
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

1

Promenade: Proportionally Fair Multipath
Rate Control in Datacenter Networks

with Random Network Coding
Li Chen, Yuan Feng, Baochun Li, Fellow, IEEE, and Bo Li, Fellow, IEEE

Abstract—In today’s datacenter topologies, there exist multiple equal-cost paths between each pair of communicating virtual machines.
Yet, splitting flows and routing them along multiple paths may lead to packet reordering, which may affect the performance of TCP. In this
paper, we propose Promenade, a new protocol that uses random network coding to mitigate the negative effects of packet reordering,
while at the same time achieving weighted proportional fairness in bandwidth allocation across different tenants. To achieve weighted
proportional fairness when allocating bandwidth to tenants, the problem of rate control is formulated as a convex optimization problem,
and Promenade uses its distributed solution as a theoretical foundation to design its bandwidth allocation protocol. With our real-world
implementation of Promenade in the Mininet testbed, we are able to show that Promenade is able to achieve weighted proportional
fairness in its rate control when individual flows are split into multiple paths.

Index Terms—Datacenter networks, Multipath rate control, Network coding, Fairness

F

1 INTRODUCTION
In order to provide satisfactory performance to a rapidly
increasing number of applications running in the cloud,
modern datacenter networks typically adopt multi-rooted
tree topologies with full bi-section bandwidth, such as
the fat-tree architecture [1]. As full bi-section bandwidth
is only provided when all possible paths between a pair
of physical servers are fully utilized, equal-cost multipath
(ECMP) [2] has been used in today’s datacenter networks.
Although called multipath, each flow between a pair of
servers is actually routed through one of the paths using
hashing. Although it is possible for two flows between the
same server pair to take different paths, recent research
shows that ECMP is not sufficient in achieving high net-
work utilization in datacenter networks, as it is possible
that two heavy hitter flows are scheduled onto the same
path, leading to hot-spots in the network [3].

In order to take advantage of multiple paths to transmit
data from a sender to a receiver, one can resort to random
packet spraying [4], which spreads the packets from
a single TCP flow across multiple paths, by randomly
choosing one of the eligible output ports that a packet
should be forwarded to at each switch. Unfortunately,
different queue lengths and link loads on different paths
will result in packets arriving out of order, which will

• Li Chen is with the Department of Computer Science, University of
Louisiana at Lafayette, USA. E-mail: li.chen@louisiana.edu

• Baochun Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Canada. E-mail: bli@ece.toronto.edu

• Bo Li is with the Department of Computer Science and Engineering, The
Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: bli@cse.ust.hk

be incorrectly interpreted as packet losses by TCP’s fast
retransmit mechanism, negatively affecting TCP perfor-
mance due to unnecessary reductions of the congestion
window size [5].

Multipath TCP (MPTCP) has recently been proposed
to strip data across different TCP sub-flows with a
finer granularity to achieve better load balancing [6]. In
MPTCP, each TCP flow is further split into multiple sub-
flows, each with its own congestion window, and ECMP
may be used to send them along multiple paths. Even
though packet reordering across different sub-flows will
no longer affect the congestion window sizes in the sub-
flows, packet reordering cannot be avoided at the time of
merging the sub-flows at a receiver. It has been shown
that hundreds of packets may need to be processed with
a reordering algorithm at the receiver, before they are de-
livered to the application layer [7], leading to additional
delays due to the reordering process.

To enjoy the benefit of increased throughput by split-
ting individual flows while mitigating the adverse effects
of packet reordering, in this paper, we advocate the use of
random network coding [8], [9] in datacenter networks,
implemented as a shim layer between the applications
and the network interface. With random network coding,
packets belonging to the same flow are split into multiple
sub-flows, and then forwarded along different paths in a
coded fashion. Particularly, each packet is encoded with
a vector of randomly chosen coefficients, which will be
embedded in the packet to be transmitted to the receiver.
In principle, once a receiver has collected a sufficient
number of linearly independent packets, it is able to
recover the original packets in order, which indicates

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

2

that the order of receiving the coded packets no longer
matters. We believe that with a carefully designed rate
control mechanism, the use of random network coding
leads to a simpler way of transmitting packets along
multiple paths in datacenter networks.

A salient advantage of using random network coding
is that it allows us the opportunity to redesign the rate
control algorithm from scratch, which corresponds to
solving a bandwidth allocation problem from a global
perspective, rather than using local information only.
As this opportunity arises, we believe that a new rate
control algorithm should be designed with the objective
that different tenants sharing the same datacenter can
fairly share the network bandwidth. Since the network
bandwidth is typically shared in a best-effort fashion,
we wish to provide weighted proportional fairness across
multiple tenants, with a weight assigned to each tenant.
We formulate the problem of computing flow rates along
multiple paths in the datacenter network as a convex op-
timization problem, with weighted proportional fairness
across different tenants as the objective. Our optimization
problem is amenable to a distributed solution based on
primal-dual updates.

The original highlight of this paper is the design of
Promenade, a new protocol designed to utilize the ad-
vantage of random network coding, and built upon the
theoretical foundation of our problem formulation and its
distributed solution. Promenade is implemented in a shim
layer at a sender, and is topology-agnostic. By controlling
the rate of transmitting coded packets over a sliding
coding window, Promenade incorporates both random
network coding and a new rate control algorithm into its
protocol. To prevent tenants from bypassing the rate con-
trol protocol in Promenade, the shim layer runs in the vir-
tualization network stack, where it is well isolated from
tenant code. Given a network weight for each tenant,
Promenade first computes the weight per communicating
VM pair based on its traffic amount, and then allocates
the bandwidth on multiple equal cost paths iteratively,
such that the sum of bandwidth each communicating VM
pair receives in the network is proportional to its weight.
With end-to-end rate control, Promenade scales up with
the number of communicating VMs easily. We evaluate
the performance of Promenade within emulated fat-tree
datacenter topologies, using Mininet [10] as our network
emulation testbed.

The remainder of this paper is organized as follows. In
Sec. 3, we motivate the use of random network coding
to solve the packet reordering problem, and present its
potential challenges. In Sec. 4, we formulate the rate
allocation problem as a convex optimization problem
with an objective of providing weighted proportional
fairness among multiple tenants. Based on the distributed
solution from Sec. 4, Sec. 5 presents the design of Prom-
enade in detail. In Sec. 6, we evaluate the performance

of Promenade in an emulated fat-tree datacenter topology.
We discuss related work and conclude the paper in Sec. 2
and Sec. 7, respectively.

2 RELATED WORK

With the mainstream acceptance of cloud computing,
a substantial amount of research efforts have been de-
voted towards improving the load balance and over-
all throughput in datacenter networks. Different from
uncertain networks where the connectivity determina-
tion problem needs to be solved [11], [12], datacenter
networks have deterministic topologies and each pair
of source and destination is connected with multiple
paths. With respect to flow-level traffic splitting, Hedera
is proposed to adaptively schedule active flows to non-
conflicting paths to maximize the aggregated network
utilization [13]. Similarly, Mahout is proposed to identify
elephant flows using end-host mechanisms, and then
schedule flows dynamically [14]. Prior to them, VL2 and
Monsoon use per-flow Valiant Load Balancing [1], [15].
As effective as they are on performing load balancing
within a datacenter network, none of them actually splits
individual flows across multiple paths.

