
1

Towards Performance-Centric Fairness
in Datacenter Networks

Li Chen1 Yuan Feng2 Baochun Li1 Bo Li3
1University of Toronto

2The Hong Kong Polytechnic University
3The Hong Kong University of Science and Technology

Abstract— Fair bandwidth allocation in datacenter networks
has been a focus of research recently, yet this has not received
adequate attention in the context of private cloud, where link
bandwidth is often shared among applications running data
parallel frameworks, such as MapReduce. In this paper, we
introduce a rigorous definition of performance-centric fairness,
with the guiding principle that the performance of data parallel
applications should be proportional to their weights. We investi-
gate the problem of maximizing application performance while
maintaining strict performance-centric fairness and present the
inherent tradeoff between resource utilization and fairness. We
then formulate the link bandwidth allocation problem with the
objective of maximizing social welfare across all applications,
so that resource utilization can be manipulated and improved
by allowing a tunable degree of relaxation on performance-
centric fairness. Based on dual based decomposition, we present
a distributed algorithm to solve this problem, and evaluate its
performance with extensive simulations.

I. INTRODUCTION

Datacenters have become the de facto standard computing
platform for Web service providers — such as Google and
Facebook — to host a wide variety of computationally in-
tensive applications, ranging from PageRank [1] to machine
learning [2]. In order to scale up to accomodate the volume
of data that these applications need to process, these appli-
cations need to embrace data parallel frameworks, such as
MapReduce [3] and Dryad [4].

In general, data parallel applications typically proceed in
several computation stages that require communication be-
tween them. With MapReduce, for example, input data is first
partitioned into a set of splits [3], so that they can be pro-
cessed in parallel with map computation tasks. The map tasks
produce intermediate results, which are then shuffled over the
datacenter network to be processed by reduce computation
tasks.

As multiple data parallel applications share the same private
datacenter operated by a Web service provider, we wish to
maximize the performance of these applications, measured by
their completion times, subject to resource capacity constraints
in the datacenter. With respect to resources, the completion
time of a data parallel application depends on both CPU (used
in the computation stages) and network bandwidth (used in the
communication stages).

This work is partially supported by the SAVI NSERC Strategic Networks
Grant.

In the context of a privately operated datacenter, how should
link bandwidth — arguably the most critical resource in
datacenter networks — be shared among multiple data parallel
applications? It is commonly accepted in the literature that
bandwidth should be shared in a fair manner (e.g., [5]), yet
there has been no general consensus on how the notion of
fairness should be defined. The traditional wisdom on fair
bandwidth sharing has largely focused on datacenters in a
public cloud, where virtual machines (VMs) are used to host
applications for the tenants. For example, bandwidth on a link
can be allocated fairly across different flows, VM pairs, or
tenants (according to their payments).

In this paper, we argue that the notions of fairness proposed
in the literature are not applicable to the context of data
parallel applications sharing a private datacenter. Rather than
being fair across competing flows or tenants according to their
payments, the thesis of this paper hinges upon the notion
of performance-centric fairness, in that fairness should be
maintained with respect to the performance across multiple
data parallel applications.

But how, after all, shall we rigorously define the notion
of performance-centric fairness? As available bandwidth re-
sources are allocated for data parallel applications to transfer
data in their communication stages, their performance is
best represented by the amount of time needed to complete
the data transfer, called the transfer time. To achieve their
best possible performance with the shortest possible transfer
times, the guiding principle of weighted performance-centric
fairness is that the reciprocal of the transfer times should be
proportional to their weights across competing applications.
To put it simply, applications with equal weights sharing the
same private datacenter should enjoy the same performance.

The problem of achieving performance-centric fairness be-
comes more interesting when we also wish to maximize the
resource utilization in a datacenter, in that bandwidth should
not be left unused. In this paper, we begin with the problem
formulation that maximizes the application performance with
the constraint that strict performance-centric fairness is to be
maintained. Yet, with an example, we will show that there
exists an inherent conflict between maximizing resource uti-
lization and maintaining strict fairness, simply because some
access links are more heavily loaded than others in a data-
center. In this paper, we arbitrate such conflicting objectives
by introducing tunable degrees of relaxation on performance-
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centric fairness, such that the resource utilization can be further
improved.

The upshot in this paper revolves around the new op-
timization problem to maximize resource utilization while
maintaining weighted performance-centric fairness with a cer-
tain degree of relaxation. It turns out that this problem is
challenging to both formulate and solve. To show the nuances
in formulating this problem, consider the link bandwidth to
be allocated to a communication stage within an application.
The transfer time is determined by the rate of the slowest flow
between the communicating tasks. To maximize the resource
utilization, we allocate link bandwidth to flows in the same
application so that all of them finish at the same time as
the slowest flow. Intuitively, we wish to maximize the social
welfare in the datacenter with all the applications considered,
so that resources are best utilized with the tradeoff of relaxing
fairness to a certain degree.

With a sharp focus on performance-centric fairness in
private datacenter networks, in Sec. II, we begin our exposition
with an illustrating example to establish a convincing case and
to provide the formal definition for weighted performance-
centric fairness. We then formulate our first optimization
problem in Sec. III, which maximizes resource utilization
while maintaining the strict notion of weighted performance-
centric fairness. In Sec. IV, we formulate our new problem
that better arbitrates the tradeoff between resource utilization
and fairness. With a detailed analysis on the nature of our
optimization problem, we apply dual based decomposition to
solve the centralized problem in Sec. V, prove that there is
no duality gap, and solve the dual problem with a distributed
algorithm, based on local measurements and computation at
each physical machine. Our performance evaluation in Sec. VI
has shown that our distributed solution improves the resource
utilization while maintaining performance-centric fairness with
a tunable degree of relaxation.

