorithm. The inference algorithm is the
core component built on particle filter, while particle filter re-
lies on dead reckoning. The communication module is mainly
used for communicating with the server. If the connection to
the server breaks down, Tack will fall back to a local operation
mode, and estimates the position based on dead reckoning and
resampling according to a local view.

Fig. 12 gives an overview of the workflow on the imple-
mented prototype system. The left part runs locally on each
mobile device while the right part describes the communica-
tion with the server. At the beginning, the device registers with
the server and sends its unique ‘“name” to associate with its
object ID once and for all. The device’s “name” is used to
distinguish from other mobile devices in crowdsourcing. With
its name, a device can broadcast to others via BLE advertiser
mode. At the same time, the device creates a TLocation
object to inspect local location updates. To do that, TLocation
initiates dead reckoning, i.e., the TStepCounter class, and
turn on BLE scanner mode to scan other BLE devices. The
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Fig. 11. Tack: interfaces.

particles of the device are supervised by the TParticleFilter
class and the class reacts accordingly to the feedback of dead
reckoning, scanning results of nearby beacons and the data
pulled from the server.

Taking inputs from the dead reckoning output, observations
of nearby beacons and other devices’ information from the
server, the MAP inference algorithm calculates the most likely
position of the current user. As the inference algorithm is the
core part of Tack, we will discuss the issues encountered as
below.

2) Code-level Optimizations: Implementing the inference
algorithm as described in Sec. VI-C seems to be easy, but one
should keep in mind it’s a machine learning algorithm which
can be very inefficient when running on a mobile device. Thus
we adopt all measures below to ensure efficiency.

Vectorization. The first issue we face is the huge sample
space of particles of all users. For instance, if we assign
100 particles to each user, with 10 users the total number of
particles reaches 103. For any two users, the number of particle
pairs will be 10%. If we execute all particle-wise operations in
loops, each iteration will take more than 1 second to finish.
This is far too slow for the localization service, not to mention
the intensive computation drains the battery power quickly.

Hence, we utilize the Accelerate framework on iOS to
reduce the computation cycles. The Accelerate framework
exposes SIMD instructions available in modern CPUs to im-
prove the performance when working with arrays or matrices.
We novelly express particles of each user in a matrix and
convert all the particle-wise operations to matrices operations,
so that all computation of the conditional likelihood are
performed in batches. This greatly improves the computation
efficiency and eventually gains at least a 10x speedup.

Early termination. While processing data in batches im-
proves the computation speed, we found the speed can be im-
proved further. Compared to running the inference algorithm
for a fixed number of iterations in each update, we terminate
the computation earlier if the difference between the results in
the last two iterations is smaller than a threshold.

Scaling up very small numbers. Another problem we
encountered is that in calculating the conditional probability
of each particle, the probability sometimes can be too small
to be represented by fixed point numbers. As we compute
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the conditional probability in Eqn. (19), a large number of
neighbors and high weights A\, in the exponent can easily
yield very small probabilities. To avoid the problem, we first
compute all exponential coefficients, cap them by a constant
and use the results as the new exponential coefficients in
Eqn. (19). With the conditional probabilities of all particles
normalized per node, this approach produces correct results
without generating very small numbers.

C. Performance Evaluation

In this section, we will first show the results of our real-
world experiments, and then discuss the performance overhead
and other costs.

We have evaluated Tack in a hallway of 40mx50m deployed
with 7 beacons, which mimics the hallway between conference
rooms at a conference venue. To acquire the ground truth, we
record several random user traces, and randomly place markers
with an average of 1.5m between adjacent ones. The user
trajectories and placement of beacons are shown in Fig. 13(a).
Red dots represent beacons, and all 7 trajectories are labeled
using the same colors of the users.

To verify the effectiveness of our crowdsourcing algorithm,
we ask users to follow the marked trajectories and Tack will
log the position estimates while the users move along these
trajectories. Throughout the entire trajectory, each user would
meet 2.8 other users on average. We test the system with
different settings, and repeat our experiments for 5-10 runs
for each setting. In our evaluation, we wish to inspect both
instantaneous errors over time and average errors.

Results. By varying the number of participating users and
the algorithm parameters, we have 6 different configurations
of setting: the total number of participants are 5 and 7
respectively, HMM algorithm, CRF algorithm with window
size being 3 and 5. All instantaneous errors are recorded and
parts of the results are shown in Fig. 13(b)-13(f).

In Fig. 13(b), we compare the performance of different
algorithms with the same number of participants. When 5 users
roaming at the same time, the percentage of errors that are
within 5m for HMM, CRF with window size 3 and CRF with
window size 5 are 84%, 76%, 84% respectively. For HMM, in
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more than 5% of the cases, the error is as large as 10m, while
for CRF with window size 5, there are almost no cases where
the error is larger than 8 meters. In Fig. 13(c), we compare
the impact of a different number of participants on the same
algorithm, in this case, CRF with window size 5. We found
the error is less than 5m in 85% of the cases with 7 users and
in over 90% of the cases with 5 users.

We calculate the average errors for all different settings and
summarize the results in Fig. 13(d). All average results are
between 2-4m. For all three algorithms, 7-user outperforms
5-user, with an improvement of 22.5% on average. In general,
CRF with larger window size has better performance than
those with smaller window size. HMM has good average
accuracy but is prone to larger errors in some corner cases.

