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On Meeting Deadlines in Datacenter Networks

Li Chen, Baochun Li�, and Bo Li

Abstract: Datacenters have become increasingly important to host a diverse range of cloud applications with mixed

workloads. Traditional applications hosted by datacenters are throughput-oriented without delay requirements,

but newer generations of cloud applications, such as web search, recommendations, and social networking,

typically employ a tree-based Partition-Aggregate structure, which may incur bursts of traffic. As a result, flows

in these applications have stringent latency requirements, i.e., flow deadlines need to be met in order to achieve a

satisfactory user experience. To meet these flow deadlines, research efforts in the recent literature have attempted

to redesign flow and congestion control protocols that are specific to datacenter networks. In this paper, we focus on

the new array of deadline-sensitive flow control protocols, thoroughly investigate their underlying design principles,

analyze the evolution of their designs, and evaluate the tradeoffs involved in their design choices.
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1 Introduction

As large scale datacenters are increasingly used to host
a diverse range of cloud applications, new requirements
of datacenter applications have inspired new designs of
datacenter network protocols. Traditionally, throughput
oriented applications, such as bulk data transfers,
are more demanding with respect to bandwidth. In
contrast, a newer generation of cloud applications, such
as web search and social networking, have stringent
latency requirements, which is typically represented
by deadlines associated with application flows. The
performance of these deadline-sensitive applications
may significantly affect the revenue of the enterprise
running these applications, since they are designed to
respond to user requests in a timely fashion. For
example, for every 100 milliseconds of additional
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latency, Amazon will suffer from a 1% loss of sales[1].
These applications typically employ a tree-based

Partition-Aggregate structure[2], which consists of a
Top-Level Aggregator (TLA), a number of Mid-Level
Aggregators (MLAs), and a number of workers, as
shown in Fig. 1. The TLA receives requests from
users and partitions the workload across the MLAs as
his children nodes. In a similar vein, the workload
is partitioned by the MLAs, all the way down to
the workers, where computation is performed. The
results are then sent back, aggregated by the MLAs
and eventually by the TLA with a specific deadline.
When the deadline arrives, the TLA will respond to
users without waiting for the children who missed the
deadline. Since the response is only based on flows
from those children meeting their deadlines, the result
will be incomplete, negatively affecting the service
quality. To make matters worse, if flows fail to meet
their deadlines, the bandwidth they used does not
contribute to the correctness of the results.

A specific example of an application with the
Partition-Aggregate structure is a typical Facebook
page. The page consists of many components, such as
instant messaging and event notification. The contents
of these components are generated by a number of
workers, and eventually assembled by the TLA to be
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Fig. 1 The Partition-Aggregate structure with their
associated deadlines.

presented to users. To achieve a satisfactory response
time, the TLA is required to present the page to users
within a specific deadline. If some flows are delayed
when the deadline arrives, the TLA will have to present
the incomplete contents it has aggregated. Hence, the
quality of the page is degraded and the bandwidth
consumed by the flows that have missed the deadline is
wasted. Therefore, meeting flow deadlines is a critical
objective for this type of applications.

Such a new objective of meeting flow deadlines
has inspired researchers to reinvestigate the design
of transport protocols in datacenter networks. The
currently prevailing transport protocols like TCP,
RCP[3], and ICTCP[4] are deadline agnostic. They
strive to allocate bandwidth equally among flows to
approximate fair sharing. In addition, flow scheduling
mechanisms do not differentiate flows with different
deadlines. The lack of awareness of flow deadlines
causes a large number of flows to miss their deadlines,
and the underlying reason is the tendency of treating
flows equally to achieve fairness when congestion
occurs.

Figures 2 and 3 have shown two examples to illustrate
the necessity of deadline awareness. As shown in Fig. 2,
flow 1 and flow 2 with the same size but different
deadlines share a bottleneck link. Fair sharing allows
them to finish at the same time, but flow 1 will miss
its tighter deadline. Inverse prioritization of flows, i.e.,
scheduling flow 2 before flow 1, also causes flow 1 to
miss its deadline. Only with the correct prioritization
— by first allocating flow 1 with full bandwidth and
then reallocating the bandwidth to the other flow —
can these two flows both meet their deadlines. An
extreme case, illustrated in Fig. 3, is when all flows
sharing a bottleneck link have the same deadline. In

Fig. 2 Flow 1 and flow 2 have the (size, deadline) pairs (1,
1), (1, 2) respectively. Flow 1 has a tighter deadline and
thus a higher priority. Fair sharing leads to flow 1 missing
deadline. An inversion of priority also causes flow 1 to miss
its deadline. Prioritizing flow 1 is the best solution that can
meet the deadlines of both flows.