II. A CASE FOR PERFORMANCE-CENTRIC FAIRNESS

Data parallel applications partition their input data into
multiple splits, which are processed in parallel by computation
tasks. Even though additional computation tasks will help to
reduce the completion time in a computation stage, the total
amount of computation workload remains the same, and is not
affected by the number of parallel tasks used once the size of
the input data is fixed. However, the amount of network traffic
may increase with additional parallel tasks, depending on the
communication pattern between computation tasks.

A typical MapReduce application uses the shuffle commu-
nication pattern between its map and the reduce tasks, while
machine learning applications use a broadcast communication
pattern [2]. We show an example for both communication
patterns in Fig. 1. In the base cases without any parallelization
in the computation stages, the only computation task in A (or
B) produces 500 MB of intermediate data, which is directly
transmitted to the task A

0 (or B

0). In the cases where both
applications employ two parallel computation tasks in each
computation stage, the input data is then partitioned into two
equal splits, and the amount of intermediate data generated by
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Fig. 1: The amount of data to be transmitted when parallelizing a

MapReduce application with the shuffle communication pattern, and a

machine learning application with the broadcast communication pattern.

each task is half of the base case. Since A is a MapReduce
task with the shuffle communication pattern, the data produced
by each map task, A1 and A2, is partitioned to two equal sets,
each with a size of 125 MB, to be sent to both A3 and A4. In
contrast, since B uses the broadcast communication pattern,
each task in the first stage, B1 and B2, broadcasts all of its
produced data to both tasks in the second stage, B3 and B4.

With the knowledge of the effects of communication pat-
terns on the amount of network traffic, we are now ready
to discuss the notion of performance-centric fairness in the
context of bandwidth allocation, when A and B share the link
bandwidth in a private datacenter as shown in Fig. 2. Specifi-
cally, A1, A2 co-locate with B1, B2 on physical machine P1,
sharing the egress link bandwidth of P1 with a capacity of
500 MB/s. Similarly, A3, A4 and B3, B4 share the ingress
link bandwidth (500 MB/s) of P2.

For each application, the transfer time is defined as the
completion time of the slowest flow among all flows in
its communication stage. To be specific, the transfer time
is decided by both the amount of network traffic between
each task pair and the bandwidth allocated to each flow.
According to their importance, A and B are assigned weights
of w

A

and w

B

, respectively. To satisfy both applications, i.e.,
to ensure fairness between A and B with respect to their
network performance (or transfer time), the egress bandwidth
on P1 and the ingress bandwidth on P2 should be allocated
so that the transfer times represented by t

A

and t

B

satisfy
1

tA
:

1
tB

= w

A

: w

B

. In this way, the allocation achieves
weighted performance-centric fairness for A and B.

To better illustrate this notion, we show two more examples
of bandwidth allocation shown in Fig. 2. Since the egress link
at P1 and the ingress link at P2 are both shared by A and
B in a symmetric way, we use the term link bandwidth for
both egress and ingress link bandwidth for simplicity. When
both A and B have the same weight, the transfer times of A

and B should be equal according to weighted performance-
centric fairness. Each flow of A is allocated 125

3 MB/s, thus the
transfer time is 125/

125
3 = 3s. With 250

3 MB/s link bandwidth
allocated to each flow, B can achieve a transfer time of
250/

250
3 = 3s. Since A and B with the same weight enjoy

the same performance with respect to their transfer times,
this allocation achieves weighted performance-centric fairness
between the two applications.

In the case where A and B have different weights, if we
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Fig. 2: Examples of bandwidth allocation achieving weighted

performance-centric fairness in two cases: 1) both applications have the

same weight; 2) the two applications have different weights.

allocate 62.5 MB/s to each flow of both applications as shown
in Fig. 2, the transfer time of A is 125

62.5 = 2s, and the transfer
time of B is 250

62.5 = 4s. Since 1
2 :

1
4 = w

A

: w

B

= 2,
weighted performance-centric fairness is again achieved with
this allocation.

Defining weighted performance-centric fairness. With an
intuitive idea of weighted performance-centric fairness in our
illustrative examples, we now present a strict definition in a
general setting.

In a privately operated datacenter, multiple data parallel ap-
plications share the bandwidth resource by co-locating some of
their tasks on some of the physical machines. Each application
k 2 K = {1, 2, ..., K} is assigned the weight w

k

according
to its importance. If for any application k, its performance,
defined as the reciprocal of its transfer time t

k

achieved under
a certain allocation, satisfies the following condition:

1

t

k1
:

1

t

k2
= w

k1 : w

k2, 8k1, k2 2 K (1)

then weighted performance-centric fairness has been achieved.
Weighted performance-centric fairness is defined with re-

spect to the performance achieved by all applications, rather
than the amount of bandwidth resource obtained by each
flow or each task. In this sense, weighted performance-centric
fairness is defined at the level of applications, which is quite
different from fairness definitions at the flow level (TCP),
VM source level (e.g., [6]), VM-pair level (e.g., [5]) or
the tenant level (e.g., [7]) proposed in the literature in the
context of datacenters in a public cloud. To achieve weighted
performance-centric fairness, the allocation should be aware
of the applications’ communication patterns, which will affect
the amount of network traffic in each flow, and further impact
the transfer times of applications.

III. ALLOCATING BANDWIDTH TO ACHIEVE WEIGHTED
PERFORMANCE-CENTRIC FAIRNESS

Given the intuitive examples and the strict definition of
weighted performance-centric fairness in the previous section,
we now study the bandwidth allocation problem with the
fairness requirement in a general scenario.
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Fig. 3: An illustration of a private datacenter hosting multiple data parallel

applications.

