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Abstract—Distributed storage systems provide cloud storage services by storing data on commodity storage servers. Conventionally,
data are protected against failures of such commodity servers by replication. Erasure coding consumes less storage overhead than
replication to tolerate the same number of failures and thus has been replacing replication in many distributed storage systems.
However, with erasure coding, the overhead of reconstructing data from failures also increases significantly. Under the ever-changing
workload where data accesses can be highly skewed, it is challenging to deploy erasure coding with appropriate values of parameters
to achieve a well trade-off between storage overhead and reconstruction overhead.
In this paper, we propose Zebra, a framework that encodes data by their demand into multiple tiers that deploy erasure codes with
different values of parameters. Zebra automatically determines the number of such tiers and dynamically assigns erasure codes with
optimal values of parameters into corresponding tiers. With Zebra, a flexible trade-off between storage overhead and reconstruction
overhead is achieved with multiple tiers. When demand changes, Zebra adjusts itself with a marginal amount of network transfer. We
demonstrate that Zebra can work with two representative families of erasure codes in distributed storage systems, Reed-Solomon
codes and local reconstruction codes.

Index Terms—distributed storage system, demand skewness, erasure coding, reconstruction, storage overhead, Reed-Solomon code,
local reconstruction code
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1 INTRODUCTION

D ISTRIBUTED storage systems [1], [2], [3] provide fun-
damental storage services in the cloud, such as Ama-

zon’s EBS (Elastic Block Store) and S3, and Windows Azure
Storage from Microsoft. In addition, they support various
cloud services by hosting data required by such services.
For example, Amazon’s EC2 service uses EBS to host data in
virtual machines. Similarly, Windows Azure storage offers
data storage to other cloud services in Windows Azure.

Typically, a distributed storage system stores a massive
amount of data over a large number of commodity servers.
Due to the nature of the commodity hardware, as well
as other reasons such as software glitches, power failures,
upgrade and maintenance operations, and even overload,
servers in distributed storage systems are subject to frequent
failures on a daily basis. For example, in a Facebook cluster
with 3000 servers, 50 failures that lead to data unavailability
can be expected every day [4].

As failures are norm rather than exceptions in dis-
tributed storage systems, redundant data must be stored
such that a specific number of failures can be tolerated
without loss of data. The naive and the conventional way
to store redundant data in a distributed storage system is
replication, i.e., saving multiple copies of the same data on
different servers. Saving N copies on N servers (N -way
replication) can tolerate up to N − 1 server failures without
loss of data. However, replication is very expensive in terms
of its storage overhead, especially for data at a petabyte
scale. For example, with 3-way replication, to store 10 PB of
data, we need to spend additional 20 PB to store the other
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two copies.
Because of the high storage overhead of replication,

distributed storage systems are migrating from replication
to erasure coding [5], [6], [7], [8], [9], as erasure coding can
tolerate the same or an even higher number of failures with
much less storage overhead [10]. Using Reed-Solomon (RS)
codes [11], the most common choice of erasure codes in
distributed storage systems, as an example, we can encode r
parity blocks from k data blocks of the same size, such that
any k among these k+r blocks can recover the original data.
In other words, at most r server failures can be tolerated if
all k+ r blocks are stored on different servers. When k = 10
and r = 4, we can tolerate at most 4 failures with only
1.4x storage overhead. With the increasing of k, we can
achieve even lower storage overhead while tolerating the
same number of failures.
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Fig. 1. CPU and network overhead to reconstruct one block with RS
code (r = 2), where each block contains 64 MB.

