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Abstract—The wide deployment of machine learning algorithms has become a severe threat to user data privacy. As the learning data
is of high dimensionality and high orders, preserving its privacy is intrinsically hard. Conventional differential privacy mechanisms often
incur significant utility decline as they are designed for scalar values from the start. We recognize that it is because conventional
approaches do not take the data structural information into account, and fail to provide sufficient privacy or utility. As the main novelty of
this work, we propose Matrix Gaussian Mechanism (MGM), a new (ε, δ)-differential privacy mechanism for preserving learning data
privacy. By imposing the unimodal distributions on the noise, we introduce two mechanisms based on MGM with an improved utility.
We further show that with the utility space available, the proposed mechanisms can be instantiated with optimized utility, and has a
closed-form solution scalable to large-scale problems. We experimentally show that our mechanisms, applied to privacy-preserving
federated learning, are superior than the state-of-the-art differential privacy mechanisms in utility.

F

1 INTRODUCTION

Powered by abundant data, machine learning models and
APIs have cultivated a variety of applications from object
detection, machine translation to auto driving and behavior
modeling. For example, the input suggestion system on a
smartphone learns the user’s language habits locally to give
better recommendations. It can also learn from other users’
expressions to give more precise suggestion. However, the
learning models and APIs pose great threats to user data
privacy, as an individual can be easily singled out from a
large amount of data records. The situation is even worse
in federated learning as participants jointly build a shared
model on their local proprietary datasets. For example,
through the gradients exchanged in each training iteration,
an attacker is able to infer if a data record is in the training
dataset. A variety of privacy-preserving techniques such
as cryptography-based approaches, differential privacy and
others, have been proposed for protecting data privacy in
learning.

Differential privacy has become the gold standard of
privacy guarantee in general data analytics and processing
[1], [2], [3], [4]. Both as a rigorous mathematical concept and
privacy-preserving mechanisms, differential privacy con-
strains an adversary’s capability to infer anything about the
sensitive data independent of its occurrence in the dataset
[5]. Hence, the mechanism prevents any adversary from
gaining additional information about any single record.
The technique has been integerated with machine learning
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to prevent the released model/gradients from leaking out
private training data [6], [7], [8].

However, the current differential privacy mechanisms
for learning algorithms have not taken the characteris-
tics of learning data into account. The learning data not
only includes the training or testing inputs, but also the
intermediate-layer features, gradients and model parame-
ters. Since machine learning, in particular deep learning,
involves learning data of high dimensionality or high or-
ders, conventional differential privacy mechanisms typi-
cally introduce great amount of randomized noise, resulting
in notable accuracy degradation of the model. Moreover,
merely treating the learning data as a collection of scalar-
valued elements, or flattening them into vectors do not
preserve the structural information, leading to loss of utility
as well. Hence there is a growing need to formalize privacy
guarantee on the learning data, especially relieving the
tension between the privacy guarantee and the model utility.

Preserving utility and privacy at the same time for high-
dimensional/order data is difficult. This originates from
the fundamental trade-off between data privacy and utility.
For matrix-valued data, the problem is more severe as an
overwhelming amount of noise may be inserted, leading to
less useful data. Practical schemes have been proposed to
alleviate such loss, as in [9], [10], [11], [12]. As most of the
solutions are heuristic, there are no utility guaranteed, nor
scalable approaches to large-scale applications.

In this work, we formalize the study of differential
privacy for matrix-valued data and propose a mechanism
called Matrix Gaussian Mechanism (MGM). Preserving data’s
original structure, MGM adds differentially-private, matrix-
valued noise to the data. The idea is to utilize the matrix
Gaussian distribution to guarantee (ε, δ)-differential pri-
vacy, and such a guarantee only depends on the covariance
matrices of the noise. We rigorously prove that MGM meets
differential privacy, and more importantly show it has a
tighter noise bound, in light of which higher utility than
previous works can be achieved. Actually, MGM implies a
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set of mechanisms, which leaves much design space for us to
manipulate for achieving better data utility. By additionally
imposing some restrictions on the noise, we further propose
two mechanisms based on MGM with improved utility.

From the utility aspect, we observe different directions of
the learning data may have different impacts to the output,
depending on how the data is involved in the task. For ex-
ample, for parameterized models, an attribute may be more
important to the final result given it is associated with more
significant model weights. We can improve the performance
of such tasks by adding carefully-crafted directional noise,
i.e., a structural noise which incur minimum impact on the
final result. Hence we propose an optimization framework
for MGM to seek an optimal noise direction in terms of
utility. Closed-form solutions are derived, rendering MGM
readily be deployed in large-scale problems.

Based on MGM, we devise two practical schemes
for privacy-preserving federated learning over sensitive
datasets. In federated learning, the gradients and features
exchanged in each training iteration pose as great threats to
data privacy. We apply MGM respectively to gradients and
features in different federated learning scenarios. We show
the superiority of MGM over state-of-the-art differential
privacy mechanisms both from theoretical and experimental
perspectives.

Highlights of our contribution include: first, we propose
a (ε, δ)-differential privacy mechanism MGM for matrix-
valued data, which enjoys higher utility over previous
works. Second, a utility optimization framework is intro-
duced based on MGM, of which closed-form solutions are
derived. Finally, we derive two practical privacy-preserving
schemes for federated learning, and experimental results
support that MGM is scalable, practical, and enjoys higher
utility than previous works.

2 RELATED WORK

Our work is mostly related to works in the following cate-
gories.

2.1 Primitive Mechanisms

Primitive mechanisms refer to those whose privacy guar-
antee is self-contained, i.e., it does not depend on any
other mechanism. They include Gaussian mechanism [13],
Laplace mechanism [14], Exponential mechanism [13], Ma-
trix Variate Gaussian (MVG) [11], Matrix Mechanism (MM)
[10], etc.

Our work is related to the additive noise mechanisms
such as Gaussian, Laplace, MVG, and MM. The Gaussian
mechanism applies i.i.d. Gaussian noise scaled to the l2-
sensitivity and guarantees (ε, δ)-differential privacy. [15]
improves the conventional Gaussian mechanism by using
a necessary and sufficient condition rather than a suffi-
cient condition for vectorized queries. Likewise, the Laplace
mechanism adds noise drawn from the Laplace distribu-
tion scaled to the l1-sensitivity of the query function, and
guarantees strong ε-differential privacy. MM is designed for
linear queries, which adds a vector-valued noise (Gaussian
or Laplace) to the data and seeks an optimal transform
to minimize the perturbation impact. MVG is proposed

for matrix-valued queries, and adds matrix-valued noise
to guarantee (ε, δ)-differential privacy. Belonging to the
additive noise mechanism, our work proposes a (ε, δ)-
differential privacy mechanism for matrix-valued queries
with utility guarantees.