Consider a private datacenter shown in Fig. 3, where there
are K data parallel applications running concurrently, with
their tasks distributed across N physical machines. These ap-
plications typically partition the computation among multiple
tasks, and communicate the intermediate data between the
tasks belonging to different computation stages. The commu-
nication pattern can be either shuffle as in MapReduce [3], or
broadcast as in machine learning applications [2].

On each physical machine (or server interchangeably) n 2
N = {1, 2, ..., N}, tasks from different applications will
share its link bandwidth, including both the egress link with
capacity B

E

n

and the ingress link with capacity B

I

n

. Since
the bisection bandwidth in datacenter networks has been
significantly improved by multi-path routing (i.e., [8]) and
multi-tree topologies (i.e., [9]), we assume a full bisection
bandwidth network, where bandwidth is only bottlenecked at
the access links of physical machines. Hence, the completion
time of each flow is determined by the bandwidth allocated
at the access links. Note that even if the assumption does not
hold, our model still works with a minor change, by setting
proper bandwidth capacities of physical machines.

Each application k 2 K = {1, 2, ..., K} requires m

k

tasks, represented by T
k

= {1, 2, ..., m

k

}. The i-th task of
application k is represented by T i

k

2 T
k

. For simplicity,
we assume that both of the computation stages consist of
the same number (i.e., m

k

/2) of tasks. Given the type of
the communication pattern and the number of tasks in each
computation stage, we can obtain the network load matrix D

k

,
where the (i, j)-th component Di,j

k

represents the amount of
data to be sent by the flow between task T i

k

and T j

k

. For
example, if the total amount of intermediate data generated
by application k is d

k

, an application with the shuffle pattern
will have dk

(mk/2)2 data to be sent between each task pair, while
an application with the broadcast pattern will have dk

mk/2 data
to be sent by each flow.

Let r

i,j

k

denote the bandwidth allocated to the (i, j) commu-
nicating task pair of application k, then the completion time
of the flow between the (i, j) task pair is Di,j

k

r

i,j
k

. The transfer
time of an application is defined as the completion time of
the slowest flow in the communication stage, which can be

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1601



4

represented as t

k

= max

i,j,Di,j
k 6=0

Di,j
k

r

i,j
k

for application k.
As mentioned in Sec. II, each application k is associated

with a weight w

k

. The performance of application k is
expressed as 1

tk
, which indicates that the shorter the transfer

time, the better the performance. The fairness definition in
Eq. (1) has the following equivalent form:

1

t

k

=

w

kP
k

w

k

S, 8k 2 K (2)

where S is a positive variable called the total performance-
centric share, which is upper bounded given the fixed amount
of bandwidth capacity in the datacenter. Our objective is to
fairly allocate bandwidth to achieve this upper bound, so that
the performance achieved by each application is maximized.
Substituting t

k

= max

i,j,Di,j
k 6=0

Di,j
k

r

i,j
k

yields

min

i,j,Di,j
k 6=0

r

i,j

k

Di,j

k

=

w

kP
k

w

k

S (3)

Now we consider the link bandwidth capacity constraints
on each server. Let the binary variable X

i

k,n

denote whether
task i of application k is placed on server n, i.e.,

X

i

k,n

=

(
1, when T i

k

is placed on server n

0, otherwise
(4)

The total egress rate of each task T i

k

placed on server n isP
j,X

j
k,n=0 r

i,j

k

· X

i

k,n

. Note that if the task T j

k

receiving the
intermediate data from T i

k

is also placed on server n, there
will be no data sent through the network. Thus, we add the
constraint of X

j

k,n

= 0 in the summation. Summing over
all tasks of an application placed on server n, and further
summing over all the applications, we obtain the total egress
rate of server n, which should not exceed the egress link
capacity:

X

k

X

i

X

j,X

j
k,n=0

r

i,j

k

· X

i

k,n

 B

E

n

(5)

The same analysis applies to the ingress link of each server.
We are now ready to formulate the problem of maximizing

performance while maintaining weighted performance-centric
fairness:

max

r

S (6)

s.t. min

i,j,Di,j
k 6=0

r

i,j

k

Di,j

k

=

w

kP
k

w

k

S, 8k 2 K (7)
X

k

X

i

X

j,X

j
k,n=0

r

i,j

k

· X

i

k,n

 B

E

n

, 8n 2 N (8)

X

k

X

j

X

i,X

i
k,n=0

r

i,j

k

· X

j

k,n

 B

I

n

, 8n 2 N (9)

where constraint (7) represents weighted performance-centric
fairness, while constraints (8) and (9) correspond to the egress
and ingress link capacity constraints at each machine.

Since the performance of each application is determined
by the completion time of its slowest flow, it is efficient to
make all the flows of an application finish at the same time,

by allocating flows the amounts of bandwidth that have the
same proportionality to their network load. In this way, no
bandwidth is wasted in making some of the flows finish faster.
Therefore, we can add the following constraint:

min

i,j

r

i,j

k

Di,j

k

=

r

i,j

k

Di,j

k

=

1

t

k

= ↵

k

, 8i, j 2 T
k

, Di,j

k

6= 0

where ↵

k

denotes the performance of application k. Replacing
the variables of r

i,j

k

with ↵

k

yields

r

i,j

k

=

Di,j

k

t

k

= ↵

k

· Di,j

k

, 8k 2 K, i, j 2 T
k

(10)

As a result, we can transform the previous optimization
problem (6) to the following:

max

↵

S

s.t. ↵

k

=

w

kP
k

w

k

S, 8k 2 K
P

k

↵

k

· b

E

k,n

 B

E

n

, 8n 2 N
P

k

↵

k

· b

I

k,n

 B

I

n

, 8n 2 N

where

b

E

k,n

=

P
i

P
j,X

j
k,n=0 Di,j

k

X

i

k,n

(11)

b

I

k,n

=

P
j

P
i,X

i
k,n=0 Di,j

k

X

j

k,n

(12)

representing the total amount of traffic generated by k to be
transmitted through the egress link at server n, and the total
amount of data received by k through the ingress link at server
n, respectively.