Fig. 3 Three flows have the same (size, deadline) pair (1,
1). Fair sharing results in all flows missing their deadlines.
After eliminating a flow, the remaining flows can meet their
deadlines.

this case, none of the flows will meet their deadlines
when bottleneck bandwidth is fairly shared, which is a
huge waste of bandwidth. A better way is to eliminate
one flow and allow the remaining ones to meet their
deadlines, so that a partial response can be generated.

Given the mismatch between the traditional design
objective of fair sharing and the new flow deadline
requirements, new transport protocols that are aware
of flow deadlines need to be designed. The issue of
meeting flow deadlines has drawn much attention from
the literature, with deadline aware protocols proposed
in the recent years[2, 5-8]. These new deadline aware
protocols share a common design principle that gives
priority to flows with tighter deadlines. When the
network is congested, these deadline aware protocols
will throttle those flows that can afford to wait, so that
flows with tight deadlines can finish sooner and meet
their deadlines.

In this paper, we survey existing network protocols
in the literature that are designed for applications
with a delay-sensitive nature, including both deadline
aware protocols and deadline agnostic protocols, by
illustrating their main design choices and ideas.
In particular, we focus on analyzing the design
principles and choices in the new array of deadline
aware protocols. By discussing the advantages and
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weaknesses of these protocols, by presenting their
similarities and differences across-the-board, and by
showing how these protocol designs evolve over time,
we hope to bring forward some important insights
and lessons learned in the context of deadline aware
transport protocols in datacenter networks, so that better
protocols can be designed in the future.

2 From Deadline Agnostic to Deadline
Aware: Evolutions and Challenges

Before meeting flow deadlines becomes the primary
design objective, network protocol designs have gone
through two major stages. In the first stage, bandwidth
efficiency is the primary concern in designing protocols
for high-speed and long-distance networks. Due to the
slow increase of the congestion window, conventional
Additive Increase Multiplicative Decrease (AIMD)
TCP fails to utilize bandwidth efficiently and causes
substantial performance degradation. To address
this issue, BIC[9], CUBIC[10], FAST[11], HSTCP[12],
LTCP[13], and XCP[14] were proposed to mitigate the
drastic reactions to packet losses in AIMD TCP, in
order to achieve efficient bandwidth utilization and to
maximize the network throughput.

In the second stage, the increasing popularity
of delay-sensitive applications motivates a latency-
oriented protocol design. Rate Control Protocol
(RCP)[3] emulates processor sharing by assigning
the same rate to all of the flows passing through
a bottleneck link, with the attempt to minimize
flow completion times. A faster response to TCP
timeout is made possible by using high-resolution
timers[15], to reduce flow latencies and to avoid incast
collapse[16]. ICTCP[4] proactively adjusts the TCP
receiver window to avoid packet drops, thus reducing
flow completion times. DCTCP[17] and HULL[18]

reduce flow completion times by controlling buffer
occupancies and capping the link utilization below their
capacities.

More recently, deadline requirements have become
the primary design concern for transport protocols in
the context of datacenter networks, since it is crucial
to the performance of an important class of cloud
applications with the Partition-Aggregate structure. In
datacenter networks, flows without deadlines and flows
with different deadlines contend for the bottleneck
link when congestion occurs. A network protocol is
deadline agnostic if it treats flows with deadlines and

those without deadlines equally. In comparison, a
deadline aware protocol gives higher priorities to flows
with deadlines than those without, thus achieving better
performance by meeting flow deadlines.

To design a network protocol with an awareness of
deadlines, a number of new and important challenges
need to be addressed in the context of datacenter
networks. First, deadlines are associated with flows
rather than with packets. Hence, traditional packet-level
scheduling mechanisms such as Earliest Deadline First
(EDF) can not be directly applied to deadline aware
flow-level scheduling. Second, flows with deadlines are
usually short flows (about 50KB) with minimal Round-
Trip Times (RTTs) (about 300�s), which require
scheduling decisions to be made very quickly. In this
sense, reservation schemes proposed in IntServ[19] and
DiffServ[20] are too heavy weighted. Also, traditional
timeout mechanisms are not feasible for these short
flows. Third, both flow deadlines and flow completion
times can vary significantly due to multiple services
and diverse traffic patterns. The long tailed distribution
of flow completion times makes it difficult to meet
flow deadlines. Finally, applications with the Partition-
Aggregate structure are likely to cause fan-in bursts,
since the children of a parent node may have the same
deadline and send their responses to the parent at the
same time. This will result in congestion and cause a
large number of flows to miss their deadlines.

Faced with these challenges, we wish to investigate
a number of fundamental design choices in the next
section. Also, we will illustrate the solutions of existing
works in subsequent sections, highlighting how they
address these challenges.

3 Fundamental Choices

When designing deadline aware protocols, the first
decision to be made is which mechanism to use and
how to incorporate deadline awareness. We begin with
an overview of the main mechanisms and strategies
employed by deadline agnostic protocols, with the hope
of offering some hints on deadline aware protocol
designs.

