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Abstract—Peer-assisted Video-on-Demand (VoD) systems havedetermines the availability of media segments in the entire
not only received substantial recent research attention, butlao system. Such segment availability affects server bandiwidt

been implemented and deployed with success in large-scale real'costs as peers will download seaments directly from ssrver
world streaming systems, such as PPLive [1]. Peer-assisted Ve . ' P . 9 y
if they become unavailable from other peers.

on-Demand systems are designed to take full advantage of peer ’ - - L
upload bandwidth contributions with a cache on each peer. Since ~ Consider peer-assisted VoD systems with a limited pool of
the size of such a cache on each peer is limited, it is imperative passive media cache space, where no active prefetching is
that an appropriate cache replacement algorithm is designed. ysed and the media cache content is not actively managed by
There exists a tremendous level of flexibility in the design space centrally controlled servers. We have good news and bad news

of such cache replacement algorithms, including the simplest . - . .
alternatives such as Least Recently Used (LRU). Which algorithm in this case. The good news is that there exists a tremendous

is the best to minimize server bandwidth costs, so that when level of flexibility in the design space of such cache replace
peers need a media segment, it is most likely available from ment algorithms, including the simplest alternatives sash
caches of other peers? Such a question, however, is arguably| east Recently Used (LRU) and Least Frequently Used (LFU).
non-trivial to answer, as both the demand and supply of media \yhjch algorithm is the best to minimize server bandwidth
segments are stochastic in nature. In this paper, we seek to . .
construct an analytical framework based on optimal control C,OStS' SO.that when peers need a media segment, it is mc_)st
theory and dynamic programming, to he|p us form an in_depth ||ke|y aVa”abIe from CaCheS Of Othel’ peerS? The bad news Is
understanding of optimal strategies to design cache replacement that such a question is arguably non-trivial to answer, a8 bo
algorithms. With such analytical insights, we have shown with the demand and supply of media segments are stochastic in
extensive simulations that, the performance margin enjoyed by 5+ re in the system.

optimal strategies over the simplest algorithms isot substantial, . . .
when it comes to reducing server bandwidth costs. In most In this paper, despite the challenges imposed by both

cases, the simplest choices are good enough as cache replacemefitochastic demand and stochastic supplies of media segment
algorithms in peer-assisted VoD systems. we seek to construct a tractable analytical framework based

| INTRODUCTION on optimal control theory and dynamic programming, to help
’ us form an in-depth understanding oftimal strategies to

Peer-assisted Video-on-Demand (VoD) systems have Relsign cache replacement algorithms. With complementary
only received substantial recent research attention [@l, kjmylation studies, we show that the performance margin
also been implemented_ and deployed with success in 'ar%]oyed by a practical algorithm design of optimal straegi
scale real-world streaming systems, such as PPLive [1]. Thger the simplest algorithms i®t substantial, with respect to
essential advantage of peer-assisted VoD systems is 10 @& cing server bandwidth costs. In most cases, the simples
full advantage of peer upload bandwidth contributionsn@si cnoices are good enough as cache replacement algorithms in
a pre-determined and fixed amount of disk space on each pgggr-assisted VoD systems. To our knowledge (with detailed
as acache of recently downloaded media segments. justifications in the next section), this work represents th

In the PPLive VoD system [1], for example, the prefirsi attempt to analytically considesassive peer caching in
determined size of such a media cache may be in the order Gfeer-assisted VoD systems, derive optimal solutions ofi€ac
GB. As peers download media segments from servers or othghjacement algorithms, and reach the conclusion that they

peers for on-demand playback, they are stored in the cachgfg only marginally % — 10%) better than the simplest
potentially serve other peers, hence reducing bandwidstecoygorithms.

on servers. Peers in PPLive, however, do not choosetteely  The remainder of this paper is organized as follows. In
prefetch media segments that it has not requested for playbadle: || we discuss the originality of our work in the context

One of the reasons against the use of active prefetchinggf rejated work. Sec. Il describes the basic concepts in
PPLive is that downloading activities on most real-worldLDS o analytical model. In Sec. IV, we develop an analytical
peers may affect upload bandwidth contributions [1]. framework and derive optimal solutions. We propose our

_ As the size of such a cache on each peer is limited, it d3stimal cache replacement algorithm in Sec. V. In Sec. VI,
imperative that an appropriate cache replacement algoritiye resort to simulations to compare the performance of the
is designed. Such an algorithm is critically important, S §ptimal algorithm with the simplest alternatives, and mtie

This work was supported in part by Bell Canada through itd Belversity observation that simple solutions are good enough. Finally
Laboratories R&D program. Sec. VIl concludes the paper.



