


Fig. 2. An empirical study of the number of cross-shard transactions in
an intuitive sharding DAG-based blockchain based on the one-to-one account
assignment mode used in Monoxide [28]. DAG concurrency refers to the
number of blocks generated concurrently in a DAG shard. We use 8 shards,
2000 transactions per block, and 20 rounds.

transmit cross-shard messages (mainly messages generated
in intra-shard consensus) [34], [35]. Many works [26], [34],
[36], [37] delegate the transmission and appending of cross-
shard messages to the leader node (i.e., the leader of intra-
shard consensus). When the leader behaves maliciously across
shards, it requires complicated and long-delay remote and local
recovery to ensure liveness, which degrades system perfor-
mance. Periodic state reconfiguration that reassigns accounts is
necessary to reduce the number of cross-shard transactions and
load imbalance [13], [38], [39]. However, each shard typically
utilizes a monolithic Merkle Patricia Trie (MPT) or its variants
[13], [40], [41] to store account states, which is inefficient in
migrating account states across shards due to complex hash
operations on trie nodes.

Unfortunately, it falls short when sharding DAG-based
blockchains and poses three fundamental challenges.

Challenge 1: How to design an adaptive sharding mech-
anism to achieve efficient cross-shard transaction process-
ing? It is non-trivial to directly apply sharding on DAG-based
blockchains since the concurrent block generation nature leads
to an explosion in the number of cross-shard transactions. We
reveal this through an empirical study via workloads from
Ethereum, the most widely used blockchain platform [9], [42]
(Fig. 2). The overwhelming number of cross-shard transactions
brings frequent cross-shard communication, which limits the
parallelism of shards and weakens the performance advantages
of DAG-based blockchains. The intuitive sharding solutions
applying a fixed account assignment strategy, e.g., one-to-one
assignment (e.g., Monoxide [28]) or one-to-many assignment
(e.g., BrokerChain [13]), are not adaptive to actual cross-shard
workloads (Fig. 1(b)) and fail to provide efficient processing.

Challenge 2: How to design a Byzantine resilient cross-
shard verification mechanism to ensure state consistency
among multiple DAG shards? Cross-shard verification is
vital for ensuring state consistency in a sharding DAG-based
blockchain under an untrusted Byzantine environment. It in-
volves two critical phases: cross-shard message transmission
and appending, both requiring guaranteed safety and liveness.
The traditional single leader-based transmission approach fails
to ensure liveness when suffering from cross-shard censorship
attacks [34] if the receiver shard does not know when the
sender shard sends messages to it. Besides, in the receiver
shard, each receiver node can append messages to the local
DAG in parallel. The traditional single leader-based appending
method [34] does not take advantage of this concurrent block

generation nature and may suffer from long appending delays.
Challenge 3: How to design scalable state storage to

support efficient state reconfiguration? In the periodic
state reconfiguration scheme, the system proceeds in epochs,
each including a consensus phase (containing multiple con-
sensus rounds and processing a certain number of transac-
tions) and a reconfiguration phase [13], [41]. DAG-based
blockchain sharding requires more frequent state reconfigu-
ration than its chain-based blockchain counterpart since the
high-performance DAG-based consensus greatly shortens the
consensus phase. However, using the traditional monolithic
MPT to store account states may lead to performance bot-
tlenecks in state reconfiguration. Specifically, when migrating
account states across shards, it is necessary to delete nodes in
the monolithic MPT and generate corresponding proofs, which
involves hash operations of all nodes in the path from the leaf
node to the root, resulting in long state reconfiguration delays.

In this paper, we propose SharDAG, the first adaptive
sharding mechanism specialized for DAG-based blockchain,
to tackle the three challenges above. We explore the impact
of realistic workloads on sharding DAG-based blockchains to
drive our design (Section III). For Challenge 1, we observe
silent assets, which can potentially enhance cross-shard trans-
action efficiency. Specifically, newly received assets often have
a prolonged silence period before being spent. This indicates
that we can create an avatar account for the receiver of the
cross-shard transaction to cache its received assets in the local
shard temporarily. Thus, subsequent transactions involving the
account can be processed locally. By leveraging this insight,
we present an adaptive account assignment strategy based
on cross-shard avatar account caching to achieve process-
ing efficiency. As shown in Fig. 1(c), SharDAG adaptively
creates an avatar account for the cross-shard receiver based
on actual cross-shard workloads, caching incremental states
rather than redundantly storing the entire shard state. Hence,
cross-shard transactions can be locally executed in the sender
shard without complex cross-shard interactions. In addition to
simple payments, our account caching mechanism can support
contract-based token transfers, which is suitable for most
current contract-based applications [43].

For Challenge 2, we design a Byzantine resilient cross-shard
verification scheme through theoretical analysis. Specifically,
in the transmission phase, 2f + 1 sender and f + 1 receiver
nodes are sufficient to guarantee safety and liveness without
complex remote recovery. In the appending phase, we leverage
the concurrent block generation nature and design a dual-mode
scheme to provide safety and liveness. Moreover, a cross-shard
message can be appended to the DAG ledger after at most one
failure, thus avoiding large appending delays. Based on such
designs, we develop a cross-shard avatar account aggregation
mechanism to aggregate avatar account states periodically,
thereby ensuring state consistency.

For Challenge 3, we observe that the migrated accounts
during state reconfiguration are active accounts, i.e., accounts
appearing in recent transactions. The key insight is that there
is no need to operate on dormant accounts in the MPT during

2



state reconfiguration. Therefore, we separate the state storage
of active and dormant accounts and design a two-tier state stor-
age model, which stores active and dormant accounts in two
MPTs, Active-Trie and Full-Trie, respectively. Consequently,
most operations are completed on the lightweight Active-
Trie rather than a vast MPT containing active and numerous
dormant accounts, thus accelerating state reconfiguration.

We implement SharDAG and evaluate it in WANs using
real-world workloads. Results show that SharDAG achieves
superior performance than several non-sharding/non-adaptive
sharding DAG-based blockchains, i.e., a non-sharding scheme
based on BullShark [7] and two sharding schemes using state-
of-the-art sharding protocols, BrokerChain [13] and Monoxide
[28]. Specifically, SharDAG with 16 shards achieves 7.5⇥
lower storage overhead and 40⇥ higher end-to-end throughput
than the non-sharding scheme under the same network scale of
64 nodes. Moreover, SharDAG outperforms the two sharding
schemes by up to 3.8⇥ higher end-to-end throughput and 18⇥
lower end-to-end latency with 16 shards. Further, SharDAG
reduces the state reconfiguration delay by 35.9%.