Explicit rate control is employed in RCP[3] and
XCP[14], where routers assign sending rates to senders
in order to keep shorter queues and lower latencies.
However, their practicality is a major limitation,
since they have strict requirements on revising router
hardware designs, which are quite expensive and not
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practically feasible.
Vasudevan et al.[15] proposed a retransmission

strategy to address the TCP incast problem[16] that
causes flow completion times to increase. They
used high-resolution timers to enable fine-grained TCP
retransmissions, thus alleviating the negative impact of
timeouts caused by the incast. However, it does not
prevent the timeout. Hence, the high latency caused by
the timeout has not been addressed.

RCP[3], ICTCP[4], XCP[14], and DCTCP[17] allocated
link bandwidth equally among concurrent flows,
approximating fair sharing. However, fair sharing
is far from optimal with respect to minimizing flow
completion times[21] and the number of flows whose
deadlines can not be met[22].

Hedera[23] and MPTCP[24, 25] provided a way to
reduce latency by using multiple flow paths. Hedera
performed flow scheduling by periodically remapping
elephant flows to better paths. Taking a step further,
MPTCP has made TCP multi-path aware, establishing
multiple sub-flows on different paths and moving traffic
off more congested paths to less congested ones.
However, their operational timescales were coarse-
grained, which required further improvement in order
to reduce flow completion times.

Active Queue Management (AQM) schemes are
employed in RED[26], PI[27], and E-TCP[28] to track
congestion at a switch. When the switch buffer
occupancy is high, packets will be randomly dropped,
thus early warnings of congestion will be conveyed
to TCP end hosts. In this way, senders can back
off to avoid serious congestion and to achieve higher
throughput and faster retransmission. Based on AQM,
Explicit Congestion Notification (ECN)[3, 29-31] enables
congestion feedback through marking the Congestion
Encountered (CE) bit in the IP header. Higher RTTs
resulted from increased queuing delays are also viewed
as congestion feedback by Vegas[32], CTCP[33], and
FAST[11].

Proactive bandwidth reservation has been proposed
in Ref. [34] to meet the latency requirement of real
time multimedia traffic. There are also reactive
schemes[35, 36]. For example, TCP-RTM[35] improves
latency related performance by minimizing packet
reordering and packet losses in TCP.

Having gone through the mechanisms and strategies
of deadline agnostic protocols, we now investigate
the fundamental design choices involved in deadline
aware protocol designs. The basic idea of deadline

aware protocol designs is to build upon and incorporate
deadline awareness into some of these mechanisms, in
order to prioritize flows with deadlines. Hence, the first
question we would like to answer is where and how
to incorporate deadline awareness. We further present
an overview of design choices within each mechanism.
Given the alternatives, we will analyze and compare
existing works in subsequent sections of this paper,
to see what choices they have made, what benefits
they have gained, and what disadvantages they have
incurred.

3.1 Where and how to incorporate deadline
awareness?

If a flow has multiple paths, it is more likely to meet
its deadline by following the least congested path. This
requires the senders to perform load distribution, and
the routers to perform path selection.

On the other hand, if a flow is assumed to follow a
single path, three alternative mechanisms can be used to
design deadline aware protocols. One option is to make
flow scheduling deadline aware. When flows contend
for network bandwidth, a deadline aware scheduling
should schedule flows with deadlines ahead of those
without, and flows with closer deadlines should be
scheduled ahead of those with deadlines that are farther
away. This mechanism mainly involves operations at
switches.

Another option is to incorporate deadline awareness
into congestion control at senders. Receiving
congestion feedback, senders will throttle flows
differentially, according to the deadlines of flows they
are sending. Flows without deadlines will back off
aggressively to relinquish bandwidth, allowing flows
with deadlines to complete sooner. In a similar vein,
flows with closer deadlines should be throttled less than
those with more relaxed deadlines.

The third option is to incorporate deadline awareness
into rate control, which requires switches to allocate
sending rates and senders to follow the allocated
rates. While congestion control strives to react after
congestion happens, rate control avoids congestion
proactively through appropriate bandwidth reservations
based on flow deadlines. The intent is to allow flows
with deadlines to be sent at higher rates, so that they
can complete sooner and meet their deadlines.

Both rate control and congestion control couple flow
prioritization with the flow sending rate. In rate control,
the flow sending rate is calculated by switches based
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on states of concurrent flows. In congestion control,
the flow sending rate is calculated by the sender based
on congestion feedback, without explicit knowledge of
other flows. In contrast, flow scheduling can decouple
flow prioritization from the flow sending rate. When the
switch buffer is full, it simply drops packets belonging
to flows without deadlines or those with more relaxed
deadlines, without the need to specify the flow sending
rates.

