
Keep Cache Replacement Simple
in Peer-Assisted VoD Systems

Jiahua Wu, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
{jiahua, bli}@eecg.toronto.edu

Abstract—Peer-assisted Video-on-Demand (VoD) systems have
not only received substantial recent research attention, but also
been implemented and deployed with success in large-scale real-
world streaming systems, such as PPLive [1]. Peer-assisted Video-
on-Demand systems are designed to take full advantage of peer
upload bandwidth contributions with a cache on each peer. Since
the size of such a cache on each peer is limited, it is imperative
that an appropriate cache replacement algorithm is designed.
There exists a tremendous level of flexibility in the design space
of such cache replacement algorithms, including the simplest
alternatives such as Least Recently Used (LRU). Which algorithm
is the best to minimize server bandwidth costs, so that when
peers need a media segment, it is most likely available from
caches of other peers? Such a question, however, is arguably
non-trivial to answer, as both the demand and supply of media
segments are stochastic in nature. In this paper, we seek to
construct an analytical framework based on optimal control
theory and dynamic programming, to help us form an in-depth
understanding of optimal strategies to design cache replacement
algorithms. With such analytical insights, we have shown with
extensive simulations that, the performance margin enjoyed by
optimal strategies over the simplest algorithms isnot substantial,
when it comes to reducing server bandwidth costs. In most
cases, the simplest choices are good enough as cache replacement
algorithms in peer-assisted VoD systems.

I. I NTRODUCTION

Peer-assisted Video-on-Demand (VoD) systems have not
only received substantial recent research attention [2], but
also been implemented and deployed with success in large-
scale real-world streaming systems, such as PPLive [1]. The
essential advantage of peer-assisted VoD systems is to take
full advantage of peer upload bandwidth contributions, using
a pre-determined and fixed amount of disk space on each peer
as acache of recently downloaded media segments.

In the PPLive VoD system [1], for example, the pre-
determined size of such a media cache may be in the order of1
GB. As peers download media segments from servers or other
peers for on-demand playback, they are stored in the cache to
potentially serve other peers, hence reducing bandwidth costs
on servers. Peers in PPLive, however, do not choose toactively
prefetch media segments that it has not requested for playback.
One of the reasons against the use of active prefetching in
PPLive is that downloading activities on most real-world DSL
peers may affect upload bandwidth contributions [1].

As the size of such a cache on each peer is limited, it is
imperative that an appropriate cache replacement algorithm
is designed. Such an algorithm is critically important, as it

This work was supported in part by Bell Canada through its Bell University
Laboratories R&D program.

determines the availability of media segments in the entire
system. Such segment availability affects server bandwidth
costs, as peers will download segments directly from servers
if they become unavailable from other peers.

Consider peer-assisted VoD systems with a limited pool of
passive media cache space, where no active prefetching is
used and the media cache content is not actively managed by
centrally controlled servers. We have good news and bad news
in this case. The good news is that there exists a tremendous
level of flexibility in the design space of such cache replace-
ment algorithms, including the simplest alternatives suchas
Least Recently Used (LRU) and Least Frequently Used (LFU).
Which algorithm is the best to minimize server bandwidth
costs, so that when peers need a media segment, it is most
likely available from caches of other peers? The bad news is
that such a question is arguably non-trivial to answer, as both
the demand and supply of media segments are stochastic in
nature in the system.

In this paper, despite the challenges imposed by both
stochastic demand and stochastic supplies of media segments,
we seek to construct a tractable analytical framework based
on optimal control theory and dynamic programming, to help
us form an in-depth understanding ofoptimal strategies to
design cache replacement algorithms. With complementary
simulation studies, we show that the performance margin
enjoyed by a practical algorithm design of optimal strategies
over the simplest algorithms isnot substantial, with respect to
reducing server bandwidth costs. In most cases, the simplest
choices are good enough as cache replacement algorithms in
peer-assisted VoD systems. To our knowledge (with detailed
justifications in the next section), this work represents the
first attempt to analytically considerpassive peer caching in
peer-assisted VoD systems, derive optimal solutions of cache
replacement algorithms, and reach the conclusion that they
are only marginally (3% – 10%) better than the simplest
algorithms.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the originality of our work in the context
of related work. Sec. III describes the basic concepts in
the analytical model. In Sec. IV, we develop an analytical
framework and derive optimal solutions. We propose our
optimal cache replacement algorithm in Sec. V. In Sec. VI,
we resort to simulations to compare the performance of the
optimal algorithm with the simplest alternatives, and makethe
observation that simple solutions are good enough. Finally,
Sec. VII concludes the paper.