Il. RELATED WORK filled up at time intervald. The sum of all the entries in the

The application of cache management was comprehensivéfgte vector is equal to the storage space from all the peers,
investigated in the VoD services over cable networks [3amely> ;= xi(t) = BN, Vt.
[5]. In cable networks, content subscribers appear to beemor At the beginning of every time slot, each peer will request
cooperative because the facilities, such as home gateway$egment it will playback in the near future from the peers
set-top boxes, are under the control of a network or contdh@t have this specific segment in their local cache. Once
provider. Comprehensive theoretical analyses on peésteds this request is satisfied by one of the target peers, the peer
VoD services in cable networks were conducted in [4], [5]/yill download the entire segment during this time slot. The
However, the emphasis of our paper differs from those wofgmaining unsatisfied requests are redirected to the dedica
in that we focus on the cache replacement algorithm in Sgrver and all requests sent to the server are assumed to be
system where the cache is passively, rather than activeqﬁtisfied within the time slot. At each time slot, it is natura
managed. Alleret al. [3] did a trace-driven evaluation in cachgOr @ peer to receive several requests from other peerst isut i
replacement algorithms on cable networks. Although similgble to respond to only one request at each slot and it selects
conclusions were drawn, our paper distinguishes from [3] e request uniformly at random.
that [3] completely relies on simulation, rather than tledical ~ After introducing the working mechanism of the system,
aspects considered in our work. we can now model it in a more rigorous way. At each time
Recently, in the Internet, there also emerged a number 99t the requests sent from the peers can be characteryzed b
application-level tree-based or mesh-based P2P VoD pistoc @ random vectoW (t) = (w1 (t), wa(t), ..., wa(t))", where
However, only simple cache replacement algorithms wete (t) denotes the number of requests for segnientime slot
utilized in these proposalgg., LRU [6] or simply replacing - In the problem with the knowledge of segment popularity,
pieces earlier than the current file position [7]. Pareeal. [8] the random vectoiW (t) follows a multinomial distribution
did a comprehensive theoretical analysis on the performarith parametersV and (f1, fa, ..., far).
of on-demand stored media content delivery using BitTasren At the same time, each peer downloads a new segment
like protocols. However, the local cache of the peers wefdd replaces one stored in its local cache in every time
assumed to be unlimited in their analysis. To the best of o8t Like the random demand vector, the segments being
knowledge, this paper presents the first theoretical aisatys 'eplaced can also be described by a control veti¢r) =

T
peer-assisted VoD systems considering passive peer gachifi1(t), u2(t), ..., un(t))", wherew;(t) denotes the number
of segment being replaced at time slot This control vector
. SYsTEM MODEL is the key parameter in our system, since the selection of

In this section, we present our theoretical model for theegments to be replaced in each time slot is directly detezhi
cache replacement problem in P2P VoD systems. The prdiythe cache replacement algorithm. It is easy to see that the
ability distribution of segment popularity is knowen priori  control vector should obey the following rules:

in the systems we investigate. Let there Nepeers and a M

dedicated server in the system. The server stores a reposito iz wi(t) = N, vt (1)
of media files to be streamed on demand with a constant bit 0 <w(t) <wi(t),i=1,2,...,M, Vt 2
rate. The length of the files may vary, but each of them is ui(t) ENyi=1,2,..., M, Vit (3)

composed of a number of fixed-length segments and the total

number of segments stored in the server is of siZe The However, the control vector is a macro-parameter of theegyst
access probability of segments assumed to bg;. The sum _anq _it may sometimes cause a conflict for its allocation to
of access probabilityf; satisfies the conditioy_ ., f; = 1. individual peers.

Without loss of generality, we assunfe> f;,Vi < j.

Each peer in the system maintains a limited size of local
cache, which is able to store up @ segments. We assume We now proceed to derive the optimal cache replacement
that peers in the system are homogeneous, which indicates #{gorithm in the system with the knowledge of segment
all the peers have the same upload capacity and local caPq@ularity. The state that the system evolves to after¢the
size. We analyze the system performance within the contdikpe interval is
of time intervals. The duration of a time interve_ll corresgen X(t+1) = X(t) + W(t) — U(t) 4)
to the amount of time for a peer to upload a single segment.