Our work is also aligned with works addressing the
utility of additive noise such as [9], [11], [12]. The optimal
noise distribution is found by Geng et al. [9] in terms of the
magnitude of the noise, but has restriction on data dimen-
sions. Similar to [12], we formulate the problem of seeking
the optimal noise distribution as a constrained optimization
problem, and such a distribution in fact indicates directional
noise as introduced in [11].

2.2 Learning with Differential Privacy
There is a wide range of works applying differential privacy
mechanisms to machine learning algorithms [2], [3], [16],
[17]. Depending on different privacy-preserving goals, we
have differentially-private inputs [11], [18], [19], [20], out-
puts [4], [8], [21], gradients [6], [7], [22], [23], [24], [25], [26],
[27], [28], and objective functions [29], [30], [31], etc.

On the basis of privacy-preserving learning methods,
many architectures have been proposed to build models on
the sensitive training data. Shokri et al. [6] introduce a prac-
tical system for federated learning which allows multiple
participants to learn neural network models by sharing se-
lective parameters in a differentially-private way. Triastcyn
et al. [32] apply Bayesian differential privacy (BDP) in fed-
erated learning to get a tighter privacy guarantee. Different
from the centralized differential privacy used in previous
works, Truex et al. [33] adopt local differential privacy in the
federated learning and further reduce the impact of noise
by proposing α-CLDP. Wei et al. [34] propose noising before
model aggregation FL (NbAFL) mechanism and prove that
NbAFL could still guarantee (ε, δ)-differential privacy as the
variances of noise vary. Different from these mechanisms,
we minimize the impact of the noise by designing the
noise distribution. Therefore, our mechanism has a broader
application range as it fits the noise distribution to different
scenarios.

We pay particular attention to the federated learning
applications as the models are typically trained on the sen-
sitive datasets of different participants. Our mechanism can
be considered as a primitive differential privacy mechanism
which can be applied to the matrix-valued inputs, outputs
or gradients in machine learning algorithms.

3 PRELIMINARIES

In this section, we prepare the readers with prior knowledge
for ease of understanding our work.

3.1 Differenital Privacy
Differential privacy is proposed to constrain an attacker’s
capability to gain additional knowledge about a particular
data record despite that it is in the dataset or not. The
privacy guarantee is expressed by the logarithmic distance
between the posterior probability distributions of two adja-
cent inputs given the outputs. Adjacent inputs are defined
on two datasets differ by one unit of distance. Different
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TABLE 1
Notations

U a matrix
N Standard Normal Distribution variable

s2(f) l2-sensitivity of f(X) (Def. 3)
MNm,n (M,Σ1,Σ2) Matrix Gaussian distribution (Def. 4)

M mean ofMNm,n

Σk covariance matrix ofMNm,n, k = 1, 2

Uk UkU
>
k = Σk, k = 1, 2

ε, δ parameters of differential privacy
ζ(δ)2 −2 ln δ + 2

√
−mn ln δ +mn

α s22(f)
β 2ζ(δ)s2(f)

B
(
−β +

√
β2 + 8αε

)2
/4α2,

WUk
, Sk the SVD of Σk = WUk

SkW
>
Uk
, k = 1, 2

SUk
SUk

S>Uk
= Sk, k = 1, 2

E1, E2 the identity matrix of dimension m and n
W1,W2 the utility subspaces

metrics of the distance can be used, which leads to different
variants of differential privacy. We use ε to define the upper
bound of the distribution distance and δ to denote the
residual probability. Formally, letting X and X ′ be the pair
of adjacent inputs,O be the output set and M be the private
mechanism, we have

Definition 1 ((ε, δ)-Differential Privacy). A randomized mech-
anism M gives (ε, δ)-differential privacy if for any datasets X
and X ′ differing by at most one unit, and for any possible output
O,

Pr(M(X) ∈ O) ≤ eε Pr(M(X ′) ∈ O) + δ. (1)

In the special case of δ = 0 we call M ε-differentially
private. The definition above does not specify the concept
of adjacent datasets, which is typically defined application-
wise. By default in this paper, we refer to a pair of datasets
differing by a single record as adjacent datasets.

3.2 Relevant Definitions and Lemmas
As we mainly focus on matrix-valued random variable, we
clarify some of the related definitions and lemmas adopted
in this paper.

Definition 2 (Standard Normal Distribution (SND)). If a
matrix-valued random variable N ∈ Rm×n follows a standard
normal distribution (SND), its probability density function is

Pr(N) =
1

(2π)mn/2
exp

{
−1

2
‖N‖2F

}
, (2)

where ‖ · ‖F denotes frobenius norm.

Note that if a matrix-valued random variable follows
SND, each element of the matrix Nij follows the normal
distribution N (0, 1). Besides the above definitions, we in-
troduce some related lemmas concerning our work.

Lemma 1 (Matrix norm inequality). Let U1 ∈ Rm×m, U2 ∈
Rn×n, and X,Y ∈ Rm×n be a pair of matrices which satisfy:
X = U1Y U2. Then we have the matrix norm inequality that

‖X‖F ≤ ‖Y ‖F ‖U1‖F ‖U2‖F . (3)

Lemma 2 (The bound of the SND matrix-valued random
variable). For a matrix-valued random variable N ∈ Rm×n fol-
lowing the SND, δ ∈ [0, 1) and ζ(δ)2 = −2 ln δ+2

√
mn ln δ+

mn, we have

Pr[‖N‖2F ≤ ζ(δ)2] ≥ 1− δ. (4)

We list the notations used in this paper in Table 1 for
ease of reading.

4 MATRIX GAUSSIAN MECHANISM

In this section, we first introduce the matrix-valued differen-
tial privacy mechanism called Matrix Gaussian Mechanism
(MGM), and give the main theorem along with its proof.
The matrix-valued differential privacy mechanism is mostly
different from the scalar-valued one in that the data or query
are in matrix form, and we need to guarantee differential
privacy regardless of the specific shape of the matrix.

For a more fluent narrative of our mechanism, we first
define l2-sensitivity on a pair of adjacent matrices as follows:

Definition 3 (l2-sensitivity). The l2-sensitivity of the query
function f(X) ∈ Rm×n is defined as,

s2(f) = sup
d(X,X′)=1

‖f(X)− f(X ′)‖F ,

where ‖ · ‖F is the Frobenius norm, d(X,X ′) = 1 means that X
and X ′ are neighboring datasets differing by only a single record.