However, RS codes can incur significantly higher over-
head when we need to reconstruct an unavailable block.
When a block becomes unavailable after a server failure, we
need to reconstruct it on another existing server to maintain
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the level of failure tolerance. With a (k = 10, r = 4) RS code,
for example, if one block is not available, we need to obtain
10 blocks to reconstruct it. Therefore, when data are not
available due to a server failure, a read request of such data
needs to be performed by degraded read 1 that reconstructs
them from blocks on other available servers. Higher over-
head of reconstruction can lead to a higher access latency
during the degraded read. With typical values of k, the
network transfer incurred by reconstruction can be huge: in
a Facebook’s cluster the daily median of top-of-rack network
transfer incurred by reconstruction can be as much as 180
TB [12]. Fig. 1 illustrates the overhead of time and network
transfer to reconstruct one block of 64 MB with RS codes2.
We can see that both the time and network transfer incurred
by reconstruction increases linearly with k. In other words,
a smaller value of k means less reconstruction overhead,
leading to less network transfer for data reconstruction as
well as lower latency for degraded read.

Therefore, in a distributed storage system, while we
desire for a small value of k to achieve low reconstruction
overhead, it takes a large value of k to save storage over-
head. Currently, most distributed storage systems deploy
only one erasure code to encode data, optimized either for
storage overhead or reconstruction overhead. However, in
practical distributed storage systems, the demand of data
can be highly skewed. In Fig. 2a, we show the demand
of data in a workload trace measured from a Facebook
cluster [14]. This workload contains more than 104 files
while we only show the 100 most demanded files in the
figure, with all the rest having no more than 11 visits. We can
see that a very small portion of data are highly demanded
while the rest are barely touched. Even among blocks be-
longing to the same file, it has also been observed that the
demand to such blocks can be skewed when running data
analytical jobs [15], [16]. With only one erasure code we
cannot accommodate cold data with low storage overhead
while achieving low reconstruction overhead for hot data.
Moreover, the demand for the data can change over time
dynamically. We sort files in the trace by their demand, such
that the file with higher overall demand has the lower index.
As shown in Fig. 2b, while file No. 1 and 3 have consistent
demand over time, the other three files only have transient
high demand at some time and have no visit any other time.
Therefore, it is also challenging to find an erasure code that
can work well adaptively with the ever-changing demand.

In this paper, we propose Zebra, a novel framework
for distributed storage systems deploying erasure codes.
According to the demand of data, Zebra can split data
into multiple tiers such that data in different tiers are en-
coded with erasure codes with different values of param-
eters. Although existing works [17], [18], [19] also features
such tiered architectures, they require static configurations
of parameters in each tier. Nevertheless, Zebra offers the
flexibility to dynamically configure parameters of erasure
codes deployed in each tier, and even the number of tiers.

1. As the result of a degraded read can also be used to recover an
unavailable block on a replacement server, we assume that there is no
or little need to recover a block individually and only consider the
reconstruction overhead in the degraded read in this paper.

2. The time of the reconstruction is measured using the zfec li-
brary [13] running on an Intel Core i7 processor.
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Fig. 2. The demand skewness of files in a Facebook workload trace.

By solving geometric programming problems, Zebra deter-
mines parameter values of erasure codes in each tier, such
that hot data can be reconstructed with low overhead and
cold data can enjoy low storage overhead at the same time.
Meanwhile, Zebra can also assign data to the best fitting
tier by their demand, so as to minimize reconstruction
overhead. When demand changes, Zebra can dynamically
migrate data accordingly into different tiers or even change
parameter values of tiers, while carefully controlling the
overhead in the migration. For the hot data in the tier
with the highest demand, Zebra can be further extended
to achieve better load balance under a high volume of
demand. Besides RS codes, we show that Zebra can also
be applied with local reconstruction codes [8], another kind
of erasure codes for distributed storage systems with lower
reconstruction overhead.

We run simulations under various workload traces to
evaluate the performance of the Zebra framework. We
demonstrate the performance of Zebra working with RS
codes and local reconstruction codes. The evaluation results
show that Zebra can reduce reconstruction overhead, espe-
cially by 89.5% for the hot data. Moreover, the hot data also
enjoy less demand by 63.2% due to the better load balance
in Zebra. The cold data, on the other hand, will incur less
storage overhead to maintain their tolerance against failures.
With the ever-changing workload, we demonstrate that the
network transfer of migration can be well controlled, such
that it occupies no more than 12.6% of the network transfer
of demand in the worst case.