By making the aforementioned assumptions, the behavishere X(0) is the initial state of the system. This state is
of the peers can be characterized in a time-slotted fashigetermined by the time that the cache of all the peers are
Let vectorX (t) = (z1(t), z2(t), ...,z (t))" denote the state filled up. Equation (4) characterizes the state evolutionuof
of the peers’ cache in the system. Each entfyt) stands system.
for the number of peers that hold segmenin its local The purpose of a cache replacement algorithm is to vary
cache at time intervat. The local cache of all peers will the availability of different segments so as to fully uiz
eventually be completely filled as time progresses. Withotite storage and upload resources from peers. In each time
loss of generality, we assume the cache of all the peers alat, we are willing to see that most of the requests are able

IV. ANALYSIS OF CACHE REPLACEMENTALGORITHMS



to be satisfied by other peers, rather than directly from thee need to define some notations. Let
server. The optimality of the cache replacement algoritim ¢

be measured by the percentage of requests satisfied by the gr(X(T)) =0
server directly. The mathematical formulation of this gesb g:(X(t), W(t)) = 17 - max (0, W(t) — P(t)X(t)),
is as follows: t=0.1 T_1

T-1
. The DP algorithm for our problem is illustrated as follows.
17 . - P(H)X
%133 E{Z max (0, W(t) X))} ®) For every initial statéX(0), the optimal cost/*(X(0)) of the

problem is equal toJy(X(0)), given by the last step of the
where1 is a M x 1 vector with all the entries equal to. following algorithm, which proceeds backwards in time from
P(t) = diag(pi(t), p2(t),...,pau(t)) is a diagonal matrix. period7" — 1 to period0:
Each entryp;(t) on the diagonal indicates the average proba-

t=0

bility of the peers currently holding segmertb respond to the Jr(X(T)) = gr(X(T)),
requests for this segment. To rigorously defié), we first Ji(X(t)) = minymyeux ) E19:(X(t), W(t)) +
define A; = {i | peer j has segment ¢ in its local cache}, Je1 (X(t+ 1))},

the set of peers holding segmenin its local cache. Hence
pi(t) = > e, Pij(t)/xi, wherep;;(t) denotes the probability
of peer; selecting a request for segmenat time intervalt.  \yhere the expectation is taken with respect to the protgbili
In order to investigate the properties of the serving probgistribution of W (t). 24(X(t)) is the set ofU(t) satisfying
bility matrix P (), we first derive the value of;;(t). Denote Equations (1) — (3). HU*(t) = u; (X(t)) minimizes the right
K; and N;, the number of requests for segmérthat peerj  side of Equation (7) for eaciX(¢) andt, the policy 7* =

t=0,1,...,T—1 )

receives and the total number of requests that peeceives, {u, ..., pu_,} is considered to be optimal.
respectively.3; indicates the set of segments that pgdras However, it is impossible to obtain an optimal policy in
in its local cache. the closed form for our problem, and a numerical solution is
therefore necessary. The computational requirementstésnob
P{peer j selects a request for segment i} this solution are overwhelming, as they increase expoaknti
N-l n g as the size of the problem increases, commonly referred to as
= > > — P{K;j =k|N; =n}- P{N; =n} “the curse of dimensionality” [9]. Fortunately, for thisespfic
n=0 k=0 problem, it is possible to suppress the temporal component
Nl of the model and determine a one time interval optimum that
= Z gP{NJ‘ =n}- E{K; | Nj =n} is also optimal for the problem with the planning horizon
n=0

whenT is large enough.
= i Theorem 1: A myopic policy (one time interval optimum)
Zkel’ﬁ‘j fe is optimal for the problem described by Equations (1) — (5)
with a sufficiently large planning horizof.
Due to space constraints, the details of the proof are amhitte
1 fi however, the basic idea is the following. In the steady state
pit) =Y pi(t) /e = — (ﬁ) (6) the control vector is able to compensate the impact of the
JEA; Tijea, 2eken; Ik random demand from peers, which leaves the same system
state at the end of each time interval. Thus, one time interva
Since f; > f;, Vi < j, then we havep;(t) [Bf,}l, B,ffiM]- optimum is also optimal for time slots in the steady state.&o
The serving probability matri®(¢) is an important parameter, sufficiently large planning horizof, the impact of the steady
since it reflects the peer selection algorithm, segmentsete state is dominant, and thus the announced results follow.
algorithm and some other mechanisms in the system design.Theoreml tells us that an optimal policy in any time interval
W (t) in Equation (5) represents the random demand foiis optimal over the planning horizdh. It remains to derive
each segment at time interval while P(¢)X(¢) stands for a one time interval optimum for our problem. To this end,
the average supply from the peers. Though the contributioonsider the time intervdl’ — 1. It should be mentioned that
peers make to serve others at each time interval is randtme replacement of content occurs at the end of each time slot
as well, we take its mean to approximate the random supgphus in order to minimize the cost function at time interval
in the objective function. A cache replacement algorithm & — 1, we should optimize the control vect&f(t — 2). If we
regarded as optimal if it minimizes the burden of the servetenotezt £ max{z, 0}, the cost function at thé& — 1th time
which in this case is equivalent to minimizing the sum of thmterval Jr_; (X(T — 1)) is equal to
difference overI' time slots.
This is a stochastic optimal control problem, and we resort ming (-2 E{lT(W(T -1)
to Dynamic Programming (DP) algorithms [9] to solve it. Eirs —P(T - )X(T — 1)) + Jp(X(T))}.