Based on the standard normal distribution on matrices
(Def. 2), we define matrix Gaussian distribution and its
variable Z as below:

Definition 4 (Matrix Gaussian distribution). The proba-
bility density function for the m × n matrix-valued ran-
dom variables Z which follows the matrix normal distribution
MNm,n(M,Σ1,Σ2) is

Pr(Z|M,Σ1,Σ2) =
exp{− 1

2‖U
−1
1 (Z −M)U−>2 ‖2F }

(2π)(mn)/2|Σ2|n/2|Σ1|m/2
, (5)

where UkU>k = Σk, k = 1, 2, | · | is the matrix determinant,
M ∈ Rm×n is mean, Σ1 ∈ Rm×m is the row-wise covariance
and Σ2 ∈ Rn×n is the column-wise covariance.

Note that if N ∈ Rm×n is SND random variable defined
by Eq. 2, then we could get that N = U−1

1 (Z −M)U−>2 ,
and N is a special case of matrix Gaussian random vari-
able that N ∼ MNm,n(0,E1,E2). With the above defini-
tion, we apply additive matrix Gaussian noise following
MNm,n(0,Σ1,Σ2) distribution in the MGM mechanism
stated in the following.

Definition 5 (Matrix Gaussian Mechanism). For a given
query function f(X) ∈ Rm×n and a matrix variate Gaussian
Z ∼ MNm,n(0,Σ1,Σ2) the Matrix Gaussian Mechanism is
defined as:

MGM(f(X)) = f(X) + Z. (6)

Similar to the Gaussian mechanism [13], MGM adds
zero-mean randomized noise to the query result. Note that
Σ1 ∈ Rm×m and Σ2 ∈ Rn×n are the covariance matrices of
different modes for Z, which are subject to design. In our
main theorem to be discussed, we mainly show what forms
of the covariance matrices would ensure the mechanism to
be differentially-private.

By Lemma 1 and 2, we can prove the main theorem on
MGM defined in Def. 5:

Theorem 1. We have a query function f(X) ∈ Rm×n, and a
matrix Gaussian noise Z ∼ MNm,n(0,Σ1,Σ2). Σ1,Σ2 are
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the covariance matrices and U1 ∈ Rm×m, U2 ∈ Rn×n satisfies
UkU

>
k = Σk for each k = 1, 2. The MGM guarantees (ε, δ)-

differential privacy if U1, U2 satisfy

‖U−1
1 ‖2F ‖U

−1
2 ‖2F ≤

(
−β +

√
β2 + 8αε

)2

4α2
. (7)

α = s2
2(f), and β = 2ζ(δ)s2(f), where s2(f) is the l2-

sensitivity of f(X) and ζ(δ) is defined in Lemma 2.

Note that the right side of Eq. (7) is a constant once the
privacy parameters ε and δ are given. Hence the theorem
shows that to guarantee differential privacy for matrix-
valued data, one only needs to satisfy the constraint on
Frobenius norms concerning covariance matrices of the ad-
ditive noise Z. We include the full proof here

Proof. By Def. 1, to guarantee (ε, δ)-differential privacy, we
should have the following satisfied for each pair of datasets
X,X ′ and any possible output set O:

Pr(f(X) + Z ∈ O) ≤ eε · Pr(f(X ′) + Z ∈ O) + δ,

which can be rewritten as

Pr(Z ∈ O − f(X)) ≤ eε · Pr(Z ∈ O − f(X ′)) + δ.

We express Z in terms of a SND matrix by Eq. (2) and define
the following events:

R1 = {N : ‖N‖2F ≤ ζ2(δ)},R2 = {N : ‖N‖2F > ζ2(δ)},

where ζ2(δ) is defined in Lemma 2. By the definition of
ζ2(δ) and Lemma 2, we have Pr({Z ∈ O − f(X)} ∩R2) ≤
Pr(R2) ≤ δ. And thus we only needs to find the sufficient
conditions for the following inequality to hold:

Pr({Z ∈ O−f(X)}∩R1) ≤ eε ·Pr({Z ∈ O−f(X ′)}∩R1).

Letting O′ = O − f(X) and ∆ = f(X) − f(X ′), with
the Def. 3 of l2-sensitivity ‖∆‖F = s2(f). We find that

Pr(Z ∈ O′ ∩R1) ≤ eε · Pr(Z ∈ (O′ + ∆) ∩R1)

⇔
∫
O′∩R1

exp(− 1
2‖U

−1
1 ZU

−>
2 ‖2F )dZ∫

(O′+∆)∩R1
exp(− 1

2‖U
−1
1 ZU

−>
2 ‖2F )dZ

≤ eε.

The equation will have to hold for any output set O′ for
the differential privacy condition to hold true. Therefore, we
could choose O′ as an arbitrary point. And if the condition
holds for any point, then it will hold for any output set O′.

Pr(Z ∈ O′ ∩R1) ≤ eε · Pr(Z ∈ (O′ + ∆) ∩R1)

⇔
exp(− 1

2‖U
−1
1 ZU

−>
2 ‖2F )

exp(− 1
2‖U

−1
1 (Z + ∆)U−>2 ‖2F )

≤ eε

⇔1

2
‖U−1

1 (Z + ∆)U−>2 ‖2F −
1

2
‖U−1

1 ZU
−>
2 ‖2F ≤ ε,

⇔1

2
‖∆′‖2 + vec(∆′)>vec(Q′) ≤ ε,

where ∆′ = U−1
1 ∆U−>2 , Q′ = U−1

1 ZU
−>
2 ,∀ Z ∈ O′ ∩

R1 , and vec(∆′) denotes the vectorization of ∆′, which
transforms the matrix into a column vector. It is obvious
that the last inequality consists of two parts and we will
prove the bound for each.

For conciseness, we define φ = ‖U−1
1 ‖F ‖U

−1
2 ‖F . By

Lemma 1, it can be proved that the first part satisfies

‖∆′‖2F = ‖U−1
1 ∆U−>2 ‖2F (8a)

≤ ‖∆‖2F ‖U−1
1 ‖2F ‖U

−>
2 ‖2F ≤ s2

2(f)φ2. (8b)

With the definition of Q′ and U−1
1 ZU

−>
2 = N from Def. 2,

we get ‖Q′‖2F ≤ ζ2(δ). Similarly, we derive the bound for
the second part:

vec(∆′)>vec(Q′) ≤ ‖∆′‖F ‖Q′‖F ≤ s2(f)ζ(δ)φ. (9)

The first inequality is due to the Cauchy inequality, and the
second inequality is similar to Eq. (8a)(8b). By combining
the results of two parts, the sufficient condition is

s2(f)2φ2 + 2s2(f)ζ(δ)φ ≤ 2ε. (10)

Note that φ can only be non-negative. By solving inequality
Eq. (10), we have

φ ≤ −β +
√
β2 + 8αε

2α
,

where α = s2
2(f), β = 2s2(f)ζ(δ). And this is exactly the

noise bound in Thm. 1.

