
Mist: Efficient Dissemination of Erasure-Coded
Data in Data Centers

JUN LI , (Member, IEEE), BAOCHUN LI , (Fellow, IEEE), AND BO LI, (Fellow, IEEE)
J. Li is with the School of Computing and Information Sciences, Florida International University, Miami , FL 33199

B. Li is with the Department of Electrical and Computer Engineering, University of Toronto, Toronto ON M5S 1A1, Canada
B. Li is with the Department of Computer Science and Technology, Hong Kong University of Science and Technology, Hong Kong P. R. China

CORRESPONDING AUTHOR: J. LI (junli@cs.fiu.edu)

ABSTRACT Data centers store a massive amount of data in a large number of servers built by commodity
hardware. To maintain data integrity against server failures, erasure codes have been extensively deployed in
modern data centers to provide a higher level of failure tolerance with less storage overhead than replication. Yet,
compared to replication, disseminating erasure-coded data from a source server into multiple servers will also
take significantly more time. In this paper, we design and implement Mist, a new mechanism for disseminating
erasure-coded data efficiently to multiple receiving servers (receivers) in data centers.Mist speeds up the dissemi-
nation process by building an efficient topology among the receivers with heterogeneous performance, so that
coded data can be received from other receivers in a pipelined fashion, rather than directly from the source.Mist
flexibly supports a wide range of erasure codes, without imposing constraints to the range of system parameters,
and can be extended for specific erasure codes with better performance by taking advantage of the corresponding
erasure code. We have implementedMist in Python, and our experimental results in Amazon EC2 have demon-
strated that the dissemination time can be reduced by up to 96.3 percent with different kinds of erasure codes.

INDEX TERMS Erasure code, data dissemination, distributed storage, Reed-Solomon code, regenerating code,
local reconstruction code

I. INTRODUCTION

An enormous amount of data have been stored in distributed
storage systems, such as Google File System (GFS) [1] and
Hadoop Distributed File System (HDFS) [2], inside data cen-
ters. For example, Facebook stores at least 300 PB of Hive
data inside its data centers, increasing by 600 TB per
week [3]. These data are stored on servers built by commod-
ity hardware, and frequent failures can be expected even on a
daily basis [4]. To maintain high data availability against
server failures, data are typically replicated across multiple
servers or even across different racks. For example, three
copies are stored (i.e., 3-way replication) in HDFS [2] by
default. This way, failures of servers or even rack switches
will not affect data availability.
Naturally, storing multiple copies of the original data

incurs heavy storage overhead in data centers. To save stor-
age overhead while maintaining the same level of data avail-
ability, erasure codes have been deployed by some large-
scale distributed storage systems [5], [6], with Reed-Solo-
mon codes as the most common choice.

An ðn; kÞ Reed-Solomon code encodes k units of original
data into n units of coded data, in which any k units can
recover the original data. To maximize the ability to tolerate
failures, they are disseminated into n different servers. This
way, Reed-Solomon codes can significantly save storage
overhead while tolerating the same number of server failures.
For example, to tolerate any 2 server failures, three copies
must be stored (i.e., 3x storage overhead) while a ð6; 4Þ Reed-
Solomon code only requires 1.5x storage overhead.
In this paper, we study the overhead to disseminate era-

sure-coded data from a source server into multiple servers in
the distributed storage system. Comparing with replication,
writing data into distributed storage systems with erasure
coding can incur much higher overhead than writing repli-
cated data. We use HDFS as a use case to explain this over-
head. When data are written from a source server into
receiving servers (also known as datanodes in HDFS),
HDFS will build a pipeline among receivers, and the source
will only need to send data to one of the receivers [2], which
will relay the received data to another receiver, as shown in

Received 16 May 2016; revised 7 March 2017; accepted 4 January 2018.
Date of publication 15 January 2018; date of current version 4 September 2019.

Digital Object Identifier 10.1109/TETC.2018.2794260

468

2168-6750� 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See ht_tp://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 7, NO. 3, JULY-SEPT. 2019

https://orcid.org/0000-0001-8266-7463
https://orcid.org/0000-0001-8266-7463
https://orcid.org/0000-0001-8266-7463
https://orcid.org/0000-0001-8266-7463
https://orcid.org/0000-0001-8266-7463
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974
https://orcid.org/0000-0003-2404-0974

Figure 1(a). If we assume that all servers are connected to a
switch with 1 Gbps links, it will then take 2 seconds to write
256 MB of data into all three receivers. However, if the data
need to be encoded with a ð4; 2Þ Reed-Solomon code as
shown in Figure 1(b), each receiver should download 128
MB of data from the source in dependently, which can be fin-
inshed in 4 seconds as the outgoing link at the source will be
shared by the four receivers now. Therefore, we can see that
the outgoing link of the source becomes the bottleneck of the
dissemination. As existing production storage systems that
use erasure codes all ask their receivers to download data
from a single source directly [5], [7], the time it takes to dis-
seminate erasure-coded data in sucn systems should increase
linearly with the number of receivers.
To save the time of disseminating erasure-coded data, we

propose and implement a new data dissemination system,
referred to as Mist. Mist eases the burden at the source, by
minimizing the number of receivers that directly contact it,
and letting other receivers be allowed to compute their desired
data from data on these receivers instead of the source. We
illustrate one example in Figure 2 that we disseminate
256 MB of data with a ð4; 2Þ Reed-Solomon code, where we
let only 2 receivers contact the source directly. Other
receivers, at the same time, will obtain data from the first 2
receivers and compute their desired data on their own. The
first two receivers will pipeline their data to their downstream
receivers, such that the other two receivers can compute their
desired data and finish the dissemination (almost) simulta-
neously with the first two receivers. Therefore, the time to fin-
ish the dissemination can be saved to just 2 seconds, the same
as disseminating the replicated data.
In general, Mist is designed to work with any erasure code

in any distributed storage systems. Mist minimizes the num-
ber of receivers that download data directly from the source
to alleviate its bottleneck. To disseminate data to all
receivers, we build a pipelining topology such that they are
allowed to get their desired data from other receivers. We
carefully control the traffic going out of any servers in the
pipelining topology to avoid any additional bottleneck. Our
construction of such a topology can work for a wide range of
erasure codes in general, which can also support to dissemi-
nate hybrids of both replications and erasure-coded data. In
Mist, we provide a flexible mechanism to extend its support

to even more erasure codes with their specific topology con-
structions. Besides the general construction, we propose spe-
cific topology constructions of two representative kinds of
erasure codes in data centers, taking advantage of the corre-
sponding erasure code to save time and even network traffic
consumed during dissemination. If the performance of
receivers are heteogeneous, Mist can even carefully place the
receivers into best positions in the topology in order to mini-
mize the time to finish the dissemination.
We have implementedMist in Python and evaluated it with

Amazon EC2. We have shown that with Mist, disseminating
erasure-coded data becomes much less sensitive to the number
of receivers. Because of the pipelining topology with carefully
controlled out-going traffic, the dissemination time can be
very close to the theoretical minimal amount of time to dis-
seminate just the original data. In this way, we can signifi-
cantly save the time used to disseminate erasure-coded data
by up to 96.3 percent with different kinds of erasure codes.