The optimal solution is easily derived as:

S

⇤
= min{ min

n,

P
k b

E
k,n 6=0

B

E
nP

k w

0
kb

E
k,n

,

min

n,

P
k b

I
k,n 6=0

B

I
nP

k w

0
kb

I
k,n

} (13)

where w

0

k

=

wkP
k wk

represents the normalized weight of
application k.

With the maximum total performance-centric share S

⇤, the
performance of each application is ↵

⇤
k

=

wkP
k wk

S

⇤, and the
allocation is represented as

r

i,j

k

⇤
=

w

kP
k

w

k

S

⇤ · Di,j

k

.

However, by allocating bandwidth following the strict def-
inition of weighted performance-centric fairness, some link
bandwidth may not be fully utilized, which is not efficient
with respect to bandwidth utilization.

Consider the example shown in Fig. 4, in which applications
A, B and C all have the same weight. A1 has 200 MB
data to be sent, while B1, C1 both generate 100 MB of
intermediate data to be transmitted. All four physical ma-
chines have the same link (both egress and ingress link)
bandwidth capacity of 300 MB/s. Based on Eq. (13), the max-
imum total performance-centric share is computed as S

⇤
=

min{min{ 300
1
3 ·200+

1
3 ·100

,

300
1
3 ·100

}, min{ 300
1
3 ·200

,

300
1
3 ·100+

1
3 ·100

}} =

3 (we omit the unit of s

�1 in this paper for simplicity), which
is constrained by the egress link capacity at P1. Hence, the
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Fig. 4: The inefficiency of bandwidth utilization under weighted

performance-centric fairness.

flow between A1 and A2 is allocated 200 MB/s, while the
flows of B and C both obtain 100 MB/s, so that all three
applications achieve the same transfer time of 1s. However,
the link bandwidth on P4 is not efficiently utilized, with
100 MB/s bandwidth idled. To achieve better utilization of
bandwidth, we should consider the tradeoff between fairness
and resource utilization: with a relaxed notion of fairness, we
allow C to utilize the idle bandwidth so that it can achieve
a higher performance, improving the overall utilization of the
datacenter.

IV. TRADING FAIRNESS FOR UTILIZATION

To strive for a balance between the conflicting requirements
of performance-centric fairness and maximum bandwidth uti-
lization, we set the following principle for bandwidth alloca-
tion:

1) ↵

k

� w

0

k

S, where S 2 (0, S

⇤
] is considered as the

degree of fairness relaxation that can be tuned to trade fairness
for utilization. This constraint ensures that, at a minimum,
each application can be guaranteed a weighted fair share w

0

k

S

with respect to its performance. A larger S indicates a larger
weighted fair share that each application will be guaranteed,
while a smaller S represents more relaxation on fairness.

2) ↵

k

 ↵, where ↵ is the upper bound of performance for
each application that can be decided by the datacenter operator.
With respect to achieving a better utilization of bandwidth,
some applications are more competitive than others. This
constraint limits the performance of each application below
a maximum, so as to prevent the extreme unfairness resulted
from one application capturing all the available bandwidth
while other applications starve.

With a certain degree of relaxation on performance-centric
fairness, our objective of bandwidth allocation is to achieve the
best utilization of bandwidth so as to maximize the overall so-
cial welfare of all applications. Each application k has a utility
function, determined by its performance ↵

k

. For simplicity, we
choose the log function of performance as the utility function
for each application: U

k

(↵

k

) = log ↵

k

, 8k 2 K. As a result,
we can formulate the following optimization problem:

max

↵

P
k

U

k

(↵

k

) (14)

s.t. ↵

k

� w

0

k

S, 8k 2 K (15)
↵

k

 ↵, 8k 2 K (16)
P

k

↵

k

· b

E

k,n

 B

E

n

, 8n 2 N (17)
P

k

↵

k

· b

I

k,n

 B

I

n

, 8n 2 N (18)

where b

E

k,n

and b

I

k,n

are expressed in Eq. (11) and Eq. (12).
Constraints (15) and (16) follow the aforementioned princi-
ples, while (17) and (18) are the capacity constraints of the
egress and ingress link at each server.

Changing max

P
k

U

k

(·) to min �
P

k

U

k

(·), we can trans-
form the previous optimization problem (14) to the following:

min

↵

�
X

k

U

k

(↵

k

) (19)

s.t. Eq. (15), (16), (17), (18)

Since U

k

(↵

k

) = log ↵

k

is strictly concave [10], the objec-
tive function of problem (19) is strictly convex. Moreover, all
of the constraints are affine. Hence, problem (19) is a convex
optimization problem [10].

Let �

k

, �

k

, 8k 2 K denote the Lagrange multipliers as-
sociated with constraints (15) and (16) respectively, and
µ

E

n

, µ

I

n

, 8n 2 N associated with capacity constraints (17)
and (18) respectively. The Lagrangian of problem (19) is as
follows:

L(↵, �, �, µ

E

, µ

I

)

= �
X

k

log ↵

k

+

X

k

�

k

(w

0

k

S � ↵

k

) +

X

k

�

k

(↵

k

� ↵)

+

X

n

µ

E

n

(

X

k

↵

k

b

E

k,n

� B

E

n

) +

X

n

µ

I

n

(

X

k

↵

k

b

I

k,n

� B

I

n

)

It is obvious that there exists ↵ = (↵1, ..., ↵K

) in the
relative interior of the intersection of domains of all constraint
functions, i.e., ↵ = (↵1, ..., ↵K

