
1

Optimizing Coflow Completion Times
with Utility Max-Min Fairness

Li Chen1 Wei Cui1 Baochun Li1 Bo Li2
1University of Toronto

2The Hong Kong University of Science and Technology

Abstract—In data parallel frameworks such as MapReduce
and Spark, a coflow represents a set of network flows used to
transfer intermediate data between successive computation stages
for a job. The completion time of a job is then determined by the
collective behavior of such a coflow, rather than any individual
flow within, and influenced by the amount of network bandwidth
allocated to it. Different jobs in a shared cluster have different
degrees of sensitivity to their completion times, modeled by their
respective utility functions. In this paper, we focus on the design
and implementation of a new utility optimal scheduler across
competing coflows, in order to provide differential treatment to
coflows with different degrees of sensitivity, yet still satisfying
max-min fairness across these coflows. Though this objective can
be formulated as a lexicographical maximization problem, it is
challenging to solve in practice due to its inherent multi-objective
and discrete nature. To address this challenge, we first divide the
problem into iterative steps of single-objective subproblems; and
in each of these steps, we then perform a series of transformations
to obtain an equivalent linear programming (LP) problem, which
can be efficiently solved in practice. To demonstrate that our
solutions are practically feasible, we have implemented it as
a real-world coflow scheduler based on the Varys open-source
framework to evaluate its effectiveness.

I. INTRODUCTION

Thanks to the exponential growth of data that needs to
be processed in cloud datacenters, data parallel frameworks,
such as MapReduce [1] and Spark [2], have emerged as
foundations of cloud computing. In data parallel frameworks, a
job typically proceeds in consecutive computation stages; and
each of these stages consists of a number of computation tasks
that are processed in parallel. Before the next computation
stage may begin, multiple network flows need to be initiated
in parallel to transfer intermediate data from the preceding
stage.

Due to the volume of intermediate data to be transferred,
such network transfers across stages may have a significant im-
pact on the performance of typical jobs in big data processing.
It has been shown that they usually account for more than 50%
of entire job completion times [3]. Since a network transfer is
not considered complete till all of its constituent flows have
finished, it is the collective behavior of all of these flows that
matters, rather the individual behavior of each flow. These

Email: {lchen,wcui,bli}@ece.utoronto.ca; bli@cse.ust.hk. The co-authors
would like to acknowledge the gracious research support from the NSERC
Discovery Research Program and the SAVI NSERC Strategic Networks Grant
at the University of Toronto, the grants from RGC under the contracts 615613
and 16211715, and the grant from NSFC and Guangdong joint project under
the contract U1301253.

flows are hence referred to as a coflow [4]. In a MapReduce
job, for example, a coflow consists of all the flows in the
shuffle phase, which transfers intermediate data from mapper
tasks to reducer tasks.

As the datacenter network is shared by active coflows from
multiple competing jobs, it is critical to schedule these coflows
efficiently and fairly. Network resources should be allocated
at the level of coflows — rather than individual flows — in
order to achieve the best possible performance with respect to
job completion times. However, due to their inherent nature,
different jobs have widely diverging requirements with respect
to their completion times: an interactive query in a web
application should not be similarly treated as a background
job for data analytics. Intuitively, we may use different utility
functions [5] to model such a diverging range of sensitivity to
job completion times.

Existing research efforts on coflow scheduling focused on
minimizing coflow completion times [6]–[8] and meeting
coflow deadlines [6]. All coflows were treated identically as
equal citizens in a datacenter, and the average coflow comple-
tition time was to be minimized. In this paper, we depart from
such conventional wisdom, and argue that more time-sensitive
coflows should be allocated more network resources, allowing
them to complete earlier, achieving a higher utility based on
their utility functions. Of course, such differential treatment
may negatively affect the performance of background jobs
that tolerate longer completion times. Therefore, from a global
perspective and in the general case, we will need to allocate
resources optimally across all concurrent coflows, such that
they will achieve their best posible utilities, and max-min
fairness across coflows can be achieved.

Though the problem of maximizing the utilities achieved by
each of the coflows can be formally formulated as a lexico-
graphical maximization problem, there are unique challenges
that make it difficult to solve this problem with multiple
objectives. Scheduling among coflows over a discretized time
domain is essentially an integer optimization problem, which
in general is NP-hard [9]. In addition, to accommodate a
diverse set of practical utility functions (such as a sigmoid
function), we do not assume that these utility functions are
convex or concave; standard convex optimization techniques
are therefore not directly applicable.

To address these challenges, we first consider the subprob-
lem of maximizing the worst utility among all the concur-
rent coflows, which turns out to have a totally unimodular
coefficient matrix for linear constraints, based on an in-depth

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE 1755

2

investigation of the problem structure. Such a nice property
guarantees that the extreme points in a feasible solution
polyhedron are integers. Moreover, with several steps of non-
trivial transformations, we show that the optimal solution to
the original problem can be obtained by solving an equivalent
problem with a separable convex objective. With these struc-
tures identified, we can then apply the λ-technique and linear
relaxation to obtain a linear programming (LP) problem, which
is guaranteed to have the same solution to the original problem.
As a result, any LP solver can be used for maximizing the
utility in each coflow, and to efficiently compute the overall
scheduling decisions that achieve the optimal coflow utilities
with max-min fairness.

We proceed to design and implement a real-world coflow
scheduler that enforces our utility optimal scheduling policy
in the Varys [6] coflow scheduling framework. Experimen-
tal results demonstrate the effectiveness of our scheduler in
optimizing coflow utilities. Compared with the state-of-the-
art coflow scheduler which is utility agnostic, our scheduler
achieves significant utility improvement, and thus better satisfy
job requirements.

The remainder of this paper is organized as follows. We
motivate our utility optimal scheduling problem with convinc-
ing examples in Sec. II, and formulate it as a lexicographical
maximization problem in Sec. III. Starting from the subprob-
lem of maximizing the worst coflow utility, we transfer the
problem to an equivalent LP problem, with the main tech-
niques presented in Sec. IV. We then design a new algorithm
to obtain the optimal solution for the original problem in
Sec. V. Our implementation details and experimental results
are presented in Sec. VI to demonstrate the practicality and
effectiveness of our solution. Finally we differentiate our work
from related research efforts in Sec. VII and conclude the
paper in Sec. VIII.

II. BACKGROUND AND MOTIVATION

A. Completion-Time-Dependent Utility
In a shared datacenter cluster, different jobs may have

different sensitivity to their completion times. Such differences
can be reflected in their evaluation of completion times as
utility values. For example, a user-interactive query job is
critical to its completion time, or probably associated with
a hard deadline. Failing to complete the job by its target time
would result in a small or zero value of utility. In contrast,
a background job for data analytics may be completion-
time-insensitive, which means that as long as it successfully
generates the final result, it would obtain a fixed value of
utility, regardless of the time when it completes.