II. OVERVIEW OFMIST

The goal of Mist is to provide a general framework to reduce
the time of disseminating erasure-coded data in the data cen-
ter. As shown in Figure 2, Mist minimizes the number of
receivers that contact the source directly and lets other two
receivers reconstrcut their desired data from such receivers.
When we have more than 4 receivers, however, the 2 receivers
that contact the source directly will become new bottlenecks
as all other receivers obtained data from them. In Mist, we
build multi-level topologies for any number of receivers
incurring no more bottleneck anywhere in the topology, that
not only works with Reed-Solomon codes, but with almost all
erasure codes in general. In other words, the receivers in the
topology will be placed into different levels such that all
receivers in any level will obtain data from receivers in
another level closer to the source. Besides a topology con-
struction for erasure codes in general, we also propose specific
topology constructions of local reconstruction codes [5] and
minimum-storage regenerating codes [8], two representative
kinds of erasure codes designed for storage systems in data
centers, by taking advantage of their own properties.
Figure 3 shows the architecture of Mist. In Mist, a group

contains one source and multiple receivers. The topology
manager in Mist is responsible for generating the topology of

FIGURE 1. Data dissemination of replication and Reed-Solomon

codes.
FIGURE 2. An example of disseminating data coded by a ð4; 2Þ
Reed-Solomon code inMist.

VOLUME 7, NO. 3, JULY-SEPT. 2019 469

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

the corresponding erasure code. All receivers will connect to
other receivers or to the source according to the topology.
The topology will also instruct the behavior of the
source and each receiver by implementing two functions:
encode() to compute erasure-coded data at the source and
repair() to compute coded data from other coded data at
the receiver. This way, each receiver will compute its desired
unit from the source or from other receivers, store the corre-
sponding units to local disks, and meanwhile, send them to
other receivers in the next level of the topology. When there
are multiple Mist groups running in parallel, the topology
manager does not run in a centralized manner. Instead, the
source in each group will run its own instance of the topol-
ogy manager to construct the pipelining topology of its own
group, such that we can to a large number of groupsMist.
To streamline the transmission, each server will not com-

pute the entire unit of coded data directly, but build a pipeline
by dividing them into stripes, each with a fixed size. Once a
stripe has been computed, the server will send it immediately
to downstream receivers. There may be a trade-off in choos-
ing the stripe size, because a larger stripe will increase the
computational delay between two consecutive levels in the
topology, while a small stripe will lead to a low throughput
of encoding operations [9]. In our forthcoming experiments,
we will evaluate how various choices of the stripe size affect
the dissemination process.
In the rest of the paper, we will focus on the topology con-

struction of different erasure codes. We start with a construc-
tion of general erasure codes in Section III. Moreover, Mist
provides a flexible mechanism to specifically construct topol-
ogies of any particular erasure codes. To implement a new
topology for a certain erasure code in Mist, we only need to
implement the construction of such a topology and the corre-
sponding encode() and compute() functions. With this
flexible mechanism, we consider designs of topologies for

specific erasure codes in Section IV, by taking advantages of
their own properties. In Section III-C, we show that Mist can
also build a pipelined topology to disseminate replicated data
along with erasure coding.

III. TOPOLOGIES FOR GENERAL ERASURE CODES

A. GENERAL REQUIREMENTS OF ERASURE CODES IN

MIST

Typically, an erasure code in a distributed storage system
contains two system parameters n and k, k < n. An ðn; kÞ
erasure code encodes the original data into n units of a fixed
size, where any k units can be decoded to recover the original
data. If k units of coded data contain the same size of the
original data, such erasure code achieves the optimal storage
overhead with the same failure tolerance. As an instance,
Reed-Solomon (RS) codes achieve such optimality. More-
over, if there exist k blocks of coded data that exactly embed
the original data, such erasure codes are called systematic
codes. The units that contain the original data is also known
as the systematic units. In other words, the original data can
be directly accessed without any decoding operations, prom-
ising a better read throughput in the storage system. The RS
code illustrated in Figure 2 is an example of ðn ¼ 4; k ¼ 2Þ
systematic erasure codes, with four units of coded data, i.e.,
A, B, Aþ B, and Aþ 2B. It is easy to verify that A and B can
be decoded from any two units of coded data.
In Mist, we do not require the optimal storage overhead or

systematic codes as we construct topologies for erasure codes
in general. We only require that 1) data are encoded into n
units of a fixed size; 2) any k units of coded data can recover
the original data. We believe that such assumptions are valid
for a very wide range of erasure codes used in distributed
storage systems. However, the topology can achieve better
performance if the erasure code is optimal in terms of the
storage overhead or is systematic.

B. TOPOLOGY DESIGN

Given an ðn; kÞ erasure code, we can compute any one unit of
coded data from any other k units. For example, with the RS
code shown in Figure 2, if a server can get A and B (without
decoding operations in this case since this RS code is system-
atic, otherwise after decoding any two units if this RS code is
not systematic or there is at least one non-original unit in
these two units), then it can encode these 2 units again to
compute Aþ B or Aþ 2B. We refer to this operation as
repair, as in distributed storage systems the repaired data
replace the old data when they are not available.
As described above, the repair of any unit of coded data

requires decoding and re-encoding, i.e., decoding existing
units of coded data to get the original data, and then encoding
the original data again to get the desired unit.1 Therefore, if a
receiver is going to repair one unit of coded data, it can also
behave like a source to serve other receivers because it needs

FIGURE 3. The architecture ofMist.

1There exist erasure codes that can directly compute other units of coded data
without decoding. We do not consider this property for now, in pursuit of
generality.

470 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

to recover the original data anyway. Following this intuition,
we can build a topology to disseminate erasure-coded data to
multiple servers without incurring a bottleneck at the source.
We show the topology construction through an example of

the topology built for an ð8; 2Þ erasure code in Figure 4.
Without loss of generality, we assume that receiver i needs
block i, i ¼ 1; . . . ; 8, and we show the corresponding block
beside each edge in Figure 4. We build a multi-level topol-
ogy to disseminate the coded data without incurring a bottle-
neck at the source server or any receiver. In order to compute
one unit from other units of coded data, we need to have at
least 2 units of them. Hence we place two receivers (receiver
1 and 2) at the first level in this topology. With these two
receivers, all the other receivers can repair their desired units
without visiting the source directly. On the other hand,
adding any more receivers into the first level will decrease
the incoming throughput of each receiver. Hence, we can
place at most two receivers at the first level in this example.
Since the repair operation always incurs encoding overhead,
we can put the 2 receivers with the systematic units at the
first level if the ð8; 2Þ erasure code is systematic, such that
the encoding overhead at the source can be saved.
Now that we have put two receivers into the first level, we

can ask them to forward received data to receivers put in the
second level, which repair their own data from the first two
units. However, if we put too many receivers into the second
level, the first two receivers will need to send out too many
data and incur a new bottleneck of the network. How many
receivers can we put into the second level at most? We know
that a receiver needs to contact two servers to repair its
desired data, and thus each receiver at the second level needs
to contact both two receivers at the first level. Notice that
both the source and the first two receivers send out one unit
of coded data to each of their downstream receivers. Since
the source is serving two servers, the two receivers should
serve at most two other receivers as well. In other words, we
can have two receivers in the second level.
However, the two receivers at the second level (receiver 3

and 4) can serve more receivers at the third level, because
different from receiver 1 and 2 that receive their desired units
directly from the source, receiver 3 and 4 repair their desired
data from data downloaded from their upstream receivers. In