This paper makes the following contributions:
• We introduce SharDAG, an adaptive scalable and efficient

sharding mechanism for DAG-based blockchains.
• SharDAG comprises three key ingredients: a cross-shard

avatar account caching scheme for efficient cross-shard
transaction processing, a Byzantine cross-shard verifica-
tion mechanism for consistent cross-shard avatar account
aggregation, and a two-tier state storage model to support
efficient state reconfiguration.

• We implement and evaluate SharDAG to demonstrate that
SharDAG outperforms the state-of-the-art in both latency
and throughput and provides storage scalability.

II. BACKGROUND AND RELATED WORK

A. DAG-based Blockchains
DAG-based blockchains [1]–[7] use the Directed Acyclic

Graph (DAG) data structure as the underlying storage model
for concurrent transaction appending. It offers potential per-
formance gains over conventional chain-based blockchains.

Different consensus protocols have been proposed to pro-
mote the performance of DAG-based blockchains, categorized
as probabilistic and deterministic consensus. Probabilistic pro-
tocols, such as IOTA [1], Conflux [4], OHIE [5], and Prism
[44], determine transaction confirmation based on transaction’s
depth or cumulative weight in the DAG ledger. However,
they suffer from high confirmation latency and security risks.
The latter category, e.g., BullShark [7], Tusk [45], and DAG-
Rider [46], takes the merits of determinism in Byzantine fault-
tolerant (BFT) consensus and decouples transaction dissemi-
nation from ordering logic, achieving high throughput and fast
confirmation. Nezha [47] explores address-based dependency
for conflict detection and develops a novel concurrent trans-
action processing mechanism for DAG-based blockchains.
Until recently, LDV [10] investigates social relationships in
Vehicular Social Networks (VSNs) and designs a topic group-
enabled DAG storage reduction model.

Implications. As shown in Table I, existing DAG-based
blockchains hardly scale out with the increasing throughput
and storage demands. Most of them still adopt the full replica-
tion storage strategy, where each node stores a complete ledger
copy. Our SharDAG serves as the first attempt to apply state
sharding to design a storage scalable DAG-based blockchain.

B. Sharding Mechanisms in Blockchains
State sharding strategy. Many sharding chain-based

blockchains, e.g., ByShard [18], [27], Monoxide [28], and
OmniLedger [29], utilize the classic hash-based account allo-
cation strategy, yielding massive cross-shard transactions due
to ignoring interactions between accounts across shards.

Recent works have explored the one-to-one account assign-
ment problem to reduce the number of cross-shard transac-
tions. Some of them construct an account graph to capture the
historical transaction patterns and place frequently interacting
accounts in the same shard, e.g., TxAllo [38], Transformers
[41], [48], and [49]. Shard Scheduler [50] adopts a transaction-
level assignment method that determines the shard location of
involved accounts when each transaction comes. Sliver [51]
explores the transaction distribution problem in the sharding
relay chain in a cross-chain scenario, which is not applicable
to the general-purpose blockchains we are concerned with. In
the one-to-one account assignment method, processing cross-
shard transactions requires cooperation and multiple consensus
rounds among shards [52], resulting in processing inefficiency.

To further improve the efficiency of cross-shard transaction
processing, some studies [13], [33], [53], [54] adopt a one-
to-many assignment method for partial accounts, i.e., some
accounts can be replicated or fragmented and deployed to mul-
tiple shards for concurrent processing. For instance, Pyramid
[33] proposes a layered sharding by leveraging bridge shards
for storing redundant states and ledgers of multiple other
shards for handling cross-shard transactions, which brings in
a severe storage burden [55]. BrokerChain [13] introduces
trusted Brokers accounts whose state is partitioned into many
segments and placed into multiple shards for simultaneous
execution. However, it relies on the strong assumption that
Brokers always have sufficient tokens and requires an extra
incentive mechanism to recruit sufficient Brokers.

Cross-shard verification. To reduce cross-shard communi-
cation complexity, some approaches [26], [34], [36], [37] use
a single leader to transmit and append cross-shard messages.
However, they need a cross-shard view change to resist censor-
ship attacks [34], which does not work in the situation where
the receiver shard does not know when the sender shard sends
cross-shard messages to it. Moreover, the cross-shard message
may suffer from long appending delays in the receiver shard in
the case of cascading leader failures. Furthermore, Fynn et al.
[56] present a client-driven protocol that allows smart contracts
to move between shards. However, they do not clearly discuss
how to guarantee liveness when the client is malicious.

State storage. Some studies explore state storage for shard-
ing blockchains yet focus on problems different from ours. S-
Store [40] proposes a scalable state data storage based on an

3





Fig. 4. Distribution of silence
before spent

TABLE II
RATIO OF ACTIVE AND MIGRATED

ACTIVE ACCOUNTS UNDER
R-METIS-BASED STATE

RECONFIGURATION METHOD

Dateset Epoch Active
(Ratio)

Active migrated
(Ratio)

Dataset1
(12M-12.2M)

0 90223 (100%) 78996 (100%)
9 91665 (15.2%) 77126 (100%)
19 93831 (8.6%) 81639 (100%)
29 102044 (6.4%) 87548 (100%)

Dataset2
(14M-14.2M)

0 97135 (100%) 84960 (100%)
9 97606 (16.5%) 85021 (100%)
19 97345 (9.5%) 86694 (100%)
29 97446 (6.6%) 84884 (100%)

blockchains [13], [38], [41], [48]. Typically, during the re-
configuration phase, a trusted third party or distributed shard
committee generates a reconfiguration strategy (containing
state roots of all shards for verification) and notifies all shards.
Each shard then reconstructs its underlying state storage, i.e.,
cleans up the outgoing accounts, informs the target shard of
their states and Merkle proofs actively or passively, and inserts
the incoming accounts after verification [41].

The state storage organization affects state reconfiguration
efficiency. Typically, each shard organizes state using a mono-
lithic MPT or its variants [13], [40], [41]. When migrating
account states across shards, it is necessary to delete nodes in
the monolithic MPT and generate proofs, which involves hash
operations of all nodes in the path from the leaf node to the
root, resulting in long delays. To explore a more reasonable
way to organize states, we investigate the characteristics of
the accounts migrated during the reconfiguration phase. Many
approaches [38], [48], [50] only reassign accounts that appear
in recent transactions, i.e., active accounts. This avoids mi-
grating dormant accounts that are not beneficial to the future
and reduces reconfiguration costs [38], [50]. We measure
the number and ratio of average active and migrated active
accounts per shard using the classic R-METIS [48] 2 under a
setting of 8 shards and 1M transactions per epoch (Table II).
The results show that after running 30 epochs, active accounts
only account for 6.4% (or 6.6%) of the total accounts, and all
the migrated accounts in each epoch are from active accounts.