2 MOTIVATION AND EXAMPLES

In this section, we present the general idea that motivates
the design of the Zebra framework. We assume that in a
distributed storage system, data are stored in blocks of 64
MB, where we compute 1 parity block from every 3 data
blocks. In other words, a (k = 3, r = 1) RS code is deployed
in this distributed storage system.

As a toy example in Fig. 3a, assume that we have 6 data
blocks in total, i.e., A1 − A3 and B1 − B3. We can encode
A1, A2, and A3 into one parity block P1, and B1, B2, and
B3 into the other parity block P2. We then call each three
data blocks and the corresponding parity block as one stripe,
such as A1, A2, A3, and P1. With six data blocks in Fig. 3a,
we thus have two stripes. More stripes can be added this
way if there are more data blocks. Such two stripes fall into
one single tier because they are encoded from the same
(3, 1) RS code. In this way, we can tolerate a failure of
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Fig. 3. Comparison of data encoded in one and two tiers of RS codes.Ai

and Bi are data blocks, i = 1, 2, 3. P1 and P2 are parity blocks encoded
by corresponding RS codes. Colored red, A1 and B1 are hot blocks with
100 visits per unit of time, while other blocks are cold with only 10 visits.

any single block, with 1.33x storage overhead. When one
of them becomes unavailable, we need to obtain the other
three blocks in the same stripe to reconstruct it until it is
available on a replacement server. Therefore, the amount of
data to be read from disks and transferred through network
during degraded read is 3× 64 MB = 192 MB.

However, as we know that the demand to different
blocks can be significantly skewed, we assume that the
demand of the 6 data blocks is not equal to each other,
where A1 and B1 are highly demanded with 100 visits per
unit of time, and all other four blocks are visited by 10 times
per unit of time. Under the Zebra framework, we can then
encode these 6 data blocks into two tiers, i.e., we encode
the two hot blocks with a (2, 1) RS code and the other four
blocks with a (4, 1) RS code. Therefore, there is only one
parity block in each stripe, and we still have 2 parity blocks
in total, maintaining the same storage overhead as above.
Meanwhile, we can still tolerate the failure of any single
block. As server failures are independent to the demand of
data (especially when the demand of data are balanced on
servers), each request will have an equal chance to meet
a failed server and such a request will have to be served
by degraded read. Though the cold blocks need to obtain 4
blocks to reconstruct, the hot blocks have dominant demand
with much less blocks to obtain. Hence, this time we can
significantly reduce the average number of blocks to visit
per unit of time. On average per degraded read, we need to
have (2×2×100+4×4×10)×64 MB

2×100+4×10 = 149.3 MB to read, saving
corresponding disk I/O and network transfer by 22.2%.
For the two hot blocks in particular, their reconstruction
overhead can simply be reduced from 3 to 2 blocks, i.e.,
33.3% reduction in time, disk I/O, and network transfer.

In this example, we deploy two tiers of RS codes. How-
ever, Zebra is not limited to only two tiers. In fact, we
can flexibly deploy any number of tiers inside the Zebra
framework with different parameter values of RS codes,
where the number of tiers and the parameter values can be
efficiently calculated according to the demand of data and
the requirements of storage overhead and failure tolerance.
Zebra can automatically assign data into corresponding tiers
by their demand. Besides RS codes, we further show that
Zebra can work with local reconstruction codes.

3 RELATED WORK

At the scale of petabyte storage, erasure coding has become
more and more attractive to distributed storage systems
because of its low storage overhead and high failure tol-
erance. Hence, many distributed storage systems, such as

HDFS [9], [18], Openstack Swift [5], Google file system [6],
and Windows Azure storage [8], are moving towards or
have deployed erasure coding as an alternative to replica-
tions, where in most cases RS codes are chosen by these dis-
tributed storage systems. However, they all choose only one
kind of erasure code with fixed parameters. It is then hard
to trade well between storage overhead and reconstruction
overhead of erasure codes, under the dynamical workload
with highly skewed data demand [15], [16], [20].