other words, they can decode the original data and thus
behave like a source for any receivers at the third level. In
this way, we can have four receivers at the third level so that
both receiver 3 and 4 serve two receivers.
If there are even more receivers in the dissemination

group, we can follow the way described above to add more
levels into such a topology. For example, in the fourth level,
there can be still at most four receivers, since they need to
repair their data by contacting receivers at the third level.
Then they will send units of coded data to at most 8 receivers
at the fifth level, and so on. Notice that we strive to balance
the workload of receivers by assigning the upstream
receivers in a round-robin manner, as shown in Figure 4.
Similarly, we can have a general construction to build the

topology of ðn; kÞ erasure codes. The general idea is to add
only k receivers—the theoretical minimum number of receivers
from which other units can possibly be repaired—at the first
level and let k more receivers be placed at the second level to
compute their desired data. Then we will have k2 receivers at
the third and fourth level, and k3 receivers at the fifth and sixth
level, etc. This way, we can build a topology of an ðn; kÞ era-
sure codewith any valid choices of parameters. The complexity
of this method is linear to the number of receivers.
In fact, considering that the practical value of n will be no

more than a few times of k, the depth of such topologies will
also be limited. For example, if n � 2k, the constructed
topology will have at most 2 levels of receivers. Only one
more levels will be added if n is more than 2k but no more
than 2k þ k2. Since k � 2, three levels of receivers will be
enough for no more than 4k receivers. When n ¼ 4k, the
minimum storage overhead (e.g., with RS codes) is 4x,
which is probably enough for most scenarios in distributed
storage systems in current data centers.
The topology constructed with this method can reduce the

computational overhead at the source to the theoretical mini-
mum, as it only needs to encode k units of coded data. Even
better, there is no such overhead when the erasure code is
systematic. On the other hand, receivers at the even levels in
the topology will need to decode and re-encode data. In dis-
tributed storage systems, most erasure codes are linear codes2

such that all operations can be applied by linear operations.
Linear erasure codes can directly repair one unit of coded
data from any other k units without decoding. Typically,
these receivers need to repair k units of coded data to their
downstream receivers, incurring the same computational
overhead as the source. Receivers at the odd levels will only
need to send their received data to their downstream
receivers, with very little additional computational overhead.

C. DISSEMINATING ERASURE-CODED DATAWITH

REPLICATIONS

Though erasure codes provide a higher data availability
against server failures with much less storage overhead than
replications, it is hard to offer a high read throughput with

FIGURE 4. The topology of an (8,2) erasure code inMist.

2For example, RS codes, along with the other erasure codes mentioned in
this paper, are all linear codes.

VOLUME 7, NO. 3, JULY-SEPT. 2019 471

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

erasure codes under a high volume of workload. Even though
systematic erasure codes can exempt the storage system from
decoding, all requests will then be directed to the servers that
store the original units. Therefore, it is hard to do load balanc-
ing with erasure codes. Currently in the real world, distributed
storage systems that deploy erasure codes may also store repli-
cations with erasure coded data, and migrate replications into
more erasure-coded data as the data becomes cold [10].
In this section, we present a design of topology construction

in Mist, extended from the topology constructed for erasure-
coded data only, to disseminate erasure-coded data along with
replications. This design can not only disseminate a mix of
both erasure-coded data and replications quickly, but save the
system from disseminating unnecessary copies as well.
Suppose that we have a systematic ðn; kÞ erasure code, and

we need to have an r-way replication of each original unit.
Notice that we can disseminate replications by simply asking
receives to relay its copy to one another. We apply this princi-
ple into our topology design, as shown in Figure 5 where we
need to have a 2-way replication of all original units. Compar-
ing with Figure 4, we add one more level between the source
and the first level of receivers, where receivers can the relay
original units to the receivers, which now are at the second
level. In this way, we can add as many levels as necessary to
replicate any number of units for any number of times.
If the erasure code is not systematic, on the other hand, we

can still insert the original units into the first r levels simi-
larly, as they can always repair any parity units.
This method works for the topology of any erasure codes

supported in Mist, including those presented in Section IV as
well. Once we have a topology constructed for an erasure
code and some units need to be replicated, we can add addi-
tional receivers above the corresponding receivers and let
them store and relay received data to their following
receivers. This way, any topology can be extended to repli-
cate any units of coded data in it.

IV. TOPOLOGIES FOR SPECIFIC ERASURE CODES

In this section, we present topology constructions that are
designed for specific erasure codes in distributed storage

systems. Compared with the topology constructed for general
erasure codes, we take advantage of code structures of spe-
cific erasure codes in these constructions, to save the time of
dissemination, and network traffic, or CPU overhead as well.

A. LOCAL RECONSTRUCTION CODES

Local reconstruction codes, which are deployed in Windows
Azure Storage [5], save disk I/O during repair by adding the
“locality” into erasure codes, such that most units of coded
data can be repaired from a small number of some other
units. Thus, only a small number of servers that store these
units will be visited and thus incur low disk I/O during repair,
without bothering any other servers.
Figure 6 shows an example of local reconstruction codes

(LRC). Supposing that we already have an ð8; 6Þ systematic
RS code, which computes 6 coded units containing 6 original
units and two parity units, we add two more parity units com-
puted from each 3 original units with a ð4; 3Þ systematic RS
code. In local reconstruction codes, the parity units of the
ð8; 6Þ RS code is called global parity units, while the two
additional units are called local parity units. This way, we
build a ðk ¼ 6; l ¼ 2; g ¼ 2Þ local reconstruction code,
where k; l, and g represent the number of original/systematic
units, local parity units, and global parity units, respectively.
If any original unit or local parity unit is lost, it can be
repaired by accessing only three units rather than six units.
For example, to repair a1, we just need to obtain a2, a3 and
a4, and then compute a1 with the ð4; 3Þ RS code, rather than
decoding 6 units (such as a2 � a3, b1 � b3 and c1) with the
original ð8; 6Þ RS code. This way, the disk I/O overhead can
be saved by visiting fewer servers when repairing most units
of coded data (except global parity units). Notice that though
we can decode many combinations of 6 units, not every 6
units are sufficient to recover the original data.
As described above, a ðk; l; gÞ local reconstruction code

makes it possible to repair a local parity unit from k
l units.

However, they must be computed from a specific combina-
tion of units. Fortunately, local parity units are all computed
from original units instead of global parity units. Therefore,
to construct the pipelining topology for local reconstruction
codes, we can put original units in the first level and then
repair local parity units at the second level. Since the k origi-
nal units are the smallest combination of units to recover the
original data, the source achieves the theoretical maximum
throughput to each receiver at the first level. Receivers of
local parity units, at the second level, are going to download
the corresponding original units. Since each original unit is
used to compute only one local parity unit, each receiver of

FIGURE 5. The topology to disseminate a systematic (8,2) erasure

code with 2-way replication of the original units. While replicat-

ing the original units at the first two levels, all other (i.e., parity)

units are disseminated in the same way as the topology for gen-

eral erasure codes.

FIGURE 6. An example of (6,2,2) local reconstruction codes, with

6 original units, 2 local parity units and 2 global parity units.