Such a diverging range of sensitivity can be captured by
different utility functions that are dependent upon completion
times [5]. As shown in Fig. 1, the two solid lines represent
the utility functions for completion-time-critical jobs, which
decrease sharply to zero after the target completion time. On
the contrary, the utility value of a completion-time-insensitive
job keeps the same along with time, represented by the
horizontal line with star markers. In between, the two dashed
lines decrease gradually with time, which characterize utilities
of jobs that are completion-time-sensitive.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Completion Time (CT)

U
ti

li
ty

CT−critical

CT−sensitive

CT−insensitive

Fig. 1: Completion-time-dependent utility functions.

The completion time of a job depends on both the computa-
tion time and the coflow completion time, i.e., the completion
time of the slowest flow. As the compution time is predictable
due to mature techniques in allocation and isolation of comput-
ing resources, the job utility function can be easily translated
to the coflow-completion-time dependent utility function. For
convenience, the value of this function is referred to as the
coflow utility, which is to be optimized in our network resource
allocation.

B. Network Shared by Coflows

As a common practice, we consider a congestion-free
datacenter network, which can be abstracted as a giant non-
blocking switch (e.g., [6], [7], [10], [11]) that interconnects
all the machines. This is reasonable and practical, thanks to
the recent efforts in full bisection bandwidth topologies (e.g.,
[12], [13]). In such a switch model, as illustrated in Fig. 2, each
ingress port corresponds to the outgoing link of the connected
machine, where the data is transferred from the machine to the
network, and each egress port represents the incoming link of
the connected machine which receives data from the network.

11

2 2

33

22

31

3

Machine

Outgoing Links
Datacenter Fabric

Non-blocking
Switch

Machine

Incoming Links

Ingress

Ports
Egress

Ports

.

.

.

Fig. 2: Coflows to be scheduled through a 3× 3 datacenter fabric.

In the example shown in Fig. 2, 3 machines are intercon-
nected by a non-blocking switch. Coflow C1 and C2 arrive
at time 0, of which the flows are represented by the black
and grey blocks in the figure, respectively. C1 has 3 flows
transferring 3, 2 and 1 units of data; C2 has 2 flows with sizes
of 2 and 3. The virtual input queues at the ingress ports are
used for convenience to illustrate the source and destination of
these flows. For example, at machine 1, a flow of C1 transfers

1756

3

3 units of data to machine 2; at machine 2, flows of C1 and
C2 each transfer 2 units of data to machine 3.

C. Utility Optimal Scheduling

The typical objective of existing coflow scheduling mech-
anisms was to minimize the average coflow completion time
(CCT) or to meet coflow deadlines, and they did not account
for different sensitivity levels to completion times. To better
satisfy job requirements, we wish to optimize utilities achieved
across all the competing coflows to achieve max-min fairness.

Fig. 4 illustrates two schedules of coflows C1 and C2 afore-
mentioned. Assume that C1 is completion-time-insensitive,
which achieves a constant utility as long as it completes, while
C2 is completion-time-sensitive, with its utility decreasing
gradually with increasing completion times. A scheduler that
tries to minimize the average CCT would choose either of
these schedules, as both of them are optimal, making two
coflows complete in 3 and 4 time units. However, when coflow
utilities are to be optimized, Schedule 2 is the only optimal
one, because it outperforms Schedule 1 with the same utility
for C1 and better utility for C2. In this way, the awareness of
coflow utility results in the optimal schedule that best satisfies
coflow requirements.

Further, we consider a more specific example shown in
Fig. 3 for utility optimal schedule among coflows C1, C2 and
C3. As shown in Fig. 3(a), the 2 flows of C1, corresponding to
the black blocks, transfer 3 and 1 units of data respectively; C2
has 3 flows (grey) transferring 1, 2 and 2 units of data; C3 has
3 flows (white) transferring 1 unit of data each. The utilities of
coflows achieved at different completion times are presented
in Fig. 3(b), where we can see that C2 is the most sensitive
to its completion times, while C3 is the least sensitive.

Fig. 3(c) and Fig. 3(d), respectively, present the sched-
ule that minimizes the average CCT, and the schedule that
optimizes coflow utilities with max-min fairness. Fig. 3(c)
achieves 5, 3 and 1 units of coflow completion times, better
than Fig. 3(d) with 5, 2 and 3 when the average CCT is
considered. However, with respect to coflow utilities, Fig. 3(c)
obtains the utility values of 5, 4 and 9, while Fig. 3(d) achieves
5, 7 and 8. Clearly, the schedule in Fig. 3(d) is utility optimal,
with max-min fairness achieved among coflow utilities.

Note that for simplicity of illustration, there is no contention
on machine incoming links in these examples. In general,
however, both outgoing and incoming links may experience
contention, and the utility optimal schedule can be more
effective.

III. MODEL AND FORMULATION

We consider a cloud cluster with a set of servers denoted by
N = {1, 2, · · · , N}, which are shared by multiple data parallel
jobs. A set of coflows K = {1, 2, · · · ,K} are submitted by
these concurrently running jobs, to transfer the intermediate
data through the network in their communication stages.

As mentioned in the previous section, the network is con-
sidered as a non-blocking switch, thus our coflow schedule
takes place at its ingress and egress ports, corresponding to
the incoming and outgoing links at each server. For simplicity,

we assume that at each time slot t ∈ T = {1, 2, · · · , T},
each server can transmit one unit of data through its outgoing
(egress) link, and receive one unit of data through its incoming
(ingress) link.

A flow that belongs to coflow k ∈ K is represented by
Dk
i,j , i, j ∈ N , which specifies that it transfers Dk

i,j units of
data from server i to j. Coflow k completes when its last flow
finishes at time t ∈ T , and achieves a utility of utk which is
determined by its non-increasing utility function Uk(t).

As server links are shared by flows from multiple coflows,
we would like to obtain a utility optimal coflow schedule with-
out exceeding link capacities. To be particular, our objective is
to maximize the worst utility achieved among all the coflows,
then maximize the next worst utility without impacting the
previous one, which is executed repeatedly until utilities have
been optimized for all the coflows. Such an objective can
be rigorously formulated as a lexicographical maximization
problem, with the following definitions as the basis.

Definition 1: Let 〈uuu〉k denote the k-th (1 ≤ k ≤ K) smallest
element of uuu ∈ ZK , implying 〈uuu〉1 ≤ 〈uuu〉2 ≤ · · · ≤ 〈uuu〉K .
Intuitively, 〈u〉〈u〉〈u〉 = (〈uuu〉1, 〈uuu〉2, · · · , 〈uuu〉K) represents the non-
decreasingly sorted version of uuu.