MPTCP represents the first effort of splitting traffic at a
sub-flow granularity [7]. It splits an individual TCP flow
into multiple sub-flows, and routes them across different
paths using ECMP. Although MPTCP is shown to be able
to improve the throughput substantially, and has been
proposed to be implemented in both the Internet [16]
and datacenter networks [6], it has not been widely
deployed yet. Recent research has revealed that it suffers
from three major challenges. First, Khalili et al. have
shown that MPTCP is not pareto-optimal, meaning that
upgrading some TCP users to MPTCP can potentially
reduce the throughput of others, yet without any benefit
to the upgraded users. They also pointed out that MPTCP
users could become excessively aggressive towards TCP
users [17]. Second, as packets belonging to different sub-
flows follow different paths, hundreds of packets may
need to be reordered when merging the subflows at a
receiver [18]. Finally, MPTCP is not efficient for the short
flows that dominate datacenter networks, due to its high
signaling and connection establishment complexity [7],
[19].

With random packet spraying [4], packets of every flow
are randomly assigned to one of the available shortest
paths to the destination, and traditional TCP is used
as the transport protocol. Compared to MPTCP, the
simplicity of random packet spraying makes it a good
candidate for short flows in datacenter networks, and
Dixit et al. [4] has shown using a small-scale experimental
testbed with a fat-tree topology that TCP is able to tolerate
the reordered packets without much performance degra-
dation, since multiple equal-cost paths exhibit similar
queue lengths with symmetric topologies. Digit-Reversal

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

3

(a) Splitting a flow over multiple paths in a multi-rooted datacenter topology

A B

A

B

A

B

(b) Without network coding (c) With network coding

1
2

3
45

6
7

1345

1234
Decoding

Fig. 1: Random network coding is able to solve the problem of packet reordering as each flow is split to be transmitted over multiple paths in datacenter
networks.

Bouncing [20] also achieves per-hop balancing through
per-packet spreading of traffic in a round robin fashion,
which would become inefficient with asymmetric topolo-
gies due to link failures and significant load variation [21].
CONGA [22] splits traffic into flowlets, which are routed
based on load estimates using in-network congestion
feedback. Presto [23] divides flows into flowcells, which
are source-routed without load awareness. DRILL [24]
performs per-packet load balancing at each switch using
randomized algorithms based on local queue occupan-
cies to distribute load. Different from these works, our
Promenade implements a simple rate control protocol in
the context of multipath transmissions, using random
network coding to eliminate the need to mitigate the
adverse effects of both packet reordering and packet
losses.

With respect to fairness in sharing datacenter networks,
a substantial amount of research attention has been at-
tracted recently [25]–[35]. Lam et al. proposed NetShare,
where each tenant gets a predefined network weight,
which are used to achieve weighted max-min fairness on
congested links in the network [25]. Its implementation
requires the switches to support weighted fair queue-
ing with aggregated queues. Different from NetShare,
Seawall is proposed based on per-VM weights [26]. It
stipulates that on all network links, the share of band-
width obtained by a VM serving as the traffic source
is proportional to its weight. However, its rate control
algorithm is only an extension of a simple strawman
approach that is not based on a theoretical foundation.
In comparison, our rate control protocol in Promenade is
based on a rigorous formulation of the problem, with
the objective of achieving an optimal solution during
our design. Furthermore, Promenade is designed to utilize
per-VM-pair weights rather than per-tenant or per-VM
weights.

3 THE USE OF RANDOM NETWORK CODING:
MOTIVATION AND SOLUTIONS

With the observation of the packet reordering problem in
multipath datacenter networks, we are motivated to mit-
igate its adverse effect by exploiting the salient benefits
brought by random network coding. In what follows, we

illustrate the performance degradation caused by packet
reordering, introduce the favorable properties of random
network coding and present the design of our solution
called Promenade.

3.1 Packet Reordering in Multipath Networks

Most application traffic — in both large (elephant) and
small (mice) flows — in the datacenter networks today
requires reliable and in-order delivery of packets. This
fits well with the design of TCP as a transport protocol,
which is robust against packet losses and a small amount
of packet reordering. However, when packets belonging
to a single flow are spread and transmitted along multiple
paths, the problem of packet reordering becomes more
severe, as packets following different paths may enter
queues of different lengths, and the larger the queue
length differential, the more severe packet reordering is.

In Fig. 1, we show an illustrative example of the packet
reordering problem when individual flows are split along
multiple equal-cost paths in a datacenter network. To-
day’s operational datacenter networks are typically con-
structed with a multi-rooted tree topology, as shown in
Fig. 1 (a), or a fat-tree topology [1] which employs more
network switches, reduces the bandwidth oversubscrip-
tion and achieves a full bi-section bandwidth. In these
topologies, for any given pair of VMs, A and B, on
two physical machines, there exists multiple equal-cost
paths, as illustrated by the red and blue dashed lines in
the figure, respectively. Now suppose an individual flow
from VM A to VM B is split along these two paths to
achieve a better load balance, as shown in Fig. 1 (b), B
may receive the first four packets in an order of 1, 3, 4, 5,
due to different queue lengths and sub-flow rates on
the two paths. Since a TCP sender interprets three du-
plicate acknowledgments as a packet loss, and activates
fast retransmit with a reduced sliding window size, the
throughput between A and B is unnecessarily affected by
packet reordering (but without any lost packets).

3.2 The Benefits of Random Network Coding

With random linear network coding [8], [9], packets in a
flow are coded within a coding window. A coding window

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

4

consists of a certain number of packets, say n (called the
coding window size). These packets are denoted as b =
[b1, b2, . . . , bn]T , where each packet has a fixed number of
bytes, k. To code a new coded packet xj within a coding
window, the source first independently and randomly
chooses a set of coding coefficients [cj1, cj2, · · · , cjn] in
the Galois Field GF (28), one for each original packet. It
then produces one coded packet xj =

∑n
i=1 cji · bi. The

destination decodes as soon as it has received n linearly
independent coded packets x = [x1, x2, . . . , xn]T . It first
forms an n×n coefficient matrix C, using the coefficients
of each packet bi, which are embedded in the packet.
Each row in C corresponds to the coefficients of one
coded packet. It then recovers the original packets b =
[b1, b2, . . . , bn]T as b = C−1x. Gauss-Jordan elimination is
used in such a decoding process, performed progressively
as coded packets are being received. The inversion of C
is only possible when its rows are linearly independent,
i.e., C is full rank.