472 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

the original unit serves just one receiver so far. Compared
with the topology constructed for general erasure codes,
these receivers only need to receive k

l units. Thus, network
traffic can be saved, and the computational overhead can also
be reduced as the RS code used is smaller.
Since the source serves k receivers at the first level, we can

consider that all receivers have a capacity to serve at most k
downstream receivers without incurring any new bottle-
necks. To disseminate global parity units, we first exploit the
remaining capacity of the receivers at the first level, since
they have served only one receiver. Since erasure codes
require that k is at least 2 (otherwise they are equivalent to
replications), the source and receivers at the first level can
serve at least two receivers. Thus, each receiver at the first
level has a remaining capacity of at least one receiver. There-
fore, we can repair at least one global parity unit at the third
level, except that this receiver needs to contact the k receivers
at the first level. Figure 7 shows an example of the dissemi-
nation with a ð4; 2; 1Þ local reconstruction code where the
global parity unit is being computed at the third level.
In summary, in ðk; l; gÞ local reconstruction codes, the k

receivers at the first level will serve l receivers of the local par-
ity units at the second level. At the third level, we can have
most k � 1 receivers to repair their global parity units. If there
are more global parity units to disseminate, the receivers at
the third level can behave like a source to other receivers at
the fourth level, similar to the topology of general erasure
codes. In other words, we can have kðk � 1Þ receivers at the
fourth level at most, and the same number at the fifth level as
each of them needs to compute their units by contacting k
servers at the fourth level. Similarly, we will have k2ðk � 1Þ
receivers at most at the sixth and seventh level, and so on until
all g global parity units can be computed.

B. REGENERATING CODES

Different from local reconstruction codes, the objective of
regenerating codes is to optimize the network traffic during
repair. Dimakis et al. [11] have revealed a lower bound of
network traffic to compute a unit of coded data from d exist-
ing units (d � k), with a general ðn; kÞ erasure code. In par-
ticular, if the erasure code achieves the optimal storage

overhead like RS codes, i.e., the size of a unit is just 1k of the
original data, each of the d servers only needs to offer 1

d�kþ1
to the replacing server. The erasure code that achieves such a
repair property is termed as minimum-storage regenerating
(MSR) codes.3 There has been various literature that dis-
cusses the construction of MSR codes ([12] and the referen-
ces therein). We can see that MSR codes can achieve a
significant reduction of network traffic during repair, com-
pared to both RS codes and local reconstruction codes.
To disseminate an ðn; k; dÞ regenerating code efficiently,

one challenge comes from the property of regenerating codes
that a unit of coded data can be repaired with low network traf-
fic consumption from d units, where d � k. If we let the
source send the d units directly to receivers, the throughput
between the source and the receiver will be compromised,
which will further affect the throughput in the downstream
levels. We do not compromise the throughput in our topology
design by reserving the capacity of the receivers involved.
When d ¼ k, an ðn; k; dÞ MSR code is equivalent to a gen-

eral ðn; kÞ RS code. Therefore, we assume that d > k in the
following topology construction. In other words, if the
source serves only k receivers at the first level, there must be
at least one receiver missing before we can compute other
receivers by the repair property of MSR codes.
Notice that though an MSR code provides a bandwidth-

efficient method to repair a unit of coded data from d existing
units (by the repair property), a unit can also be repaired in
the way like a general erasure code, by decoding k units and
re-encoding the decoded data into the corresponding unit
(which, for convenience, is referred to as the decodability of
the erasure code). In general, to take advantage of MSR
codes in the topology construction, we need to apply the
repair property on as many receivers as possible to compute
their corresponding units of data. In other words, we will
compute the first d units by decodability and compute all the
rest units by the repair property.
Similar to LRC codes, assuming that the source can send k

units to its downstream receivers, we define the capacity of a
server (a source or a receiver) to be the maximum number of
units it can send to its downstream receivers without incur-
ring any additional bottlenecks. We first build a multi-level
topology similar to the topology for RS codes, to disseminate
data to d receivers by the decodability of the MSR code.
However, we reserve x units in the capacity of these d
receivers, which will be used to compute other receivers with
the repair property. Since the capacity of all receivers should
be no more than k to avoid incurring any additional bottle-
necks, the value of x must be less than k.
Figure 8 shows an example of disseminating data with an

ð8; 4; 6ÞMSR code. With four receivers at the first level, there
are still two more receivers before we can repair data at more

FIGURE 7. The topology of a ð4; 2; 1Þ local reconstruction code

constructed in Mist, where there are 4 original units, 2 local par-

ity units and 1 global parity unit to disseminate. Dashed lines

represent the connections to disseminate local parity units, and

other lines represent the connections to disseminate original

units and the global parity unit.

3There is another family of regenerating codes called minimum-bandwidth
regenerating (MBR) codes. The topology construction of MBR codes can
also be obtained in a way similar to MSR codes. Due to the space constraints,
we do not discuss the topology construction of MBR codes in this paper.

VOLUME 7, NO. 3, JULY-SEPT. 2019 473

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

receivers by the repair property. Thus, we let the two receivers
at the second level repair their units by the decodability of this
regenerating code, and meanwhile we reserve two units of the
capacity at each receiver in the first level, i.e., x ¼ 2. With
these six receivers, we can start to repair the desired data of
the two remaining receivers by the repair operation.
With the capacity of x units reserved at d receivers for

other receivers down in the topology, how many receivers
can be placed at each level? As there are k receivers at the
first level, there can be at most k � x receivers that contact
the k receivers at the first level to compute their units by
decodability, and they can also repair and send data to the
receivers at the third level. Thus, there can be at most
ðk � xÞ2 receivers at the third level. Similarly, there can be at

most bðk�xÞ3
k c and ðk � xÞbðk�xÞ3

k c receivers at the third and
fourth level, and so on, until the first d receivers have been
accommodated.
To compute data at the remaining n� d units by the repair

property, it is important to remember that a receiver just
receives 1

1�dþ1 instead of the whole unit from each of the d
receivers, due to the repair property of the MSR code. In
other words, with the capacity of x units, a receiver can actu-
ally serve xðd � k þ 1Þ receivers by the repair operation.
Suppose that the first d receivers are placed in the first two

levels, just like the example in Figure 8. Hence, the third
level can accommodate at most xðd � k þ 1Þ receivers, and
the fourth level can have at most bxkðd�kþ1Þ2

d c receivers. Simi-

larly, the fifth level can accommodate bbxkðd�kþ1Þ2
d c kðd�kþ1Þ

d c
receivers at most, and so on.
To construct the topology for an ðn; k; dÞ regenerating

code, the value of x must be given in advance. However, the
value of x determines if such a topology exists or not. We
show, in the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TETC.2018.2794260, that this topology is valid if
and only if x 2 ½ d

d�kþ1 ; k �
ffiffiffi

k
p � for MSR codes. Rashmi

et al. [8] have shown that there exists no deterministic con-
struction of exact-repair MSR codes when d < 2k � 3.

Therefore, in most cases x (when k � 4) we can simply take
2 as the value of x. In the extreme cases that a valid value of
x does not exist (e.g., k ¼ 3), we can just use the general con-
struction, to compute data at all receivers by the decodability.