Theorem 1 gives the condition that MGM should hold
for satisfying (ε, δ)-differential privacy. It is obvious that
this condition is only related to the covariance matrices of
the additive noise, which leaves much space for designing
the specific covariance matrices and the noise. In the next
section, we will introduce mechanisms with careful consid-
eration of the design space.

5 UNIMODAL GAUSSIAN NOISE

In this section, we present two special forms of MGM where
noise bounds can be further improved, and thus a better
utility can be achieved at the same privacy guarantee.

5.1 Unimodal Directional Noise
We first show an improvement over the general MGM
by adding unimodal directional noise (UDN). W.l.o.g., we
assume row of Z is the directional noise and the column are
i.i.d., i.e., U2 = E2 (E2 represents the identity matrix with
the same shape of U2). Note that the result is not a special
case of Thm. 1. We derive a new bound which is n times
tighter than that of Thm. 1.

We further use a toy example in Fig. 1 to clarify the point.
Fig. 1 shows a matrix-valued noise decomposed into two
vectors, which are respectively row and column vectors. The
lower figure describes the matrix noise projected on row and
column. The yellow dots represent the SND matrix-valued
random variable N whereas the blue dots denote Z = U1N .
In practice, such unimodal noise can be generated by apply-
ing the unimodal direction to the SND matrix, which only
changes the row-wise noise.

Now we see how the unimodal directional noise can im-
prove the noise bound. For clear comparison, we first state a
direct extension of Thm. 1 to UDN. By directly substituting
U2 = E2 to the left-hand side of the inequality (7), we get

‖U1
−1‖2F ≤

(
−β +

√
β2 + 8αε

)2

4nα2
. (11)
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Fig. 1. The diagram of unimodal directional noise. Upper: a matrix Z ∈
R2×2. Lower: the two subfigures are projections of the same matrix in
row and column. The yellow dots represent a SND variable N with all its
dimensions being i.i.d. The blue dots denote a variable Z = U1N with
row being directional noise and the column being i.i.d. The distribution
of its row is decided by the covariance matrix Σ1 = U1U>1 . The red line
(or dot) indicates the utility subsapce of the data.

By our new theorem, the right-hand side bound can be
improved by n:

Theorem 2 (Unimodal Directional Noise). Given U2 = E2,
MGM guarantees (ε, δ)-differential privacy if

‖U1
−1‖2F ≤

(
−β +

√
β2 + 8αε

)2

4α2
. (12)

where α = s2
2(f), and β = 2ζ(δ)s2(f).

The proof is similar to that of Thm. 1 except that we
replace U2 with E2 in (8a).

It is clear that the theorem presents that a tighter noise
bound for the covariance matrices of the noise. Since the
differential privacy condition only depends on U1 here, we
are only required to meet the constraint of Eq. (12). This also
suggests room to design U1 specific to the application.

Note that the covariance matrix Σk = UkU
>
k and

the singular value decomposition (SVD) of Σk is Σk =
WUk

SkW
>
Uk

. We set Uk = WUk
SUk

where SUk
S>Uk

= Sk.
Observing that in designing U1, we have the freedom to
substitute any unitary matrix WU1

into the SVD of U1.

5.2 Independent Directional Noise

The independent directional noise (IDN) follows the setting
from UDN and set the row-wise noise WU1 = E1. W.l.o.g.,
we assume U1 is a diagonal matrix and U2 = E2. Moreover,
we assume that the data to be protected can be scaled to the
same range, i.e., each element of f(X) is in range [a, b], then
we can improve the bound for ‖U−1

1 ‖F with the following
theorem.

Theorem 3 (Independent Directional Noise). Let Z ∼
MNm,n (0,Σ1,E2) ∈ Rm×n where Σ1 = U1U

>
1 and

U1 = diag[σ1, ..., σm] ∈ Rm×m. If we normaize each element

of f(X) to the same range [a, b], MGM(f(X)) = f(X) + Z
guarantees (ε, δ)-differential privacy if

‖U−1
1 ‖2F ≤

m

ŝ2
2(f)

(
−ζ(δ) +

√
ζ2(δ) + 2ε

)2

, (13)

with ζ(δ) defined in the Lemma 2 and ŝ2(f) = (b− a)
√
mn.

Proof. The proof is similar to the proof of Thm. 1. We define
the set of events R1 and R2 as in Thm. 1. And we will focus
on the sufficient condition of

Pr(Z ∈ O′ ∩R1) ≤ eε · Pr(Z ∈ (O′ + ∆) ∩R1). (14)

Since Σ1 is a diagonal matrix, the matrix-valued random
variable Z ∼MNm,n(0,Σ1,E2) and can be expressed as

Z = U1N.

By substituting the pdf of Z into the inequality (14), we
obtain

Pr(Z ∈ O′ ∩R1) ≤ eε · Pr(Z ∈ (O′ + ∆) ∩R1)

⇔
m∑
i=1

1

2σ2
i

 n∑
j=1

∆2
ij + 2∆ijzij

 ≤ ε.
By the definition of neighboring datasets, ∆ is a matrix

with only one row of nonzero values. W.l.o.g., we suppose
that the kth column is nonzero. The left-hand side of the last
inequality can be written as

m∑
i=1

∑n
j=1 ∆2

ij + 2∆ijzij

2σ2
i

=
m∑
i=1

∆2
ik

2σ2
i

+
m∑
i=1

∆ikzik
σ2
i

.

We bound the two parts respectively in the last equation.
Considering we normalize each feature to the same range,
we have 0 ≤ ∆2

ij ≤
ŝ22(f)
m for every i and j. Hence we have

m∑
i=1

∆2
ik

2σ2
i

≤
m∑
i=1

ŝ2
2(f)

2mσ2
i

=
ŝ2

2(f)

2m
‖U−1

1 ‖2F . (15)

For the second part, we rewrite Z as U1N and use U1 =
diag[σ1, ..., σm] ∈ Rm×m, we represent each entry of Z as

zij =
√
σixik, xik ∼ N (0, 1), ∀i ∈ [m], and j ∈ [n].

Then, the second part could be written as

m∑
i=1

∆ikzik
σi

=
m∑
i=1

∆ikxik√
σi
≤

√√√√ m∑
i=1

∆2
ik

σi

√√√√ m∑
i=1

x2
ik.

The inequality is by Cauchy inequality to single out xik.
According to the definition of R1, we know that if N ∈

R1, ‖N‖2F ≤ ζ2(δ). Hence,
m∑
i=1

x2
ik ≤

m∑
i=1

n∑
j=1

x2
ij = ‖N‖2F ≤ ζ2(δ).