The benefit introduced by random network coding to
mitigate the adverse effects of packet reordering may
seem intuitively simple at first glance. If random network
coding is used instead, packets between A and B are
transmitted in a coded form as shown in Fig. 1 (c), pro-
duced with random linear codes within a coding window
of 4 packets. In this simple example, no matter in what
order the four coded packets are received at the receiving
side B, the four original packets can be decoded in the
order 1, 2, 3, 4, as long as the coded packets are decodable,
in that they are linearly independent with each other.
To put it simply, due to the rateless property of random
linear codes, the order of receiving coded packets, as well
as any potential packet losses, no longer matter when
random network coding is used. As long as the receiving
side has received a sufficient number of coded packets,
the same number of original packets can be recovered in
order through the decoding process.

Granted, the use of random network coding does not
have the ability to reduce the potentially significant num-
ber of reordered packets as they follow different paths
with a large queue length differential. Coded or not,
packets will be reordered due to the different queueing
delays. The disadvantage of network coding is also clear:
they introduce an additional overhead, in the form of
both coding complexity and decoding delays. The coding
complexity may not be a concern: with modern multi-core
CPUs commonly used in physical servers in operational
datacenters, it has been shown that random network
coding can be performed with good performance [36],
especially for small sizes of the coding window. On the
other hand, the decoding delay, which is the amount of
time a packet needs to wait in a queue for later packets
to arrive for successful decoding, may be a problem if
the size of the coding window is too large. With full
knowledge of the overhead induced by random network

coding, what, after all, are its main benefits with respect
to mitigating the problem of packet reordering? We have
identified three main advantages with the use of random
network coding.

There is no longer a need to use active queue manage-
ment schemes on the switches. Dixit et al. [4] have shown
that, with a large queue length differential along different
paths, the performance of TCP suffers significantly. It
then proposed to use active queue management schemes
to provide early feedback as the queue length builds
up due to congestion, with the hope of equalizing the
length of queues along different paths. While using active
queue management on switches may indeed mitigate
the problem of packet reordering, the feature may not
be readily available on off-the-shelf edge switches. With
random network coding on the end hosts, we do not
require active queue management on any of the switches
in a datacenter network.

The severity of packet reordering no longer matters.
Since long (elephant) flows may be negatively affected
by the burstiness of small (mice) flows in datacenter
networks, we are doubtful that active queue management
schemes will be sufficiently effective, in that the queue
lengths are equalized to an extent that does not affect
TCP performance (i.e., no more than three duplicated ac-
knowledgments). With random network coding, however,
the severity of packet reordering no longer matters. This
provides us a substantial amount of additional freedom
to redesign the rate control protocol, so that the flow rate
on different paths can be computed and assigned by the
new protocol without fear from packet reordering.

A flow no longer needs to be striped to be transmitted
along different paths. In MPTCP, a flow will need to be
striped to different sub-flows and then transmitted along
different paths, and a packet belongs to only one of the
sub-flows. If a packet is lost in its sub-flow, it will need
to be retransmitted, coupled with a reduced window size
on the TCP sender. With random network coding, there is
no particular sequence among coded packets in the same
coding window, and packets can be transmitted along any
of the eligible paths. Packet losses on one of the paths
can be easily remedied by transmitting additional coded
packets along any subset of the eligible paths.

Given these advantages, we argue that the use of
random network coding gives rise to the opportunity
of designing a new rate control protocol in the context
of multipath transmissions, with no need to mitigate
the adverse effects of both packet reordering and packet
losses with intricate protocols. It leads to a simpler pro-
tocol design, in that packets being transmitted on all the
eligible paths are able to “collaborate” with one another
perfectly, at any flow rate on each path.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

5

3.3 Implementing Random Network Coding as a
Shim Layer

It has been proposed in the literature that random net-
work coding is used in coordination with TCP as the
transport protocol [37], referred to as TCP/NC. The gist
of the idea is that, implemented as a layer below TCP, a
sender transmits random linear combinations of packets
in its sliding congestion window, and advances the win-
dow as it receives an acknowledgment from the receiver.
These acknowledgments are in the form of the degree
of freedom of the coding buffer that the receiver holds:
an original packet is acknowledged as it is received in
a coded form that is linearly independent (i.e., useful
towards the decoding process), even before decoding
is complete with Gauss-Jordan elimination. Due to the
overhead of carrying coding coefficients in the header,
the coding window is a relatively small subset of the
TCP sliding window (TCP/NC [37] uses a size of 3 in
its experiments).

The design principle within TCP/NC can be readily
used in Promenade, as it is designed for unicast flows,
which is predominant in datacenter traffic. Similar to
TCP/NC, in the design of Promenade, random network
coding is implemented as a shim layer between the appli-
cations and the network interface, to be deployed to all
servers in the datacenter. Yet, different from TCP/NC that
relies on TCP to control the flow rates, Promenade uses a
similar design as Seawall [26], in that all traffic in the
datacenter network is to be transmitted via rate controlled
logical tunnels, implemented within a shim layer that
intercepts all the packets entering or leaving the physical
server. Such rate controlled tunnels are most suitable for
UDP flows, as a full burst UDP flow immediately uses all
the rate that the tunnel allows. For TCP flows, its conges-
tion control needs to be deferred to the Promenade shim
layer, in that each TCP flow queries the rate controller in
the shim to see whether it is allowed to send.

Within the shim layer on the sender, we maintain a
coding buffer with a sliding coding window for each flow.
As shown in Fig. 2, In the sliding coding window, the
sender shim transmits outgoing packets in their coded
form, along any of the eligible paths. The paths can be
established using different sender port numbers, hashed
to different paths between the sender and the receiver
by ECMP, supported by most modern switches used in
datacenters. Alternatively, they can also be determined
dynamically using random packet spraying [4] if the
switches support the mechanism. Upon receiving an ac-
knowledgment from the receiver, the sender shim ad-
vances the sliding coding window, removes the acknowl-
edged packet from its coding buffer, and hand over the
acknowledgment to the sender in the application. On the
receiver side, the receiver shim sends an acknowledgment
back to the sender shim when it receives a seen packet
(as formally defined in [37]), where the number of seen

Sender
Network Coding Shim

Application Sender

Coding Window

Receiver
Network Coding Shim

Application Receiver

Decoded packets
Coded
packets

Acks

1
1

1
1

1

0
0
0
...
...

Decoded
⎨
⎨

Seen

Fig. 2: Implementing random network coding as a shim layer. The sender
shim sends outgoing packets in their coded form, and advances the
coding window upon receiving an acknowledgment from the receiver. The
receiver acknowledges all seen packets.

packets is equal to the degrees of freedom of all the
received packets that have not yet been decoded so far.
Once the receiver shim completely decodes a packet, it
will be delivered to the application’s receiver. By imple-
menting random network coding within the shim layer,
packets will be acknowledged to the sender even if their
coded counterpart arrives out of order. This substantially
mitigates the problem of duplicate acknowledgments due
to packet reordering.

As in TCP/NC, we impose a maximum size for the
coding window, for the sake of managing the coding
complexity and the overhead of the coding header. One
question remains that may be potentially tricky: what
is the most appropriate value for the maximum coding
window size in the sender shim? The coding window
size determines the maximum ability to tolerate packet
reordering, and as a result, it would be beneficial for the
size to be as large as possible, in order to tolerate as many
reordered packets as possible. That said, a large coding
window leads to a long decoding delay at the receiver
side, as well as a high coding complexity.