Definition 2: For any ααα ∈ ZK and βββ ∈ ZK , if 〈ααα〉1 >
〈βββ〉1 or ∃k ∈ {2, 3, · · · ,K} such that 〈ααα〉k > 〈βββ〉k and
〈ααα〉i = 〈βββ〉i,∀i ∈ {1, · · · , k − 1}, then ααα is lexicograph-
ically greater than βββ, represented as ααα � βββ. Similarly, if
〈ααα〉k = 〈βββ〉k,∀k ∈ {1, 2, · · · ,K} or ααα � βββ, then ααα is
lexicographically no smaller than βββ, represented as ααα � βββ.

Definition 3: lexmax
xxx

fff(xxx) represents the lexicographical

maximization of the vector fff ∈ RM , which consists of M
objective functions of xxx. To be particular, the optimal solution
xxx∗ ∈ RK achieves the optimal fff∗, in the sense that fff∗ =
fff(xxx∗) � fff(xxx),∀xxx ∈ RK .

Let xk,ti,j denote the number of data units of coflow k that is
transferred from server i to j at time slot t. We are now ready
to formulate our utility optimal coflow scheduling as follows:

lexmax
xxx

fff = (U1(τ1),U2(τ2), · · · ,UK(τK)) (1)

s.t. τk = max{t ∈ T |xk,ti,j > 0,∀i, j},∀k ∈ K (2)∑
k∈K

∑
j∈N

xk,ti,j ≤ 1, ∀i ∈ N , ∀t ∈ T (3)∑
k∈K

∑
i∈N

xk,ti,j ≤ 1, ∀j ∈ N , ∀t ∈ T (4)∑
t∈T

xk,ti,j = Dk
i,j , ∀i, j ∈ N , ∀k ∈ K (5)

xk,ti,j ∈ Z+, ∀i, j ∈ N , ∀t ∈ T , ∀k ∈ K (6)

where τk represents the completion time of coflow k, which
is the time slot when the last unit of data that belongs
to k is transmitted, according to constraint (2). Constraint
(3) indicates that the total number of data units transmitted
through the outgoing link of server i at time slot t does not
exceed the link capacity. Similarly, constraint (4) specifies that
each incoming link transmits at most 1 unit of data per time
slot. Constraint (5) implies the total amount of data units to
be transmitted for each flow.

1757

4

1

2

3

2

2

Machine

Outgoing Links

11 3

11

1

(a) Input
Time0 1 2 3 4

C1

C3

C2

5

Coflow Utilities

9 8 7 6 5

9 7 4 1 0

9 8.5 8 7.5 7

(b) Coflow utilities

3L1

L2

L3 2

2

1

1

Time0 1 2 3 4

C1 ends

1

1 1

C2 ends

C3 ends

5

(c) Schedule to minimize CCT

3L1

L2

L3 2

2

1

1

Time0 1 2 3 4

C1 ends

1

11

C2 ends

C3 ends

5

(d) Schedule to maximize utilities

Fig. 3: Utility optimal schedule among three coflows.

3

Machine

Outgoing Links

L1

L2

L3 3

2

1

2

Time0 1 2 3 4

3

Machine

Outgoing Links

L1

L2

L3 3

2

1

2

Time0 1 2 3 4

C1 ends

C2 ends

C2 ends

C1 ends

Schedule 1 Schedule 2

Fig. 4: Two possible schedules for coflows C1 and C2. They are the
same with respect to the average coflow completion time, but they
achieve different coflow utilities.

The objective is a vector fff ∈ RK with K elements, each
standing for the utility of a particular coflow k ∈ K. According
to the previous definitions, the optimal fff∗ is lexicographically
no smaller than any fff obtained with a feasible schedule, which
means that when sorting them in a non-descending order, if
their k-th smallest element satisfies 〈fff∗〉k′ = 〈fff〉k′ ,∀k′ < k
and 〈fff∗〉k 6= 〈fff〉k, then we have 〈fff∗〉k > 〈fff〉k. This implies
that the first smallest element of fff∗, i.e., the worst coflow
utility, is the maximum among all fff . Then among all fff with
the same worst utility, the second worst utility in fff∗ is the
maximum, and so on. In this way, solving this problem would
result in an optimal schedule vector xxx∗, with which all the
coflow utilities are maximized.

IV. OPTIMIZING THE WORST UTILITY AMONG
CONCURRENT COFLOWS

As interpreted in the previous section, Problem (1) is a
vector optimization with multiple objectives. In this section,
we consider the single-objective subproblem of optimizing the
worst coflow utility as follows:

max
xxx

min
k∈K

(Uk(τk)) (7)

s.t. Constraints (2), (3), (4), (5) and (6).

which is the primary step for solving the original problem, to
be elaborated in the next section.

This problem is an integer programming problem with a
nonlinear constraint (2). With an in-depth investigation of the
problem structure, we transform Problem (7) into an equivalent
linear programming (LP) problem that can be solved efficiently
to obtain the optimal schedule vector xxx. To be more specific,

the features of separable convex objective and totally unimodu-
lar linear constraints are utilized in our transformation, which
involves three major steps to be elaborated in the following
subsections.

A. Totally Unimodular Linear Constraints

We first eliminate the nonlinear constraint (2) by expressing
the utility of coflow k ∈ K directly with its scheduling
variables xk,ti,j ,∀i, j ∈ N ,∀t ∈ T , rather than its completion
time τk.

As previously defined, utk is the utility value achieved by
coflow k, if it completes at time slot t, i.e., utk = Uk(t). Since
the utility function is non-increasing, we have utk ≥ ut

′

k for t <
t′. Let φ(xk,ti,j) denote an indicator function, so that φ(xk,ti,j) =
1 if xk,ti,j > 0, and φ(xk,ti,j) = 0, otherwise. Hence, the utility
of coflow k can be represented as mini,j,t,xk,t

i,j 6=0 u
t
kφ(x

k,t
i,j),

which correctly indicates that the coflow utility is the smallest
utility value achieved at the maximum t that satisfies xk,ti,j 6= 0,
i.e., the time slot when the last flow of k completes. Therefore,
Problem (7) can be transformed as follows with the nonlinear
constraint (2) eliminated:

max
xxx

min
k∈K

(min
i,j,t,xk,t

i,j 6=0
utkφ(x

k,t
i,j)) (8)

s.t. Constraints (3), (4), (5) and (6).