3.2 How to generate feedback?

The basic idea of congestion control is that switches
provide congestion feedback to senders and senders
reduce their sending rates in response. Playing an
important role in any congestion control mechanism,
congestion feedback deserves to be designed carefully.
There are three alternatives of feedback. First, upon
detecting congestion, a switch may send a control
message to one or more sources that are filling the
queue, in order to stop these sources. However,
transmitting control packets may add additional load
to the network and exacerbate congestion. In addition,
control packets are likely to be lost when congestion
occurs. The second alternative is for the switch to mark
forwarded packets when it notices congestion. Upon
receiving these congestion signals, the senders can slow
down to avoid the congestion. No additional packets
are required in this alternative, but there may be a long
delay before sender-side reactions take effect. The third
alternative is to simply discard packets when congestion
occurs. As a result, the senders of these packets
will receive duplicated ACKs or experience a timeout.
Though this alternative is very simple and reliable, the
delay may again be quite long before senders notice the
congestion and react to it.

3.3 Distributed or centralized?

For flow scheduling and rate control, whether to design
a centralized controller or distributed controllers is an
important choice to be made. With access to global
states of the entire network, a centralized controller
is able to obtain a nearly optimal solution for flow
scheduling or rate allocation. However, it does not scale
well. A centralized algorithm requires the maintenance
of complete and up-to-date state information for all of
the flows. Whenever new flows are started or existing
flows terminate, there will be communication delays
between the senders and the centralized controller. In
datacenter networks where the majority of the flows

are short and delay-sensitive, flow initiation overhead
will be considerable and heavy weighted. With rapid
flow arrivals and tight flow deadlines, there may not
be sufficient time for the centralized controller to
gather the up-to-date information of all the flows before
making decisions. In addition, the centralized controller
is a congested hot-spot. Controling messages to or
from the centralized controller may congest the link that
connects the controller to the network, and it introduces
a single point of failure.

In contrast, a distributed algorithm is scalable
and feasible, however, it is based on localized flow
information. The key issue is to make sure that
local decisions made separately are able to converge to
achieve a global objective.

3.4 Fair or preemptive?

In traditional network protocol designs, fairness is
an important metric. Ensuring fairness is of great
significance in providing protection to well behaved
users and discouraging ill behaved ones. However, in
datacenter networks that carry delay-sensitive traffic,
meeting flow deadlines becomes a primary concern, and
fairness needs to be reinvestigated.

It is shown in an analysis[21] that at least 99% of
jobs have shorter completion times under a preemptive
scheduling discipline called Shortest Job First (SJF),
than under fair sharing disciplines. Hence, unfairness
actually improves the flow completion times. On
the other hand, preemptive scheduling is unfair to
flows with low priorities. If flows with high priorities
frequently arrive, flows with lower priorities may be
starved. It is necessary to evaluate such a tradeoff when
designing a scheduling algorithm.

4 Reactive Sender-Side Back-Off: DCTCP
vs. D2TCP

Traditional AIMD TCP achieves remarkable success in
the Internet, thanks to the simplicity and reliability of
using packet drop as congestion feedback. However,
TCP reacts to the presence of congestion, rather than its
extent. This feature causes substantial underutilization
of network bandwidth over high-speed long-distance
networks. To better utilize network bandwidth, TCP
variants are designed to make senders react to the
extent of congestion, either indicated by packet
drops or by increased RTTs. Recently, datacenters
play an important role in hosting cloud applications
with Partition-Aggregate structure, which typically
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have stringent latency requirements. It is of great
significance to customize TCP for datacenter networks.

Since datacenters host a diverse range of applications
with mixed workloads, concurrent flows typically
consist of delay-insensitive long background flows and
delay-sensitive short flows. Long background flows
demand a large amount of bandwidth and build up
queues at switches, thus threatening the performance
of short flows. Moreover, switches in datacenters have
shallow buffers. If queues build up, there would not
be sufficient buffer space to absorb bursts of traffic,
resulting in increased delays.

In this context, DCTCP[17, 37] and D2TCP[6] were
both proposed to maintain low queues through the
sender-side back-off mechanism, to meet requirements
of delay-sensitive applications. They are both TCP
friendly, inheriting most features of TCP such as slow
start, retransmission, and recovery from packet losses.
The only change is the congestion window modification
based on congestion feedback in every RTT.

DCTCP provides a congestion control scheme that
utilizes the ECN feedback from congested switches to
implement early control at sources. When congestion
happens at a switch, represented by the queuing length
reaching a specific threshold, the switch will mark the
CE bit in the IP header of the arriving packet. At
the receiver side, delayed acknowledgement packets
(ACKs) are used to convey the sequence of marked
packets to senders.

The sender modulates the size of the congestion
window according to the extent of congestion. In every
RTT, the fraction of the marked packets, represented by
˛, is updated by ˛ D .1� g/ � ˛ C g � F , where F is
the fraction of packets that were marked in the last RTT,
and g .0 < g < 1/ is the weight given to new samples.
This weighted-average metric indicates the extent of
congestion, which is used to adjust the window size as
follows: cwnd = cwnd �.1 � ˛=2/. By throttling flows
as soon as queue length exceeds the threshold, DCTCP
reduces queueing delays in congested switch ports, and
thus the latencies of delay-sensitive short flows.