In Promenade, we use a small coding window of 4-8
packets, since we wish to guarantee that the network
coding engine is able to keep up with the bandwidth of
the network interface. For this reason, we use our heav-
ily optimized implementation of random linear codes,
with both multi-threading and SIMD (single instruction,
multiple data) acceleration to further relieve the stress
on the CPUs. Our real-world experiments on coding
performance will be presented in Sec. 6.

4 RATE CONTROL WITH PROPORTIONAL FAIR-
NESS

4.1 Design Objectives
Towards the design of a new protocol at the shim layer in
Promenade to split flows among multiple equal-cost paths
in the datacenter network and control their flow rates,
we aim to achieve two design objectives: fairness among
tenants and simplicity.

Fairness among tenants. The use of random network
coding within the shim layer introduces more freedom for
rate control on each flow before packets leave the physical

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

6

server. This is a blessing rather than an inconvenience, as
we may use this opportunity to achieve more desirable
fairness objectives than what TCP provides.

Unlike other resources such as CPU or memory in a
VM, inter-VM bandwidth in datacenter networks today
is free of charge, and is typically shared in a best-effort
fashion. It has been well understood that the performance
of a cloud application heavily depends on its received
share of inter-VM bandwidth, i.e., when the traffic flow of
an application is throttled due to congestion, it takes more
time to complete the same task, which then translates
to a higher cost to the tenant on reserving VMs in the
datacenter network. To encourage more tenants to use
a public cloud service, it is natural that the notion of
fairness should be enforced at the tenant level when
it comes to sharing bandwidth resources in datacenter
networks. Since the performance of a tenant’s application
depends on the aggregated rate of all initiated flows
between its communicating VMs, traditional TCP, which
only guarantees fairness between flows or sub-flows, is
clearly not sufficient.

Simplicity. As a protocol in the datacenter network,
our rate control algorithm should be conceptually simple
to operate. Each sending VM should only need to adjust
its sending rate adaptively in a distributed fashion, based
on the feedback from a central monitor. The changes
required in the datacenter network should be minimized,
in that only a shim layer has to be installed in each of
the VMs to perform rate control and send feedback, and
neither the network topology nor the hardware needs
to be modified. In addition, the rate control algorithm
should not only scale with the number of VMs naturally,
but also with the number of flows. As fairness is provided
at the tenant level, and every individual flow may be
split into multiple sub-flows along different paths, we
believe that the flow rate between each VM pair should
be optimized in an aggregated fashion. In other words,
our rate control algorithm will determine the optimal rate
for traffic from one VM to another, no matter how many
flows are initiated in between.

4.2 The Problem of Rate Control with Proportional
Fairness
In a nutshell, the key idea in the design of our rate
control algorithm in Promenade is to take full advantage of
splitting individual flows in the inter-VM traffic, so that
proportional fairness is achieved across all tenants. We
precede our protocol design with a theoretical formula-
tion of this problem.

Since we are trying to control the rate between each VM
pair to achieve a certain tenant-level proportional fair-
ness, a critical question is how should we assign weights
in the network. Should it be per-tenant weight, or per-VM
pair weight? Our design in this paper has intentionally
left the decision open with respect to how weights should

be assigned, as existing literature has already covered this
complementary problem quite well [27].

We propose an intuitive alternative in this paper. Each
tenant is associated with a weight based on the number
of communicating VMs it has initiated in the datacenter,
i.e., the total payment that the tenant pays for inter-VM
data transmission. Then, each tenant itself will divide
and allocate its weight to all of its communicating VM
pairs, based on its application traffic pattern. We believe
that it is necessary for tenants to have the flexibility to
dynamically adjust the local weights of its communicat-
ing VMs, as recent datacenter traffic studies have shown
that tremendous variation in the communication matrix
exists over space and time [3], [38]. Traffic from one VM
to another exhibits many small transactional-type RPC
flows (e.g., search results), as well as a few large transfers
(e.g., backups and propagations) during different time
periods. The weights for those VM pairs, hence, should
be adjusted accordingly by the tenant.

In the design of our rate allocation algorithm, we
expose the following simple abstraction. Given a network
weight wi for traffic from a VM X to another VM Y, which
is considered as a session i in this paper, we ensure that
along all equal-cost network paths, the aggregated share
of bandwidth obtained by the VM pair is proportional to
its weight. The fairness criterion we considered in this
paper is weighted proportional fairness, which is one of
the most commonly used fairness criteria. To be exact,
our objective is to find a set of rates r for any pair of
communicating VMs along each of its equal-cost path in
the datacenter network, such that: (1) r is feasible, that is,
it is non-negative and obeys the link capacity constraint;
and (2) for any other feasible set r′, the aggregate of
proportional changes is zero or negative [39]:∑

∀i

r′i − ri
ri

≤ 0. (1)

Kelly et al. have proved in their seminal work [40] that
the optimal rate allocation in achieving proportional fair-
ness is equivalent to maximizing the social utility in the
network, with log as the utility function. If we consider
a datacenter network as a directed graph G = (V, E),
where V indicates the set of physical servers, and E
indicates the set of directed edges inter-connecting them,
the rate control problem in the datacenter network can
be formulated as follows:

max
ri(p)

∑
∀i

wi log(
∑
p∈Pi

ri(p)) (2)

s.t.
∑
∀i

∑
p∈Pi(e)

ri(p) ≤ C(e), ∀e ∈ E , (3)

ri(p) ≥ 0, ∀i, ∀p, (4)

where Pi represents the set of equal-cost paths in session
i.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

7

TABLE 1: Important mathematical notations

Notation Definition
V the set of physical servers in a datacenter
E the set of directed edges connecting servers in V

C(e) the available capacity on edge e
wi the network weight of session i
Pi the set of equal-cost paths in session i
ri(p) the allocated flow rate in session i along a path p ∈ Pi

µe the dual cost of an edge e
li(p) the dual cost for flow along path p in session i
Λ(e) the load of edge e

In the formulation, the optimization variable ri(p) is
the allocated flow rate in each session i on every path
p, where p ∈ Pi. Pi(e) is the set of paths in Pi that
cover edge e, and C(e) is the available edge capacity. The
objective is to maximize the social welfare of all sessions
with a logarithm utility function, as we have discussed
before. Constraints (3) and (4) state that the allocated rate
can not exceed the edge capacity on all the edges in the
network, and are non-negative. Important notations used
in this paper are summarized in Table 1.

The Hessian matrix of the objective function f is the
square matrix of the second-order partial derivatives

∂2f
∂ri(p)∂rj(q)

of f , which is derived as:

H =

−w1J|P1|
(
∑

p∈P1
r1(p))2

0|P1|×|P2| . . . 0|P1|×|PI |

0|P2|×|P1|
−w2J|P2|

(
∑

p∈P2
r2(p))2

. . . 0|P2|×|PI |

...
...

. . .
...