Traditional RS codes can incur high overhead of recon-
struction when some of the data are not available due to
failures inside distributed storage systems [12], [21]. There
has been a growing attention of improving the overhead
of reconstruction of erasure codes. For example, local re-
pairable codes [22] can achieve low reconstruction overhead
by allowing unavailable data to be reconstructed from a
small number of other servers. Similar ideas have been
applied in the design of other erasure codes [8], [21], [23],
[24], [25]. On the other hand, another family of erasure
codes, called regenerating codes, are designed to achieve the
optimal network transfer in the reconstruction [26]. All these
erasure codes, however, are optimized for their own objec-
tives over all encoded data, unaware of that the demand of
data can be high skewed. As data with different demand
may have different performance objectives, applying one
single erasure code over all data may not achieve all their
objectives. Different from these erasure codes, in Zebra we
propose to dynamically assign data into multiple tiers by
their demand so as to achieve a flexible trade-off between
storage and reconstruction overhead.

Some distributed storage systems, such as HDFS [27],
allow data to be stored under a tiered architecture, where
data in different tiers are stored by different erasure codes
or replication with preconfigured parameters and can be
automatically migrated between different tiers [17], [18],
[19]. However, all these systems require users to configure
the parameter of erasure code in each tier statically, and
they cannot well adapt themselves to the ever-changing
workload. Besides, as in different tiers the storage overhead
incurred by the corresponding erasure codes will also be
different, it is hard to control the overall storage overhead.
The Zebra framework, however, does not need to specify
parameters of each tier or even the number of tiers. Ac-
cording to the demand of data, Zebra can configure itself
flexibly, where only the overall storage overhead and failure
tolerance need to be manually specified.

Different from the above works where the reconstruction
overhead is evaluated in terms of network traffic or disk
I/O, a tree-structured topology can be created, which routes
the traffic through the edges of the tree and alleviates the
bottleneck of sending data from existing servers to the
replacement server [28], [29], [30]. The purpose of such
works, instead, is to save the time of reconstruction. Such
works can be applied into our framework without affecting
the network overhead during reconstruction, and thus we
focus on network overhead only in this paper.

4 SYSTEM MODEL

In this paper, we assume that in a distributed storage
system, data are stored in blocks with the same size. This
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is a common practice in distributed storage systems [3].
Assume that we have N blocks in total, and each block

Bi is associated with demand of di visits per unit of time,
i = 1, . . . , N . We also assume that any r block failures
should be tolerated without data loss. Hence, if RS codes
are deployed, in the Zebra framework each block will be
encoded with a (ki, r) RS code, where we call ki as the rank
of block Bi. For convenience, we let D = (d1, . . . , dN ), and
K = (k1, . . . , kN ). We also want to control the overall stor-
age overhead such that the overall storage space consumed
is no more than C times of the original data.

In this model, we assume that the erasure codes de-
ployed in the distributed storage system should be sys-
tematic. In other words, a (k, r) systematic erasure code
computes k+ r blocks from original data, in which k blocks
are the same as the original data, i.e., data blocks. The other
r blocks are known as parity blocks. Such k + r blocks
belong to the same stripe and are stored on k + r different
servers. From the k data blocks in each stripe, we can always
directly obtain any data block without decoding as long as it
is available. Hence, we can assume that all demand will go
directly to the corresponding data blocks rather than parity
blocks, unless the demanded data blocks are unavailable.
Moreover, when some data block is not available, only
reconstruction, instead of decoding, needs to be performed.