V. MISTWITH HETEROGENEOUS SERVERS

So far, the design of the topologies are considered under the
assumption that the performance of all receivers are homoge-
neous and the throughput of encoding at receivers does not
become a bottleneck. However, in a practical cluster the per-
formance of servers can often be heterogeneous. For exam-
ple, it has been reported that servers in a data center can have
different hardware configurations [13], leading to heteoge-
nous performance when encoding data in a Mist topology.
Given the heterogeneous performance of receivers, we can-
not simply place receivers at any position in the Mist topol-
ogy. The reason is that receivers at different levels in a Mist
topology will need to encode data received from different
numbers of other receivers and serve different numbers of
other receivers, as we can see from all previous examples.
Therefore, a receiver with a low CPU performance may
encode data slowly and make itself become the bottleneck in
the whole topology. In this section we consider the perfor-
mance heterogeneity of receivers and assign them to the best
positions in the corresponding topology.
In this paper, we consider the topology for general erasure

codes only due to the space limit, and similar mechanisms
can be developed for local reconstruction codes and regener-
ating codes as well. Given a Mist topology, we first consider
the complexity of the encoding at each receiver by taking
into account the number of incoming flows and outgoing
flows. Assume that a receiver need to download data from Ni

servers and No receivers download data from this receiver,
and then the data this receiver need to compute can be repre-
sented as a matrix multiplication by multiplying an
ðNo þ 1Þ � Ni matrix on the left of the received data because
the receiver will also need to calculate its own desired data.
Therefore, the encoding complexity is O ðNo þ 1ð ÞNiÞ.
Assume that we have already the known the sequence of

the CPU performance of all receivers, we can then match
them to the corresponding position in the topology where the
receiver with the highest CPU performance should have the
highest encoding complexity and the receiver with the lowest
CPU performance should have the lowest encoding complex-
ity. It is easy to prove that this way can lead to the maximum
overall encoding throughput, as exchanging the positions of
any two receivers can lead to even lower throughput.

VI. IMPLEMENTATION

We have implemented Mist following the architecture shown
in Figure 3, with 3000 lines of code in Python and 1000 lines
of C++ code implementing a Python module of erasure
codes. We use the Intel storage acceleration library [14] to
implement the arithmetic operations of erasure codes in this
module. The source and the receiver are implemented as
standalone applications. When a group is started, the source

FIGURE 8. An example topology for an (8,4,6) minimum-storage

regenerating (MSR) codes. The source sends just 4 units of

coded data to the receivers at the first level and then repair two

more units in the receivers at the second level by decoding and

re-encoding. From the six receivers at the first two levels, two

other receivers can compute their desired data by the repair

property of regenerating codes.

474 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

http://doi.ieeecomputersociety.org/10.1109/TETC.2018.2794260
http://doi.ieeecomputersociety.org/10.1109/TETC.2018.2794260

is going to utilize the topology manager to compute the cor-
responding topology. The topology manager is a class that
defines the interface to generate the topology for various era-
sure codes. A topology manager for a specific kind of erasure
codes will inherit this base class to implement its correspond-
ing topology construction.
In order to avoid any potential bottleneck of the write

throughput in the hard disk, once a receiver has received or
repaired a stripe of its desired unit, we first save the data into
a buffer in the memory, and use another thread to keep writ-
ing the data in the buffer into the hard disks as long as the
buffer is not empty.
We have currently supported RS codes, local reconstruc-

tion codes, and MSR4 codes inMist, where the topology con-
struction of RS codes is built by the general topology
construction as described in Section III, and other codes have
their own specific topology construction as described in
Section IV. Any erasure codes supported in Mist can also
work with replications, as described in Section III-C.
To make sure that all receivers can receive all their desired

data, each receiver will notify the source when they’ve
received all the data successfully. The source will exit suc-
cessfully when it has received the notifications from all
receivers. On the other hand, the pipelining topology will
make all receivers receive all data almost at the same time.
Hence, we can set a timeout at the source such that a receiver
will be considered as failed if it does not finish after a certain
amount of time since the source finishes sending all data to
receivers. The source will also exit with an error code if any
TCP connection fails during transmission or any other excep-
tion occurs. Therefore, the user only needs to check the status
of the source to detect failures in Mist. Once any failure has
been detected, the user can kill the corresponding Mist group
and restart by launching a newMist group.

VII. EVALUATION

A. EVALUATION METHODOLOGY

We have evaluated Mist in Amazon EC2. In each experiment
(unless mentioned otherwise), we create a given number of
EC2 nodes of type c4.xlarge (with 4 CPU cores on an Intel
Xeon E5-2666 processor and 7.5 GB of memory) in the same
availability zone. Each node will run one instance of the
source or the receiver in one group of the dissemination. From
various experiments with different configurations, we have
found that the performance, especially the dissemination time
in Mist is rather stable. Therfore, the experimental results are
obtained by calculating the average result of 10 iterations, run-
ning on the same EC2 nodes. The standard devation of the
results in most cases is within 5 percent of the average.
We measure the time spent and network traffic incurred

during the dissemination of erasure-coded data. We believe
that these two metrics are essential to the distributed storage
system as they determine the write performance of the

system. For the purpose of performance comparison, the leg-
acy topology that all receivers download their data directly
from the source is also supported inMist.
In a typical distributed storage system, such as HDFS, the

data are stored into multiple blocks with a fixed size. There-
fore, the original data contains 256 MB (unless mentioned
otherwise) in the experiment. In each experiment, we launch
Mist with one source and a given number of receivers, ran-
domly selected from existing EC2 nodes. The experiment
runs on Python 2.7.6 with the stripe size set to be 1 MB
(unless mentioned otherwise).

B. DISSEMINATION TIME

Figure 9 compares the total dissemination time of the topolo-
gies in Mist with the legacy topologies. We can see that the
dissemination time of the legacy topology increases with the
number of receivers. In addition, the dissemination time is
bottlenecked by the encoding operation instead of the outgo-
ing bandwidth at the source, since with the same amount of
data going out of the source the dissemination time of differ-
ent erasure codes can vary. The topologies built in Mist, on
the other hand, can significantly reduce the dissemination
time (by up to 96.3 percent). Compared to the legacy topolo-
gies, the dissemination time of all erasure codes with Mist is
very close to the theoretical minimum dissemination time
(0.89 seconds). Hence, with Mist the dissemination time no
longer increases significantly with the number of receivers.
The reason is that in our experiment, the major contribution
of dissemination time comes from the network (as we elabo-
rate in Section VII-C), which is now related to only the size
of original data, instead of all data including original data
and parity data. Additional delay in the dissemination time
comes from the computational delay of processing stripes at
receivers. Thus the dissemination time will only increase
slightly with the number of levels in the topology.
In this experiment, we also incorporate another family of

erasure codes, called self-repairing homomorphic codes

FIGURE 9. A comparison of the dissemination time of (n, 4) Reed-

Solomon codes, (n, 4, 6) minimum-storage regenerating (MSR)

codes and (4, 2, n � 6) local reconstruction codes (LRC), with

the topology inMist and the legacy topology. The value of n indi-

cates the number of receivers in the dissemination.

4The MSR codes implemented in Mist is constructed using the product-
matrix method proposed by Rashmi et al. [8].