0|PI |×|P1| 0|PI |×|P2| . . .
−wIJ|PI |

(
∑

p∈PI
rI(p))2

where I is the total number of sessions, |Pi| repre-
sents the total number of available paths for session
i, Jn represents the n × n all-ones matrix where ev-
ery element is one, and 0m×n represents the m × n
zero matrix. Given any non-zero column vector a =
[a11, a12, . . . , a1|P1|, . . . , aI1, aI2, . . . , aI|PI |]

T with real
elements, we have:

aTHa =
−w1(

∑
p∈P1

a1p)
2

(
∑
p∈P1

r1(p))2
+ · · ·+

−wI(
∑
p∈PI

aIp)
2

(
∑
p∈PI

rI(p))2
,

which is obviously negative as the weight wi is positive.
Therefore, the Hessian matrix is negative definite and
thus the objective is concave [41].

As an optimization problem with a symmetric, non-
decreasing, and concave objective function, (2) can be
solved by a distributed algorithm based on the primal-
dual method [41]. We use µe to denote the dual cost of an
edge e ∈ E , and li(p) as the dual cost for the flows along
a path p in session i, where li(p) is given by

∑
e∈p, p∈Pi

µe
for a given path p in session i. Define Λe as the load on
an edge e, i.e., Λe = (

∑
i

∑
p∈Pi(e)

ri(p))/C(e), and use Λte
to denote their values at the t-th iteration. The algorithm
can be stated in Algorithm 1, where the initialization for
the parameters in lines 1-7 follows the convention [42]

to guarantee the algorithm feasibility and running-time
properties.

Algorithm 1 Distributed solution to problem (2).

Input:
The number of sessions: n; the number of edges: m;
weight wi and the set of paths Pi for each session i;
link bandwidth capacity C(e) at each edge e ∈ E .

Output:
Rate allocation ri(p) for each session i along each of
its paths p ∈ Pi.

1: Initialization. R = maxe C(e)
mine C(e) , ρ = max {n,m,R} and

δ = 12 ln ρ+ 2.
2: for Each edge e ∈ E do
3: µ0

e = δ
2ρ3

4: end for
5: for Each flow in every session i do
6: ri(p)

0 = mine C(e)
2n

7: end for
8: t = 0
9: Iteration. Each session computes the shortest path p∗

from the sending VM to the receiving VM, i.e., the
path with the minimum dual cost li(p).

10: while there is any flow across all sessions with
li(p
∗)t < 1 do

11: t = t+ 1
12: for Each session i do
13: if li(p∗)t−1 < 1 then
14: ri(p

∗)t = ri(p
∗)t−1 + wi

mine C(e)
nδ

15: else
16: ri(p

∗)t = ri(p
∗)t−1

17: end if
18: end for
19: for Each edge e ∈ E do
20: µte = µt−1e (1 + δ(Λte − Λt−1e))
21: end for
22: end while

The algorithm works in the following way. Initially, the
dual costs on all the edges (µ0

e) and the sending rates of all
the sessions (ri(p)0) are set to be very small, as illustrated
in lines 2–7. Each session i iteratively increases its flow
rate on the shortest path p∗ in a weighted fashion, as
expressed in line 14, until its dual cost (li(p∗)t) becomes
no less than 1 at a certain iteration t. At this point, the
session finds out that even the shortest path between
its transmission VM pair is too expensive, so it stops
increasing its flow rate, as shown in line 16. Meanwhile,
the dual cost at each edge keeps on increasing based on
the equation in line 20, until the iteration stops when there
is no room for any session to increase its flow rate. It has
been proved that Algorithm 1 is feasible and O(log ρ)-
approximation guaranteed for all canonical utility func-
tions, with a polynomial number of iterations [42].

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

8

Sending server

VMsApps

Shim layer

Coding engine

Rate controller

Receiving server

Network
monitor

Apps Apps Apps

Decoding engine

Apps Apps

Equal-cost paths

Fig. 3: An overview of the protocol design in Promenade.

5 PROMENADE: PROTOCOL DESIGN

To achieve the optimal rate allocation, Promenade relies on
communication among the shim layers at all the physical
servers, as well as a central network monitor, which
collects and monitors the current network condition. In
this section, we present a detailed description of our
protocol design.

In order for the design of our rate control protocol to
be topology-agnostic and require no hardware changes,
similar to random network coding, our rate control pro-
tocol is also deployed in a shim layer on all servers in
the datacenter network. When random network coding
and rate control are combined, Promenade intercepts all
the packets entering and leaving the server, performs
random network coding (both encoding and decoding)
in its coding engine, and then transmits them between
VMs. As shown in Fig. 3, packets are first encoded at
the shim layer on the sending server, with one queue
(serving as the coding buffer) associated with packets
from one session, i.e., traffic from one VM to another. The
coded packets will then go through a rate controller that
determines the allowed rate on each path in every session,
before they are sent to the destination VMs via multiple
equal-cost paths. The shim layer at the receiving server
decodes the received packets, and directs the decoded
packets to their corresponding VMs.

Through the interpretation of both primal and dual
variables in Algorithm 1, it appears that the number of
sessions as well as the current edge load along its equal-
cost paths are required to determine the optimal sending
rate in each session. As a result, there is a centralized
network monitor enabled in the datacenter network1. As
Fig. 3 shows, both the sending and receiving sides send
feedback periodically to the network monitor, which
stores a global view of the current network condition.
The rate controller corresponding to each physical server
fetches the network information from the network mon-
itor to adapt the allowed rate in each session. The rate
controller takes the network weights of each session as
input, works independently of each other, and together

1. Here we assume that the datacenter does not have OpenFlow-
enabled switches. We will briefly discuss the possibility of using
OpenFlow-enabled switches at the end of this section.

(a) From sender shim
to network monitor

Sndr. Shim Id
VM Sndr. Id
VM Rcvr. Id

Active/Inactive

(d) From receiver shim
to network monitor

Rcvr. Shim Id

Local Edge Load
Table

(b) From network monitor
to the sender shim

of Active Sessions
EC Path List

Edge Load Table

(c) From sender shim
to receiver shim

Sndr. Shim Id

EC Path Id

Packet header

VM Sndr. Id

Fig. 4: The content of packets.

ensures that the bandwidth allocation across different
tenants is proportionally fair. In what follows, we will
discuss the communication among different components
and the protocol in each component in detail.

From the sender shim to the network monitor. The
purpose for the sender shim to communicate with the
network monitor is that each rate controller will need to
know the number of active sessions in the network when
it determines the optimal rate for its own sessions. In
order to obtain the global information, the shim at the
sender sends feedback packets at regular time intervals,
containing the sender shim id, the VM sender id, the
VM receiver id, and its current active/inactive status. The
VM sender and receiver ids are used to uniquely identify
a session, and the network monitor uses this feedback
information to update n, which is the number of sessions
in the datacenter network.

More specifically, at the beginning of each time interval,
the central monitor collects feedback packets from the
sender shims. If the session <VM Sndr. Id, VM Rcvr.
Id>, which corresponds to session index i in Sec. 4, is
new and the session status is active, the monitor records
the session, and increases n by 1; if the session has been
recorded before and its status now changes to inactive,
the network monitor decreases n by 1, as summarized in
Algorithm 2.