II. RELATED WORK

The application of cache management was comprehensively
investigated in the VoD services over cable networks [3]–
[5]. In cable networks, content subscribers appear to be more
cooperative because the facilities, such as home gateways or
set-top boxes, are under the control of a network or content
provider. Comprehensive theoretical analyses on peer-assisted
VoD services in cable networks were conducted in [4], [5].
However, the emphasis of our paper differs from those work
in that we focus on the cache replacement algorithm in a
system where the cache is passively, rather than actively,
managed. Allenet al. [3] did a trace-driven evaluation in cache
replacement algorithms on cable networks. Although similar
conclusions were drawn, our paper distinguishes from [3] in
that [3] completely relies on simulation, rather than theoretical
aspects considered in our work.

Recently, in the Internet, there also emerged a number of
application-level tree-based or mesh-based P2P VoD protocols.
However, only simple cache replacement algorithms were
utilized in these proposals,e.g., LRU [6] or simply replacing
pieces earlier than the current file position [7]. Parvezet al. [8]
did a comprehensive theoretical analysis on the performance
of on-demand stored media content delivery using BitTorrent-
like protocols. However, the local cache of the peers were
assumed to be unlimited in their analysis. To the best of our
knowledge, this paper presents the first theoretical analysis on
peer-assisted VoD systems considering passive peer caching.

III. SYSTEM MODEL

In this section, we present our theoretical model for the
cache replacement problem in P2P VoD systems. The prob-
ability distribution of segment popularity is knowna priori
in the systems we investigate. Let there beN peers and a
dedicated server in the system. The server stores a repository
of media files to be streamed on demand with a constant bit
rate. The length of the files may vary, but each of them is
composed of a number of fixed-length segments and the total
number of segments stored in the server is of sizeM . The
access probability of segmenti is assumed to befi. The sum
of access probabilityfi satisfies the condition

∑M

i=1 fi = 1.
Without loss of generality, we assumefi ≥ fj ,∀i < j.

Each peer in the system maintains a limited size of local
cache, which is able to store up toB segments. We assume
that peers in the system are homogeneous, which indicates that
all the peers have the same upload capacity and local cache
size. We analyze the system performance within the context
of time intervals. The duration of a time interval corresponds
to the amount of time for a peer to upload a single segment.

By making the aforementioned assumptions, the behavior
of the peers can be characterized in a time-slotted fashion.
Let vectorX(t) = (x1(t), x2(t), . . . , xM (t))

T denote the state
of the peers’ cache in the system. Each entryxi(t) stands
for the number of peers that hold segmenti in its local
cache at time intervalt. The local cache of all peers will
eventually be completely filled as time progresses. Without
loss of generality, we assume the cache of all the peers are

filled up at time interval0. The sum of all the entries in the
state vector is equal to the storage space from all the peers,
namely

∑M

i=1 xi(t) = BN , ∀t.
At the beginning of every time slot, each peer will request

a segment it will playback in the near future from the peers
that have this specific segment in their local cache. Once
this request is satisfied by one of the target peers, the peer
will download the entire segment during this time slot. The
remaining unsatisfied requests are redirected to the dedicated
server and all requests sent to the server are assumed to be
satisfied within the time slot. At each time slot, it is natural
for a peer to receive several requests from other peers, but it is
able to respond to only one request at each slot and it selects
the request uniformly at random.

After introducing the working mechanism of the system,
we can now model it in a more rigorous way. At each time
slot, the requests sent from the peers can be characterized by
a random vectorW(t) = (w1(t), w2(t), . . . , wM (t))

T , where
wi(t) denotes the number of requests for segmenti at time slot
t. In the problem with the knowledge of segment popularity,
the random vectorW(t) follows a multinomial distribution
with parametersN and (f1, f2, . . . , fM).