Now we investigate the coefficient matrix of linear con-
straints (3) (4) and (5). An m-by-n matrix is totally unimod-
ular [9], if it satisfies two conditions: 1) any of its elements
belongs to {−1, 0, 1}; 2) any row subset R ⊂ {1, 2, · · · ,m}
can be divided into two disjoint sets, R1 and R2, such that
|
∑
i∈R1

aij −
∑
i∈R2

aij | ≤ 1,∀j ∈ {1, 2, · · · , n}.
Lemma 1: The coefficients of constraints (3), (4) and (5)

form a totally unimodular matrix.
Proof: Let Am×n denote the coefficient matrix of all the

linear constraints (3), (4) and (5), where m = 2NT +KN2,
representing the total number of the constraints, and n =
KTN2, denoting the dimension of the variable xxx.

It is obvious that any element of Am×n is either 0 or
1, satisfying the first condition. For any row subset R ⊂
{1, 2, · · · ,m}, to check the second condition, we consider the
following cases:

Case I: If Q1 = {1, 2, · · · , NT} ⊆ R, then we can
group Q1 into R1 and R − Q1 into R2. In this way, ∀j ∈
{1, 2, · · · , n}, we have

∑
i∈R1

aij = 1, and 0 ≤
∑
i∈R2

aij ≤
2, hence, |

∑
i∈R1

aij−
∑
i∈R2

aij | ≤ 1, satisfying the second

1758

5

condition. In a similar vein, if Q2 = {NT + 1, NT +
2, · · · , 2NT} ⊆ R, then we can group Q2 into R1 and R−Q2

into R2; if Q3 = {2NT+1, 2NT+2, · · · , 2NT+KN2} ⊆ R,
then we can group Q3 into R1 and R−Q3 into R2.

Case II: If Q1 6⊆ R and Q2 6⊆ R and Q3 6⊆ R , we can
divide R with the following steps. Initialize R′ = R as the
set of ungrouped rows. First, for any column j from 1 to
n, if

∑
i∈R aij = 2, ai1j = ai2j = 1, i.e., there are two

elements with value 1, we separate rows i1 and i2 into two
sets and remove them from R′. To be specific, i1 is grouped
into R1 if

∑
i∈(R1+{i1}) ail 6= 3, ∀l ∈ {1, 2, · · · , j − 1};

otherwise, i1 is added to R2. Second, for any column j from
1 to n, if

∑
i∈R aij = 3, ai1j = ai2j = ai3j = 1 and

if i1 ∈ R′ or i2 ∈ R′ or i3 ∈ R′, add the ungrouped
row(s) so that i1, i2 and i3 are not in the same subset, and
remove them from R′. Finally, add the remaining rows in
R′ to any of the subset. In this way, we can guarantee
that for any column j ∈ {1, 2, · · · , n}, if

∑
i∈R aij = 2,

then
∑
i∈R1

aij =
∑
i∈R2

aij = 1; if
∑
i∈R aij = 3, then

1 ≤
∑
i∈R1

aij ≤ 2 and 1 ≤
∑
i∈R2

aij ≤ 2. Therefore, the
second condition is satisfied.

In summary, we have shown that both conditions for total
unimodularity are satisfied, thus the coefficient matrix Am×n
is totally unimodular.

B. Separable Convex Objective

In this subsection, we will show that the optimal solution
for Problem (8) can be obtained by solving a problem with a
separable convex objective function, which is represented as
a summation of convex functions with respect to each single
variable xk,ti,j .

We first show that the optimal solution of Problem (8) can
be obtained by solving the following problem:

lexmax
xxx

ggg = (u11φ(x
1,1
1,1), · · · , utkφ(x

k,t
i,j), · · · , u

T
Kφ(x

K,T
N,N))

s.t. Constraints (3), (4), (5) and (6).

where ggg is a vector with the dimension of M = |ggg| = KTN2.
For any feasible xxx, as the total number of data units to
be transferred is fixed, it is intuitive that the total number
of xk,ti,j that equals to 0 is also fixed, denoted by p. Thus,
any ggg achieved by a feasible xxx has at least p elements of
value 0. Consider the optimal ggg∗ and any feasible ggg, we
have 〈ggg∗〉k = 〈ggg〉k = 0, ∀k ≤ p, and 〈ggg∗〉p+1 ≥ 〈ggg〉p+1,
where 〈ggg∗〉p+1 = mini,j,t,xk,t

i,j 6=0 utk, representing the worst
coflow utility. This indicates that ggg∗ achieves the maximal
worst coflow utility. Therefore, the optimal schedule xxx∗ which
gives ggg∗ is also the optimal solution for Problem (8).

For ease of expression, we use X to represent the set of
feasible xxx that satisfies constraints (3), (4), (5) and (6). We then
transform the problem lexmaxxxx∈X ggg to an equivalent problem
with a separable convex objective, based on the following
lemmas.

Lemma 2: lexmaxxxx∈X ggg ⇐⇒ lexminxxx∈X −g−g−g.
Proof: We first define the lexicographical order that is

opposite to the direction in Definition 2 and 3. For a vector
ααα ∈ ZK , 〈α〉′〈α〉′〈α〉′ = (〈ααα〉K , 〈ααα〉K−1, · · · , 〈ααα〉1) represents the
sorted version (in non-ascending order) of ααα. For any ααα,βββ ∈

ZK , if the first non-zero element of 〈α〉′〈α〉′〈α〉′−〈β〉′〈β〉′〈β〉′ is negative, then
ααα is lexicographically smaller than βββ, represented as ααα ≺ βββ. If
ααα ≺ βββ or 〈α〉′〈α〉′〈α〉′ = 〈β〉′〈β〉′〈β〉′, then ααα is lexicographically no greater
than βββ, represented as ααα � βββ. Note that ααα � βββ does not
imply βββ � ααα, or vice versa. The lexicographical minimization
of fff(xxx) over xxx ∈ ZK , represented as lexmin

xxx
fff(xxx), is to find

the optimal xxx∗ that satisfies fff∗ = fff(xxx∗) � fff(xxx),∀xxx ∈ RK .
Now we consider the optimal xxx∗ to lexmaxxxx∈X ggg.

According to Definition 3, ggg(xxx∗) � ggg(xxx), ∀xxx ∈
X , which implies that the first non-zero element of
〈〈〈ggg(xxx∗)〉〉〉 − 〈〈〈ggg(xxx)〉〉〉 is positive, recalling that 〈〈〈ggg(xxx)〉〉〉 =
(〈ggg(xxx)〉1, 〈ggg(xxx)〉2, · · · , 〈ggg(xxx)〉K). Since 〈ggg(xxx)〉1 is the min-
imum element in ggg(xxx), it is obvious that −〈ggg(xxx)〉1 is the
maximum element in −g−g−g(xxx), i.e., 〈−g−g−g(xxx)〉K = −〈ggg(xxx)〉1.
The same applies to all the elements in ggg(xxx), which gives
〈〈〈 −g−g−g (xxx)〉〉〉′ = (〈−g−g−g(xxx)〉K , 〈−g−g−g(xxx)〉K−1, · · · , 〈−g−g−g(xxx)〉1) =
(−〈ggg(xxx)〉1,−〈ggg(xxx)〉2, · · · ,−〈ggg(xxx)〉K) = −〈〈〈ggg(xxx)〉〉〉. Hence, we
have 〈〈〈 −g−g−g (xxx∗)〉〉〉′ − 〈〈〈−g−g−g (xxx)〉〉〉′ = −(〈〈〈ggg(xxx∗)〉〉〉 − 〈〈〈ggg(xxx)〉〉〉), of
which the first non-zero element is negative, indicating that
−g−g−g(xxx∗) �−g−g−g(xxx), ∀xxx ∈ X .