Algorithm 2 Update the number of sessions

1: Check <VM Sndr. Id, VM Rcvr. Id> in the session list
2: if <VM Sndr. Id, VM Rcvr. Id> is new then
3: Add it to the session list
4: if <VM Sndr. Id, VM Rcvr. Id> is active then
5: n = n+ 1 ← the number of active sessions
6: end if
7: else
8: if <VM Sndr. Id, VM Rcvr. Id> is inactive then
9: n = n− 1

10: Remove it from the session list
11: end if
12: end if

From the network monitor to the sender shim. When
the sender VM is ready to send packets out, the shim on
the host machine will fetch information from the network
monitor for the purpose of rate control. The feedback
packets sent from the network monitor to the sender
shim has the content shown in Fig. 4 (b). The monitor

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

9

will provide a set of equal-cost paths, i.e., Pi, based on
the current network condition. It also informs the sender
shim the current number of active sessions, n, as well as
the edge load along all equal-cost paths, Λe, to the sender
shim, such that the rate controller within the shim can use
this information to adjust the optimal sending rate based
on Algorithm 1. The sender shim will fetch the updated
information at the beginning of every iteration.

From the sender shim to the receiver shim. Since the
network monitor needs to have the global view of the
current edge load in the datacenter network, it is designed
to rely on the reports of receiving rates from receiver
shims in Promenade, where dropped packets are no longer
counted. One challenge is that packets are transmitted
along multiple equal-cost paths to each receiver shim, and
in order to obtain the local view of edge loads at receiver
shims, it is necessary for the receiver shim to know which
path the packet is transmitted from. In Promenade, every
packet is stamped its equal-cost path id (EC Path Id) in a
header before it is sent out in the sender shim. Once the
receiver shim receives a packet, it can updates the path
load statistics in the path load table easily, with a simple
operation:

PathBytes[<VM Sndr. Id, VM Rcvr. Id>][EC Path Id]
+= packet size. (5)

From the receiver shim to the network monitor. As
we have discussed, upon receiving packets, the receiver
shim is able to obtain a local view of the traffic amount,
i.e., a PathBytes table. Divided by the period of time,
the receiver shim is able to obtain the local edge load
along every path in each session, which is denoted by
ri(p) in Sec. 4. The receiver shim also measures the local
edge load periodically, and sends back the information
via a feedback packet. To measure the local edge load, the
algorithm that the receiver shim follows is summarized in
Algorithm 3. After collecting the feedback packets from
receiver shims, the network monitor is able to readily
obtain the global edge load condition Λe.

Algorithm 3 Update the local edge load

1: At every period T
2: Resets the local edge load table to 0
3: while t < T do
4: Update the path load statistics upon receiving pack-

ets
5: end while
6: Obtains the local edge load table by PathBytes[<VM

Sndr. Id, VM Rcvr. Id>][EC Path Id]/T
7: Sends the local edge load table to the network moni-

tor

So far, our protocol design in Promenade has assumed
that the switches in the datacenter network are not

OpenFlow-enabled. As operational datacenters are in-
creasingly migrating to software-defined networks, it is
conceivable that OpenFlow-enabled switches are widely
used in the near future. With the most recent OpenFlow
Switch specification [43], detailed per-flow and per-port
statistics are collected by the switch and reported to the
controller, with which the global edge load condition Λe
can be easily obtained. In this case, the shim layers on all
the servers, where Promenade is deployed, simply need
to collect the necessary information from the OpenFlow
controller, so that rate control can be performed in a dis-
tributed fashion to maintain proportional fairness across
the tenants.

6 PERFORMANCE EVALUATION

We evaluate our implementation of Promenade in the
Mininet 2.0 emulation testbed [10], over a k = 4 fat-
tree topology with 4 pods, 16 end hosts, and 20 switches,
with a link capacity of 1 Mbps on all the links in the
network. Mininet emulates such a fat-tree topology using
a number of lightweight Linux containers running on
the same Linux kernel. Our implementation consists of
an optimized network coding engine that performs cod-
ing in user space, as well as our proposed rate control
algorithm. We use RipL, a Python library to build our
OpenFlow controller that supports ECMP, which hashes
the 5-tuple of each flow to determine its path. We have
also implemented our OpenFlow controller to record the
path that each flow follows in the fat-tree topology. In
addition, we use a handy network bandwidth monitoring
tool called Bandwidth Monitor NG (bwm-ng) to accurately
measure the edge load at each network interface that the
flows pass through. Every second, edge load statistics
obtained by our bandwidth monitor are provided as
input to our implementation of the rate control algorithm
in Promenade.

To take full advantage of the rate controlled logical
tunnels, we use UDP as the transport protocol for all our
flows in the network, and random network coding is used
to transmit packets along multiple equal-cost paths in the
topology between a pair of VMs, henceforth referred to as
a session (since no VMs are used in the Mininet emulation
environment). The main objective in our experiments is
to evaluate and illustrate the effectiveness of both the net-
work coding engine and the rate controller in Promenade,
when it comes to reducing delays and achieving weighted
proportional fairness in an emulated fat-tree datacenter
network.

The effectiveness of random network coding. Our first
task is to evaluate the effectiveness of network coding, as
it mitigates the problem of packet reordering. We run two
sessions in Mininet, one using Promenade with random
network coding and a coding window size of 8 packets
(each with a size of 1 KB), and the other uses MPTCP,
which is installed as a transport protocol in the Linux

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

10

of iterations
10 20 30 40

F
lo

w
 r

at
e

(K
b
p
s)

0

100

200

300

400

500

Fig. 5: The convergence of flow
rates with a small group of 4 ses-
sions, each with two paths.

0 5 10
0

100

200

300

400

500

Session index

Fl
ow

 r
at

e
(K

bp
s)

Fig. 6: The converged flow rates of
the two sub-flows for each of the 10
sessions.

0 5 10
0

200

400

600

800

1000

Session index

Fl
ow

 r
at

e
(K

bp
s)

Promenade
Hedera
MPTCP

Fig. 7: The converged flow rates
of the sessions (pairs of VMs on
the end hosts) in Promenade, as
compared to both Hedera [13] and
MPTCP [6].

400 600 800 1000
0

0.5

1

Edge load

C
D

F

Empirical CDF

Promenade
Hedera

Fig. 8: The CDF of edge load statis-
tics.

kernel. Both sessions go through all four paths in the
k = 4 fat-tree topology. We have also generated random
TCP and UDP cross traffic to saturate the network, creat-
ing a queue length differential across different paths. As
shown in Table 2, with the use of network coding, both
the average packet transmission delay and the standard
deviation have been reduced as compared to MPTCP,
demonstrating the superior ability for random network
coding to mitigate the packet reordering problem.

Protocol Average
delay Std. dev.

Random network coding 3.036 ms 1.106 ms
MPTCP 3.421 ms 1.582 ms

TABLE 2: Packet transmission delays with four equal-cost paths and
cross traffic: a comparison between random network coding and MPTCP.