At the same time, each peer downloads a new segment
and replaces one stored in its local cache in every time
slot. Like the random demand vector, the segments being
replaced can also be described by a control vectorU(t) =
(u1(t), u2(t), . . . , uM (t))

T , whereui(t) denotes the number
of segmenti being replaced at time slott. This control vector
is the key parameter in our system, since the selection of
segments to be replaced in each time slot is directly determined
by the cache replacement algorithm. It is easy to see that the
control vector should obey the following rules:

∑M

i=1 ui(t) = N, ∀t (1)

0 ≤ ui(t) ≤ xi(t), i = 1, 2, . . . ,M, ∀t (2)

ui(t) ∈ N, i = 1, 2, . . . ,M, ∀t (3)

However, the control vector is a macro-parameter of the system
and it may sometimes cause a conflict for its allocation to
individual peers.

IV. A NALYSIS OF CACHE REPLACEMENT ALGORITHMS

We now proceed to derive the optimal cache replacement
algorithm in the system with the knowledge of segment
popularity. The state that the system evolves to after thetth
time interval is

X(t + 1) = X(t) + W(t) − U(t) (4)

where X(0) is the initial state of the system. This state is
determined by the time that the cache of all the peers are
filled up. Equation (4) characterizes the state evolution ofour
system.

The purpose of a cache replacement algorithm is to vary
the availability of different segments so as to fully utilize
the storage and upload resources from peers. In each time
slot, we are willing to see that most of the requests are able

to be satisfied by other peers, rather than directly from the
server. The optimality of the cache replacement algorithm can
be measured by the percentage of requests satisfied by the
server directly. The mathematical formulation of this problem
is as follows:

min
U(t)

E{

T−1∑

t=0

1
T · max (0,W(t) − P(t)X(t))} (5)

where1 is a M × 1 vector with all the entries equal to1.
P(t) = diag(p̄1(t), p̄2(t), . . . , p̄M (t)) is a diagonal matrix.
Each entryp̄i(t) on the diagonal indicates the average proba-
bility of the peers currently holding segmenti to respond to the
requests for this segment. To rigorously definep̄i(t), we first
defineAi = {i | peer j has segment i in its local cache},
the set of peers holding segmenti in its local cache. Hence
p̄i(t) =

∑
j∈Ai

pij(t)/xi, wherepij(t) denotes the probability
of peerj selecting a request for segmenti at time intervalt.

In order to investigate the properties of the serving proba-
bility matrix P(t), we first derive the value ofpij(t). Denote
Kj andNj , the number of requests for segmenti that peerj
receives and the total number of requests that peerj receives,
respectively.Bj indicates the set of segments that peerj has
in its local cache.

P{peer j selects a request for segment i}

=

N−1∑

n=0

n∑

k=0

k

n
· P{Kj = k | Nj = n} · P{Nj = n}

=

N−1∑

n=0

1

n
P{Nj = n} · E{Kj | Nj = n}

=
fi∑

k∈Bj
fk

We then have

p̄i(t) =
∑

j∈Ai

pij(t)/xi =
1

xi

∑

j∈Ai

(
fi∑

k∈Bj
fk

) (6)

Sincefi ≥ fj , ∀i < j, then we havēpi(t) ∈ [fi

B·f1

, fi

B·fM
].

The serving probability matrixP(t) is an important parameter,
since it reflects the peer selection algorithm, segment selection
algorithm and some other mechanisms in the system design.

W(t) in Equation (5) represents the random demand for
each segment at time intervalt, while P(t)X(t) stands for
the average supply from the peers. Though the contribution
peers make to serve others at each time interval is random
as well, we take its mean to approximate the random supply
in the objective function. A cache replacement algorithm is
regarded as optimal if it minimizes the burden of the server,
which in this case is equivalent to minimizing the sum of the
difference overT time slots.