Although it analyzed deadline requirements for
applications with the Partition-Aggregate structure,
DCTCP is a deadline agnostic solution, which does
not give priority to flows with deadlines. Therefore,
it may cause a large number of flows to miss their
deadlines, when there are many concurrent flows with
tight deadlines and a serious fan-in congestion.

In comparison, D2TCP is a deadline aware

congestion control protocol, which adjusts the size
of the congestion window according to the extent of
congestion and the urgencies of flow deadlines. The
hope is to allow flows with closer deadlines to back off
less than flows with deadlines that are more relaxed.

In D2TCP, flow deadlines are specified by
applications and passed to the transport layer. The
switches are ECN capable as in DCTCP. When a buffer
occupancy exceeds a specified threshold, the switch
will mark the CE bit in the IP header, to inform the
sender of the congestion. Observing the CE feedback,
the sender updates the fraction of the marked packets
averaged over time, denoted by ˛, similar to DCTCP.
In addition, the deadline imminence factor d is
calculated in each RTT as the estimated time for the
flow to complete divided by the remaining time before
the deadline. Based on both the extent of congestion
˛ and the deadline imminence factor d , each sender
modulates its congestion window W as follows:

x D

(
W �

�
1 �

p

2

�
; p > 0I

W C 1; p D 0
(1)

where p D ˛d , which is a Gamma-correction function
shown in Fig. 4.

The Gamma-correction function elegantly combines
the extent of congestion and the urgency of deadline,
perfectly characterizing the properties that are desired.
When the congestion is mild (i.e., ˛ is near 0), the
flow with a deadline that is far away (i.e., d < 1)
will have a large p, shrinking its congestion window
more effectively. In contrast, the flow with a close
deadline (i.e., d > 1) will almost retain its congestion
window since it has a small p. In this sense, flows
with deadlines that are more relaxed relinquish their
bandwidth to allow flows with closer deadlines to meet

Fig. 4 Gamma-correction function for congestion avoidance
(p=˛̨̨d).
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their deadlines. When the congestion is serious (i.e.,
˛ is near 1), however, all of the flows will back off
similarly to alleviate the congestion.

To summarize, both DCTCP and D2TCP inherit
the distributed and reactive nature of TCP: senders
control their congestion windows without knowing
the behaviours of other flows, and adjust their
sending rates based on congestion feedback to avoid
oversubscription of bandwidth in a reactive manner.
In terms of practicality, DCTCP and D2TCP show
their great advantages, for they only demand ECN
capable switches, which are cheap and accessible.
Moreover, with the ability to coexist with TCP, both
of these protocols can be deployed incrementally
on demand, without incurring complete unavailability
during an upgrade, and without unreasonably requiring
all applications to abandon TCP. Despite many similar
features, the essential difference between DCTCP and
D2TCP is deadline awareness. By incorporating
deadline awareness into the sender-side back-off
mechanism, D2TCP substantially outperforms the
deadline-agnostic DCTCP, allowing more flows to meet
their deadlines.

5 Proactive Switch-Side Rate Allocation:
D3 vs. PDQ

Compared with D2TCP where reactive congestion
control is distributed among senders, in D3[5] and
PDQ[7], switches become the critical controllers that
proactively allocate sending rates to flows.

The basic idea of D3 is that each sender calculates
and requests its sending rate from routers along its flow
path, while routers perform rate allocations, prioritizing
the flows with deadlines to satisfy as many of them as
possible.

The desired sending rate is defined as the remaining
flow size divided by the remaining deadline. In every
RTT, the desired rate is updated and piggybacked on
one of the data packets to traverse the routers along the
flow path. Upon receiving rate requests, each router
allocates the rate and piggybacks the allocated rate on
the packet header. A vector of allocated rates by each
router along the path is fed back to the sender through
the ACK from the receiver. The sender chooses the
minimum of the allocated rates as the rate to send data
packets. In this way, the bandwidth for each flow is
reserved before the data transmission in every RTT.

Deadline awareness is incorporated into rate

allocations in the routers. The overall idea of rate
allocation is to first satisfy the rate requests of flows
with deadlines and then allocate the spare capacity
equally to all of the current flows. If the router does not
have enough capacity, it greedily tries to maximize the
number of flows that can meet their deadlines, while
assigning a base rate to the remaining flows for them to
request rates in the future.

The routers are centralized controllers for bandwidth
allocations. Typically, centralized controllers require
the maintenance of per-flow states to make decisions,
which is expensive and not scalable. However, in the
design of D3, the state of each flow is maintained by the
sender rather than the router, and is conveyed to routers
by piggybacking on a packet header. The flow state is
used to require the router to assign the allocated rate for
the next RTT and return the allocation for the current
RTT. Each router simply keeps aggregate counters for
all of the flows passing it. Without maintaining per-flow
states, D3 successfully avoids the limitation of a naive
centralized design.