Thus we have the following inequality holds:

ŝ2
2(f)

2m
‖U−1

1 ‖2F +
ŝ2(f)√
m
ζ(δ)‖U−1

1 ‖2F ≤ ε.

by the inequality (15).
This is a quadratic inequality of ‖U−1

1 ‖2F , and with the
condition ‖U−1

1 ‖2F > 0, which can be solved by

‖U−1
1 ‖2F ≤

m

ŝ2
2(f)

(−ζ(δ) +
√
ζ2(δ) + 2ε)2,
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which completes the proof.

To see how the result compares with that of unimodal
directional noise, we only need to replace U1 as a diagonal
matrix in Thm. 2. Thus we have

‖U−1
1 ‖2F ≤

1

ŝ2
2(f)

(
−ζ(δ) +

√
ζ2(δ) + 2ε

)2

.

Obviously, we have improved the noise bound by m times.

6 PRIVACY AND UTILITY

We show in this section that MGM has a natural form to
be optimized w.r.t. the utility subspace. If we know some
dimensions/directions of the matrix are more important
than others, we can select noise directions/distributions
such that less noise is inserted to the more important part
of the matrix, at the cost of a higher level of noise adding to
the less important part. By treating the MGM theorem as a
differentially-private constraint, we formulate the problem
from an optimization perspective. A closed-form solution is
obtained which minimizes the total impact of the noise on
the output, and the form of the solution is scalable to large-
size problems. Based on the solutions, two practical noise
generation algorithms are proposed.

Assume the task has linear utility subspace such that:

Y = W1f(X)W>2 ,

where f(X) ∈ Rm×n, W1 ∈ Rm
′×m, W2 ∈ Rn

′×n rep-
resents the utility subspace. Y ∈ Rm

′×n′
is the output.

To preserve privacy, we apply MGM by sampling a noise
Z ∼ MNm,n(0,Σ1,Σ2) and make predictions on the per-
turbed query result:

Ŷ = W1[f(X) + Z]W>2 .

We generate the noise Z from N such that

Z = U1NU
>
2 .

According to [9], [10] and other mechanisms, we define
our objective as the error on the original query result,
measured by the expected norm of weighted noise. If the
error is minimized, it means less perturbation is done to the
output. The goal is to minimize:

min
U1,U2

E‖Y − Ŷ ‖2F ⇔ min
U1,U2

E‖W1U1NU
>
2 W

>
2 ‖2F . (16)

In order to estimate the MGM error, we first need to
prove the following lemma:

Lemma 3. Suppose that A is a matrix valued variable with the
size m×m, then

E (trA) = tr (EA),

where trA represents the trace of A.

Proof. We find that

E (trA) = E(
m∑
i=1

Aii) =
m∑
i=1

EAii,

tr (EA) = tr (EAij)m×m =
m∑
i=1

EAii.

Therefore, E (trA) = tr (EA).

With the above lemma, we could present the theorem of
calculating the expection of ‖Z‖2F .

Theorem 4. For the given noise

Z = U1NU
>
2 ∈ Rm×n, (17)

where N ∈ Rm×n is a SND noise from Def 2, we have

E ‖Z‖2 = ‖U1‖2F ‖U2‖2F . (18)

Proof. First, we obtain

E ‖Z‖2F = E ‖U1NU
>
2 ‖2F = E tr(U1NU

>
2 (U1NU

>
2 )>)

(19)

Then, with the Lemma. 3, we could switch the trace and the
expectation. Thus

E ‖Z‖2F = tr(E U1NU
>
2 U2N

>U>1 )

=tr(U1E [NU>2 U2N
>]U>1 ).

(20)

Hence we focus on the E [NU>2 U2N
>]. Assume that

N> = (n1,n2, · · · ,nm), we have(
NU>2 U2N

>
)
ij

= n>i U
>
2 U2nj .

Therefore, if i 6= j, all the random variables in ni and nj are
independent. Hence we could get that

E [NU>2 U2N
>]ij = 0.

If i = j, we assume that zi = U2ni = (z1i, z2i, . . . , zmi)
>,

and thus

E [NU>2 U2N
>]ii = E

n∑
k=1

z2
ki

where zki ∼ N (0,
∑n
l=1 U2

2
lk). Therefore,

E
n∑
k=1

z2
ki =

n∑
k=1

E z2
ki =

n∑
k=1

n∑
l=1

U2
2
lk = ‖U2‖2F .

Hence,
E [NU>2 U2N

>] = ‖U2‖2FE1

Finally, we substitute the expectation into (20) to obtain

tr(U1E [NU>2 U2N
>]U>1 ) = ‖U1‖2F ‖U2‖2F . (21)

The proof completes.

By Thm. 4, we could formulate the optimization problem
as follows:

min
U1,U2

E‖Y − Ŷ ‖2F

⇔ min
U1,U2

E‖W1U1NU
>
2 W

>
2 ‖2F

⇔ min
U1,U2

‖W1U1‖2F ‖W2U2‖2F

⇔ min
U1,U2

‖W1WU1
SU1
‖2F ‖W2WU2

SU2
‖2F

(22)

where SU1 = diag(σ11, ..., σ1m) and SU2 =

diag(σ21, ..., σ2n). If we let P1i =
∑m′

j=1(W1WU1
)2
ji

and P2i =
∑n′

j=1(W2WU2
)2
ji, we can write our objective as

min
U1,U2

(
m∑
i=1

P1iσ
2
1i

)(
n∑
i=1

P2iσ
2
2i

)
. (23)
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We assume P1i and P2i are constant. Together with the
differential privacy constraint, we have a geometric pro-
gramming problem:

min
σ1i,σ2i

(
m∑
i=1

P1iσ
2
1i

)(
n∑
i=1

P2iσ
2
2i

)
,

s.t.

(
m∑
i=1

1

σ2
1i

)(
n∑
i=1

1

σ2
2i

)
≤ B,

(24)

where B =

(
−β+
√
β2+8αε

)2
4α2 . The we convert the problem

into a convex one by letting exij = σ2
ij :

minimize
x

log(g(x)),

s.t. log(g1(x)) ≤ log(B),

where

g(x) =

(
m∑
i=1

P1ie
x1i

)(
n∑
i=1

P2ie
x1i

)
,

g1(x) =

(
m∑
i=1

ex1i

)(
n∑
i=1

ex2i

)
.

KKT conditions [35] can be applied and we obtain the
optimal solution:

σ2
1kσ

2
2l =

(∑m
i=1

√
P1i

) (∑n
j=1

√
P2j

)
√
P1kP2lB

, ∀k ∈ [m], l ∈ [n].