As such, we have proved that

ggg(xxx∗) � ggg(xxx) ⇐⇒ −g−g−g(xxx∗) �−g−g−g(xxx), ∀xxx ∈ X ,

and thus the lemma holds obviously with the definitions of
lexmaxxxx∈X ggg and lexminxxx∈X −g−g−g.

Let ϕ(ggg) define a function of ggg:

ϕ(ggg) =

|ggg|∑
m=1

|ggg|gm =
M∑
m=1

Mgm

where gm is the m-th element of ggg.
Lemma 3: ϕ(·) preserves the order of lexicographically no

greater (�), i.e., −g−g−g(xxx∗) � −g−g−g(xxx) ⇐⇒ ϕ(−g−g−g(xxx∗)) ≤
ϕ(−g−g−g(xxx)).

Proof: We first consider ααα,βββ ∈ ZK that satisfies ααα ≺ βββ.
If we use the integer k̃(1 ≤ k̃ ≤ K) to represent the first
non-zero element of 〈α〉′〈α〉′〈α〉′ − 〈β〉′〈β〉′〈β〉′, we have 〈ααα〉k̃ < 〈βββ〉k̃.

If k̃ = K, assume 〈ααα〉K = n, then 〈βββ〉K ≥ n+ 1.

ϕ(ααα) =
K∑
k=1

K〈ααα〉k = K〈ααα〉K +
K−1∑
k=1

K〈ααα〉k

≤ K〈ααα〉K + (K − 1)K〈ααα〉K = K ·K〈ααα〉K = Kn+1,

where the inequality holds because 〈ααα〉K ≥ 〈ααα〉k,∀1 ≤ k ≤
K − 1.

ϕ(βββ) =
K∑
k=1

K〈βββ〉k = K〈βββ〉K +
K−1∑
k=1

K〈βββ〉k

> K〈βββ〉K + (K − 1) · 0 ≥ Kn+1.

Hence, we have ϕ(ααα) < ϕ(βββ) for the case of k̃ = K.
If k̃ < K, we have 〈ααα〉k = 〈βββ〉k,∀k̃ ≤ k ≤ K and 〈ααα〉k̃ <

1759

6

〈βββ〉k̃. Assume 〈ααα〉k̃ = m, then 〈βββ〉k̃ ≥ m+ 1.

ϕ(ααα) =
K∑
k=1

K〈ααα〉k =
K∑

k=k̃+1

K〈ααα〉k +K〈ααα〉k̃ +
k̃−1∑
k=1

K〈ααα〉k

≤
K∑

k=k̃+1

K〈ααα〉k +K〈ααα〉k̃ + (k̃ − 1)K〈ααα〉k̃

=
K∑

k=k̃+1

K〈ααα〉k + k̃ ·K〈ααα〉k̃ =
K∑

k=k̃+1

K〈ααα〉k + k̃Km,

where the inequality holds as 〈ααα〉k̃ ≥ 〈ααα〉k,∀1 ≤ k ≤ k̃ − 1.

ϕ(βββ) =
K∑
k=1

K〈βββ〉k =
K∑

k=k̃+1

K〈βββ〉k +K〈βββ〉k̃ +
k̃−1∑
k=1

K〈βββ〉k

>
K∑

k=k̃+1

K〈βββ〉k +K〈βββ〉k̃ + (k̃ − 1) · 0

≥
K∑

k=k̃+1

K〈βββ〉k +Km+1 >
K∑

k=k̃+1

K〈βββ〉k + k̃Km.

Given that
∑K
k=k̃+1K

〈ααα〉k =
∑K
k=k̃+1K

〈βββ〉k , we have
ϕ(ααα) < ϕ(βββ) for the case of k̃ < K.

If ααα = βββ, which means that 〈ααα〉k = 〈βββ〉k,∀1 ≤ k ≤ K, it
is trivially true that ϕ(ααα) =

∑K
k=1K

〈ααα〉k =
∑K
k=1K

〈βββ〉k =
ϕ(βββ). Thus, we have proved ααα � βββ =⇒ ϕ(ααα) ≤ ϕ(βββ).

We further prove ϕ(ααα) ≤ ϕ(βββ) =⇒ ααα � βββ by proving
its contrapositive: ¬(ααα � βββ) =⇒ ϕ(ααα) > ϕ(βββ). ¬(ααα � βββ)
implies ααα 6= βββ and the first non-zero element of 〈α〉′〈α〉′〈α〉′−〈β〉′〈β〉′〈β〉′ is
positive, which further indicates the first non-zero element of
〈β〉′〈β〉′〈β〉′ − 〈α〉′〈α〉′〈α〉′ is negative, i.e., βββ ≺ ααα. Thus, the contrapositive
is equivalent to βββ ≺ ααα =⇒ ϕ(βββ) < ϕ(ααα), which has already
been proved previously using the exchanged notations of ααα
and βββ.

With ααα � βββ ⇐⇒ ϕ(ααα) ≤ ϕ(βββ) holding for any ααα and βββ
of the same dimension, we are done with the proof by letting
ααα =−g−g−g(xxx∗) and βββ =−g−g−g(xxx).

Based on Lemma 2 and Lemma 3, we have

lexmax
xxx∈X

ggg ⇐⇒ min
xxx∈X

ϕ(−g−g−g) =
∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

M−u
t
kφ(x

k,t
i,j)

where the objective function ϕ(−g−g−g) is a summation of the
term M−u

t
kφ(x

k,t
i,j), which is a convex function of the single

variable xk,ti,j .
Therefore, solving Problem (8) is equivalent to solving the

following problem with a separable convex objective:

min
xxx

∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

M−u
t
kφ(x

k,t
i,j) (9)

s.t. Constraints (3), (4), (5) and (6).

C. Structure-Inspired Equivalent LP Transformation

Exploiting the problem structure of totally unimodular con-
straints and separable convex objective, we can use the λ-
representation technique [14] to transform the Problem (9)

to a linear programming problem that has the same optimal
solution.