The utilization of a router may be impacted by flows
bottlenecked downstream and senders failing to return
allocations. In addition, queuing may be resulted from
a burst of new flows. D3 periodically adjusts the
aggregated sending rate for each link to ensure high
utilization and low queuing.

Although D3 is aware of deadlines, it is unaware of
the urgencies of deadlines. In a first-come-first-served
manner, D3 highly depends on the arriving orders of
flows with deadlines. When the network is congested,
if the flow with a closer deadline arrives slightly after
the flow with a deadline that is farther away, the
greedy approach will satisfy the flow that arrives earlier,
causing the flow with the closer deadline to miss its
own. However, there exists a possibility that both of
these two flows are able to meet their deadlines, if D3
first satisfies the flow with the closer deadline. Due to
the first-come-first-served nature, D3 fails to maximize
the number of flows whose deadlines can be satisfied.
The priority inversions will cause many flows to miss
their deadlines, especially in fan-in bursts.

With respect to its practicality, D3 requires switches
to handle requests at line rates, incurring high costs and
a long time for deployment. To make matters worse,
since the bandwidth allocation of D3 is not recognized
by TCP, D3 can not coexist with TCP. Therefore, there
will be a long period of unavailability when a datacenter
is being upgraded.
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Preemptive Distributed Quick (PDQ) flow scheduling
is another deadline aware protocol that fixes the priority
inversion problem in D3 by enabling flow preemption.
Whenever a new flow arrives or an existing flow
leaves, link bandwidth will be reallocated to flows
in a decreasing order of their criticality. If the flow
with a closer deadline is considered more critical
than the flow with a deadline that is farther away,
PDQ emulates the scheduling discipline of Earliest
Deadline First (EDF) to achieve the objective of
meeting flow deadlines. Alternatively, if the flow with
a shorter expected completion time is considered more
critical, PDQ approximates SJF to minimize the mean
flow completion time. EDF and SJF are centralized
algorithms, which require complete knowledge of flow
states and zero communication delay. PDQ avoids
the limitations by implementing them in a distributed
manner.

Similar to D3, senders in PDQ request their sending
rates from switches before sending data packets, which
is quite different from D2TCP where senders reduce
their sending rates upon receiving the congestion
feedback, in a reactive manner. Along with the
desired sending rate, other flow state information is
piggybacked on the scheduling header to be sent to the
network and viewed by the switches. When receiving
an ACK packet, the sender updates its flow state
information and sends packets at the rate allocated by
the switches along the path.

In contrast to D3, a PDQ sender makes an
improvement by terminating a flow if it is doomed to
miss its deadline, when any of the following conditions
is satisfied: the deadline has passed; the remaining
flow transmission time is larger than the remaining
time before the deadline; the flow is paused; and the
remaining time before the deadline is smaller than an
RTT. In this way, PDQ avoids wasting bandwidth on
the unproductive flows.

When flows are contending for bandwidth, a PDQ
switch accepts flows and allocates bandwidth to flows
based on their criticality, allowing critical flows to
preempt less critical flows. To compare flow criticality
and resolve flow contentions, switches share a common
flow comparator and maintain states about flows on
each link. Hence, compared with D3, PDQ is expensive
and not scalable if the number of concurrent flows
increases.

Switches along the path of a flow exchange their
separate decisions on flow pause and flow acceptance by

tagging the scheduling header, to reach a consensus on
the global decision. A flow will be paused if any switch
along the path pauses it, while it will be accepted only if
all switches along the path accept it. The coordination
between switches in PDQ is a major difference from
D3. Since the actual flow sending rate in D3 is set as
the minimum of allocations by all of the switches, the
network resource is not efficiently utilized. In contrast,
the sender in PDQ sends data at the rate agreed by all
switches, hence making better use of the bandwidth.

Along with the benefits of the preemption is the
challenge of low link utilization when switching
between flows. When a flow finishes, the link will be
idle for one or two RTTs before the next flow receives
the feedback and starts. To address the problem,
PDQ starts the next set of flows slightly before current
flows finish. Nevertheless, this will generate more
concurrent flows temporarily, resulting in increased
queues. Similar to D3, PDQ controls the per-link
aggregated sending rate to drain the queues after flow
switching. Further, the rate control allows PDQ to
be friendly to other transport protocols, while D3 can
not coexist with TCP. However, its coexistence with
other protocols requires static bandwidth partitioning
between PDQ and non-PDQ flows, which may result
in a waste of bandwidth.

Furthermore, there is a multi-path version of PDQ,
designed to increase the transmission reliability and
explore the path diversity. The basic idea is that a
sender splits a PDQ flow into sub-flows with the equal
size. The switches are kept the same as in standard
PDQ. The only difference is that a sub-flow becomes
the scheduling unit, and there may be paused sub-flows
and sending sub-flows at the same time. A sender
periodically shifts the load from the paused sub-flows
to the sending one with the minimum remaining load.
Due to the flow split, there may be packets arriving out
of order. To solve this problem, per-flow buffers are
maintained at the receiver side to reorder the packets.