For further examination, we study User 3’s instantaneous
error under various settings. The result is averaged over 10
runs. We found that in all cases, its error is smallest both at the
start and end, where the user is the nearest to the position of a
fixed beacon. The error increases as the user walks away from
a beacon, and reduces in the middle where the user encounters
other virtual beacons. To verify the error reduction is due to
the encounter with other users, we show the instantaneous
error of all users in one run in Fig. 13(f). From this figure, we
found that as User 3 encounters User 4 and User 5 halfway
through its trajectory, its error drops as User 4 and User 5
have recently been repositioned by fixed beacons.

Overall, our real-world experimental results are in accord
with the simulations results, even with better accuracy in
some cases. This is because due to the building structure and
physical confinement, the actual area that the users wander
about is more constrained than in simulations, so that the user
trajectories tend to overlap more.

Performance costs. The localization accuracy is not
achieved without any sacrifice. While more participating users
can improve the accuracy, it naturally increases the com-
putation overhead, especially when the inference algorithm
runs locally. By experiments, we show how the computation
overhead vary with the crowd sizes, and prove that Tack is a
relatively light-weight system that would not burden mobile
devices.
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All following experiments are repeated for sufficient rounds TABLE II
to obtain the average value. Since the results vary according ENERGY CONSUMPTION AND LATENCY
to different models and types of devices, we report the results —
‘Ph . 102 le i | o 14 Mean/(STD) WiFi 1 User 4 Users 7 Users 10 Users
on iPhone6S '(105 0.2) as an example in Table II aqd Fig. 14, % qropping
For all experiments, we reused the same setup as in the last time (s) 80.62 198.33 185.0 172.25 153.75
section and choose CRF algorithm with window size 3 as the Localization
. . latency (s) - 0.34/0.14  0.44/0.11  0.58/0.13  0.73/0.18
crowdsourcing algorithm.
To properly measure the energy consumption on iOS de-
vices, we use the time period that the battery power drops ] Localization Delay with Different Crowd Scales.
by 1% as the metric. We believe this is the most accurate il ’
measurement we can obtain since Apple does not provide
any interface for battery capacity, nor can we tear the device
down. As the display and other factors also consume the
. [T
battery power, we set a antrgl group .by running the same 5
interface without the localization functions turned on. As a
—+—1 Device
result, the control group runs 203.75s on average before the - +-4 Devices
battery power drops by 1%. To compare with other localization -7 Devices
systems, we also run a group of experiments where the devices 10 Devices
82 0.4 06 08 1 1.2

continuously scanning for WiFi, which is the basis for WiFi
fingerprinting.

To gauge the localization latency, we use as a metric
the duration between the time that a user uploads its prior
estimate and observations to the server and the time that the
user finishes running the inference algorithm and update its
location.

As Table II shows, the energy consumption is reasonable
in Tack. Compared to the idle states, the time period that the
battery power dropping 1% reduces by 2.7%, 9.2%, 15.5%
and 24.5% respectively for 1, 4, 7, 10 users. In the case of
WiFi scanning, the corresponding reduction is 60.43%. On
one hand, Tack is obviously more energy-efficient than WiFi-
based localization systems. On the other hand, the results show

Localization Delay (s)

Fig. 14. Localization latency with different crowd sizes.

that the battery power consumption is mostly introduced by
the increased computation complexity, which can be easily
migrated if we deploy the inference algorithm on the server
rather than the mobile device.

Table II also shows that the mean of localization latency
grows almost linearly with the number of participants, which
corresponds to the power consumption performance. In 80%
of all cases, the localization delay is within 0.36s, 0.46s,
0.65s, and 0.80s respectively for 1, 4, 7, 10 users, and all



cases are within 1 second, as shown in Fig. 14. We think
the energy cost and latency cost are acceptable for an indoor
localization service. But for a very large crowd (30+ users),
it is recommended to deploy the inference algorithm to the
server to alleviate the burden from mobile devices.

Infrastructure costs. We would like to compare the in-
frastructure costs with a typical WiFi RSS-based indoor lo-
calization scheme. Sorour et al. [12] builds a simultaneous
localization and radio mapping system and experiment it at
the same location as we are. They achieved 2 to 4 meters
of accuracy by using five Linksys access points with each
costing over 80$. Tack, deployed in the same area, achieved
the same accuracy level with 7 Estimote beacons with each
only 10-20$. Besides, the installation of beacons is far easier
than access points. They are portable and lasts for two years
without external power sources.

To sum up, our experimental results have shown that Tack
can effectively provide accurate indoor localization for differ-
ent scales of crowds. It is light-weight to run on a mobile
device. For larger crowds, one can easily migrate a part of the
computation to the server. More importantly, it is very cheap
and convenient to deploy, thus is suitable for ephemeral event
locations, such as a conference.

VIII. CONCLUSION

Tack is one of the few practical, easy-to-deploy indoor local-
ization systems building around the new wireless technology
BLE. We exploit several techniques such as dead reckoning,
virtual beacons, and contacts over BLE, together with the
crowdsourcing algorithms to create a software framework. We
improve the localization performance progressively through
both theoretical analysis and field tests. Implemented as a
framework in the Swift programming language, Tack’s per-
formance is extensively evaluated on the iOS platform in real-
world experiments. Overall, Tack achieves an accuracy of 2-4
meters indoors when 7 beacons are deployed in an area of
40m x 50m. Compared to other indoor localization systems
on smartphones, Tack is accurate, energy-efficient and less
costly.
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