(25)
We consider all σ2

1kσ
2
2l satisfying the above equation are op-

timal solutions to the problem. Given the optimal solutions,
we can calculate the minimum value of the error as:

ErrorMGM(Y, ε, δ) =

(∑m
i=1

√
P1i

)2 (∑n
i=1

√
P2i

)2
B

, (26)

and the optimization scheme is summarized in Alg. 1 for
MGM.

Algorithm 1 Generating Optimized Matrix Noise
Input: (a) privacy parameters ε, δ, (b) l2 sensitivity s2(f),

(c) the utility subspace W1 ∈ Rm
′×m, W2 ∈ Rn

′×n (d)
the row-wise noise directions WU1 ∈ Rm×m and the the
column-wise noise directions WU2 ∈ Rn×n.

Output: f(X) + Z
1: compute α, β as α = s2

2(f), and β = 2ζ(δ)s2(f)

2: compute B =
(−β+

√
β2+8αε)2

4α2

3: for i ∈ {1, ...,m} do
4: for j ∈ {1, . . . , n} do
5: P1i =

∑m′

l=1(W1WU1)2
li, P2j =

∑n′

k=1(W2WU2)2
ki

6: end for
7: end for
8: σ2

1kσ
2
2l =

(
∑m

i=1

√
P1i)(

∑n
j=1

√
P2j)√

P1kP2lB
, ∀k ∈ [m], l ∈ [n].

9: sampling Nij from N (0, 1) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n
10: compute Z = U1NU2 with the value of σ2

1kσ
2
2l.

11: return f(X) + Z

7 COMPARISON WITH OTHER MECHANISMS

For a better understanding of the position of this work in
the current literature, we compare MGM with existing dif-
ferential privacy mechanisms on matrix-valued data, mainly
Matrix Mechanism [10] and Matrix Variate Gaussian [11].

7.1 Comparison with Matrix Mechanism

Matrix Mechanism (MM) has been adopted for answering
linear queries with differentially-private vector data:

Definition 6 (Matrix mechanism [10]). Given an m × n
workload matrix W , a p × n strategy matrix A that supports
W and a differentially private algorithm K(A, x) that answers A
with a given database instance x. The matrix mechanism MK,A
outputs the following vector:

MK,A(W,x) = WA+K(A, x), K(A, x) = Ax+ ‖A‖b̃

where b̃ = (b1, . . . , bn) is an i.i.d random vector that does not
depend on W or x.

Note that W above is analogous to the linear utility
subspace in MGM. The goal of MM is to minimize the
following error defined on A,A+, b̃:

ErrorMM = E‖A‖‖WA+b̃‖2F = ‖A‖‖WA+‖2FV ar(b1).

Hence, MM seeks pseudoinverse matrix A+ to minimize
the above error. However, the optimization problem is a
semidefinite program and has no analytic solution, which
costs about O(m4(m + n)4) to search the solution. The
semidefinite programming procedure largely constrains the
scalability of the mechanism. It would be extremely compli-
cated to solve A+ in a very high-dimensional scenario. In
comparison, the error of MGM is defined by Eq. (16) and
the error minimization problem can be transformed into a
convex one with a closed-form solution, which has a lower
time complexity of O(mn2).

7.2 Comparison with Matrix Variate Gaussian

Matrix Variate Gaussian (MVG) mechanism guarantees
(ε, δ)-differential privacy for matrix-valued queries through
the matrix variate Gaussian distribution:

MVGm,n(M,Σ,Ψ) =MNm,n(X|M,Σ,Ψ),

where Σ ∈ Rm×m is the row-wise covariance and Ψ ∈ Rn×n
is the column-wise covariance. Similar to MGM, MVG is
also an additive noise scheme:

Definition 7 (MVG [11]). Given a matrix-valued query func-
tion f(X) ∈ Rm×n, and a matrix-valued random variable
Z ∼MVGm,n(0,Σ,Ψ), the MVG mechanism is defined as

MVGm,n(f(X)) = f(X) + Z.

The differential privacy guarantee is imposed by the
contraints on Σ and Ψ:

Theorem 5 (MVG [11]). Let

σ(Σ−1) = [σ1(Σ−1), ..., σm(Σ−1)]T ,

σ(Ψ−1) = [σ1(Ψ−1), ..., σn(Ψ−1)]T ,

be the vectors of the non-increasingly ordered singular value of
Σ−1 and Ψ−1 respectively. The MVG mechanism guarantees
(ε, δ)-differential privacy if Σ and Ψ satisfy the following con-
dition:

‖σ(Σ−1)‖2‖σ(Ψ−1)‖2 ≤
(−β0 +

√
β2

0 + 8α0ε)
2

4α2
0

, (27)
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where α0 = [Hr + Hr,1/2]γ2 + 2Hrγs2(f), β0 =
2(mn)1/4Hrζ(δ)s2(f), γ = supX‖f(X)‖F , r = min{m,n}
and Hr is generalized harmonic numbers of order r.

For fair comparison with MVG, we list the conclusion of
MGM in the below. By Thm. 1, noise Z needs to satisfy

‖σ(Σ−1)‖2‖σ(Ψ−1)‖2 ≤

(
−β +

√
β2 + 8αε

)2

4α2
√
mn

(28)

to guarantee (ε, δ)-differential privacy. In the equation,
α = s2

2(f), and β = 2ζ(δ)s2(f). Compared to α0 in
Eq. (27), α is reduced by 1

s22(f)
[(Hr+Hr,1/2)γ2+2Hrγs2(f)].

And β is reduced by (mn)
1
4Hr comparing with β0 in

Eq. (27). Overall, the right-hand side of inequality (28) is
about H2

r times larger than that of inequality (27). A larger
right-hand side value indicates a smaller amount of noise
minimally required to ensure differential privacy, and thus
better utility. Such utility improvement is mainly because
we use Lemma 1 rather than the harmonic numbers in the
proof. More importantly, our UDN and IDN schemes further
improve the utility of MGM with directional noise.

8 EVALUATIONS

To show the wide application range of our proposed mech-
anisms, we run a series of experiments in different settings,
including a variety of datasets, models, as well as federated
learning frameworks. Experimental results are compared
against a number of existing mechanisms to show the su-
periority of MGM.

TABLE 2
Setup for Type I Experiments

Dataset MNIST CIFAR-10 IMDB Adult
Model LeNet ResNet-18 LSTM MLP

Training 55,000 50,000 25,000 32,561
Testing 5,000 10,000 25,000 16,281

Clip Value 0.01 0.05 0.3 0.015
Batch size 64 16 256 64

Rounds 25 50 10 10
Local epochs 3 3 2 2

Gradient Shape 120 ×400 4,608×512 20,002 ×128 105× 12

8.1 Setup
Baselines and metrics. We compare MGM with other differ-
ential privacy mechanisms dealing with high-dimensional
data. The baselines include: i.i.d. Gaussian mechanism, Ma-
trix Variate Gaussian (MVG) [11], Matrix Mechanism (MM)
[10]. For MGM, we implement UDN and IDN as specialized
instances fitting to different application scenarios. As the
Gaussian mechanism is conventionally designed for scalar-
valued queries, we simply view the matrix as a collection of
its elements and add i.i.d. noise to each of the elements.
MM is only applicable to small-scale datasets due to its
high complexity. For most of the experiments, we use testing
accuracy as the utility metric.