) satisfies the constraints:
w

0

k

S < ↵

k

< ↵, 8k 2 K,
P

k

↵

k

b

E

k,n

< B

E

n

, 8n 2 N
and

P
k

↵

k

b

I

k,n

< B

I

n

, 8n 2 N . Hence, Slater’s condi-
tion [10] is satisfied. And since the optimization problem
(19) is differentiable and convex, the Karush-Kuhn-Tucker
(KKT) conditions [10] are both sufficient and necessary for
the optimality. Thus, we can derive the optimal solution by
applying the KKT conditions:

r
↵kL(↵, �, �, µ

E

, µ

I

) = 0, 8k 2 K ()

� 1

↵

k

� �

k

+ �

k

+

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

= 0, 8k 2 K

and

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�

k

(w

0

k

S � ↵

k

) = 0, 8k 2 K
�

k

(↵

k

� ↵) = 0, 8k 2 K
µ

E

n

(

X

k

↵

k

b

E

k,n

� B

E

n

) = 0, 8n 2 N

µ

I

n

(

X

k

↵

k

b

I

k,n

� B

I

n

) = 0, 8n 2 N

�

k

� 0, �

k

� 0, 8k 2 K
µ

E

n

� 0, µ

I

n

� 0, 8n 2 N
Analyzing the solution (↵⇤

k

, 8k 2 K) of the equations above,
we derive the following insights:

1) If ↵

⇤
k

= w

0

k

S for some k, we have �

k

= 0 and

� 1

w

0
k

S

� �

k

+

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

= 0. (20)
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Since �

k

� 0 and 1
w

0
kS

> 0, to satisfy Eq. (20) we have
P

n

µ

E

n

b

E

k,n

+

P
n

µ

I

n

b

I

k,n

> 0. Hence, there exists a server
n 2 {n|Xi

k,n

6= 0, 9i 2 T k} that satisfies µ

E

n

6= 0 or µ

I

n

6= 0,
from which we have

X

k

↵

⇤
k

b

E

k,n

� B

E

n

= 0 or
X

k

↵

⇤
k

b

I

k,n

� B

I

n

= 0.

This indicates that among all the servers hosting application
k’s tasks, there is at least one of them that has no idle link
to improve k’s performance. Thus, the performance of k only
achieves its minimum guaranteed share.

2) If ↵

⇤
k

= ↵ for some k, we have �

k

= 0 and

� 1

↵

+ �

k

+

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

= 0.

To satisfy the equation, it is obvious that 0  �

k

 1
↵

. If
�

k

=

1
↵

, then for any server n 2 {n|Xi

k,n

6= 0, 9i 2 T k}, we
have µ

E

n

= 0 and µ

I

n

= 0, thus
X

k

↵

⇤
k

b

E

k,n

� B

E

n

< 0 and
X

k

↵

⇤
k

b

I

k,n

� B

I

n

< 0,

which implies that at all the servers where some tasks of
application k are placed, the bandwidth is more than sufficient
for it to achieve the maximum performance ↵.

3) If w

0

k

S < ↵

⇤
k

< ↵, then we have �

k

= 0, �

k

= 0, and

� 1

↵

⇤
k

+

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

= 0

Similar with the analysis when ↵

⇤
k

= w

0

k

S, there exists such
n 2 {n|Xi

k,n

6= 0, 9i 2 T k} that satisfies
P

k

↵

⇤
k

b

E

k,n

�B

E

n

=

0 or
P

k

↵

⇤
k

b

i

k,n

�B

I

n

= 0, which indicates that the bandwidth
is bottlenecked at some servers where tasks of application k

are placed. This explains why the performance of application
k does not achieve the maximum.

In this case, we can represent ↵

⇤
k

as follows:

↵

⇤
k

=

1P
n

µ

E

n

b

E

k,n

+

P
n

µ

I

n

b

I

k,n

. (21)

The optimal solution can be obtained by solving the
equations of KKT conditions in a centralized manner. The
centralized solver need to maintain the network load matrices
D

k

with the dimension of m

k

for each application k, as well as
the task placement state matrices X

i

k,n

(i 2 T k) for the entire
datacenter. With 2(K + N) constraints in the optimization
problem, the computational complexity and storage overhead
will increase significantly as the number of applications and
physical machines scales up.

To overcome the limit of the centralized approach, we
propose a distributed algorithm to allocate bandwidth at each
server with less computation and less state information, which
will be presented in the next section.

V. DISTRIBUTED ALGORITHM FOR BANDWIDTH
ALLOCATION

In this section, we first prove that there is no duality gap
between the dual and the primal problem, and then apply the
dual based decomposition to design a distributed algorithm for
bandwidth allocation that can be implemented at each physical
machine in parallel.

A. Dual Based Decomposition

Let p

⇤ represent the optimal value of the primal optimization
problem (19). Considering the general situation that w

0

k

S <

↵

k

< ↵, we use X ⇢ RK to denote the solution space defined
by constraints (15, 16). The Lagrangian of the primal problem
under the general case is defined as L(·) : X⇥RN ⇥RN ! R.