Observation 2: Active accounts: Active accounts in each
epoch are only a small fraction of the total accounts, and most
migrated accounts during state reconfiguration are active.

Implication 2: Organizing the active accounts into a sepa-
rate MPT is a better approach toward efficient state reconfig-
uration because most operations fall on the lightweight MPT.

IV. SHARDAG OVERVIEW

A. System and Threat Model

System model. In SharDAG, there are N nodes in the sys-
tem. According to an unbiased and unpredictable distributed
randomness [27], these nodes are evenly assigned to S shards,
each containing n nodes. Like other systems [29], [33], we
assume the partially synchronous communication model with

2R-METIS is a variant of the classic graph partitioning algorithm METIS. It
only uses transactions in the current epoch to construct the transaction graph.

Account caching-based cross-
shard transaction processing

Avatar account 
creation and placement

Account-based 
workload analysis

Two-tier state storage Active-Trie Full-Trie

Byzantine resilient 
cross-shard verification

Dual-mode cross-shard 
message appending

Cross-shard message 
transmission

Fig. 5. Architecture of SharDAG

optimistic, exponentially increasing time-outs. As for cross-
shard transmission, we assume that cross-shard communica-
tion occurs randomly, and the receiver shard does not know
when the sender shard will send cross-shard messages.

Threat model. The system resilience is denoted as t. In
other words, tN nodes are controlled by a Byzantine adver-
sary, and the rest are honest nodes. Note that t is less than 1/3
to meet the assumption that the malicious nodes in each shard
f < n/3 after shard formation. Honest nodes always behave
loyally, while malicious nodes behave arbitrarily, e.g., sending
tampered messages, refusing to respond, or conspiring in an
attack. However, the Byzantine adversary is computationally
bounded and cannot impersonate honest nodes.

B. Goals
The overall goal of SharDAG is to improve the storage scal-

ability of DAG-based blockchains through adaptive sharding.
Nodes only need to store a part of the whole DAG ledger and
state. Moreover, SharDAG achieves the following goals with
respect to performance and security.

Efficient cross-shard transaction processing. The shard-
ing mechanism should adapt to actual cross-shard workloads
to achieve low cross-shard frequency and high cross-shard
transaction processing efficiency.

Byzantine resilient cross-shard verification. Cross-shard
verification needs to guarantee safety, robust liveness, and low
appending delays.

Efficient state storage. The state storage should be well
organized to support efficient state reconfiguration.

C. SharDAG Architecture
SharDAG is adapted to asset transfer scenarios, and we

assume that the workload is characterized by the two critical
features observed in Section III. Fig. 5 illustrates the architec-
ture of SharDAG, which contains three key modules:

Account caching-based cross-shard transaction process-
ing. Based on the silent assets feature of real-world workloads,
we propose a cross-shard avatar account caching mechanism
that extends the traditional one-to-one account assignment
mode to a one-to-many mode. Thus, there are two kinds of
accounts in SharDAG: 1) Primary account. Each entity has
a unique primary account. All primary accounts are assigned
to shards using a one-to-one strategy, and each shard stores
only a subset of them. 2) Avatar account. An entity may have
multiple avatar accounts spread across different shards except
for the shard where its primary account is located. All accounts

5





Moreover, avatar accounts are created adaptively and can be
aggregated asynchronously since they only keep incremental
states, which is different from Pyramid [33], in which the
bridge shard redundantly stores the entire state of other shards.
Thus, SharDAG is efficient in terms of storage overhead.

B. Byzantine Resilient Cross-shard Verification
At the end of the avatar-epoch, the state of avatar accounts

must be securely aggregated with their primary accounts
to ensure state consistency across shards. Specifically, if a
sender shard has cached avatar accounts, it should clear them,
generate cross-shard account aggregation messages carrying
the state of avatar accounts, and send them to the shards where
the primary accounts belong. After receiving an aggregation
message, the receiver shard should verify the message and
append it to the DAG only when making sure that the sender
shard indeed agrees with it. Finally, the receiver shard reaches
a consensus and performs account aggregation. An example
can be obtained in the right part of Fig. 6.

The above process can be abstracted as a generic cross-shard
verification in sharding DAG-based blockchains, i.e., a sender
shard sends an agreed message to a receiver shard, which
appends it to its local DAG ledger for further consensus and
processing. To ensure safety and liveness in the presence of
malicious nodes, the cross-shard verification mechanism must
be elaborately designed. Thus, before detailing the cross-shard
avatar account aggregation workflow, we first introduce its
underlying Byzantine resilient cross-shard verification mecha-
nism, which consists of the following two critical steps:

Cross-shard message transmission. The traditional single
leader-based method [34] cannot ensure liveness when suf-
fering from cross-shard transaction censorship attacks since
nodes cannot detect the malicious sender by setting timers. In
SharDAG, we choose 2f + 1 senders and f + 1 receivers
for cross-shard message transmission, sufficient to ensure
safety and liveness while avoiding redundant transmission. The
reasons are given in Section VI. These nodes are randomly
selected based on the digest of unpredictable cross-shard
messages to defend against attacks and balance loads.

Dual-mode cross-shard message appending. Through
cross-shard message transmission, f + 1 receivers receive the
valid message, among which at least one honest node. Once
an honest node appends the message to its local DAG, the
intra-shard DAG-based consensus ensures that the message
will eventually appear in the local DAGs of all honest nodes.

In SharDAG, the single leader-based method [34] is not
suitable due to its inability to leverage the concurrent block
generation nature and potential long appending delays in case
of cascading leader failures. Allowing all receivers to append
the message provides strong liveness and low delay but leads
to duplicate appending by honest nodes, resulting in redundant
transactions in the DAG ledger and affecting throughput.
To balance the appending delay and throughput, we design
a dual-mode solution containing optimistic and pessimistic
appending. In the optimistic appending, we choose multiple
nodes to perform appending to improve success probability. In

the pessimistic appending, other receivers are responsible for
appending to ensure liveness when optimistic appending fails.
Thus, in the worst case, the message can be appended after one
failure, thus shortening appending delays. Then we determine
the optimal number of nodes for optimistic appending to be 2
by theoretical analysis, as detailed in Section VI.

Let Digest(m) be the digest of message m. The shard Sj

appends the received valid cross-shard message mj to local
DAG using the following dual-mode scheme:

a) Optimistic appending: Two nodes are elected for
optimistic appending based on Digest(mj) from all receivers.
Then the honest node packs mj into a block bj and appends it
to its local DAG. Other receivers confirm that mj is appended
by tracking their own DAG ledger. Eventually, mj will appear
in the same location in the DAG of each honest node in Sj .

b) Pessimistic appending: To detect failures and recover
quickly, each honest receiver sets a timer for mj . If the timer
expires before the node observes a valid mj in its local DAG,
which means optimistic appending fails, the honest receiver
immediately performs appending mj , ensuring liveness. The
timeout can be set according to the actual network environ-
ment. According to [59], an empirically recommended setting
is to ensure at least 20 times the one-way network latency.