We now use this model to represent the way to en-
code data in one or multiple tiers with erasure codes.
Fig. 3 (without loss of generality, we can rewrite Ai as
Bi+3, i = 1, 2, 3) illustrates two examples of this model
with systematic RS codes, where N = 6, C = 4

3 , and
D = {100, 10, 10, 100, 10, 10}. In Fig. 3a, ki = 3 for all i,
i.e., all blocks are encoded in one tier with a (3, 1) RS code.
On the other hand, in Fig. 3b, we have K = {2, 4, 4, 2, 4, 4}
such that the six blocks are encoded into two tiers with a
(2, 1) and a (4, 1) RS code.

In this way, we can see that the number of tiers in the
model does not need to be explicitly defined as blocks with
the same rank can be categorized into the same tier. Once
the rank of each block is equal to each other, for example, it
becomes the conventional case of only one tier. Hence, we
are not limited by a given number of tiers, and we can easily
change the number of tiers when demand changes.

In this paper, our objective is to minimize the average
reconstruction overhead of degraded read, with respect to
the constraint of the overall storage overhead C. As shown
in Fig. 1, the reconstruction overhead of a block increases
linearly with its rank. We assume that each server has the
same chance to be unavailable. Thus, the chance of de-
graded read should also increase linearly with the demand
of corresponding block. Combining all demand together, we
can define the average reconstruction overhead as

∑N
i=1 diki∑N
i=1 di

.
As the demand D is already given, it is equivalent to
minimize

∑N
i=1 diki = D · K, which we call as the overall

reconstruction overhead.
Besides the overall reconstruction overhead, we need to

control the overall storage overhead, which can be com-
puted with D and K in the model. Since each block has
the same size, we assume that the size of each block is 1
for convenience. Thus, the storage space consumed to store
block Bi and its parity is 1+ r

ki
. The sum of storage space of

all blocks is N +
∑N
i=1

r
ki

. Since the total storage space we
can use under the constraint of the overall storage overhead
C is CN , we can write this constraint as

∑N
i=1

1
ki
≤ (C−1)N

r .
Therefore, we can solve K to minimize the overall recon-

struction overhead with respect to the storage overhead by
the following integer geometric programming problem.

min D ·K (1)

s.t.
N∑

i=1

1

ki
≤ (C − 1)N

r
, (2)

ki ∈ Z+. (3)

Typically, a geometric programming problem can be
easily converted to a convex optimization problem and
solved efficiently [31]. However, there are some other issues
that makes it challenging to achieve a practical solution by
directly solving this problem.

First, in a distributed storage system there can be an
extremely large number of data blocks. For example, in
HDFS the default block size is 64 MB. If there are 1 PB
of data stored in HDFS, there will be over 107 blocks in
total. No solver of convex optimization problems can solve
our model in a reasonable amount of time. Besides, the
geometric programming problem in (1)-(3) is an integer
programming problem. This also significantly increase the
complexity to solve it.

Second, the solution solved from (1)-(3) is an offline
solution. In other words, we need to know the demand
in advance before we can get the optimal solution, which
makes it impractical. We need to find an online algorithm
that can solve K in advance of the demand.

Third, given a solution of this problem, we can’t even
guarantee that it is feasible. For example, if the solution
is K = {8, 8, 8, 8, 8, 8}, we will need to encode 6 blocks
with an (8, r) erasure code. This is impossible without
rearranging the data blocks into a smaller size. Variable-size
blocks, however, will incur significantly more complexity
to manage data inside the distributed storage system. In
this paper, we retain the assumption of fixed-size blocks
and manage to encode data with such solutions without
incurring much additional overhead.

In the rest of the paper, we introduce the Zebra frame-
work that solves these practical issues efficiently and then
show the encoding scheme under the Zebra framework. We
start from introducing Zebra with RS codes, and then extend
Zebra to make it work with local reconstruction codes.

5 ZEBRA FRAMEWORK

5.1 Limiting the complexity
In the Zebra framework, we propose a few heuristics to
compute ranks of blocks efficiently. We start from temporar-
ily removing the integer constraint (3) and resolving the
complexity issues of the non-integer geometric program-
ming problem in (1)-(2) by studying its property.