With our highly optimized implementation of random
network coding with both multi-threading and SIMD
acceleration, we wonder what the computational load on
modern CPUs may be. To evaluate the performance of
network coding, we ran our coding engine on a physical
server with dual dual-core Intel Xeon 5160 CPUs running
at 3.0 Ghz, with a total of 4 cores. We use a packet size
of 1 KB, and perform a series of tests to evaluate the
CPU load when the Gigabit Ethernet interface reaches its
saturation point. Table 3 have demonstrated that with
our suggested coding window sizes (4-8 packets), the
CPU load for saturating the Gigabit Ethernet interface is
acceptable.

Coding
window size

CPU load for
encoding

CPU load for
decoding

4 12.61% 13.90%
8 25.76% 27.26%
12 37.81% 40.26%
16 50.70% 52.96%

TABLE 3: The CPU load while using random network coding with various
sizes of the coding window.

Rate control algorithm: convergence. To evaluate the
effectiveness of the rate controller in Promenade, we first
illustrate how flow rates converge over time. we start
our experiment with a small group of 4 sessions, each

splitting into two sub-flows by Promenade, transmitted
along their respective equal-cost paths. Fig. 5 presents
a visual illustration on how the rates of all four flows
are able to converge after a period of 35 iterations with
our distributed algorithm, and the convergence leads to
a proportional fair allocation of rates to all four flows.

Rate control algorithm: weighted proportional fair-
ness. To show the effectiveness of Promenade on enforcing
weighted proportional fairness, we run our experiments
with a larger group of 10 sessions with equal weights,
each splitting their flows into two sub-flows, transmitted
along their respective equal-cost paths (determined by
ECMP). In our experiments, we compare with both Hed-
era [13] and MPTCP [6], for the same source-destination
pairs of end hosts in all 10 sessions. Hedera is proposed to
adaptively schedule active flows to non-conflicting paths
to maximize the aggregated network utilization without
using multiple paths, and MPTCP is the most represen-
tative multi-path transport protocol, implemented in the
Linux kernel. To make a fair comparison, though Hedera
uses a single path for its TCP flow in each session, we
ensure that it is hashed to one of the paths used by
Promenade in the corresponding session. With respect to
MPTCP, we use the same set of paths as Promenade for all
20 sub-flows in 10 sessions.

Fig. 6 shows the resulting flow rates for each sub-flow
after their convergence in Promenade, while Fig. 7 shows
the aggregate flow rates for each session in Promenade,
as compared to their counterpart in both Hedera and
MPTCP. For both figures, we can easily see that Promenade
has achieved weighted proportional fairness perfectly,
with equal shares of bandwidth allocated to flows when
they compete for a congested link. For flows with no com-
petition, they are able to saturate the link capacities along
their paths. In comparison, both Hedera and MPTCP are
able to achieve similar flow rates as Promenade when there
is no competition among the flows; yet with competing
flows, both fail to allocate the bottleneck bandwidth fairly
according to the flow weights. Observed from the edge
load CDF from all 48 edges in the network as shown in
Fig. 8, we can see that Promenade is able to utilize link

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

11

bandwidth better than Hedera, and to achieve a higher
total flow rate when all the flows are considered.

To magnify the illustration of our fairness comparison,
Fig. 9 has singled out the only two pairs of sessions
competing with each other for link capacities: Flow 1
vs. 9; as well as Flow 4 vs. 10. From this illustration, we
can easily see the major difference between Promenade and
Hedera/MPTCP with respect to fairness. The conclusion
is loud and clear: Promenade is able to outperform both
Hedera and MPTCP with respect to fairness between the
sessions.

Promenade Hedera MPTCP Promenade Hedera MPTCP
0

200

400

600

800

1000

1200

Sessions

Fl
ow

 r
at

e
(K

bp
s)

Session 1
Session 9
Session 4
Session 10

Fig. 9: In a three-way comparison with Hedera [13] and MPTCP [6], only
Promenade has achieved weighted proportional fairness.

7 CONCLUDING REMARKS

To utilize the bi-section bandwidth and improve the flow
rates between a pair of VMs in a datacenter network,
it is best to transmit the packets along multiple equal-
cost paths, on which packets may be reordered. In this
paper, we propose Promenade, with the use of random
network coding to mitigate the adverse effects from
packet reordering, as well as a new rate control protocol
that converges to weighted proportional fairness across
different tenants in the network. Rather than proposing
a heuristic without a theoretical foundation, the upshot
of our new rate control protocol is that it is based on
our formulation of an optimization problem, accounting
for the tenant requirements in cloud datacenters, that can
be solved by a distributed algorithm using the primal-
dual method. Promenade is topology-agnostic and does
not require hardware changes, and is to be deployed
in the shim layers installed on all the physical servers,
intercepting flows from the applications and transmitting
them along multiple paths in a coded fashion. Despite
the fact that the general techniques of random network
coding and rate allocation are well-known, we are the first
to design and implement a protocol that integrates them
in such an optimal and practical fashion, to fully exploit
their advantages in improving flow rates and meeting
fairness requirements of tenants. Our experiments on the
Mininet emulation testbed have validated the effective-
ness of the Promenade protocol.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity
Data Center Network Architecture,” in Proc. ACM SIGCOMM,
2008.

[2] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992, IETF, 2000.

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The Nature of Data Center Traffic: Measurements & Analysis,”
in Proc. 9th ACM SIGCOMM conference on Internet Measurement
Conference (IMC), 2009, pp. 202–208.

[4] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the
Impact of Packet Spraying in Data Center Networks,” in Proc. IEEE
INFOCOM, 2013.

[5] M. Laor and L. Gendel, “The Effect of Packet Reordering in A
Backbone Link on Application Throughput,” IEEE Network, vol. 16,
no. 5, pp. 28–36, 2002.

[6] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness
with Multipath TCP,” in Proc. ACM SIGCOMM, 2011, pp. 266–277.

[7] S. Barre, C. Paasch, and O. Bonaventure, “MultiPath TCP: From
Theory to Practice,” in Proc. IFIP Networking, 2011, pp. 266–277.

[8] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc.
Allerton Conference on Communications, Control and Computing, 2003.

[9] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, “A
Random Linear Network Coding Approach to Multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[10] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments Using Container-Based Em-
ulation,” in Proc. 8th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2012.

[11] L. Fu, X. Wang, and P. Kumar, “Are We Connected? Optimal
Determination of Source-Destination Connectivity in Random Net-
works,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp.
751–764, 2017.

[12] L. Fu, X. Fu, Z. Xu, Q. Peng, X. Wang, and S. Lu, “Determining
Source-Destination Connectivity in Uncertain Networks: Modeling
and Solutions,” IEEE/ACM Transactions on Networking, vol. 25, no. 6,
pp. 3237–3252, 2017.

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data Center
Networks,” in Proc. 7th USENIX NSDI, 2010.

[14] A. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-Overhead
Datacenter Traffic Management using End-Host-Based Elephant
Detection,” in Proc. IEEE INFOCOM, 2011, pp. 1629–1637.