Fast abort. Although dual-mode appending selects an op-
timal number of nodes, it cannot completely avoid redundant
appending. To further reduce redundancy, we introduce fast
abort. Due to network transmission delays, the progress of
each receiver may differ. Some honest receivers may have
attached mj to DAG after a timeout, while others may still
collect messages from S1 (verify the validity of mj) or wait for
a timeout (check if the optimistic appending succeeds). When
slow honest receivers observe that mj has been attached cor-
rectly, they can immediately abort the processing of mj . This
scheme prevent some honest nodes from repeatedly appending
mj to the DAG, thus alleviating performance degradation.

C. Cross-shard Avatar Account Aggregation
After processing the last block bi of avatar-epoch e, shard

Si initiates aggregation for locally-cached avatar accounts.
Let Ai be the set of avatar accounts created in e by Si.
Let Shard(a) denote the shard of the primary account of
avatar a and State(a) denote the state of avatar a. Let
S = {Shard(a)|a 2 Ai}. Si is the sender shard, and each
shard Sj 2 S is a receiver shard. The cross-shard account
aggregation procedure involves four steps, as shown in Fig 8.

Step 1: Generate cross-shard account aggregation mes-
sages in the sender shard. For each Sj in S, each node
in Si generates an aggregation message mj based on the set
{State(a)|a 2 Ai ^ Shard(a) = Sj} and an incremental
aggregation serial number (e.g., avatar-epoch id) to resist
replay attacks. Then each node in Si clears all avatar accounts.

Step 2: Send each cross-shard account aggregation
message from the sender shard to its receiver shard. For
each mj , 2f +1 nodes in Si are elected as senders, and f +1
nodes in Sj are elected as receivers according to Digest(mj).
Then each sender signs and sends mj to its receivers.

7





message m and perform account aggregation, resulting
in the same state updates (Consistency).

• Liveness: Honest nodes in S2 will eventually receive mes-
sage m and complete account aggregation (Termination).

Proof. Validity. The malicious senders may behave arbitrarily,
such as tampering with m, intentionally not sending m.
However, they cannot forge signatures. Since the aggregated
signature of message m is generated according to f+1 distinct
signatures and there are at most f malicious nodes in S1, at
least one signature comes from an honest node in S1. Thus,
cross-shard avatar account aggregation satisfies validity.

Consistency. According to the liveness property proved be-
low, at least one honest receiver appends the valid message m

to the local DAG. Since the intra-shard DAG-based consensus
satisfies censorship resistance and safety, the message m can
be committed, and all honest nodes in S2 will execute m

deterministically, leading to the same state update. Hence,
cross-shard avatar account aggregation satisfies consistency.

Liveness. Given less than 1/3 malicious nodes in each shard,
the intra-shard DAG-based BFT consensus can provide safety.
In other words, the honest nodes in S1 will execute blocks
in the same order, so the state of the cached avatar account
is identical. Thus, m generated by honest nodes in S1 are
identical. Since there are at most f malicious nodes in S1, at
least f+1 nodes correctly send the same m to the pre-selected
f+1 receivers in S2, ensuring the sending liveness. Moreover,
there is at least one honest node among f + 1 receivers.
Hence, S2 will eventually receive m and confirm its validity. If
nodes in optimistic appending fail to pack m due to malicious
behavior, at least one honest node in pessimistic appending
will append m to the local DAG after a timeout, ensuring
the appending liveness. As the intra-shard DAG-based BFT
consensus can achieve liveness, m will eventually appear in the
DAG ledger of all honest nodes in S2 and be processed. Hence,
cross-shard avatar account aggregation satisfies liveness.

B. Analysis of Dual-mode Cross-shard Message Appending

To make a trade-off between appending delay and through-
put, we theoretically analyze the dual-mode cross-shard mes-
sage appending process. In the following analysis, we assume
that honest nodes in a shard are relatively synchronized, i.e.,
the time difference between their appending messages is less
than the network propagation delay. Hence, a message may be
appended by multiple honest nodes repeatedly.

Table III summarizes the relevant variables used in the
analysis. To perform the analysis, we model two steps: 1)
randomly select r nodes from n nodes in a shard as cross-shard
message receivers; 2) randomly select l nodes from r receivers
for optimistic appending. We establish the failure probability
of optimistic appending as a function of l. Higher failure
probability implies a higher likelihood of turning to pessimistic
appending, leading to longer appending delays. In addition,
we analyze the relationship between the redundant appending
probability and l. Higher redundant append probability implies
that duplicate messages are appended, affecting throughput.

TABLE III
NOTATION TABLE

Notation Description Requirements

f Number of Byzantine nodes in each shard
n Number of nodes in each shard n = 3f + 1
r Number of cross-shard receivers r = f + 1
k Number of Byzantine receivers k = 0, 1, · · · f
l Number of nodes in optimistic appending l = 1, 2, · · · r
j Number of Byzantine nodes in optimistic appending

(l, r � l) Parameter settings of the dual-mode appending mechanism

We only consider honest receivers since we cannot prevent
malicious receivers from adding any messages to the DAG.
We aim to find an optimal l that minimizes both probabilities.

Since the content of a cross-shard message is unpredictable,
SharDAG uses its digest as a source of randomness for
both steps. Hence, the number of Byzantine receivers, k,
is a random variable following hypergeometric distribution
k ⇠ H(n, f, r). Let X be a random variable. Then:

Pr [X = k] =

�f
k

��n�f
r�k

�
�n
r

� (1)

Similarly, given k, the number of malicious nodes in op-
timistic appending also follows hypergeometric distribution
j ⇠ H(r, k, l). Let Y be a random variable. We have:

Pr [Y = j] =

�k
j

��r�k
l�j

�
�r
l

� (2)

The optimistic appending fails when all nodes in optimistic
appending are Byzantine. Therefore, the failure probability of
optimistic appending is given by:

Pr [failure] = Pr [X = k] · Pr [Y = l] (3)

When there is more than one honest node in optimistic
appending, optimistic appending succeeds redundantly. The
redundant appending probability of optimistic appending is:

Pr
⇥
redundancyopt

⇤
= Pr [X= k] ·
(1�Pr [Y = l]�Pr [Y = l� 1])

(4)

If optimistic appending fails, turn to pessimistic appending.
If there are at least two honest nodes in pessimistic appending,
then pessimistic appending succeeds redundantly. Thus, the
redundant appending probability of pessimistic appending is:

Pr
⇥
redundancypes

⇤
=

⇢
Pr [failure] r � k � 2

0 others
(5)

Therefore, the redundant appending probability of the dual-
mode cross-shard message appending mechanism is:

Pr [redundancy] =Pr
⇥
redundancyopt

⇤

+ Pr
⇥
redundancypes

⇤ (6)

Based on equations (3) and (6), Fig. 10 visualizes the
relationship between the two probabilities and the number of
nodes in optimistic appending, l. We observe that the failure

9



(a) Failure probability of optimistic
appending

(b) Probability of redundant appending

Fig. 10. Effect of the node number in the optimistic appending on the failure
probability and the redundant appending probability when f = 10

probability of optimistic appending is inversely proportional to
l, while the redundant appending probability is the opposite.
Both probabilities maintain low when l = 2. Hence, we claim
that using a (2, f � 1) dual-mode scheme is an appropriate
choice, achieving both low appending delay and avoiding
throughput degradation.

Note that the above analysis focuses on a relatively syn-
chronous case. Actually, the progress of nodes may be different
due to network delay. A more comprehensive analysis is to
consider the above difference and the fast abort scheme we
proposed in Section V. We consider this as our future work.

VII. EVALUATION

A. Experimental Setup
Implementation. For performance evaluation, we imple-

ment a prototype of SharDAG in Rust based on BullShark
[7], the state-of-the-art DAG-based BFT consensus protocol.
Specifically, SharDAG uses BullShark as the intra-shard con-
sensus and executes transactions in a shard serially.

Testbed. Our testbed consists of 17 virtual machines on
Alibaba Cloud, including a VM located in Hong Kong serving
as the benchmark client and 16 VMs evenly distributed among
four different regions (i.e., Tokyo, Frankfurt, Singapore, and
Seoul) to run sharding nodes. These VMs are connected via
200 Mbps network links. Each VM is equipped with a 16-core
3.5-GHz Intel Xeon Platinum 8369B CPU with 32 GB RAM,
running Ubuntu 20.04 LTS. We deploy up to 16 shards using
up to 160 sharding nodes. By default, we run 10 nodes in each
VM. We simulate the cross-shard transaction censorship attack
by randomly selecting f nodes in each shard as cross-shard
Byzantine nodes, which behave honestly within the shard but
maliciously across shards [34], i.e., do not forward, verify,
and package cross-shard messages. Similar to [59], we set
the timeout in our dual-mode appending as 2.5 sec (nearly 20
times the one-way network latency in our WAN environment).

Baselines. We implement a DAG-based blockchain proto-
type based on BullShark as a non-sharding baseline (BullShark
for short). In terms of sharding comparison, we implement
two non-adaptive sharding baselines on top of BullShark:
Monoxide-BS [28] and BrokerChain-BS [13]. Monoxide is a
classic sharding scheme that employs the relay mechanism for
cross-shard transaction processing. BrokerChain is a state-of-
the-art sharding scheme that utilizes the broker-based approach

to process cross-shard transactions. For a fair comparison,
Monoxide-BS and BrokerChain-BS execute transactions seri-
ally and adopt the single leader-based cross-shard verification
[34], as well as the monolithic MPT for state storage. We
select the top 40 (the default value in BrokerChain) most
frequently accessed accounts in our dataset as broker accounts
and distribute them on all shards. Besides, we assume that they
behave honestly in coordinating cross-shard transactions.

Workload. We still use the same Ethereum workload as
used in Section III. Since the datasets from the two time
periods exhibit similar characteristics, we use the data from
one period for evaluation, specifically block height 12M to
12.2M. By default, we use the hash-based strategy [28] to
assign (primary) accounts to shards. Once all the nodes start,
the benchmark client continuously fetches transactions from
the dataset in chronological order at a fixed rate and distributes
them to each node in each shard. Since each node can generate
blocks in sharding DAG-based blockchains, we set the total
transaction input rate to K × number of nodes, where K is the
input rate per node. Similar to [7], we set a maximum block
size of 500 KB and a transaction size of 512 B.

B. Performance Comparison with Sharding DAG
We compare the performance of different cross-shard trans-

action processing mechanisms of SharDAG, Monoxide-BS, and
BrokerChain-BS under varying shard numbers and input rates.

Throughput. Fig. 11(a) and Fig. 11(b) depict the end-to-end
throughput. Monoxide-BS achieves the lowest throughput, with
less than 1,500 TPS. This is because almost all transactions
are cross-shard and need to be relayed. The transaction com-
mitted rate is very low with constantly injected transactions.
BrokerChain-BS’s throughput is better than Monoxide-BS’s
and rises with the shard number because the broker mechanism
reduces the number of cross-shard transactions. However, the
throughput grows only slightly as K rises to 200 txs/s since
more cross-shard transactions need to be processed, requiring
more communication and message verification among brokers
and shards. In contrast, SharDAG’s throughput increases with
the shard number and input rate. In particular, when deployed
with 16 shards, SharDAG achieves a throughput of ⇠ 24K
TPS, which is 3.8⇥ higher than that of BrokerChain-BS.
This is achieved through adaptive cross-shard avatar account
caching, which enables cross-shard transactions to be pro-
cessed and committed within a single shard, thus reducing
cross-shard interactions and improving throughput.

Latency. Fig. 11(c) and Fig. 11(d) show the end-to-end
latency. The latency in Monoxide-BS is higher than 40 seconds
with more than 6 shards and increases with K. This is due to
a large number of new transactions consuming the throughput
and causing longer processing latency for relay transactions.
BrokerChain-BS’s latency is more than 20 seconds because
cross-shard transactions still need to be executed in two
shards with the coordination of brokers. In contrast, SharDAG
achieves the lowest confirmation latency, less than 5 seconds,
resulting in an 18⇥ improvement compared to BrokerChain-
BS under 16 shards and K = 200 txs/s.

10



(a) End-to-end throughput (K =
100 txs/s)

(b) End-to-end throughput (K =
200 txs/s)

(c) End-to-end latency (K = 100
txs/s)

(d) End-to-end latency (K = 200
txs/s)

Fig. 11. Comparison of overall performance under varying shard number and input rate

Fig. 12. Comparison of storage overhead and end-to-end throughput

Fig. 14 shows the system performance under 16 shards and
a decreasing ratio of asset transfer transactions. The designs of
SharDAG and BrokerChain-HS are applicable to asset transfer
transactions. When the ratio of asset transfer transactions de-
creases, both of their performance suffer. However, SharDAG
still outperforms the baselines. Specifically, SharDAG achieves
a throughput 1.7⇥ higher than BrokerChain-HS and 3.6⇥
higher than Monoxide-HS, respectively, when the ratio of asset
transfer transactions is 50%.