Datasets and tasks. We select 7 typical learning tasks
from multiple areas where the data are likely to be sensitive.
For computer vision, we have two image classification tasks,
respectively on MNIST [36] and CIFAR-10 [37]. For data
mining, we run classification tasks respectively on Adult

[38], Purchase1, Texas hospital stays2 and Locations3. Adult
is a small-scale dataset on which one predicts whether the
income exceeds a threshold. Due to its huge computional
cost, MM can only be applied in the data mining datasets.
For text mining, we choose a binary classification task on
IMDB [39] dataset.

Federated learning. According to the distribution of data
among all parties in the feature and sample space, federated
learning is divided into horizontal and vertical federated
learning.

In horizontal FL, the training data gets partitioned hori-
zontally among parties, i.e., data matrices or tables are parti-
tioned by rows and data from different rows share the same
attributes. In the initial round of training, participants pull
a randomly initialized model from the centralized server,
and train the model on their respective local datasets. In
each following round, each participant uploads locally com-
puted gradients to the server for aggregating their updates.
The central server maintains a global model, and uses the
averaged gradients to update the global model. As a final
step, the server sends the updated model to each participant
for the next round of local training. Since the gradients
reveal private information of each participant, it is critical
to preserve privacy on the uploaded gradients.

Different from horizontal FL, vertical FL aligns samples
rather than attributes. Each participant has its own local
neural network which may be different depending on the
features they process. Different parties jointly build the
interactive layer which puts the intermediate features of all
participants together as one output. The interactive layer
is owned by the central server, who also builds the top
neural network model and feeds the top model with the
output of the interactive layer. In the forward propagation,
each participant feeds its input to the respective local model
to produce interactive-layer features. The features are fed
to the top model to calculate the loss. The backward loop
propagates the error from the output layer to the interactive
layer and then to each local model. The local model gets
updated accordingly. As the intermediate-layer features leak
private information of the participant, privacy-preserving
mechanisms need to be applied to the features.

Privacy-preserving federated learning. As aforemen-
tioned, the privacy-preserving objectives differ for horizon-
tal and vertical FL. In the horizontal FL, we implement dif-
ferential privacy on the gradients in each round, since they
are uploaded to a potentially malicious centralized server.
In the vertical FL, we consider differentially-private features
would leak private information on training datasets. In each
training iteration, participants release differentially-private
features which would be further trained on the top model.
We state the implementation detail by types as follows.

8.2 Implementation Details
Composition and Sampling. We introduce the composition
and sampling theorems used in the implementation. Since

1. Purchase dataset is based on Kaggle’s "acquire valued shoppers"
challenge dataset. https://kaggle.com/c/acquire-valued-shoppers-
challenge/data

2. https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
3. https://sites.google.com/site/yangdingqi/home/foursquare-

dataset
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Fig. 2. Differentially-private horizontal federated learning over a variety of datasets. IDN has the best performance overall. Gaussian performs better
than MVG. MM has a similar performance with Gaussian on Adult, which is better than UDN.
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Fig. 3. Differentially-private vertical federated learning on a variety of datasets. IDN performs best overall with an increasing advantage over others
as ε is smaller. IDN’s performance is followed by that of the Gaussian mechanism and MM. The performance of Gaussian and MM is close to each
other. MVG has the worst performance of all.

TABLE 3
Setup for Type II Experiments

Dataset Adult Purchase Location Texas
Model MLP FCN NN NN

Training Data 32,561 10,000 1,600 10,000
Testing Data 16,281 97,324 3410 57,330

Attributes 14 600 446 6170
Feature Shape 2× 10 100× 64 100× 128 30× 64

Gaussian mechanism M is applied to each element of X ,
and each mechanism satisfies (ε, δ)-differential privacy, the
composition result satisfies (mnε,mnδ)-differential privacy.
Therefore, the ε we present in the experiment result is the ε
for Gaussian mechanism on each element. For MVG, MGM,
and MM in Type I experiment, we adopt the composition
theorem (Theorem 3.4 from [40]) to ensure the overall (ε, δ)-
differential privacy.

Also, we adopt the ‘privacy amplification via sampling’
from [41]:

Theorem 6 (lemma 2 in [41]). Let A be an ε∗-differentially
private algorithm. Construct an algorithm B that on input a
database D = (d1, . . . , dn), constructs a new database Ds

whose i-th entry is di with probability f(ε, ε∗) = (exp(ε) −
1)/(exp(ε∗) + exp(ε)− exp(ε− ε∗)− 1), and ⊥ otherwise, and
then runs A on Ds. Then, B is ε-differentially private.

For example, during the training process, we take a ran-
dom sample from the training set with sampling probability
q. Then we have f(ε, ε∗) = q, and ε∗ can be calculated as the
private budget of the mechanism after sampling.

Type I: Private SGD in horizontal FL. We deploy
experiments on datasets including MNIST, CIFAR-10, IMDB
and Adult across 5 FL participants. For horizontal FL, we
divide the dataset into five independent subsets. The five
participants train respectively over a subset, and updates
the gradients with the global model. Here we set the privacy

parameter δ to 10−5 (according to δ = o(1/n) where n
is the sample numbers per participant) and choice of ε is
presented in Fig. 2. Each participant applies differential
privacy on the gradients trained on the local dataset, of
which the procedures are as follows:

1) Download the model parameters from the server.
2) Local epochs: compute gradients on the local dataset

to update the local model, and then repeats.
3) Clip the accumulated gradients by its l∞ norm.
4) Apply perturbation to the clipped accumulated gra-

dients and upload them to the server.
5) Server averages the gradients for all the clients, and

updates the corresponding model parameters with the per-
turbed gradients and go back to 1).

In 2), after training on the local dataset for a number of
epochs, each participant uploads the accumulated gradients
to the server who performs aggregation and publishes the
new model to each participant.

Query function. Note that the query function here is a
sum function on gradients:

f(X) =
∑
i

gi(X), (29)

where gi(X) is the gradient computed on the i-th local
epoch. The shape of f(X) is the same as the model. For
neighboring datasets {X,X ′}, the l2-sensitivity is

s2(f) = sup
X,X′

‖f(X)− f(X ′)‖F = 2C
√
mn, (30)

where C is the clip value in Table 2, and (m,n) is the shape
of the gradient.