6 Exploiting Path Diversity: DeTail

According to the analyses in DeTail[2], the challenge
with the objective of creating and rendering a page
within a specific deadline is the high variance of flow
completion times, which form a long-tailed distribution.
With the long tail, Facebook engineers are only
provided with two poor options. They may set tight
timeouts for resending requests to increase the chance
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of rendering a complete page, at the cost of increasing
the server load. Or they may use conservative timeouts
to avoid unnecessary request retransmissions, at the
risk of rendering an incomplete page at the deadline.
Neither of these options are satisfactory. However, if
the long tail is reduced, a better result can be achieved
that applications can use tighter timeouts to render a
complete page without increasing the server load.

This observation motivates the design of DeTail to
meet deadlines from the perspective of reducing the
long tail of flow completion times. The long tail is
caused by timeouts after packet losses, uneven load
balancing, and the absence of traffic prioritization. To
reduce the long tail, DeTail constructs a lossless fabric
to prevent congestion-related packet losses, and quickly
detects congestion at lower layers, to drive upper layer
routing decisions in order to find alternative paths with
lower congestion.

Switches in DeTail employ the Combined Input/
Output Queue (CIOQ)[38, 39] architecture, consisting of
both ingress queues and egress queues. These queues
perform strict priority queueing among eight different
priorities. Each queue maintains the counters of per-
priority occupancies. Whenever a counter exceeds a
specific threshold, the switch will quickly notify the
higher layers of congestion.

At the link layer, DeTail employs Priority Flow
Control (PFC)[40], a hop-by-hop push-back mechanism
(available on newer Ethernet switches) that reacts
to congestion by sending control messages to the
previous hop. Congestion is indicated by the ingress
queue occupancy. When the occupancy exceeds a
threshold, the switch sends a Pause message, informing
the previous hop to stop transmitting packets of the
specific priority. When the queue length reduces,
the switch informs the previous hop to resume packet
transmissions through sending an Unpause message. In
a serious congestion, with the queues of previous hops
building up, Pause messages will be generated by each
hop along the path back to the source end host and
finally quench the source.

With the indication of congestion provided by the
link layer, DeTail performs a per-packet congestion-
based load balancing at the network layer, forwarding
packets to the shortest path that is the least congested.
The switch monitors egress queue occupancies which
indicate the congestion downstream. As shown in
the link layer, the egress queue will build up after
receiving the Pause message generated by the next hop

where congestion occurs. To react to the congestion,
the switch forwards the arriving packet to the least
congested shortest path based on a bitmap of favored
ports (F ) which are lightly loaded and a bitmap of
acceptable ports (A) that lead to shortest paths. As
illustrated in Fig. 5, an arriving packet obtains the
associated bitmap of A from the IP lookup process, as
well as the bitmap of F based on its priority. Then a
bitwise AND (&) of these two bitmaps is performed,
to obtain a set of usable ports (U D A&F ), which
are lightly loaded ports leading to the shortest paths.
DeTail randomly chooses a port from U and forwards
the packet to it.

The transport layer protocol in DeTail needs to be
redesigned since the switching fabric is load-balanced
and lossless. Due to load balancing, packets arriving
out of order will be the normal case. Thus, the transport
protocol should be robust to packet reordering. As the
fabric is lossless, packets are seldom dropped. Hence,
the traditional fast recovery and fast retransmission
based on packet drop should be abandoned. Since
congestion can no longer be indicated by packet drops,
DeTail monitors output queues and uses ECN to
indicate congestion, similar to DCTCP and D2TCP. If
the buffer occupancy of a low priority queue exceeds
a specific threshold, the ECN flags of the packets will
be marked. By this way, the low priority flows without
deadlines will back off to alleviate the congestion.

DeTail fails to address fan-in congestion. The
bottleneck in fan-in congestion is the egress port of the
Top-of-Rack switch connected to the root node. Since
there are no alternate paths, the fan-in congestion can
not be handled by exploiting the path diversity. Another
limitation of DeTail is that the number of priority levels
(8-16) supported by hardware (with respect to PFC) is
far from enough, unable to satisfy the demands of flows
with various deadlines.

Fig. 5 Adaptive load balancing in DeTail.
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7 Priority Dropping: pFabric

pFabric[8] is a datacenter fabric design that significantly
simplifies buffering and congestion control. It performs
greedy packet scheduling and dropping at switches,
according to the priorities of packets, indicated in
packet headers. The key design insight of pFabric is
the decoupling of flow prioritization from rate control,
which is quite different from previous works.