C. Performance Comparison with Non-sharding DAG

To evaluate the storage and performance scalability of
SharDAG over the non-sharding baseline BullShark, we mea-
sure the storage cost per node and throughput in BullShark
and SharDAG with varying shard numbers. Since all nodes
can generate blocks, we fix the total number of nodes to 64 to
avoid its interference on performance comparisons. We then
inject 2M transactions at an input rate of K=2,000 txs/s.

Storage overhead. We first measure the storage overhead,
as shown in Fig. 12. In BullShark, each node needs to store
the whole DAG ledger, leading to high storage overhead. In
contrast, in SharDAG, each node only needs to store the
local DAG ledger of its own shard. As the shard number
increases, the storage overhead per node is reduced. In par-
ticular, SharDAG achieves 7.5⇥ lower storage overhead than
BullShark when deploying 16 shards, which illustrates the high
storage scalability of SharDAG. In addition, we measure the
storage cost of avatar account caching. Under 16 shards, the
average and maximum storage costs are approximately 195 KB
and 2626 KB, respectively. Given that the primary account’s
storage cost is at a scale of GB [60], the extra storage cost
introduced by avatar account caching is acceptable for nodes.

Throughput. Fig. 12 also shows that the TPS of SharDAG
grows linearly with the shard number and is significantly
higher than BullShark. For instance, SharDAG achieves nearly

(a) Performance of SharDAG under
varying numbers of nodes in optimistic
appending (8 shards, each with 10 nodes)

(b) Cross-shard message ap-
pending delay under varying
shard size

Fig. 13. Performance of Byzantine resilient cross-shard verification

40⇥ achievement, with 14,666 TPS under 16 shards com-
pared to BullShark’s 343 TPS. This is because although each
node can generate blocks in BullShark, consensus involves
all nodes, and each node needs to process all transactions,
resulting in low end-to-end throughput. In contrast, nodes in
SharDAG only need to participate in intra-shard consensus and
process local transactions, thereby reducing the computation
and communication overhead and improving throughput.

D. Performance of Byzantine Resilient Cross-shard Verifica-
tion

We first explore the performance of SharDAG under varying
numbers of nodes in optimistic appending. Fig. 13(a) shows
that as the number of nodes in optimistic appending increases,
the performance in terms of both throughput and transaction
latency deteriorates, and the best performance is achieved
when the number of nodes in optimistic appending is 2,
consistent with the theoretical derivation in Section VI-B.

We measure the appending delay of the dual-mode cross-
shard message appending of SharDAG and the traditional
single leader-based approach used by Monoxide-BS under
2 shards and varying shard sizes. We do not compare
with BrokerChain-BS because the broker mechanism cannot
guarantee appending liveness when the broker is malicious.
Fig. 13(b) shows that the dual-mode method consistently
outperforms the single leader-based approach. As shard size
increases, the latter’s appending delay increases significantly
while the former’s rises slowly. The reasons are as follows. The
single leader-based approach selects only one node at a time to
pack cross-shard messages. When nodes fail consecutively, the
messages experience long appending delays. On the contrary,
SharDAG’s dual-mode method leverages the concurrent block
generation nature of DAG consensus and selects two nodes to

11



Fig. 14. Performance under vary-
ing ratios of asset transfer transac-
tions

(a) Latency for execution (b) Latency for migration (c) Data transmission

Fig. 15. Performance comparison of different state storage in (a) the consensus phase and (b-c) the reconfiguration
phase

pack in the optimistic mode, improving success probability. In
the worst case, the message can be appended in pessimistic
mode, experiencing only one failure.

E. Performance of Two-tier State Storage

We attest to the efficiency of SharDAG’s Two-tier state stor-
age through simulations. Since state reconfiguration protocol
is not the focus of this paper, we simulate the key operations
on the underlying state storage in the state reconfiguration
phase. Our evaluation involves 8 shards and 30 epochs, each
containing 1M transactions, and is implemented on a comput-
ing cluster node with Intel Xeon E5-2678 CPU and 270 GB
memory. The 0th epoch starts with empty state storage, and
at the end of each epoch, the accounts are reassigned via R-
METIS [48]. Fig. 15(a) shows the time consumed to execute
all transactions in the sampled epoch. Two-tier presents up to
26.9% improvement over Monolithic. This can be attributed to
SharDAG organizing active accounts, which are likely to be
accessed again soon, into a lightweight in-memory Active-Trie.

Fig. 15(b) shows that Two-tier’s average account migration
latency is lower than Monolithic in all sampled epochs. This
is because Active-Trie accepts most account migration opera-
tions. According to Fig. 15(c), Two-tier migrates fewer state
data across shards than Monolithic. This is because in Two-
tier, the proofs of migrated active accounts are obtained from
the lightweight Active-Trie rather than a vast MPT. Moreover,
Two-tier exhibits increasingly significant superiority as the
epoch advances, reducing state reconfiguration delay by up
to 35.9% and data transmission by up to 24.5%. This is
because even though the total number of accounts increases,
the number of active accounts in an epoch is limited and much
smaller than the total number of accounts. Hence, our Two-tier
design performs better when the system runs for a long time.

While Two-tier outperforms Monolithic by exploiting the
active account characteristics, it still migrates over 100 MB of
state data across shards. The main reason is that the migrated
data contains a lot of Merkle proofs. Possible enhancements
include merging duplicate nodes in Merkle proofs or replacing
Active-Trie with other authenticated data structures that offer
more concise state proofs and efficient verification.

VIII. DISCUSSION

Permissioned and permissionless setting. SharDAG can
be applied in both permissioned and permissionless settings.
To resist Sybil attacks in a permissionless network, SharDAG

can use PoW-based identity establishment, which is widely
adopted in permissionless sharding blockchains [27], [29].

Application scenario and workload. Although SharDAG
design is well-suited for current realistic asset-transfer work-
loads characterized by the dominant silent assets, we aim
to explore its adaptability to more application scenarios. If
the ratio of silent assets changes, we can dynamically adjust
the cross-shard account aggregation interval accordingly for
optimal performance. We leave this as our future work.

Compatibility with other sharding schemes. Our cross-
shard avatar account caching and aggregation design is built on
the one-to-one account assignment problem. It is compatible
with many one-to-one account assignment strategies, e.g.,
hash-based [28] and graph-based [38]. Additionally, our two-
tier state storage is suitable for state reconfiguration schemes
characterized by active accounts [38], [48], which is more ef-
ficient in reducing unnecessary migrations than other schemes.