This is a stochastic optimal control problem, and we resort
to Dynamic Programming (DP) algorithms [9] to solve it. First,

we need to define some notations. Let

gT (X(T)) = 0

gt(X(t),W(t)) = 1
T · max (0,W(t) − P(t)X(t)),

t = 0, 1, . . . , T − 1

The DP algorithm for our problem is illustrated as follows.
For every initial stateX(0), the optimal costJ∗(X(0)) of the
problem is equal toJ0(X(0)), given by the last step of the
following algorithm, which proceeds backwards in time from
periodT − 1 to period0:

JT (X(T)) = gT (X(T)),

Jt(X(t)) = minU(t)∈U(X(t)) E{gt(X(t),W(t)) +

Jt+1(X(t + 1))},

t = 0, 1, . . . , T − 1 (7)

where the expectation is taken with respect to the probability
distribution of W(t). U(X(t)) is the set ofU(t) satisfying
Equations (1) – (3). IfU∗(t) = µ∗

t (X(t)) minimizes the right
side of Equation (7) for eachX(t) and t, the policy π∗ =
{µ∗

0, . . . , µ
∗
T−1} is considered to be optimal.

However, it is impossible to obtain an optimal policy in
the closed form for our problem, and a numerical solution is
therefore necessary. The computational requirements to obtain
this solution are overwhelming, as they increase exponentially
as the size of the problem increases, commonly referred to as
“the curse of dimensionality” [9]. Fortunately, for this specific
problem, it is possible to suppress the temporal component
of the model and determine a one time interval optimum that
is also optimal for the problem with the planning horizonT ,
whenT is large enough.

Theorem 1: A myopic policy (one time interval optimum)
is optimal for the problem described by Equations (1) – (5)
with a sufficiently large planning horizonT .

Due to space constraints, the details of the proof are omitted,
however, the basic idea is the following. In the steady state,
the control vector is able to compensate the impact of the
random demand from peers, which leaves the same system
state at the end of each time interval. Thus, one time interval
optimum is also optimal for time slots in the steady state. For a
sufficiently large planning horizonT , the impact of the steady
state is dominant, and thus the announced results follow.

Theorem1 tells us that an optimal policy in any time interval
t is optimal over the planning horizonT . It remains to derive
a one time interval optimum for our problem. To this end,
consider the time intervalT − 1. It should be mentioned that
the replacement of content occurs at the end of each time slot,
thus in order to minimize the cost function at time interval
T − 1, we should optimize the control vectorU(t− 2). If we
denotex+ , max{x, 0}, the cost function at theT −1th time
interval JT−1(X(T − 1)) is equal to

minU(T−2) E{1T (W(T − 1)

−P(T − 1)X(T − 1))+ + JT (X(T))}.

Plugging (4) into the cost function and replacingJT (X(T))
with 0, JT−1(X(T − 1)) can be expressed as follows:

minU(T−2) E{1T (W(T − 1) − P(T − 1)(X(T − 2)

+W(T − 2) − U(T − 2)))+}.

Changing the order of expectation and summation in the last
formula, the optimal control problem at time intervalT − 1
can be obtained:

minU(T−2) 1
T {(I − P(T − 1))W − P(T − 1)X(T − 2)

+P(T − 1)U(T − 2)}+

subject to the constraints

1
T · U(T − 2) = N

0 � U(T − 2) � X(T − 2)

whereI is anM×M identity matrix andW = {w̄1, . . . , w̄M}
is the expected value of the random demand vectorW, which
is equal to{f1N, f2N, . . . , fMN}T . We can introduce anM×
1 vectorK, which satisfies the following constraints:

K � 0 (8)

(I − P(t + 1))W − P(t + 1)X(t) + P(t + 1)U(t) � K

(9)

Thus, the optimal cache replacement policyU
∗(t) at each time

slot t can be concluded by the following theorem.
Theorem 2: The optimal cache replacement strategy is

π∗ = {U∗(0),U∗(1), . . . ,U∗(T − 1)}. For eachU
∗(t), it

is the solution to the following mixed-integer programming
problem:

minK,U(t) 1
T · K (10)

subject to the constraints (1) – (3), (8) and (9).

V. PRACTICAL CACHE REPLACEMENT

ALGORITHM DESIGN

We now begin to design practical cache replacement algo-
rithms, based on insights from our theoretical analysis derived
in Sec. IV. Such practical algorithms can serve as a “bench-
mark” of thebest possible algorithms that may be realizable,
to which simpler alternative heuristics can be compared.

Our basic idea is to develop the algorithm based on the op-
timal cache replacement strategy, mixed-integer optimization
problem (10), derived in Sec. IV. However, there exist three
challenges in utilizing this optimization formulation.First,
the mixed-integer optimization problem is NP-hard in general
[10]. In other words, it is unlikely to be solved in polynomial
time. Second, future knowledge of the serving probability
matrix is needed to derive the optimal solution.Third, even
if we can obtain optimal integral solutions, there might exist
problems to allocate the control vector to individual peers.