Traditionally, flow prioritization is coupled with the
sending rate. In DCTCP and D2TCP, flow prioritization
is indicated by the extent of window size reduction.
In D3 and PDQ, a flow with a higher priority will be
assigned a higher sending rate than others. This kind
of flow prioritization requires a cross-layer cooperation,
which is rather complex. Decoupling flow prioritization
from rate control, pFabric designs a simple datacenter
fabric. It views the entire fabric as a giant switch
and employs greedy scheduling across the fabric,
significantly simplifying rate control.

According to the design, the priority of a flow is
specified by the sender, based on the deadline and
the size of the flow. In the packet header, there is
a field, called the priority number, that represents the
flow priority. Switches accept and schedule packets
according to their priority numbers. When a buffer
is full, if the incoming packet has the lowest priority
among all of the buffered packets, it will be dropped.
Otherwise, it will be accepted to replace the packet that
has the lowest priority in the buffer. When a port is
idle, the packet with the highest priority is always the
first to be transmitted. In this sense, the scheduling is
preemptive, since a flow arriving later may be scheduled
ahead of the earlier ones, if its priority is the highest
among concurrent flows. The rate control required
by pFabric can be easily implemented, since it only
supplies the basic function of throttling flows when the
network is approaching the congestion collapse.

pFabric significantly simplifies the design by
eliminating the need for complex congestion control
at the senders, feedback generation from the network,
flow state maintenance, high speed buffers, and
rate assignments at switches. Of course, there is
a performance tradeoff in pursuing such simplicity.
Further, pFabric has not yet been evaluated in a testbed
with real traffic.

8 Concluding Remarks

In retrospect, the design objective of network protocols
in datacenter networks has evolved form maximizing
network throughput to meeting flow deadlines. The
rise of research interests in deadline aware protocols
for datacenter networks is largely fuelled by the
performance requirements of cloud applications with
the Partition-Aggregate structure, as well as the
characteristics of datacenter networks hosting these
applications.

In this context, we have surveyed a number of new
protocols with deadline awareness, and summarized key
mechanisms employed in traditional network protocols,
illustrating how recently proposed protocols are able to
incorporate deadline awareness into these mechanisms.

Among the deadline aware protocols, D2TCP[6]

applies reactive congestion control at senders to control
their sending rates. Compared with the original TCP
which uses packet drop as congestion feedback, D2TCP
applies the piggybacked ECN technique to inform
senders of congestion. Moreover, deadline awareness in
D2TCP is represented by flows with different deadlines
backing off to different extents. Two alternative
deadline aware protocols, D3[5] and PDQ[7], avoid
congestion by proactively specifying appropriate flow
sending rates. They incorporate deadline awareness
into rate allocations at switches, which make allocation
decisions either independently[5] or cooperatively[7],
and convey the allocations to senders. DeTail[2] utilizes
flow path diversity, i.e., selecting a less congested path,
to reduce the long tail and increase the chance for a flow
to meet its deadline. From the perspective of packet
scheduling, pFabric[8] makes packet drop and packet
transmission deadline aware. A comparison among
these protocols is shown in Table 1.

In general, the design of network protocols in
datacenter networks is mainly constrained by hardware
requirements and backward compatibility. In this
sense, D2TCP outperforms the other protocols with
its simplicity, backward compatibility, and ready
deployability. However, Software Defined Networking
(SDN)[41] has recently been proposed to build a “clean
slate” network architecture. In such a new architecture,
we expect that the factors of hardware and compatibility
would no longer be design constraints. In addition,
with a global network view provided by SDN, control
decisions can be made by a centralized controller
with more accuracy. Recently, Ghobadi et al.[42]
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Table 1 Deadline aware protocols in datacenter networks: A comparison.

Work Principles of meeting deadlines Mechanisms and features Switches End hosts

D3 Greedily satisfy deadline flows Proactive rate control, Determine allocations independently Specify flow deadlines, request

as many as possible request and set with FCFS discipline and set sending rates

D2TCP Flows with tighter deadlines back Reactive congestion control, Monitor Buffer Occupancy and provide Specify flow deadlines, calculate

off less when congestion occurs try and back off ECN feedback and modulate sending rates

PDQ Flow with the earliest deadline Proactive rate control, Determine allocations cooperatively Specify flow deadlines, request

preempts other flows request and set with EDF or SJF discipline and set sending rates

DeTail Prevent packet losses and select Multi-path load balancing Monitor Buffer Occupancy and quench Specify flow priorities

less congested paths source, decide the suitable path

pFabric Schedule and drop packets Simple priority dropping Schedule and drop packets according Specify flow priorities

according to priorities to priorities independently

have taken the initiative to propose a TCP adaptation
framework in SDN. They tuned transport protocols
according to the network and traffic conditions viewed
by the SDN controller. Facilitated by SDN, centralized
network protocols can be designed and implemented to
optimize the performance of applications with deadline
requirements with finer granularity. We look forward to
a variety of more effective solutions in the near future.
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