For each single integer variable xk,ti,j ∈ {0, 1}, the convex

function hk,ti,j (x
k,t
i,j) =M−u

t
kφ(x

k,t
i,j) can be linearized with the

λ-representation as follows:

hk,ti,j (x
k,t
i,j) =

∑
s∈{0,1}

M−u
t
ksλk,t,si,j = λk,t,0i,j +M−u

t
kλk,t,1i,j

which removes the variable xk,ti,j by sampling at each of its
possible value s ∈ {0, 1}, weighted by the newly introduced
variables λk,t,si,j ∈ R+,∀s ∈ {0, 1} that satisfy

xk,ti,j =
∑

s∈{0,1}

sλk,t,si,j = λk,t,1i,j∑
s∈{0,1}

λk,t,si,j = λk,t,0i,j + λk,t,1i,j = 1

Further, with linear relaxation on the integer constraints (6),
we obtain the following linear programming problem:

min
xxx,λλλ

∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

(λk,t,0i,j +M−u
t
kλk,t,1i,j) (10)

s.t. xk,ti,j = λk,t,1i,j , ∀i, j ∈ N , k ∈ K, t ∈ T
λk,t,0i,j + λk,t,1i,j = 1, ∀i, j ∈ N , k ∈ K, t ∈ T
λk,t,0i,j , λk,t,1i,j , xk,ti,j ∈ R+, ∀i, j ∈ N , k ∈ K, t ∈ T
Constraints (3), (4) and (5).

Theorem 1: An optimal solution to Problem (10) is an
optimal solution to Problem (7).

Proof: The property of total unimodularity ensures that
an optimal solution to the relaxed LP problem (10) has integer
values of xk,ti,j , which is an optimal solution to Problem (9),
and thus an optimal solution to Problem (8) as demonstrated
in the previous subsection. Moreover, Problem (7) and (8) are
equivalent forms, completing the proof.

Therefore, an optimal schedule that maximizes the worst
utility among all the coflows can be obtained by solving
Problem (10) with efficient LP solvers, such as MOSEK [15].

V. ITERATIVELY OPTIMIZING WORST UTILITIES TO
ACHIEVE MAX-MIN FAIRNESS

With the subproblem of maximizing the worst utility effi-
ciently solved as an LP problem (10), we continue to solve
our original multi-objective problem (1) by maximizing the
next worst utility repeatedly.

After solving the subproblem, it is known that the optimal
worst utility is achieved by coflow k∗ at time slot t∗, when its
slowest flow from server i∗ to j∗ completes. We then fix the
computed schedule of all the i∗-to-j∗ flows at time t∗, which
means that the corresponding schedule variables xk,t

∗

i∗,j∗ ,∀k ∈
K are removed from the variable set xxx for the next round.
Also, since coflow k∗ completes at time t∗, it is intuitive that
all the scheduling variables associated with it after time t∗

should be fixed as zero and removed: xk
∗,t
i,j = 0,∀i, j ∈ N , t ∈

{t∗ + 1, t∗ + 2, · · · , T}.
As we have fixed a part of the schedule, link capacities and

remaining flow sizes should be updated in problem constraints

1760

7

in the next round. For example, if x1,1i∗,j∗ = 1, which means
that at time slot 1, the i∗-to-j∗ flow that belongs to coflow 1
would be scheduled, then for the problem in the next round,
x1,1i∗,j∗ is no longer the variable. The link capacity constraints
should be updated as

∑
k∈K

∑
j∈N ,(j,k)6=(j∗,1) x

k,1
i∗,j ≤ 0 and∑

k∈K
∑
i∈N ,(i,k) 6=(i∗,1) x

k,1
i,j∗ ≤ 0, which means that there

is no capacity at the outgoing link of server i∗ and the
incoming link of server j∗ at time slot 1 to schedule other
flows; the flow size capacity constraint should be updated as∑
t∈{2,3,··· ,T} x

1,t
i∗,j∗ = D1

i∗,j∗ − 1.
Moreover, the utility of coflow k∗ is obtained as ut

∗

k∗ , yet
the schedules of all its flows except the slowest have not
been fixed, which would be the variables (xk

∗,t
i,j ,∀(i, j) 6=

(i∗, j∗),∀t ∈ {1, 2, · · · , t∗}) of the problem in the next round.
We set the associated utilities of these variables as ut

∗

k∗x
k∗,t
i,j .

The rationale is that no matter how fast other flows of k∗

complete, the utility is determined by the slowest flow that
finishes at t∗. This ensures that the utility optimized in the
next round is achieved by another coflow, rather than a flow
of coflow k∗ (other than its slowest). This is better illustrated
with the example in Fig. 5.

t0 1 2 3

C1

C2

Coflow Utilities

9 6 4

9 8 7

3L1
L2
L3 1

1

1

t0 1 2 3

1

3L1
L2
L3 1

1

1

t0 1 2 3

1

(I) (II)

Fig. 5: Utilities and two possible schedules of coflows C1 and C2.

It is obvious that coflow C1 achieves the worst utility of
4. In the second round, if we do not change the associated
utility for the flows of C1 except the slowest, schedule (I)
would result in (4, 6, 6, 8, 9, 9, 9) while schedule (II) gives
(4, 6, 6, 6, 9, 9, 9). Thus, the optimization would result in
schedule (I) to achieve the optimal next worst utility as 8
for another flow of C1, which does not match our original
objective to optimize the second worst utility for coflow C2.
In contrast, if we set the associated utilities of all C1’s flows
as 4, then schedule (II) would give (4, 4, 4, 4, 4, 9, 9), better
than (4, 4, 4, 4, 4, 8, 9) given by schedule (I). In this way, the
optimization can correctly choose schedule (II) to achieve the
optimal utility of C2.

As a result, the subproblem in the next round is solved
over a decreased set of variables with updated constraints
and objectives, so that the next worst coflow utility would be
optimized, without impacting the worst coflow utility in this
round. Such procedure is repeatedly executed until the last
worst utility of coflow has been optimized, and the max-min
fairness has been achieved, as summarized in Algorithm 1.

VI. REAL-WROLD IMPLEMENTATION
AND PERFORMANCE EVALUATION

Having proved the theoretical optimality of our solution, we
proceed to implement a practical coflow scheduler in the real
world and demonstrate its effectiveness in optimizing coflow
utilities.