L(↵, µ

E

, µ

I

) = �
X

k

log ↵

k

+

X

n

µ

E

n

(

X

k

↵

k

b

E

k,n

� B

E

n

)

+

X

n

µ

I

n

(

X

k

↵

k

b

I

k,n

� B

I

n

) (22)

where µ

E

= (µ

E

1 , ..., µ

E

N

) and µ

I

= (µ

I

1, ..., µ
I

N

) are the dual
variables associated with constraints (17, 18). The Lagrange
dual function g(·) : RN ⇥RN ! R is defined as the minimum
value of the Lagrangian L(↵, µ

E

, µ

I

) over ↵:

g(µ

E

, µ

I

) = min

↵

L(↵, µ

E

, µ

I

) = L(↵

⇤
, µ

E

, µ

I

) (23)

Thus, the dual problem of the optimization problem (19) is:

d

⇤
= max

µ

E2RN
+ ,µ

I2RN
+

g(µ

E

, µ

I

) (24)

It has been shown in the previous section that Slater’s con-
dition holds, which means that there exists a strictly feasible
solution that satisfies strict inequality constraints. Based on
Slater’s theorem, the strong duality holds [10]. Therefore, there
is no duality gap between p

⇤ and d

⇤, i.e., there exists µ

E⇤
, µ

I⇤

such that d

⇤
= g(µ

E⇤
, µ

I⇤
) = L(↵

⇤
, µ

E⇤
, µ

I⇤
) = p

⇤.
To sum up, in order to obtain the optimal solution of the

primal problem, we can solve the dual problem (24) that
has zero duality gap. Further, without coupling constraints,
problem (24) can be divided into N subproblems to be solved
at each physical server.

B. Distributed Algorithm Using Gradient Projection

We now design a distributed algorithm based on the gradient
projection method to solve the dual problem, thus the optimal
solution ↵

⇤ for the primal problem can be further derived. The
algorithm is proved to converge and is easy to be implemented
at each physical machine, with a small overhead.

Let ⇣ > 0 denote the step-size of the following recursion
scheme of dimension N . For each n 2 {1, 2, ..., N} and t � 0,
we have:

µ

(t+1)
n

=

h
µ

(t)
n

+ ⇣

@g

@µ

n

i+
,

=

h
µ

(t)
n

+ ⇣

⇣P
k

↵

k

b

k,n

� B

n

⌘i+
(25)

where [x]

+
= max{0, x}, µ

n

stands for (µ

E

n

, µ

I

n

), and the
same applies to b

k,n

and B

n

.
Theorem 1: Given µ

(0) 2 R2N

+ and ⇣ 2 (0, 2/

˜

K],
where ˜

K =

p
2N

⇣P
n

P
k

�
b

E

k,n

+ b

I

k,n

�
C

k

⌘
↵

2 and C

k

=

max

n

{b

E

k,n

, b

I

k,n

}, the recursive sequence {µ

(t)} generated
by Eq. (25) converges to the dual optimum µ

⇤, i.e.,
lim

t!1 µ

(t)
= µ

⇤.
Proof: We first prove that the gradient of the dual function

g(µ) is ˜

K-Lipschitz continuous.
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Let us define a function ✓

k

(·) over R as ✓

k

(x) =

1
x

, where
x � 1/↵. The Lipschitz constant of ✓

k

(x) is easily obtained as
↵

2. We also define d

E

n

(µ) as the partial derivative of g(µ

E

, µ

I

)

with respect to µ

E

n

:

d

E

n

(µ) =

@g(µ

E

, µ

I

)

@µ

E

n

=

X

k

↵

⇤
k

b

E

k,n

� B

E

n

(26)

Based on Eq. (21), we can represent ↵

⇤
k

as a ✓

k

(·) function:

↵

⇤
k

(µ) =

1P
n

µ

E

n

b

E

k,n

+

P
n

µ

I

n

b

I

k,n

= ✓

k

(

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

)

Thus, d

E

n

(µ) can be represented as:

d

E

n

(µ) =

X

k

b

E

k,n

✓

k

(

X

n

µ

E

n

b

E

k,n

+

X

n

µ

I

n

b

I

k,n

) � B

E

n

Then we can derive the following:

|dE

n

(µ) � d

E

n

(µ

0
)|


P

k

b

E

k,n

|✓
k

(

P
n

µ

E

n

b

E

k,n

+

P
n

µ

I

n

b

I

k,n

)

� ✓

k

(

P
n

µ

0
E

n

b

E

k,n

+

P
n

µ

0
I

n

b

I

k,n

)|


P
k

b

E

k,n

↵

2 P
n

(b

E

k,n

|µE

n

� µ

0
E

n

| + b

I

k,n

|µI

n

� µ

0
I

n

|)


P
k

b

E

k,n

↵

2
C

k

P
n

(|µE

n

� µ

0
E

n

| + |µI

n

� µ

0
I

n

|)
= (

P
k

b

E

k,n

C

k

)↵

2kµ � µ

0k1 (27)

where k · k1 is the L1 norm in vector space, and C

k

=

max

n

{b

E

k,n

, b

I

k,n

}. Similarly, we have

|dI

n

(µ) � d

I

n

(µ

0
)|  (

P
k

b

I

k,n

C

k

)↵

2kµ � µ

0k1 (28)

Summing up Eq. (27) and Eq. (28) over all n 2 N yields:

kd(µ) � d(µ

0
)k1

=

P
n

⇣
|dE

n

(µ) � d

E

n

(µ

0
)| + |dI

n

(µ) � d

I

n

(µ

0
)|
⌘


⇣P

n

P
k

�
b

E

k,n

+ b

I

k,n

�
C

k

⌘
↵

2kµ � µ

0k1

For any µ 2 R2N

+ , we have kµk  kµk1 
p

2Nkµk (k · k2

or k · k is the L2 norm or Euclidean norm) in metric space.
Thus, we have the following result:

kd(µ) � d(µ

0
)k  kd(µ) � d(µ

0
)k1


⇣P

n

P
k

�
b

E

k,n

+ b

I

k,n

�
C

k

⌘
↵

2kµ � µ

0k1


p

2N

⇣P
n

P
k

�
b

E

k,n

+ b

I

k,n

�
C

k

⌘
↵

2kµ � µ

0k

Therefore, the Lipschitz constant of rg(µ) is ˜

K =p
2N

⇣P
n

P
k

�
b

E

k,n

+ b

I

k,n

�
C

k

⌘
↵

2. According to the proof
in [11], if rg(µ) is ˜

K-Lipschitz continuous, then given a step-
size ⇣ 2 (0, 2/

˜

K], µ

(t) will converge in µ

⇤ as t ! 1.
Since there is no duality gap between the dual problem and

the primal problem, ↵(µ

(t)
) associated with µ converges to

the primal optimum, i.e.,

lim

t!1
↵(µ

(t)
) = ↵

⇤

With the theoretical guidelines so far, we are able to design
Algorithm 1 for distributed bandwidth allocation, which can

Algorithm 1: The distributed algorithm for performance-
centric bandwidth allocation.