[15] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“Towards A Next Generation Data Center Architecture: Scalability
and Commoditization,” in Proc. ACM workshop on Programmable
Routers for Extensible Services of Tomorrow (PERSTO), 2008, pp. 57–
62.

[16] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in Proc. 9th
USENIX NSDI, 2012, pp. 16–29.

[17] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec,
“MPTCP is Not Pareto-Optimal: Performance Issues and a Possible
Solution,” in Proc. ACM CoNEXT, 2012, pp. 1–12.

[18] S. Barré, O. Bonaventure, C. Raiciu, and M. Handley, “Experiment-
ing with Multipath TCP,” in Proc. ACM SIGCOMM, 2010, pp. 443–
444.

[19] B. Chihani and D. Collange, “A Multipath Tranport Protocol for
Future Internet,” in Proc. International Conference on Networking and
Future Internet (ICNFI), 2011.

[20] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-Packet Load-Balanced, Low-Latency
Routing for Clos-Based Data Center Networks,” in Proc. ACM
Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2013.

[21] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat, “WCMP: Weighted Cost Multipathing for Im-
proved Fairness in Data Centers,” in Proc. EuroSys, 2014.

[22] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al.,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2915638, IEEE
Transactions on Parallel and Distributed Systems

12

“CONGA: Distributed Congestion-Aware Load Balancing for Dat-
acenters,” in Proc. ACM SIGCOMM, 2014.

[23] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-Based Load Balancing for Fast Datacenter Net-
works,” in Proc. ACM SIGCOMM, 2015.

[24] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and
A. Firoozshahian, “DRILL: Micro Load Balancing for Low-latency
Data Center Networks,” in Proc. ACM SIGCOMM, 2017.

[25] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, “NetShare:
Virtualizing Data Center Networks across Services,” University of
California, San Deigo, Tech. Rep. CS2010-0957, 2010.

[26] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the Data Center Network,” in Proc. 8th USENIX NSDI, 2011, pp.
10–23.

[27] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica, “FairCloud: Sharing the Network in Cloud
Computing,” in Proc. ACM SIGCOMM, 2012, pp. 187–198.

[28] J. Guo, F. Liu, D. Zeng, J. Lui, and H. Jin, “A Cooperative Game
Based Allocation for Sharing Data Center Networks,” in Proc. IEEE
INFOCOM, 2013.

[29] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C. Lui, “Falloc:
Fair Network Bandwidth Allocation in IaaS Datacenters via A
Bargaining Game Approach,” in Proc. IEEE ICNP, 2013.

[30] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim,
and A. Greenberg, “EyeQ: Practical Network Performance Isolation
at the Edge,” in Proc. USENIX Networked Systems Design and
Implementation (NSDI), 2013.

[31] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. O’Shea, “Chatty Tenants and the Cloud Network Sharing Prob-
lem,” in Proc. USENIX Networked Systems Design and Implementation
(NSDI), 2013.

[32] L. Popa, P. Yalagandula, S. Banerjee, and J. Mogul, “ElasticSwitch:
Practical Work-Conserving Bandwidth Guarantees for Cloud Com-
puting,” in Proc. ACM SIGCOMM, 2013.

[33] L. Chen, Y. Feng, B. Li, and B. Li, “Towards Performance-Centric
Fairness in Datacenter Networks,” in Proc. IEEE INFOCOM, 2014.

[34] L. Chen, B. Li, and B. Li, “Barrier-Aware Max-Min Fair Bandwidth
Sharing and Path Selection in Datacenter Networks,” in Proc. IEEE
International Conference on Cloud Engineering (IC2E), 2016.

[35] ——, “Surviving Failures with Performance-Centric Bandwidth
Allocation in Private Datacenters,” in Proc. IEEE International Con-
ference on Cloud Engineering (IC2E), 2016.

[36] H. Shojania and B. Li, “Parallelized Progressive Network Coding
With Hardware Acceleration,” in Proc. IEEE International Workshop
on Quality of Service (IWQoS), 2007.

[37] J. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network Coding Meets TCP: Theory and
Implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
2011.

[38] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
Data Center Traffic Characteristics,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 1, pp. 92–99, 2010.

[39] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European
transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[40] F. Kelly, A. Maulloo, and D. Tan, “Rate Control for Communication
Networks: Shadow Prices, Proportioanl Fairness and Stability,” J.
Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, 1998.

[41] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[42] S.-W. Cho and A. Goel, “Pricing for Fairness: Distributed Resource
Allocation for Multiple Objectives,” Algorithmica, vol. 57, no. 4, pp.
873–892, 2010.

[43] OpenFlow Switch Specification 1.3.2. [Online].
Available: https://www.opennetworking.org/sdn-resources/
onf-specifications/openflow

Li Chen is an assistant professor at the Depart-
ment of Computer Science, School of Computing
and Informatics at the University of Louisiana at
Lafayette. She received her Ph.D. degree from
the Department of Electrical and Computer Engi-
neering at the University of Toronto in July 2018,
where she also received her M.A.Sc. degree in
January 2015. She received her B.Engr. degree
from the Department of Computer Science and
Technology, Huazhong University of Science and
Technology, China, in 2012. Her research inter-

ests include big data analytics, machine learning systems, cloud com-
puting, datacenter networking, resource allocation and scheduling in
networked systems.

Yuan Feng received her B.Engr. from the School
of Telecommunications, Xidian University, Xi’an,
China, in 2008, and both her M.A.Sc. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Toronto,
Canada, in 2010, and 2013, respectively. Her
research interests include optimization and de-
sign of large- scale distributed systems and cloud
services.

Baochun Li received his Ph.D. degree from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, in 2000.
Since then, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Bell Canada Endowed
Chair in Computer Engineering since August
2005. His research interests include large-scale
distributed systems, cloud computing, peer-to-
peer networks, applications of network coding,

and wireless networks. He is a member of the ACM and a Fellow of the
IEEE.

Bo Li is a Professor in the Department of Com-
puter Science and Engineering, Hong Kong Uni-
versity of Science and Technology. He holds the
Cheung Kong Chair Professor in Shanghai Jiao
Tong University. Prior to that, he was with IBM
Networking System Division, Research Triangle
Park, North Carolina. He was an adjunct re-
searcher at Microsoft Research Asia-MSRA and
was a visiting scientist at Microsoft Advanced
Technology Center (ATC). He has been a tech-
nical advisor for ChinaCache Corp. (NASDAQ

CCIH) since 2007. He is an adjunct professor in Huazhong University
of Science and Technology, Wuhan, China. His recent research interests
include: large-scale content distribution in the Internet, Peer-to-Peer me-
dia streaming, the Internet topology, cloud computing, green computing
and communications. He is a Fellow of IEEE for “contribution to content
distributions via the Internet”. He received the Young Investigator Award
from the National Natural Science Foundation of China (NSFC) in 2004.
He served as a Distinguished Lecturer for IEEE Communications Society
(2006-2007). He was a co-recipient for three Best Paper Awards from
IEEE, and the Best System Track Paper in ACM Multimedia (2009).