Design and Implementation. Varys [6] is an open-source
framework that provides a simple API to data parallel jobs
for coflow submission, and coordinates competing coflows

Algorithm 1: Utitity Optimal Schedule among Coflows
with Max-Min Fairness.
Input:

Coflow traffic matrix Dk =
(
Dk
i,j

)N
i,j=1

; Time slots
T = {1, 2, · · · , T}; Coflow utility utk, ∀k ∈ K,∀t ∈ T ;

Output:
Flow schedule at each time slot: xk,ti,j ,∀k ∈ K,∀t ∈ T ;

1: Initialize K′ = K;
2: while K′ 6= ∅ do
3: Solve the LP Problem (10) to obtain the solution xxx;
4: Obtain xj

∗,t∗

k∗,i∗ = argmin
xk,t
i,j∈xxx

utkx
k,t
i,j ;

5: Fix xk
∗,t
i,j ,∀i, j ∈ N , t ∈ {t∗ + 1, t∗ + 2, · · · , T} and

xk,t
∗

i∗,j∗ , ∀k ∈ K; remove them from variable set xxx;
6: Update corresponding link capacities in Constraints

(3), (4) and flow sizes in Constraints (5);
7: Set utk∗ = ut

∗

k∗ , ∀t ∈ {1, 2, · · · , t∗};
8: Remove k∗ from K′;
9: end while

… …

Optimization
(Algorithm 1)

Schedule
Enforce

Utility Optimal Scheduler

Solution

…

…

Coflow
Update

x

x(1)
x(2) x(3)

nT (n+1)T (n+2)T

…

t 2t t 2t

Fig. 6: An illustration of the signaling cycle of utility optimal scheduler.

through bandwidth allocation at the application layer. Our
scheduler is implemented in the context of Varys to leverage
the global view of the network and coflow information pro-
vided by the framework. As a natural fit for the time-slotted
theoretical model, we design our scheduler to calculate and
enforce scheduling decisions based on two-level time-triggered
events, as shown in Fig. 6. The large time interval T consists
of a certain number of small intervals t (T = mt,m ∈ Z+),
responsible for decision making and enforcement, respectively.
The small interval t is the duration of time required to transfer
a data block of a specific size at the full line rate. This
corresponds to the length of time slot in our theoretical model.
At each large interval, the scheduler invokes Algorithm 1
to calculate the scheduling decisions for all the competing
coflows, based on the updated information on flow sizes and
coflow utilities. With the input readily available, the linear
programming problem is formulated and solved using the
simplex method implemented in the Breeze optimization
library [16]. The calculated decisions will then be enforced
by application-layer bandwidth allocation slot by slot, updating
the rate limit to the ThrottledInputStream (java I/O object)
for each flow at each small interval. These parameters are
tuneable, with the tradeoff that a smaller T would be more
responsive to flow dynamics, yet incurring more computation
overhead to the scheduler.

1761

8

Meaningful Utility Functions. The utility function of
each coflow can be flexibly specified by a utility type and
several parameters, with specific practical implications. In
our experiment, we consider four types: 1) constant utility
for background coflows, 2) linear utility for time-sensitive
coflows, 3) sigmoid utility for time-sensitive coflows, and 4)
all-or-nothing utility for time-critical coflows. Each type of
utility function is defined by a few parameters, which can be
set according to the desired completion time and the priority.
For example, the sigmoid function has the following form:

U(t) = p1
1 + ep2∗(t−p3)

where p1 specifies the priority of the coflow, p2 is a decay
factor of the utility function, quantifying the degree of sensi-
tivity to the coflow completion time (CCT), and p3 denotes
the desired completion time, which is the time to complete the
coflow without any network contention.

For each coflow, the starting time of its utility function
is the time when it is registered in the scheduler. As the
utility decreases along the timeline, it accurately characterizes
critical information, such as the arrival time and the sensitivity
degree, for the scheduler to make the optimal decisions. As
an example, for two identical coflows arriving at the same
time, which have sigmoid utility functions with different decay
factors, the one that decreases faster would be considered with
a higher priority in the scheduler; for two identical coflows
with the same utility function, which arrive at different times,
the one that arrives earlier would be scheduled ahead of the
other one, which naturally avoids starvation.

Experiment Setup. We deploy our utility optimal scheduler
on a cluster of 6 Virtual Machine instances on Google’s Cloud
Compute Engine, with a total of 24 CPU cores and 156 GB
memory. To allow an in-depth evaluation and analysis of our
scheduler, we examine the scheduling process of 6 coflows
illustrated in Table I, in comparison with the Varys Shortest-
Effective-Bottleneck-First (SEBF) scheduler [6], which is a
state-of-the-art coflow scheduler to minimize CCTs. For sim-
plicity, we choose 1 GB as the size of the block to be sent
with full bandwidth at each time slot. Based on the measured
bandwidth, the length of the slot, i.e., the small time interval,
is 3 seconds, and each large interval has 10 slots.

To be more representative, the utility functions of the
coflows in our case study cover all the four types. Particularly,
coflow C6 is a CCT insensitive background coflow, while C3 is
time critical with a deadline. The other four are time sensitive
coflows, with linear or sigmoid utility functions. C1 is more
sensitive than C2, and the same applies to C5 versus C4. The
parameters are set with the consideration of target completion
times and sensitivity degrees. For example, C1 has a total of
3 blocks to be transferred. It would achieve a utility of 1 if
it completes exactly with 3 time slots, which is the target
completion time. Similarly, with 2 blocks of data, C4 would
obtain a utility of 1 if it finishes at the end of the second time
slot. Failing to complete by the target time would result in a
decrease of utility at different rates, in the linear or sigmoid
form, as shown in Table I.

The comparison of coflow utilities obtained by our utility
optimal scheduler and the Varys SEBF scheduler is presented

TABLE I: 6 coflows with 4 types of utility functions for case study.

Coflow
Id

Flow
Id Src Dst Volume

(GB) Utility Function (t: slots)

C1 1
2

S1
S1

S0
S5

2
1 U(t) = 1.3− 0.1 ∗ t

C2 1
2

S1
S1

S4
S5

1
2 U(t) = 1.02− 0.01 ∗ t

C3
1
2
3

S3
S3
S3

S0
S1
S2

1
1
2

U(t) = 1, if t < 4;
U(t) = 0, otherwise.

C4 1 S4 S2 2 U(t) = 2
1+e0.1∗(t−2)

C5 1
2

S5
S5

S1
S2

2
2 U(t) = 2

1+e1.1∗(t−4)

C6 1
2

S1
S1

S3
S4

1
1 U(t) = 1

in Fig. 7, which is the average of 5 runs. It is clearly shown
that our scheduler improves the worst utility among all the
coflows by nearly 70%, from 0.4887 achieved by C5 to 0.8377
of C4. Moreover, with our scheduler, 2 coflows have achieved
a significant increase of their utilities, 2 coflows keep nearly
the same utilities, while only 1 coflow experienced a slight
utility decrease.

C1 C2 C3 C4 C5 C6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
fl

o
w

 U
ti

li
ti

es

Varys SEBF Scheduler

Utility Optimal Scheduler

Fig. 7: Comparison of utilities achived by coflows with two schedulers.