We then have




Plugging (4) into the cost function and replacidg(X (7)) constraints. In fact, this relaxation does not undermire th
with 0, Jr_1(X(T' — 1)) can be expressed as follows: optimality of the solution. To respond to the second chajéen
) T and the lack of future knowledge, we can simply use the
miny(r-z) E{1"(W(T'-1) -P(T - 1)(X(T - 2) serving probability matrix that is available at the currénmte.
+W(T -2) - U(T - 2)))"}. With respect to the third challenge, the conflict of allocatof

Changing the order of expectation and summation in the Iég? control vector can be solved by the following probatiis

formula, the optimal control problem at time interval— 1 replacement strategy.. .
can be obtained: Rather than selecting the segment for replacing peer by

o peer, we can set the probability of replacement for segment
ming7—2) 1"{I-P(T-1)W —P(T - 1)X(T —2) i to beg(t) = ui(t)/N and distribute these probabilities

+P(T - DU(T — 2)}+ to all peers. Each peer makes its decision according to the
replacement probability distribution individually. Theroefit
subject to the constraints of this scheme is two fold. First, by letting the peers maleérth
17 U(T-2)=N own decisions individually, the control overhead is quitev |

in our algorithm. The control messages only occur when the

0=xU(T'-2)=xX(I'-2) optimization is re-solved. Second, this algorithm copettebe

wherel is an}M x M identity matrix andW = {1, . .., 1w } with the situation that peers replace segments asynchstnou
is the expected value of the random demand ve@grwhich 0 the asynchronous case, it is not feasible to allocate the
is equal to{ f1 N, foN, ..., fasN}T. We can introduce an/ x  control vector to individual peers in a centralized manner.
1 vector K, which satisfies the following constraints: With these measures, we can solve the optimization problem
as a linear programming problem in a centralized fashion,
K>0 (8) known to be solvable in polynomial time.
I-Pt+1)W-Pt+1DXH)+Pt+1)U@) =K

VI. PERFORMANCEEVALUATION

®) In this section, via complementary simulation studies, we
Thus, the optimal cache replacement polidy(t) at each time evaluate two commonly used candidates: Least Recently Used
slot ¢t can be concluded by the following theorem. (LRU) and Least Frequently Used (LFU), in comparison

Theorem 2. The optimal cache replacement strategy i&ith the optimization-based algorithm that we have designe
7 = {U*(0),U*(1),...,U*(T — 1)}. For eachU*(¢), it arguably the best achievable strategy in practice.
is the solution to the following mixed-integer programming Unless otherwise specified, we simulate systems that ¢onsis
problem: of random topologies of 10000 peers, with each peer con-

min 17K (10) nected withk neighbors on average. Repall thBt and M o
KU® denote the number of segments a peer is able to store in its
subject to the constraints (1) — (3), (8) and (9). local cache and the total number of segments in the system,
respectively.B/M, the local cache size from each peer over
the total number of segments in the system, is set ta05e
in most simulations.

We now begin to design practical cache replacement algo-Since our consistent objective is to mitigate the server
rithms, based on insights from our theoretical analysissddr bandwidth cost, the main performance metric of concern in
in Sec. IV. Such practical algorithms can serve as a “benabdr comparisons is the average server load over the total
mark” of the best possible algorithms that may be realizable,demand,i.e.,, the portion of requests served by the server.
to which simpler alternative heuristics can be compared. Unless otherwise specified, the Y-axis in the subsequentfigu