Without loss of generality, we assume that in D, di ≥ dj
if i > j. In other words, we sort the element in D in a non-
ascending order. In this way, an optimal solution of K in
(1)-(2) should also be in non-descending order.

We prove this property by contradiction. Assume that
there exist i and j in an optimal solution of (1)-(2) such
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that ki > kj where i < j, and then the reconstruction
overhead of block i and j is diki + djkj . If di > dj , it is
straightforward that diki + djkj > dikj + djki. Therefore,
we can get a solution with even lower overall reconstruction
overhead by exchange the rank of block Bi and Bj , which is
contradictory to the assumption that the original solution is
optimal. On the other hand, if di = dj , we can assign a new
rank, 2kikj

ki+kj
, to both block Bi and Bj to get a lower overall

reconstruction overhead, while still satisfying the condition
in (2). This is also contradictory to the assumption that the
original solution is optimal.

From this property, we can directly get a corollary that
ki = kj if di = dj . In other words, if two block have the
same demand, they will also have the same rank in the
optimal solution. Inspired by this property, we can refine
the original model to significantly decrease the complexity
to solve it, by reducing the number of variables to solve.

First, in this paper, we assume that all blocks of the same
file should have the same or similar demand in a distributed
storage system. Notice that if all blocks of the same file have
the same demand, this step will not hurt the optimality of
the solution. In practice, if the demand of blocks in a single
file is not the same, we can use the demand of the hottest
block of the file as the demand of the file. The intuition
of this assumption is that typically a distributed storage
system that stores large-size files will have distributed data
processing system running upon it, such as Hadoop and
Spark, which will visit each block of the file distributively.
Therefore, once a file is visited, all of its blocks will be visited
first. Although in some cases [15], [16] that some data in
a block will be selected for future processing, leading to
different workload in different blocks eventually, we focus
on heterogeneous demand on the file level instead of the
block level in this paper.

Second, we extend this property by assuming that blocks
with similar demand will also have similar ranks. Thus, we
can classify the demand of all blocks into discrete categories.
The simplest way is to set a parameter t where any demand
that falls into the interval (tx − t, tx] will be approximated
as tx, ∀x ∈ Z∗. Hence, files with similar demand can be
temporarily merged into the same one when calculating
their ranks, and thus we can further reduce the complexity
to solve the model. For the cold data, this is especially
useful, as cold data typically occupy a very large portion
of all the data, yet with similar demand of very little values.
Thus, we can quickly categorize cold data into few intervals,
and then thousands of files can be grouped into few ones.

We run the simulation on the workload from Facebook
that we show in Fig. 2. In this workload, there are 15565
files in total. If we store data into blocks of 64 MB, there will
be 1.8 × 107 blocks. The result in Fig. 4 shows that we can
reduce the number of files into 55 even when t = 1. Notice
that when t = 1, we actually don’t merge files unless their
demand is exactly the same. When we increase the value of
t, we can even further reduce the complexity of solving k.

5.2 Solving the ranks

After the two steps described above, we can refine the model
in (1)-(2) such that there are n files, where each file Fi is
associated with size wi and demand di. Each file will be

1 2 3 4 5 6 7 8 9 10
t

20

30

40

50

# 
fil

es

Fig. 4. The number of files with various numbers of t running in a
Facebook workload.

encoded with a (ki, r) RS code, and the overall storage
overhead should be no more than C. Hence, the problem
to solve the optimal K can be redefined as

min
n∑

i=1

widiki (4)

s.t.
n∑

i=1

wi
ki
≤ (C − 1)N

r
(5)

ki > 0,∀i. (6)

This is still a geometric programming problem. Notice
that here we tentatively remove the constraint (3) that each
ki must be an integer. In the Zebra framework, we will solve
this problem first, and then round ki to a nearby integer. For
example, we can always round ki to its ceiling dke. In this
way, we won’t break the requirement of storage overhead
in (4), while the worst case of additional reconstruction
overhead is