IX. CONCLUSION

We present SharDAG, a novel adaptive sharding mechanism
that provides storage scalability for DAG-based blockchains.
SharDAG supports efficient transaction processing by har-
nessing characteristics (silent assets) discovered in real-world
blockchain workloads. SharDAG adaptively caches avatar ac-
counts for receivers when processing cross-shard transactions,
thus reducing the cross-shard frequency with minimized extra
storage overhead. Besides, SharDAG proposes a Byzantine
resilient cross-shard verification mechanism to support secure
avatar account aggregation, thus ensuring state consistency
across shards. Further, SharDAG devises a two-tier state stor-
age model to support efficient state reconfiguration by leverag-
ing the active accounts feature. Evaluation results demonstrate
the efficiency and scalability of SharDAG. Our released code
is available at https://github.com/CGCL-codes/SharDAG.

X. ACKNOWLEDGEMENTS

This work was supported by National Key Research
and Development Program of China under Grant No.
2021YFB2700700, National Natural Science Foundation of
China (Grant No. 62072197), Key Research and Development
Program of Hubei Province No. 2021BEA164. The research
was supported in part by a RGC RIF grant under the contract
R6021-20, RGC CRF grants under the contracts C7004-22G
and C1029-22G, and RGC GRF grants under the contracts
16209120, 16200221 and 16207922. Jiang Xiao is the corre-
sponding author of this work.

12



REFERENCES

[1] “The tangle,” 2018, https://www.iota.org/.
[2] “Byteball: A decentralized system for storage and transfer of value,”

2016, https://byteball.org/Byteball.pdf.
[3] “The swirlds hashgraph consensus algorithm: Fair, fast, byzantine

fault tolerance,” 2016, https://www.swirlds.com/downloads/
SWIRLDS-TR-2016-01.pdf.

[4] C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long,
and A. C.-C. Yao, “A decentralized blockchain with high throughput
and fast confirmation,” in Proceedings of the USENIX Annual Technical
Conference (ATC’20), 2020, pp. 515–528.

[5] H. Yu, I. Nikolić, R. Hou, and P. Saxena, “Ohie: Blockchain scaling
made simple,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP’20), 2020, pp. 90–105.

[6] J. Xu, Y. Cheng, C. Wang, and X. Jia, “Occam: A secure and adap-
tive scaling scheme for permissionless blockchain,” in Proceedings of
the IEEE International Conference on Distributed Computing Systems
(ICDCS’21), 2021, pp. 618–628.

[7] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“Bullshark: Dag bft protocols made practical,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS’22), 2022, pp. 2705–2718.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, 2008.

[9] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[10] W. Yang, X. Dai, J. Xiao, and H. Jin, “Ldv: A lightweight dag-
based blockchain for vehicular social networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 5749–5759, 2020.

[11] J. Ni, J. Xiao, S. Zhang, B. Li, B. Li, and H. Jin, “Fluid: Towards
efficient continuous transaction processing in dag-based blockchains,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 12,
pp. 12 679–12 692, 2023.

[12] Q. Wang, J. Yu, S. Chen, and Y. Xiang, “Sok: Dag-based blockchain
systems,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[13] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM’22), 2022, pp. 1968–1977.

[14] C. Curino, E. P. C. Jones, Y. Zhang, and S. R. Madden, “Schism:
a workload-driven approach to database replication and partitioning,”
Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 48–57, 2010.

[15] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker, “E-store: Fine-grained elastic partitioning
for distributed transaction processing systems,” Proceedings of the VLDB
Endowment, vol. 8, no. 3, pp. 245–256, 2014.

[16] G. Prasaad, A. Cheung, and D. Suciu, “Handling highly contended
oltp workloads using fast dynamic partitioning,” in Proceedings of the
International Conference on Management of Data (SIGMOD’20), 2020,
pp. 527–542.

[17] M. Abebe, H. Lazu, and K. Daudjee, “Proteus: Autonomous adaptive
storage for mixed workloads,” in Proceedings of the International
Conference on Management of Data (SIGMOD’22), 2022, pp. 700–714.

[18] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine environ-
ment,” in Proceedings of the International Conference on Very Large
Data Bases (VLDB’21), 2021, pp. 2230–2243.

[19] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS’16), 2016, pp. 17–30.

[20] Z. Cai, J. Liang, W. Chen, Z. Hong, H.-N. Dai, J. Zhang, and Z. Zheng,
“Benzene: Scaling blockchain with cooperation-based sharding,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 2, pp.
639–654, 2022.

[21] P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang, “Meepo:
Sharded consortium blockchain,” in Proceedings of the IEEE Interna-
tional Conference on Data Engineering (ICDE’21), 2021, pp. 1847–
1852.

[22] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding
permissioned blockchains over network clusters,” in Proceedings of the
International Conference on Management of Data (SIGMOD’21), 2021,
pp. 76–88.

[23] Z. Hong, S. Guo, and P. Li, “Scaling blockchain via layered sharding,”
IEEE Journal on Selected Areas in Communications, vol. 40, no. 12,
pp. 3575–3588, 2022.

[24] J. Hellings, D. P. Hughes, J. Primero, and M. Sadoghi, “Cerberus: Mini-
malistic multi-shard byzantine-resilient transaction processing,” Journal
of Systems Research (JSys’23), vol. 3, no. 1, 2023.

[25] Z. Hong, S. Guo, E. Zhou, J. Zhang, W. Chen, J. Liang, J. Zhang, and
A. Zomaya, “Prophet: Conflict-free sharding blockchain via byzantine-
tolerant deterministic ordering,” in Proceedings of the IEEE Conference
on Computer Communications (INFOCOM’23), 2023, pp. 1–10.

[26] Z. Hong, S. Guo, E. Zhou, W. Chen, H. Huang, and A. Zomaya,
“Gridb: Scaling blockchain database via sharding and off-chain cross-
shard mechanism,” in Proceedings of the International Conference on
Very Large Data Bases (VLDB’23), 2023, pp. 1685–1698.

[27] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’18), 2018,
pp. 931–948.

[28] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI’19), 2019, pp.
95–112.

[29] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP’18), 2018, pp. 583–598.

[30] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proceedings of
the International Conference on Management of Data (SIGMOD’19),
2019, pp. 123–140.

[31] M. Herlihy, B. Liskov, and L. Shrira, “Cross-chain deals and adversarial
commerce,” in Proceedings of the International Conference on Very
Large Data Bases (VLDB’19), 2019, pp. 100–113.

[32] V. Zakhary, D. Agrawal, and A. E. Abbadi, “Atomic commitment across
blockchains,” in Proceedings of the International Conference on Very
Large Data Bases (VLDB’19), 2019, pp. 1319–1331.