Our basic idea is to develop the algorithm based on the dpelicate the average server load over the total demand. We
timal cache replacement strategy, mixed-integer optitiuira further assume the segment popularity follows a stretched
problem (10), derived in Sec. IV. However, there exist threexponential distribution (SE), which was found in recentikvo
challenges in utilizing this optimization formulatiofkirst, to be the access pattern for most media workloads in Internet
the mixed-integer optimization problem is NP-hard in gaher[11]. Hence, it is an appropriate approximation of the segme
[10]. In other words, it is unlikely to be solved in polynorhia popularity distribution in our simulation.
time. Second, future knowledge of the serving probability )
matrix is needed to derive the optimal solutiorhird, even A Effects of Neighborhood Sizes and Cache Sizes
if we can obtain optimal integral solutions, there mightsexi Fig. 1 shows the effects of neighborhood sizes and cache
problems to allocate the control vector to individual peers sizes on the server load reduction. We observe that therserve

Approximation algorithms should be designed to addres$oad decreases dramatically with the increase of the neigh-
these challenges. For the mixed-integer optimization lprab borhood size and cache size. The curves in these two figures
in the first challenge, it can be relaxed to a correspondispow similar trends, since the increase of the neighborhood
linear programming problem while discarding the integesize is equivalent to the increase of the cache size per peer.

V. PRACTICAL CACHE REPLACEMENT
ALGORITHM DESIGN
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ELFU ELFU demand is shown in Fig. 3. The average server load over the
ELRU WLRU : : .
0.4 " Joptimization|] % [Joptimizaton]  tOtal demand increases dramatically as the churn ratedsese
035 0.35 The performance of cache replacement algorithms are simila

to that in the static case when the churn rate is small. Horveve
in the case of high churn rates, there exist no substantial

0.25 m 0.25 m performance gain when the optimal algorithm is used rather
02 02 than its simpler alternatives. When the peer lifetime is shor

0.3 0.3

20 30 cimponoos Size ° 0.05 oim 015 with a high churn rate, a substantial percentage of peers are
(a) Various Neighborhood Sizes (b) Various Cache Sizes not able to fill up their local cache before they leave the

Fig. 1. Average server load over the total demand under varieighborhood SYStem, making it futile to optimize the design of the cache
sizes and cache sizes, in large systems with 10000 peers. tW8/3¢ to  replacement algorithm.

10% in (a) andk to 50 in (b).

Further, it is most revealing that the differences among the
three cache replacement strategies are notably small.ghhou Real-world peer-assisted VoD systems commonly use peer
our optimization based algorithm shows consistently bettgaches that are limited in size and passively managed. What,
performance than much simpler heuristics, the improvemédhgn, is thebest possible way to manage these peer caches?
is insignificant. The differences are slightly more pronzesh It is non-trivial to answer this question, since the padgive

in small caches. As the cache size increases, there is ifttlemanaged nature of peer caching makes both demand and sup-
any, difference when the three algorithms are compared wRly of media segments stochastic in nature. In this paper, we

VIl. CONCLUSION

one another. seek to answer this question with rigorous theoreticalyesil
and complementary simulation studies. Using control theor
B. Effects of System Sizes and dynamic programming, we construct a tractable analytic

After investigating large systems with 10000 peers, we afamework and derive the optimal strategy in systems with
now interested on the effects of varying system sizes on tthee knowledge of segment popularity. With our analysis, we
performance of cache replacement algorithms. Fig. 2 pteseare able to gain new insights on how an optimal algorithm
the average server load over the total demand while varyisgould be designed; with our simulations, we are able to
the system size from 1000 peers to 10000 peers. From Figc@mpare the performance of our optimal algorithm with the
we can clearly see that the average server load over the tafahplest heuristics, and draw the surprising conclusiat th
demand remains constant with the change of the system simaple solutions perform as well as the optimal algorithm,
in all these three algorithms. This demonstrates a supenwith very insignificant differences.
degree of scalability of peer-assisted VoD systems, whewne n
peers contribute more caching storage space to the system.
The bad news is that, even with such stellar scalability, &] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang,
linear increase of server bandwidth costs need to be intore inc gfgs_”gfe;’caeg%%gﬁﬁ"ﬂ?';;gsé Large-scale P2P-Vgie,
accommodate a linear increase of the system scale, and us{pgc. Huang, J. Li, and K. W. Ross, “Can Internet Video-onrizend Be

even the practically optimal cache replacement algoritioesd - '\F;IfogtaAbllle?" glp\r(ocz-hof ACMdSRG(\i\?'\IMI\(/!’ 2807{ pp. 1\?}?1_144' §

PP : . S. Allen, B. Y. Zhao, and R. Wolski, “Deploying VideoreDeman
not make a significant difference. Services on Cable Networks,” iroc. of International Conference on
Distributed Computing Systems, Jun. 2007.
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