Approximation algorithms should be designed to address
these challenges. For the mixed-integer optimization problem
in the first challenge, it can be relaxed to a corresponding
linear programming problem while discarding the integer

constraints. In fact, this relaxation does not undermine the
optimality of the solution. To respond to the second challenge
and the lack of future knowledge, we can simply use the
serving probability matrix that is available at the currenttime.
With respect to the third challenge, the conflict of allocation of
the control vector can be solved by the following probabilistic
replacement strategy.

Rather than selecting the segment for replacing peer by
peer, we can set the probability of replacement for segment
i to be qi(t) = u∗

i (t)/N and distribute these probabilities
to all peers. Each peer makes its decision according to the
replacement probability distribution individually. The benefit
of this scheme is two fold. First, by letting the peers make their
own decisions individually, the control overhead is quite low
in our algorithm. The control messages only occur when the
optimization is re-solved. Second, this algorithm copes better
with the situation that peers replace segments asynchronously.
In the asynchronous case, it is not feasible to allocate the
control vector to individual peers in a centralized manner.

With these measures, we can solve the optimization problem
as a linear programming problem in a centralized fashion,
known to be solvable in polynomial time.

VI. PERFORMANCEEVALUATION

In this section, via complementary simulation studies, we
evaluate two commonly used candidates: Least Recently Used
(LRU) and Least Frequently Used (LFU), in comparison
with the optimization-based algorithm that we have designed,
arguably the best achievable strategy in practice.

Unless otherwise specified, we simulate systems that consist
of random topologies of 10000 peers, with each peer con-
nected withk neighbors on average. Recall thatB and M
denote the number of segments a peer is able to store in its
local cache and the total number of segments in the system,
respectively.B/M , the local cache size from each peer over
the total number of segments in the system, is set to be10%
in most simulations.

Since our consistent objective is to mitigate the server
bandwidth cost, the main performance metric of concern in
our comparisons is the average server load over the total
demand,i.e., the portion of requests served by the server.
Unless otherwise specified, the Y-axis in the subsequent figures
indicate the average server load over the total demand. We
further assume the segment popularity follows a stretched
exponential distribution (SE), which was found in recent work
to be the access pattern for most media workloads in Internet
[11]. Hence, it is an appropriate approximation of the segment
popularity distribution in our simulation.

A. Effects of Neighborhood Sizes and Cache Sizes

Fig. 1 shows the effects of neighborhood sizes and cache
sizes on the server load reduction. We observe that the server
load decreases dramatically with the increase of the neigh-
borhood size and cache size. The curves in these two figures
show similar trends, since the increase of the neighborhood
size is equivalent to the increase of the cache size per peer.

20 30 40 50 60 70 80
0.2

0.25

0.3

0.35

0.4

0.45

Neighborhood Size

LFU
LRU
Optimization

(a) Various Neighborhood Sizes

0.05 0.1 0.15
0.2

0.25

0.3

0.35

0.4

0.45

B/M

LFU
LRU
Optimization

(b) Various Cache Sizes
Fig. 1. Average server load over the total demand under various neighborhood
sizes and cache sizes, in large systems with 10000 peers. We set B/M to
10% in (a) andk to 50 in (b).

Further, it is most revealing that the differences among the
three cache replacement strategies are notably small. Though
our optimization based algorithm shows consistently better
performance than much simpler heuristics, the improvement
is insignificant. The differences are slightly more pronounced
in small caches. As the cache size increases, there is little, if
any, difference when the three algorithms are compared with
one another.

B. Effects of System Sizes

After investigating large systems with 10000 peers, we are
now interested on the effects of varying system sizes on the
performance of cache replacement algorithms. Fig. 2 presents
the average server load over the total demand while varying
the system size from 1000 peers to 10000 peers. From Fig. 2,
we can clearly see that the average server load over the total
demand remains constant with the change of the system size
in all these three algorithms. This demonstrates a superior
degree of scalability of peer-assisted VoD systems, where new
peers contribute more caching storage space to the system.
The bad news is that, even with such stellar scalability, a
linear increase of server bandwidth costs need to be incurred to
accommodate a linear increase of the system scale, and using
even the practically optimal cache replacement algorithm does
not make a significant difference.