Input:
Bandwidth capacity: B

E

n

, B

I

n

, 8n 2 N ;
Network load matrix Dk

i,j

and weight w

k

, 8k 2 K;
Tunable relaxation on fairness: S 2 (0, S

⇤
];

The maximum performance: ↵;
Task placement across physical machines: X

i

k,n

;
Iteration times: T ; Step-size: ⇣ 2 (0, 2/

˜

K];
Output:

Bandwidth allocation for all applications: r

k

i,j

;
1: Initialize ↵

k

= w

0

k

S, 8k 2 K;
2: Calculate b

E

k,n

and b

I

k,n

based on Eq. (11) and (12);
3: while iterations < T do
4: for all physical machine n do
5: µ

E

n

= max (0, µ

E

n

+ ⇣(

P
k

↵

k

b

E

k,n

� B

E

n

));
6: µ

I

n

= max (0, µ

I

n

+ ⇣(

P
k

↵

k

b

I

k,n

� B

I

n

));
7: end for
8: for all ↵

k

do
9: ↵

k

=

1P
n µ

E
n b

E
k,n+

P
n µ

I
nb

I
k,n

;

10: ↵

k

= ↵

k

> ↵ ? ↵ : (↵

k

< w

0

k

S ? w

0

k

S : ↵

k

);
11: end for
12: iterations ++;
13: end while
14: for all r

i,j

k

do
15: r

i,j

k

= ↵

k

· Di,j

k

;
16: end for

be implemented at each physical machine in parallel. The only
required state information to be maintained at each machine
is the weights and network load matrices of the applications
that have their tasks placed on this machine. The network load
matrics can be readily measured using standard tools, such as
Bandwidth Monitor NG (bwm-ng).

In each iteration, machine n updates µ

E

n

and µ

I

n

following
Eq. (25), given the step-size ⇣ bounded by the global constant
2/

˜

K and the gradient of the dual function in Eq. (26). The
performance ↵

k

of each application k is computed given the
updated dual variables according to Eq. (21). If the gradient is
negative, which means that there is residual egress bandwidth
on machine n, then µ

E

n

will decrease and ↵

k

will increase,
indicating that the idle bandwidth will be utilized to increase
application performance. Note that b

E

k,n

and b

I

k,n

are 0 if none
of the tasks of application k is placed on machine n. Hence,
computing ↵

k

only requires µ

E

n

and µ

I

n

from those machines
where at least one task of application k is placed, which
incurs a small communication overhead. If the computed
performance is beyond its lower bound or upper bound, it
will be set as its nearest bound to restrict the allocation in
the feasible sets. Finally, when the dual variables converge to
the optimum, the rates of the flows on server n can be easily
computed and allocated.

VI. PERFORMANCE EVALUATION

In this section, we investigate how the proposed bandwidth
allocation algorithm performs in tuning the tradeoff between

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1605



8

6.5 7 7.5 83.95

4

4.05

4.1

4.15

4.2

Degree of Fairness Relaxation: S

To
ta

l U
til

ity
 (S

oc
ia

l W
el

fa
re

)

Fig. 5: The tradeoff between the

total performance-centric fair share

and the total utility in scenario 1.

S=8 S=7.5 S=7 S=6.5 S=60

1

2

3

4

5

Pe
rfo
rm
an
ce

 

 

A B C

Fig. 6: Performance of application

A, B and C when S is tuned at

different values in scenario 1.

6 7 8 95.9

5.95

6

6.05

6.1

Degree of Fairness Relaxation: S

To
ta

l U
til

ity
 (S

oc
ia

l W
el

fa
re

)

Fig. 7: The tradeoff between the

total performance-centric fair share

and the total utility in scenario 2.

S=9 S=8 S=7 S=6 S=50

2

4

6

Pe
rfo
rm
an
ce

 

 

A B C D

Fig. 8: Performance of application

A, B C and D when S is tuned at

different values in scenario 2.

maximizing the total utility and maintaining performance-
centric fairness, with a detailed analysis in two typical scenar-
ios. We also evaluate the performance of our algorithm with
respect to the convergence.

We simulate a private datacenter with homogeneous phys-
ical machines. Each application has multiple tasks placed
across several machines. Each machine is able to shape the
bandwidth of its flows. We evaluate the behaviour of our
algorithm under two scenarios shown in Fig. 9.

A1 B1 B2 D1

A3 B3 D2

A2 C1 C2

A4 B4 C3 C4

100
150 250

200

B

C

100

100

200

Scenario 1 Scenario 2

A

P

P1

P2

P3

P4

Fig. 9: Two scenarios for evaluating the proposed bandwidth allocation.

In Scenario 1, three applications A, B and C, with weights
of 2, 1 and 1, encounter the same bottleneck at physical
machine P , where their tasks have 100 MB, 100 MB and 200

MB intermediate data to be transferred, respectively. The link
(both ingress and egress) bandwidth capacity of P is 1 GB/s.
Based on Eq. (13), the maximum total performance-centric
share (S⇤) of all the applications is computed as 8.