VOLUME 7, NO. 3, JULY-SEPT. 2019 475

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

(HSRC) and its construction of the pipelining topology [15]
into Mist. Though the purpose of this is to demonstrate the
extensibility of Mist instead of performance comparison,
HSRC codes achieve even lower dissemination time in Mist
(except for a small number of receivers) because every unit
of coded data with HSRC codes can be computed from two
other units by XOR operations, leading to the lowest compu-
tational delay in this experiment. In other words, the perfor-
mance of dissemination time in Mist can be affected by the
complexity of the erasure code itself.
As Figure 10 shows, the dissemination time also increases

linearly with the size of the original data. This is easy to
understand as Mist decomposes the original data into multi-
ple stripes of a fixed size. Therefore, Mist can scale well to
disseminate very large volumes of data.

C. ANALYSIS OF THE BOTTLENECK IN THE PIPELINE

As data are transmitted through a pipeline in the topology,
the dissemination time in Mist will be bottlenecked by the
slowest component in the pipeline. To understand the bottle-
neck, we analyze the throughput time of each component in
the pipeline. We decompose the pipeline into components

including the source, each receiver, as well as the network
that connect servers between two adjacent levels in the topol-
ogy. To compare the throughput time, we measure the time
of all data going through each component, where the results
are shown in Figure 11. The topology we study in Figure 11
is built for an ð11; 4Þ RS code, where we can find similar
results in topologies built for other erasure codes inMist.
The throughput time of each receiver is measured by per-

forming the repair function without sending/receiving data
through the network, i.e., all data that should have been sent
or received through the network in the pipeline are now writ-
ten into or read from memory. Similarly, we encode data into
memory on the source to measure its throughput time. We
also measure the network throughput time by launching 4 par-
allels TCP connections to send a total of 256 MB of data from
one server to another one, which is the maximum amount of
data going out of any server in this topology. In Figure 11, we
also show the overall throughput time of the whole topology,
i.e., the dissemination time. We can see that the network has
caused the most significant throughput time, much more than
all other components in the topology. In other words, the
throughput of network dominates the throughput of the whole
topology, while the rest of the overall throughput time is con-
tributed by the delay of other components, mainly the time to
process the first stripe in each component. We can also see
that receivers at the same level in the topology have very simi-
lar throughput time, but receivers at different levels can have
different throughput time. This reflects their different behav-
iors defined in the topology. For example, receivers at the first
level only need to receive data from the source and relay data
to the next level, while receivers at the second level will also
have to decode received data to get their desired data, incur-
ring higher throughput time.

D. IMPACT OF THE STRIPE SIZE

Figure 12 demonstrates the impact of the stripe size in the
pipeline. As a surprise, we find that the stripe size does not
have a significant impact on the overall dissemination time in

FIGURE 10. A comparison of the dissemination time with original

data of different sizes, with (8, 4) Reed-Solomon codes, (8, 4, 6)

minimum-storage regenerating (MSR) codes and (4, 2, 2) local

reconstruction codes (LRC).

FIGURE 11. A comparison of the throughput time of each compo-

nent in the pipeline, with (11, 4) Reed-Solomon codes.

FIGURE 12. The impact of the stripe size in the dissemination,

with an (11, 4) Reed-Solomon (RS) code, an (11, 4, 9) minimum-

storage regenerating (MSR) code and a (4, 2, 5) local reconstruc-

tion code (LRC).

476 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

both the legacy topologies and those constructed by Mist.
Even though when the stripe size is too small (less than
64 KB) or too large (more than 1 MB), the performance of
dissemination time will be slightly affected, any stripe size
in-between will provide similar performance with other sizes.
We also find that the topologies in Mist are more easily
affected by small stripe sizes.

E. NETWORK TRAFFIC

In this experiment, we measure the network traffic incurred
by Mist in the dissemination. Figure 13 illustrates the results
of RS codes, MSR codes, and local reconstruction codes. As
for the same parameter, the same amount of traffic will be
consumed each time, data given in Figure 13 are the results
of one run only.
In a legacy topology, each receiver just needs to download

its desired data from the source directly, and thus it incurs
the theoretically minimum amount of network traffic. In the
topology built by Mist, however, more traffic will be
expected since a receiver needs to repair its desired unit with
multiple units obtained from other receivers.
Therefore, to disseminate a ð12; 4Þ RS codes, Mist will

require almost twice the amount of network traffic of that in
the legacy topology. However, this is much less than the the-
oretical maximum value, as if all receivers except the first k
receivers repair their data from other receivers, theoretically
Mist is going to incur ð8� 4þ 4Þ=12 ¼ 3 times of the traffic
incurred in the legacy topology. It is because in the topology
built in Mist for RS codes, we exploit the property that any
receiver that repair its data from other receivers can also
repair any other unit of coded data, and thus we let such
receivers behave like a source to its following receivers. This
way, we save a significant amount of network traffic in the
dissemination process.
As for the other two kinds of erasure codes, the network

traffic consumed in the dissemination can be further saved
since we take advantage of their repair properties from their
specific topology constructions. Local reconstruction codes
save a bit of traffic than RS codes (4.2 percent) as local parity
units needs a small number of original units to repair. MSR

codes, on the other hand, save much more traffic. With a
higher value of d, we can save more traffic in the dissemina-
tion. The reason can be directly inferred from the repair prop-
erty of MSR codes, that the traffic consumed to repair one
unit of coded data with MSR codes decreases with d.
Figure 13 shows that when d ¼ 8, MSR codes can consume
15 percent less network traffic than RS codes inMist, and the
saving increases to 21.4 percent when d ¼ 10.
So far, we can see that though Mist incurs additional net-

work transfer, it can still save a significant amount of dissem-
ination time. From the construction of topologies in Mist, we
can know that the reason is that the traffic is generated from
multiple sources instead of one in the legacy topologies, and
hence the bottleneck at the outgoing link of any server can
be avoided.

F. DISSEMINATING ERASURE-CODED DATAWITH

REPLICATIONS

As Mist can support disseminating hybrids of erasure-coded
data with replications, we measure the dissemination time of
an ðn; 3Þ RS code with an r-way replication of its original
units in Mist. Still, the legacy topology asks receivers to
download all units, including the replicated units, directly
from the source.
Figure 14 shows the comparison of the dissemination time

between Mist and the legacy topology. By adding one more
copy of each original unit (i.e., let r go from 2 to 3), Mist
will spend almost the same time, thanks to the pipelining
topology. On the other hand, the legacy topology will spend
roughly 2 more seconds for the additional replications.

G. CONCURRENTMIST GROUPS

In this experiment, we measure the performance of dissemi-
nating multiple files with Mist. As shown in Figure 3, the
concurrent dissemination can be well handled by launching
multiple Mist groups. In the legacy topologies, only the
source needs to encode data while all receivers just need to
receive coded data from the source. However, in the topolo-
gies constructed by Mist, receivers need to repair data for
other receivers. Moreover, with multiple groups running at
the same time, the network can be congested when flows
from different groups are conflicting with the same physical
link. Therefore, one may doubt if the performance of Mist
will decrease when we run multiple Mist groups on the same
server. In this experiment, we launch multiple Mist groups
where the source and receivers are randomly selected from a
given number of servers.
Figure 15 shows the results of running various numbers of

Mist groups on 8 servers, where each group selects one server
as the source and all the rest servers as receivers. Compared to
the legacy topologies, topologies in Mist will have a higher
chance to be affected by the other groups. This is because in
the legacy topologies, the only bottleneck is the source. If the
source does not coincide, the performance won’t be affected.
Naturally, with the increase of the number of groups, the chan-
ces of having multiple groups with the same source also

FIGURE 13. The network traffic consumed in the dissemination of

(12, 4) Reed-Solomon (RS) codes, (12, 4, d) minimum-storage

regenerating (MSR) codes (d=6, 8, 10) and (4, 2, 6) local recon-

struction codes (LRC).