The specific training hyperparameters can be found in
Table 2 where the gradient shape reports only the largest
shape of accumulated gradients we perturb. Step 4) is where
we implement different privacy mechanisms. We apply l∞
clipping to the gradients in order to satisfy the condition
of IDN (Thm. 3). And we only implement UND on Adult
due to the theoretical error of UND is relatively large for
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TABLE 4
Comparison of Theoretical Errors

Method E ‖Z‖2
Gaussian MVG UDN IDN

Type I mnσ2 ≈ O(m3n3) m2n/BMV G ≈ O(m4n3 ln2(m+ 1)) m2n/BUDN ≈ O(m4n3) m2n/BIDN ≈ O(m3n3)

Type II mnσ2 ≈ O(m3n3) m2n/BMV G ≈ O(m4n3 ln2(m+ 1))
n(
∑m

i=1

√
Pi)

2

BUDN
≈ O(m4n3)

n(
∑m

i=1

√
Pi)

2

BIDN
≈ O(m3n3)

the rest datasets. The directional matrix WU1 of IDN and
MVG could be any orthogonal matrix, and we choose the
identity matrix. In MVG and MM, we set W (or W1,W2)
to identity matrix since the utility subspace is unknown. In
MVG, we implement the binary precision allocation strategy
[11] to decide the importance of different directions and
SVD to calculate the directional matrix.

Type II: Private training features in vertical FL. Four
datasets are adopted: Adult, Purchase, Location, and Texas
hospital stays, for vertical FL over 2 participants. We divide
each dataset into two halves by data attributes. For example,
we distribute the first 7 out of 14 attributes of Adult to
a participant, and the rest to the other. Each participant
trains its local model over its subset, and uploads noisy
features to the top model. We set the privacy parameter ε
to the range of [1, 10] and δ to 10−5. Privacy amplification
scheme is also adopted as in Type I experiments. To meet
the condition of IDN, we modify each model by replacing
its activation function with tanh(·) to normalize the released
intermediate-layer feature to the range of (−1, 1). Detailed
configurations are given in Table 3.

Query function. We set the query function as the identity
query f(X) = X ∈ Rm×n. X is the training features in
the experiment. For neighboring datasets {X,X ′}, the l2-
sensitivity is the feature size multiplied by the feature range.
Here our range is set to (−1, 1), and thus the l2-sensitivity
is

s2(f) = sup
X,X′

‖X −X ′‖F = 2
√
mn (31)

For IDN, MVG and MM, we set the utility subspace W
(or W1,W2) to E as in Type I. For the i.i.d. Gaussian and
MM, l2-sensitivity is computed for each element and for
IDN and MVG, l2-sensitivity is computed on the feature
matrix. The rest settings are the same as that of Type I.

8.3 Experimental Results
Before delving into the experimental results, we first present
theoretical analysis of the expected error of each differential
privacy mechanism under the same privacy condition. The
theoretical results are presented in Table 4. In the table,
m,n are respectively the row and column number. The
directional noise is applied row-wise in UDN and IDN.
For Gaussian mechanism, σ is the standard deviation of
the i.i.d Gaussian distribution in the scalar-valued Gaussian
mechanism [13], i.e., σ ≥ c∆2(f)/ε and c2 > 2 ln(1.25/δ).

For ease of understanding the theoretical results, we
present the approximation of the expected magnitude of
noise in each case besides the exact values. As we found,
IDN and Gaussian have the same order of expected error.
However, the results are given without considering direc-
tional noise. If the optimized scheme is applied, IDN is
supposed to incur less error. MM is missing from Table. 4
since the error is data-dependent or not deterministic.

TABLE 5
Running time for different mechanisms.

Method Running time(s)
Gaussian 0.00164

MVG 0.51146
MM 0.82323
UDN 0.00248
IDN 0.00224

In the following, we will present experimental results
under a variety of privacy settings and see how much they
agree with the theoretical error.

Type I Results. Fig. 2 reports accuracies over different
datasets. ‘Unperturbed’ represents the case with no privacy
guarantee. As we can tell, for all cases, accuracies steadily
improve as ε increases, which agrees with the privacy-utility
tradeoff. In general, the accuracy performance follows IDN
> Gaussian > MVG in all the cases. In the experiment on
Adult, the performance of MM is quite close to Gaussian,
which is even better than UDN. The result of Type I presents
that, most mechanisms have a similar performance with
a large ε value. We consider it mainly due to a lack of
optimization space with less amount of noise (larger ε).

The results of Type I are in accords with the theoretical
results in the Table 4. Here, we can see that ε is larger on
CIFAR-10 and IMDB than MNIST and Adult, to be able
to yield a valid model. This may be that the shape of the
gradients in the former two datasets are very large, where
even a moderate ε value would incur an overwhelming
amount of noise. Moreover, the CIFAR and IMDB tasks
are more complicated than the other two, and hence are
sensitive to noise.

Type II Results. The performance of IDN is also the best
among all the mechanisms. The i.i.d. Gaussian has similar
accuracy performance with MM, since in MM, the noise
is also sampled from the Gaussian distribution. Actually,
the performance of MM largely depends on whether the
query matrix W is properly chosen. As we analyze above,
Gaussian and IDN have similar performance over Adult
dataset, mainly due to a smaller feature size of Adult
dataset, and much smaller noise is inserted thereafter. The
accuracy curve of MVG almost flattens over different εs,
totally destroying model utility. Overall, the performance of
all mechanisms is in accord with the theoretical results in
Table 4.

To have an idea of how efficient our algorithms are, we
examine the wall-clock running time for each mechanism,
of which the result is shown in Table 5. The implementation
is done in Python 3.8.8 and all results are measured on a
server with Intel Xeon Silver 4116 @ 2.10GHz. We observe
that the running time for MVG and MM is much larger than
other mechanisms. For MVG, the most time-consuming part
is running SVD. And for MM, the most time-consuming part
is to solve the optimization by CVXPY. In contrast, Gaussian
mechanism takes the least time, as it does not need to
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do matrix multiplications as performed in IDN and UDN.
Still, our mechanisms yield reasonable running time among
matrix-valued DP schemes.

9 CONCLUSION

In this paper, we propose a differential privacy mechanism
for matrix-valued queries called MGM. We show MGM
enjoys a tighter noise bound than previous works, and
thus has better utility. Two special forms of MGM are
discussed, respectively unimodal directional noise (UDN)
and independent directional noise (IDN), both of which pro-
gressively achieve better utility under the same differential
privacy guarantee. We implement MGM in the federated
learning setting and the experimental results have shown
the superiority of MGM in terms of data utility.
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