[33] Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding
blockchain system,” in Proceedings of the IEEE Conference on Com-
puter Communications (INFOCOM’21), 2021, pp. 1–10.

[34] Y. Liu, X. Xing, H. Cheng, D. Li, Z. Guan, J. Liu, and Q. Wu, “A flex-
ible sharding blockchain protocol based on cross-shard byzantine fault
tolerance,” IEEE Transactions on Information Forensics and Security,
vol. 18, pp. 2276–2291, 2023.

[35] M. Li, Y. Lin, J. Zhang, and W. Wang, “Cochain: High concurrency
blockchain sharding via consensus on consensus,” in Proceedings of the
IEEE Conference on Computer Communications (INFOCOM’23), 2023,
pp. 1–10.

[36] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “Resilientdb: Global
scale resilient blockchain fabric,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB’20), 2020, pp. 868–883.

[37] M. Zhang, J. Li, Z. Chen, H. Chen, and X. Deng, “Cycledger: A
scalable and secure parallel protocol for distributed ledger via sharding,”
in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS’20), 2020, pp. 358–367.

[38] Y. Zhang, S. Pan, and J. Yu, “Txallo: Dynamic transaction allocation in
sharded blockchain systems,” in Proceedings of the IEEE International
Conference on Data Engineering (ICDE’23), 2023, pp. 721–733.

[39] M. Li, W. Wang, and J. Zhang, “Lb-chain: Load-balanced and low-
latency blockchain sharding via account migration,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 10, pp. 2797–2810,
2023.

[40] X. Qi, “S-store: A scalable data store towards permissioned blockchain
sharding,” in Proceedings of the IEEE Conference on Computer Com-
munications (INFOCOM’22), 2022, pp. 1978–1987.

[41] C. Li, H. Huang, Y. Zhao, X. Peng, R. Yang, Z. Zheng, and S. Guo,
“Achieving scalability and load balance across blockchain shards for
state sharding,” in Proceedings of the International Symposium on
Reliable Distributed Systems (SRDS’22), 2022, pp. 284–294.

[42] V. Hou Su, S. Sen Gupta, and A. Khan, “Automating etl and mining of
ethereum blockchain network,” in Proceedings of the ACM International
Conference on Web Search and Data Mining (WSDM’22), 2022, pp.
1581–1584.

[43] https://etherscan.io/dashboards/contract-statistics.

13

https://www.iota.org/
https://byteball.org/Byteball.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://etherscan.io/dashboards/contract-statistics


[44] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS’19), 2019, pp. 585–602.

[45] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and tusk: a dag-based mempool and efficient bft consensus,”
in Proceedings of the European Conference on Computer Systems
(EuroSys’22), 2022, pp. 34–50.

[46] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you
need is dag,” in Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC’21), 2021, pp. 165–175.

[47] J. Xiao, S. Zhang, Z. Zhang, B. Li, X. Dai, and H. Jin, “Nezha: Exploit-
ing concurrency for transaction processing in dag-based blockchains,”
in Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS’22), 2022, pp. 269–279.

[48] E. Fynn and F. Pedone, “Challenges and pitfalls of partitioning
blockchains,” in Proceedings of the Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-
W’18), 2018, pp. 128–133.

[49] C. Chen, Q. Ma, X. Chen, and J. Huang, “User distributions in
shard-based blockchain network: Queueing modeling, game analysis,
and protocol design,” in Proceedings of the International Symposium
on Theory, Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing (MobiHoc’21), 2021, pp. 221–230.

[50] M. Król, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Rivière,
“Shard scheduler: object placement and migration in sharded account-
based blockchains,” in Proceedings of the ACM Conference on Advances
in Financial Technologies (AFT’21), 2021, pp. 43–56.

[51] Y. Tao, B. Li, and B. Li, “On sharding across heterogeneous
blockchains,” in Proceedings of the IEEE International Conference on
Data Engineering (ICDE’23), 2023, pp. 477–489.

[52] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi, “Ring-
bft: Resilient consensus over sharded ring topology,” in Proceedings
of the International Conference on Extending Database Technology
(EDBT’22), 2022, pp. 2:298–2:311.

[53] M. J. Amiri, Z. Lai, L. Patel, B. T. Loo, E. Lo, and W. Zhou, “Saguaro:
An edge computing-enabled hierarchical permissioned blockchain,” in
Proceedings of the IEEE International Conference on Data Engineering
(ICDE’23), 2023, pp. 259–272.

[54] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding
open blockchains with smart contracts,” in Proceedings of the IEEE
International Conference on Data Engineering (ICDE’20), 2020, pp.
1357–1368.

[55] M. Li, Y. Lin, J. Zhang, and W. Wang, “Jenga: Orchestrating smart
contracts in sharding-based blockchain for efficient processing,” in
Proceedings of the IEEE International Conference on Distributed Com-
puting Systems (ICDCS’22), 2022, pp. 133–143.

[56] E. Fynn, A. Bessani, and F. Pedone, “Smart contracts on the move,”
in Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’20), 2020, pp. 233–244.

[57] H. Huang, Y. Zhao, and Z. Zheng, “tmpt: Reconfiguration across
blockchain shards via trimmed merkle patricia trie,” in Proceedings
of the IEEE/ACM International Symposium on Quality of Service
(IWQoS’23), 2023, pp. 1–10.

[58] https://ethereum.org/en/developers/docs/gas/.
[59] Y. Lu, Z. Lu, and Q. Tang, “Bolt-dumbo transformer: Asynchronous con-

sensus as fast as the pipelined bft,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’22), 2022,
pp. 2159–2173.

[60] J.-Y. Kim, J. Lee, Y. Koo, S. Park, and S.-M. Moon, “Ethanos: efficient
bootstrapping for full nodes on account-based blockchain,” in Proceed-
ings of the European Conference on Computer Systems (EuroSys’21),
2021, pp. 99–113.

14

https://ethereum.org/en/developers/docs/gas/

	Introduction
	Background and Related Work
	DAG-based Blockchains
	Sharding Mechanisms in Blockchains

	Observation and Motivation
	SharDAG Overview
	System and Threat Model
	Goals
	SharDAG Architecture

	System Design
	Cross-shard Avatar Account Caching
	Byzantine Resilient Cross-shard Verification
	Cross-shard Avatar Account Aggregation
	Two-tier State Storage

	Security Analysis
	Correctness of SharDAG
	Analysis of Dual-mode Cross-shard Message Appending

	Evaluation
	Experimental Setup
	Performance Comparison with Sharding DAG
	Performance Comparison with Non-sharding DAG
	Performance of Byzantine Resilient Cross-shard Verification
	Performance of Two-tier State Storage

	Discussion
	Conclusion
	Acknowledgements
	References