VOLUME 7, NO. 3, JULY-SEPT. 2019 477

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

increases. Hence we can observe a slight increase of dissemi-
nation time over an increasing number of groups.
Topologies in Mist, however, have more chances to have

conflicts of CPU or network among different groups. In our
experiments, the source and receivers are always selected
from the same set of servers, to maximize the chance of con-
flicts. With one more group, each server (except those with no
child in the topology) will have similar additional amounts of
outgoing traffic, as traffic are managed to be evenly distrib-
uted to avoid additional bottlenecks. Hence, we can see that
the dissemination time ofMist topologies increases almost lin-
early with the number of concurrent groups. However, since
the great saving of dissemination time of the Mist topology,
even though there are 8 concurrent groups, topologies inMist
still outperform legacy topologies while there will actually be
less concurrent writing on the same server in practice [16].
Notice that in Figure 15 the dissemination time of different
topologies can increase with different paces when the number
of concurrent groups is increased. We believe that there exist
opportunities to design topology constructions in Mist that
can achieve lower dissemination time with multiple groups,
which will be left as our future work.

H. HETEROGENEOUS SERVERS

We now evaluate the performance of Mist running on servers
with heterogeneous CPU performance. In this experiment,
we have 10 receivers, where 8 of those receivers are Amazon
EC2 instances of type C4.xlage (with 4 CPU cores on a Intel
Xeon E5-2666 processor and 7.5 GB of memory) and the
other 2 receivers are of type m2.micro (with 1 CPU core on
an Intel Xeon Processor and 1 GB of memory). Our measure-
ment has also shown that the CPU performance of m2.micro
instances in EC2 is much slower than those of type c4.xlarge.
With this setting, it is easy to imagine that the last 2 receivers
are going to be the bottleneck if they are assigned to the posi-
tion in the topology with a heavy workload. In this experi-
ment, we launch a server as the sender of type c4.xlarge and
disseminate data with a ð10; 8Þ RS code. Following the topol-
ogy design in Section III, it is easy to know that the topology
will have eight receivers at the first level that just relay data

to the next level and the rest two receivers at the second level
that will repair their own data from data forwarded from
receivers in the first level. In other words, if the two receivers
with low CPU performance are placed at the second level,
they will naturally become the bottleneck because of their
low throughput to reconstruct their desired data.
In this experiment, we assume that the 8 c4.xlarge receivers

are by default placed before the 2 m2.micro receivers. We run
two different rounds with and without using the algorithm
proposed in Section V that place the receivers into the topol-
ogy by their CPU performance. We show the distribution of
the dissemination time by repeating each round by 100 times.
As shown in Figure 16, we can see that with the algorithm, the
dissemination time can be improved by 0:88� 1:34 seconds.
In addition, we can also observe the dissemination becomes
more stable than without using the algorithm. This is because
that with lower overload, the two receivers with low CPU per-
formance will also work more stable as they only need to for-
ward data to the receivers in the next level.

VIII. RELATEDWORK

Erasure codes have demonstrated both advantages and disad-
vantages to store data inside data centers. One of its most
prominent advantages is to protect data against failures with
much lower storage overhead than replications [17]. AsN-way
replication requires to storeN copies of the original data, many
distributed storage systems [5]–[7] have deployed or been in a
transition to deploy erasure codes inside data centers.
Though different kinds of erasure codes with different sys-

tem parameters are deployed in distributed storage systems,
there exists a significant bottleneck when erasure-coded data
are to be written into the system. For example, in Windows
Azure storage [5], when data are to be written as erasure
codes, a server will be appointed as the source which com-
putes all coded data for all servers that will actually store the
coded data. Then all coded data will be disseminated from
the source into corresponding servers. Even though deploy-
ing different erasure codes, all current distributed storage

FIGURE 14. The dissemination time of a systematic ðn; 3ÞRScoded

data with an r-way replication of original units, where the value of

n indicates the number of receivers of coded data in the dissemi-

nation, excluding the additional receivers of replications. FIGURE 15. The dissemination time of multiple concurrent Mist

groups running with the same source and receivers, with ð8; 4Þ
RS codes, ð8; 4; 6ÞMSR codes and ð4; 2; 2Þ LRC codes.

478 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

systems store erasure-coded data, follow such a manner [4],
[5], [7], [18]. Naturally, this manner will lead to an increas-
ing of the time to write data into the system with the number
of receiving servers.
Distributed storage systems that store replications in the

data center do not suffer from this problem as a pipelining
method can be used to alleviate the bottleneck at the source.
For example, Google File System [1] and Hadoop File Sys-
tem [2] applies this method to build a pipeline in which
receiving servers can relay data to the next one while receiv-
ing data. This method, however, cannot be applied to write
erasure-coded data into the data center.
To solve this problem, some specific erasure codes have

been proposed to build similar pipelines. RapidRAID [19],
for example, is a family of erasure codes which can be built
into a pipeline, so as to progressively generate coded data in
a decentralized manner. This leads to a constraint on the con-
structed codes. For example, RapidRAID codes are not sys-
tematic. Thus, to read the actual content from coded data, the
storage system that deploys such codes will have to decode
the coded data first, leading to a limited throughput of read
operations. Juarez et al. [20] focus on the reduction of net-
work traffic instead of the time with the pipeline. These two
kinds of erasure codes also require that some servers have
already stored replicated data and they are both designed to
disseminate coded data from existing replications.
Another solution [15] creates a pipelined topology to write

data into servers. However, it still supports only one kind of
erasure codes with limited choices of parameters, and also
compromise the failure tolerance. Different from these works,
this paper proposes and implements a new pipelined mecha-
nism to disseminate coded data with general erasure codes,
with no requirement of existing replications, that saves the
time to disseminate erasure-coded data significantly.
To work universally with different distributed storage sys-

tems, Mist needs to support different kinds of erasure codes
for distributed storage systems in data centers. Apart from tra-
ditional erasure codes such as Reed-Solomon codes, existing

erasure codes designed for distributed storage systems can be
roughly classified into two categories: locally repairable
codes [4], [5], [18] and regenerating codes [11], [12]. They
are proposed to reduce the consumption of disk I/O and net-
work traffic in the process to repair any lost coded data inside
data centers, respectively. Mist does not rely on any specific
kind of erasure codes, and offers a mechanism to support dif-
ferent kinds of erasure codes in general, with no constraint on
their parameters. Moreover, we support one family of erasure
codes in each of these two categories, i.e., local reconstruction
code [5] and minimum-storage regenerating codes [8].

IX. CONCLUSION

In this paper, we have designed, implemented, and evaluated
Mist, a new mechanism for disseminating erasure-coded data
to multiple servers in a data center. Mist alleviates the con-
ventional bottleneck at the source server in such dissemina-
tion processes, by building a pipelining topology where
receiving servers can be allowed to compute their desired
data from other receivers, rather than from the source server
directly. It provides a flexible general topology to support
different kinds of erasure codes, yet with no constraints on
the system parameters. As examples, we have designed spe-
cific topologies of two representative types of erasure codes
for data storage inside data centers, taking advantage of their
corresponding properties. Mist can even disseminate erasure-
coded data along with replications efficiently. We have
implemented Mist in Python, and our experimental results in
Amazon EC2 have shown that, with the topologies it con-
structed, the time to disseminate erasure-coded data to multi-
ple servers can be significantly saved, and becomes much
less sensitive to the number of receivers.