To clearly illustrate the underlying reason for such an
improvement, we next provide a detailed analysis on how our
scheduler provides the differential treatment to these coflows
appropriately, according to their degrees of sensitivity to
CCTs. At server S1, the outgoing link is bottlenecked by flows
of C1, C2 and C6. According to our utility optimal schedule
presented in Fig. 8, C1 with a higher degree of CCT sensitivity
is scheduled first at S1, followed by C2 whose utility decreases
much more slowly. C6 always achieves the constant utility so
that it is scheduled at last when the link of S1 is idle. At server
S2, C3 and C5 occupies the incoming link during the first 4
time slots in an interleaved manner, so that they both complete
by their target time. As a result, C4 is delayed to complete at
the 6-th slot. Such a schedule is utility optimal, since C4 is
much more tolerant to the delay, with a small decay factor in
its sigmoid utility function. If C4 is scheduled before C3 or
C5, it results in either a zero utility for the time critical C3,
or a much smaller utility value of C5, whose utility decreases
sharply with a large decay factor.

In comparison to our utility optimal schedule, the SEBF
scheduler in Varys for minimizing CCTs treats all the coflows
equally, as if they all have the same linear utility function.
Without the proper differentiation among the diverse degrees
of CCT sensitivity, it schedules the background coflow C6

1762

9

C1

C2

C3

Time0 1 2 3 4 5 6 7 8

C4

C5

C6

1–5 1–0 1–0

1–4 1–5 1–5

1–3 1–4

3–0 3–2 3–2 3–1

4–2 4–2

5–2 5–25–1 5–1

Fig. 8: Utility optimal schedule. The 1–5 block of C1 represents a block
of data sent from S1 to S5 in the first time slot. The bottleneck links are
highlighted with blue and red colors, respectively.

ahead of the time sensitive C1, which results in worse utilities,
despite the improved CCT. In a similar vein, the less CCT
sensitive C4 completes faster than C5 with the Varys scheduler,
which is not utility optimal either.

Although we consider an offline case for optimality analysis,
our scheduler is readily adaptive to the online scenario, where
Algorithm 1 can be invoked to recalculate the optimal schedule
based on the latest information as flow arrives and leaves.

VII. RELATED WORK

With data parallel frameworks extensively deployed for
big data processing, it has received an increasing amount of
research attention to optimize the network allocation among
coflows for better job-level performance. Varys [6] took the
initiative to propose effective heuristics for coflow scheduling,
in order to minimize the average coflow completion time
(CCT) and meeting coflow deadlines. As a followup, Aalo
[17] studied the same problem without any prior knowledge
of coflows. Qiu et al. [7] considered the release dates of
coflows and proposed the first polynomial-time approximation
algorithm to minimize the weighted CCT. Extending coflow
awareness into routing, RAPIER [8] designed a heuristic for
joint coflow scheduling and routing to minimize CCTs.

However, all the existing efforts treat competing coflows
equally in minimizing CCTs, or at most differentiate them
based on whether they have deadlines or not. Such a lack
of fine grained differentiation can not satisfy the diversing
requirements of coflows with respect to their CCTs. In this
paper, we capture these requirements with utility functions,
which can quantify the degrees of sensitivity to CCTs, and
our scheduling objective is to optimize all the coflow utilities
with max-min fairness.

The heterogeneous sensitivity of job completion times were
studied in CORA [5], which designed a utility optimal sched-
uler to allocate computing resource to jobs. Despite sharing
a similar philosophy with CORA, our scheduling problem is
quite different and more challenging, due to the inherent com-
plexity in network scheduling that involves coupled resources.

VIII. CONCLUDING REMARKS

In this paper, we use utility functions to model different
levels of sensitivity to the completion times of different
coflows, in the context of data parallel jobs. With coflows
competing for the network bandwidth in a shared cluster,
we have designed and implemented a new utility optimal

coflow scheduler to better satisfy their requirements with max-
min fairness. To achieve this objective, we first formulated
a lexicographical maximization problem to optimize all the
coflow utilities, which is challenging due to the inherent
complexity of both multi-objective and discrete optimizations.
Starting from the single-objective subproblem and based on an
in-depth investigation of the problem structure, we performed
a series of transformations to finally obtain an equivalent linear
programming (LP) problem, which can be efficiently solved in
practice with a standard LP solver. With our algorithm repeat-
edly solving updated LP subproblems, we can optimize all the
coflow utilities, with max-min fairness achieved. Last but not
the least, we have implemented our utility optimal scheduler
and demonstrated convincing evidence on the effectiveness of
our new algorithm using real-world experiments.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for in-Memory Cluster Computing,” in
Proc. USENIX Networked Systems Design and Implementation (NSDI),
2012.

[3] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica, “Managing
Data Transfers in Computer Clusters with Orchestra,” in Proc. ACM
SIGCOMM, 2011.

[4] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for
Cluster Applications,” in Proc. ACM SIGCOMM HotNet Workshop,
2012.

[5] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for Speed: CORA Scheduler for Optimizing Completion-
Times in the Cloud,” in Proc. IEEE INFOCOM, 2015.

[6] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient Coflow Scheduling
with Varys,” in Proc. ACM SIGCOMM, 2014.

[7] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the Total Weighted
Completion Time of Coflows in Datacenter Networks,” in Proc. ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
2015.

[8] Y. Zhao, K. Chen, W. Bai, Y. Minlan, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “RAPIER: Integrating Routing and Scheduling for
Coflow-Aware Data Center Networks,” in Proc. IEEE INFOCOM, 2015.

[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 3rd ed., ser. Algorithms and Combinatorics. Springer, 2006,
vol. 21, ch. 5, p. 104.

[10] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker, “Deconstructing Datacenter Packet Transport,” in Proc. of
ACM SIGCOMM HotNet Workshop, 2012.

[11] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the Network in Cloud Computing,”
in Proc. ACM SIGCOMM, 2012.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. ACM SIGCOMM, 2009.

[13] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A Scalable
Fault-Tolerant Layer 2 Data Center Network Fabric,” in Proc. ACM
SIGCOMM, 2009.

[14] R. Meyer, “A Class of Nonlinear Integer Programs Solvable by A Single
Linear Program,” SIAM Journal on Control and Optimization, vol. 15,
no. 6, pp. 935–946, 1977.

[15] E. Andersen and K. Andersen, “The MOSEK Interior Point Optimizer
for Linear Programming: an Implementation of the Homogeneous Algo-
rithm,” in High performance optimization. Springer, 2000, pp. 197–232.

[16] Breeze: A Numerical Processing Library for Scala. [Online]. Available:
http://www.scalanlp.org

[17] M. Chowdhury and I. Stoica, “Efficient Coflow Scheduling Without Prior
Knowledge,” in Proc. ACM SIGCOMM, 2015.

1763