1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

System Size (× 10
3
)

LFU

LRU

Optimization

Fig. 2. Average server load over the
total demand under various system
sizes. We setB/M to 5% and k to
50.

0 0.05 0.1 0.15 0.2

0.3

0.35

0.4

0.45

0.5

0.55

Average Churn Rate

LFU

LRU

Optimization

Fig. 3. Average server load over
the total demand under various churn
rates, in large systems with 10000
peers initially. We setB/M to 10%

andk to 50.

C. Effects of Peer Churn

Finally, although all previous analyses and simulations are
performed in the static setting, we are also interested in the
system performance under the effects of peer churn, including
both peer arrivals and departures. The performance of all three
algorithms in terms of the average server load over the total

demand is shown in Fig. 3. The average server load over the
total demand increases dramatically as the churn rate increases.
The performance of cache replacement algorithms are similar
to that in the static case when the churn rate is small. However,
in the case of high churn rates, there exist no substantial
performance gain when the optimal algorithm is used rather
than its simpler alternatives. When the peer lifetime is short
with a high churn rate, a substantial percentage of peers are
not able to fill up their local cache before they leave the
system, making it futile to optimize the design of the cache
replacement algorithm.

VII. C ONCLUSION

Real-world peer-assisted VoD systems commonly use peer
caches that are limited in size and passively managed. What,
then, is thebest possible way to manage these peer caches?
It is non-trivial to answer this question, since the passively
managed nature of peer caching makes both demand and sup-
ply of media segments stochastic in nature. In this paper, we
seek to answer this question with rigorous theoretical analysis
and complementary simulation studies. Using control theory
and dynamic programming, we construct a tractable analytical
framework and derive the optimal strategy in systems with
the knowledge of segment popularity. With our analysis, we
are able to gain new insights on how an optimal algorithm
should be designed; with our simulations, we are able to
compare the performance of our optimal algorithm with the
simplest heuristics, and draw the surprising conclusion that
simple solutions perform as well as the optimal algorithm,
with very insignificant differences.

REFERENCES

[1] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, Design and Analysis of a Large-scale P2P-VoD System,”
in Proc. of ACM SIGCOMM, Aug. 2008.

[2] C. Huang, J. Li, and K. W. Ross, “Can Internet Video-on-Demand Be
Profitable?” inProc. of ACM SIGCOMM, 2007, pp. 133–144.

[3] M. S. Allen, B. Y. Zhao, and R. Wolski, “Deploying Video-on-Demand
Services on Cable Networks,” inProc. of International Conference on
Distributed Computing Systems, Jun. 2007.

[4] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley, and
M. Varvello, “Push-to-Peer Video-on-Demand System: Design and Eval-
uation,” IEEE Journal on Selected Areas in Communications, vol. 25,
no. 9, pp. 1706–1716, Dec. 2007.

[5] Y. Boufkhad, F. Mathieu, F. de Mongolfier, D. Perino, and L. Viennot,
“Achievable Catalog Size in Peer-to-Peer Video-on-Demand Systems,”
in Proc. of International Workshop on Peer-to-Peer Systems, Feb. 2008.

[6] Y. He and Y. Liu, “Supporting VCR in Peer-to-Peer Video-On-Demand,”
in Proc. of IEEE International Conference on Network Protocols, Oct.
2007.

[7] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving VoD
Server Efficiency with BitTorrent,” inProc. of ACM Multimedia 2007,
2007, pp. 117–126.

[8] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis of
BitTorrent-like Protocols for On-demand Stored Media Streaming,” in
Proc. of ACM SIGMETRICS, Jun. 2008.

[9] D. P. Bertsekas,Dynamic Programming and Optimal Control, 2nd ed.
Belmont, Massachusetts: Athana Scientific, 2000, vol. I.

[10] C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization:
Algorithms and Complexity. Courier Dover Publications, 1998.

[11] L. Guo, E. Tan, S. Chen, Z. Xiao, and X. Zhang, “The Stretched
Exponential Distribution of Internet Media Access Patterns,” in Proc. of
ACM Symposium on Principles of Distributed Computing, Aug. 2008.