ACKNOWLEDGMENTS

We would like to thank our editor and anonymous reviewers
for their efforts on improving the quality and the presentation
of this paper. The research was support in part by RGC GRF
grants under the contracts 16211715 and 16206417, a RGC
CRF grant under the contract C7036-15G.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” in
Proc ACM Symp. Operating Syst. Principles, Oct. 2003, pp. 29–43.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “Hadoop distributed
file system,” in Proc. IEEE 26th Symp. Mass Storage Syst. Technol., 2010,
pp. 1–10.

[3] P. Vagata and K. Wilfong, “Scaling the Facebook data warehouse to 300 PB,”
2014. [Online]. Available: https://code.facebook.com/posts/229861827208629/
scaling-the-facebook-data-warehouse-to-300-pb/

[4] M. Sathiamoorthy, et al., “XORing elephants: Novel erasure codes for big
data,” Proc. VLDB Endowment, vol. 6, pp. 325–336, 2013.

[5] C. Huang, et al., “Erasure coding in windows azure storage,” in Proc.
USENIX Annu. Tech. Conf., 2012, pp. 2–2.

[6] W. Wang and H. Kuang, “Saving capacity with HDFS RAID,” 2014.
[Online]. Available: https://code.facebook.com/posts/536638663113101/
saving-capacity-with-hdfs-raid/

[7] Z. Zhang, A.Wang, K. Zheng, U. Maheswara G., and V. B, “Introduction to
HDFS erasure coding in apache hadoop,” Cloudera Eng. Blog, Sep. 2015.
[Online]. Available: https://blog.cloudera.com/blog/2015/09/introduction-
to-hdfs-erasure-coding-in-apache-hadoop/

FIGURE 16. The CDFs of dissemination time of the topology to

disseminate data encoded with a ð10; 8Þ RS code, with and with-

out the algorithm proposed in Section V.

VOLUME 7, NO. 3, JULY-SEPT. 2019 479

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/
https://code.facebook.com/posts/536638663113101/saving-capacity-with-hdfs-raid/
https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/

[8] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating codes for
distributed storage at theMSR andMBR points via a product-matrix construc-
tion,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239, Aug. 2011.

[9] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A
performance evaluation and examination of open-source erasure coding
libraries for storage,” in Proc. 7th USENIX Conf. File Storage Technol.,
2009, pp. 253–265.

[10] W. Wang, “Facebook’s approach to big data storage challenge,” Hadoop
Summit, 2013. [Online]. Available: https://www.youtube.com/watch?
v=OGZpqkKntkQ

[11] A. G. Dimakis, P. B. Godfrey, Y.Wu,M. J.Wainwright, andK. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory,
vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[12] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network
codes for distributed storage,” Proc. IEEE, vol. 99, no. 3, pp. 476–489,
Mar. 2011.

[13] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Het-
erogeneity and dynamicity of clouds at scale: Google trace analysis,” in
Proc. 3rd ACM Symp. Cloud Comput., 2012, Art. no. 7.

[14] Intel Storage Acceleration Library. (2017). [Online]. Available: https://01.
org/intel%C2%AE-storage-acceleration-library-open-source-version

[15] L. Pamies-Juarez, A. Datta, and F. E. Oggier, “In-network redundancy
generation for opportunistic speedup of data backup,” Future Generation
Comput. Syst., vol. 29, no. 6, pp. 1353–1362, 2013.

[16] K. V. Shvachko, “HDFS scalability: The limits to growth,” login, vol. 35,
no. 2, pp. 6–16, 2010.

[17] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding versus replica-
tion: A quantitative comparison,” in Proc. Int. Workshop Peer-to-Peer
Syst., 2002, pp. 328–338.

[18] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A “hitchhiker’s” guide to fast and efficient data recon-
struction in erasure-coded data centers,” in Proc ACM Conf. SIGCOMM,
2014, pp. 331–342.

[19] L. Pamies-Juarez, A. Datta, and F. E. Oggier, “RapidRAID: Pipelined era-
sure codes for fast data archival in distributed storage systems,” in Proc.
IEEE INFOCOM, 2013, pp. 1294–1302.

[20] L. Pamies-Juarez, F. E. Oggier, and A. Datta, “Decentralized erasure cod-
ing for efficient data archival in distributed storage systems,” in Proc. Int.
Conf. Distrib. Comput. Netw., 2013, pp. 42–56.

JUN LI received the BS and MS degrees from the
School of Computer Science, Fudan University,
China, in 2009 and 2012, respectively, and the PhD
degree from the Department of Electrical and Com-
puter Engineering, University of Toronto, in 2017.
He is currently an assistant professor in the School
of Computing and Information Sciences, Florida
International University. His research interests
include erasure codes and distributed storage sys-
tems. He is a member of the IEEE.

BAOCHUN LI received the PhD degree from the
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, in 2000.
Since then, he has been in the Department of Elec-
trical and Computer Engineering, University of
Toronto, where he is currently a professor. He
holds the Bell Canada endowed chair in computer
engineering since August 2005. His research inter-
ests include large-scale distributed systems, cloud
computing, peer-to-peer networks, applications of
network coding, and wireless networks. He is a
member of the ACM and a fellow of the IEEE.

BO LI received the BEng (summa cum laude)
degree in the computer science from Tsinghua Uni-
versity, Beijing and the PhD degree in electrical
and computer engineering from the University of
Massachusetts at Amherst. He is a professor in the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology.
He has been the chief technical advisor for Chinac-
ache Corp. (a NASDAQ listed company), the lead-
ing CDN operator in China since 2008. He held a
Cheung Kong visiting chair professor in Shanghai

Jiao Tong University (2010-2013) and an adjunct researcher in Microsoft
Research Asia (1999-2007) and in Microsoft Advance Technology Center
(2007-2009). His current research interests include: Datacenter networking,
cloud computing, content distribution in the Internet, and mobile wireless
networking. He made pioneering contributions in the Internet video broad-
cast with a system called Coolstreaming, which was credited as first large-
scale Peer-to-Peer live video streaming system in the world. This work
appeared in IEEE INFOCOM (2005) received the inaugural The Test-of-
Time Paper Award from IEEE INFOCOM (2015). He has been an editor or
a guest editor for more than a dozen of the IEEE journals and magazines. He
was the Co-TPC chair for IEEE INFOCOM 2004. He received six Best
Paper Awards from IEEE. He received the Young Investigator Award from
Natural Science Foundation of China (NFSC) in 2005, the State Natural Sci-
ence Award (2nd Class) from China in 2011. He is a fellow of the IEEE.

480 VOLUME 7, NO. 3, JULY-SEPT. 2019

Li et al.:Mist: Efficient Dissemination of Erasure-Coded Data in Data Centers

https://www.youtube.com/watch?v=OGZpqkKntkQ
https://www.youtube.com/watch?v=OGZpqkKntkQ
https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
https://01.org/intel%C2%AE-storage-acceleration-library-open-source-version

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