As shown in Fig. 5, as we relax the performance-centric
fairness, i.e., as we reduce S, the total utility of all the
applications increases, indicating that the bandwidth becomes
more efficiently utilized. Fig. 6 delves into several points of
the tradeoff curve to show the performance achieved by these
applications.

When S is at its maximum as 8, the performance of A,
B and C is 4, 2, 2 respectively, proportional to their weights,
while the total utility is the lowest in the tradeoff curve. When
we reduce S, the amount of bandwidth required to guarantee
the total performance-centric share is reduced. The residual
bandwidth can thus be freely allocated to the application
whose utility will increase the most given this amount of
bandwidth. In this scenario, B is the most competitive in
grabbing the free bandwidth. It has less data to be sent
compared with C and its current performance is lower than

A, so that its performance improvement will make the total
utility increase the most.

This analysis is supported by Fig. 6. While all the ap-
plications are guaranteed the minimum performance-centric
share, which is decreasing as we reduce S, B can achieve
higher performance than its minimum share by grabbing the
free bandwidth. For example, when S = 7, the minimum
performance-centric share is 2

2+1+1 · 7 = 3.5 for A, and
1

2+1+1 · 7 = 1.75 for B and C. As shown in Fig. 6, A and C

achieve the performance of 3.5 and 1.75 respectively, while B

achieves 3, which is more than its minimum share. When S

decreases below 6.5, the total utility will achieve its maximum
and will not increase any further.

Now we consider Scenario 2 as shown in Fig. 9, where
four applications A, B, C and D with the same weight have
their tasks placed across 4 servers, each with the bandwidth
capacity of 3 GB/s. The bottleneck link encountered by A, B

and C is at P3, while D is bottlenecked at P1. If we strictly
follow performance-centric fairness, S

⇤ is computed as 120
13 ,

and D will not be allowed to use the idle bandwidth on server
P1 and P2. With the relaxation on fairness by reducing S,
the idle bandwidth will be utilized, and there will be residual
bandwidth after guaranteeing the minimum share to all the
applications. The residual bandwidth can thus be allocated
among applications to improve the total utility the most. Such
a tradeoff between the total utility and the degree of fairness
relaxation is verified in Fig. 7.

Fig. 8 illustrates the application performance achieved at
different degrees of relaxation on performance-centric fairness.
As we tune S, B always achieves no more than its minimum
guaranteed performance-centric share, while other applications
achieve higher performance than their minimum shares. This
can be explained by B’s heavy network load, which results
in a smaller amount of utility increase compared with other
applications, given the same amount of bandwidth allocation.
Hence, the free bandwidth at P1 will be allocated to D, and
the free bandwidth at P3 will be allocated to A, in order to
improve the overall utility.

Finally, we evaluate the convergence of our algorithm in
Scenario 1. As shown in Fig. 10, the dash lines and solid
lines represent the performance of applications at different
values of S, respectively. We choose the step-size according
to Theorem 1 to guarantee the convergence. The performance
of all the applications converges within about 70 iterations.
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To further evaluate our algorithm at a much larger scale, we
simulate a datacenter with 100 physical machines hosting 100

data parallel applications, each of which has 4 tasks placed
at different machines. Tasks of applications have different
amounts (randomly chosen between 100 MB to 200 MB for
simplicity) of data to be transferred in their communication
stages. Fig. 11 shows the performance change of two randomly
selected applications with an increasing number of iterations.
We can see that the application performance is able to converge
within 800 iterations.

VII. RELATED WORK

Bandwidth allocation among multiple tenants in public
cloud datacenters have received a substantial amount of recent
research attention [5]–[7], [12]–[16]. The general focus of
these works has been on ensuring fair allocation among
different tenants according to their payments. For example,
NetShare [7] achieves tenant level fairness while Seawall [6]
achieves fairness between VM sources. FairCloud [5] allocates
bandwidth on congested links based on the weights of the
communicating VM-pairs, thus achieving VM-pair level fair-
ness. However, in our setting of a private datacenter running
data parallel frameworks, the previous notion of fairness is not
applicable.

In the context of a private datacenter, Kumar et al. proposed
that bandwidth should be allocated with the awareness of
the communication patterns of data parallel applications [17].
Their focus is mainly on effective parallelization for each
application, i.e., the completion time should be N times faster
if the application parallelizes by N . However, when tasks
of one application share bandwidth with tasks of different
applications at different bottlenecks, it is not known what
performance each application should expect, without a clear
definition of fairness with respect to application performance.
In contrast, our proposition of performance-centric fairness
fills this gap, and offers a definitive guide to the problem
of bandwidth allocation among multiple data parallel appli-
cations in a private datacenter. Moreover, having investigated
the tradeoff between the total utility and performance-centric
fairness, we design a new bandwidth allocation algorithm to
maximize the total utility given tunable degrees of fairness
relaxation.

VIII. CONCLUDING REMARKS

Our focus in this paper is to study the sharing of link
bandwidth among applications running data parallel frame-

works in a private datacenter. With the guideline that per-
formance achieved by applications should be proportional to
their weights, we propose a rigorous definition of performance-
centric fairness and study the problem of performance max-
imization while maintaining fairness. Then we point out
that there is an inherent conflict between maximizing band-
width utilization and maintaining strict fairness. Considering
this tradeoff, we introduce tunable degrees of relaxation on
performance-centric fairness, and formulate the problem of
maximizing the total utility across all applications with such
a fairness relaxation. A distributed algorithm for bandwidth
allocation is designed to solve the problem, which can be im-
plemented on each physical machine in a lightweight fashion.
Our extensive simulations have shown that our algorithm not
only converges, but also provides the flexibility to balance the
tradeoff between the total utility and the degree of fairness
relaxation.
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