∑N
i=1 widi. Thus the approximation ratio of this

ceiling rounding algorithm is 1 + 1
mini ki

.
Comparing to this naive rounding algorithm, in Zebra

we use an iterative rounding algorithm that achieve even
lower reconstruction overhead. The idea of this iterative
algorithm is in each round solving the geometric program-
ming problem in (4)-(6), and rounding one ki to its nearest
positive integer which leads to the minimum change to the
overall reconstruction overhead. In the next round, the file
corresponding to the ki in the previous round is removed
from the problem and the storage overhead it has incurred
is also deducted in (5). We keep running this iteration such
that in every round one ki will be picked up and removed
from the model until there is only one file left and the last ki
will be rounded to its ceiling. The details of this algorithm
is shown in Fig. 5.

We now run Zebra on the same Facebook workload
used in Fig. 6a, and illustrate the overall reconstruction
overhead which is calculated by (4). Note that in practice
not all requests will be served by degraded read. However,
as explained in Sec. 4, the overall reconstruction overhead is
linearly proportional to the average reconstruction overhead
per degraded read in a given workload, regardless of the ac-
tual probability of degraded read. We assume that any two
block failures should be tolerated, i.e., r = 2, and the overall
storage overhead should be no more than 1.2x. Compared
to a single erasure code, which we use a (10, 2) RS code in
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this case to meet the requirement of storage overhead, Zebra
with the iterative rounding algorithm can save up to 39.2%
reconstruction overhead. We can also observe that with a
smaller value of t, the overall reconstruction overhead can
be further saved, as with a smaller t, there will be more files
and potentially more tiers.

In practice, our observation shows that under a real
workload, the approximation ratio of the reconstruction
overhead with ranks of blocks solved by Zebra can be closer
to 1. We can see that the performance of the approximated
solutions ofK is close to the non-integer solution ofK (ideal
K), where the ceiling rounding algorithm can incur at most
10.0% more reconstruction overhead in the worst case. On
the other hand, the iterative rounding algorithm can achieve
even lower approximation ratio, by incurring at most 6.0%
more reconstruction overhead. The reason is that instead
of rounding ki at the same time, we round different ki
iteratively every round in Fig. 5. Therefore, the difference of
storage overhead caused by the rounding in one round will
be reflected in the next round, reducing the differences of
overall reconstruction overhead of remaining data. A more
detailed comparison of these two rounding algorithm can
be found in Fig. 6b, where the iterative rounding algorithm
on average incurs 49.1% less additional reconstruction over-
head than the ceiling rounding algorithm. The saving tends
to be more significant when we have a smaller value of t.

Due to the low number of files in the refined model, the
completion time to solve K is swift. In fact, we can always
solve K with both of the two rounding algorithms within
2.5 second, with any values of t.

5.3 Encoding data in multiple tiers
From the ranks solved above, we can now encode data into
multiple tiers. The number of tiers is determined by merging
files with the same rank into one tier. We actually encode

Input: wi and di where i = 1, . . . , N , C > 1, r ∈ Z+,
N ∈ Z+

Output: ki where i = 1, . . . , N
1: S = ∅, T = {1, . . . , N}
2: R = 0
3: while T 6= ∅ do
4: solve

min
∑

i∈T
widiki (7)

s.t.
∑

i∈T

wi
ki
≤ (C − 1)N

r
−R (8)

ki > 0,∀i ∈ T. (9)

5: ∀i ∈ T , let k′i be the positive integer nearest to ki
6: ∀i ∈ T , calculate δi = |widi(ki − k′i)|
7: î = argmini∈T δi
8: R = R+

wî

k′
î

9: kî = k′
î

(when |T | > 1) or dkîe (when |T | = 1)
10: S = S + {̂i}, T = T − {̂i}
11: end while

Fig. 5. The iterative rounding algorithm used in Zebra
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Fig. 6. Comparisons of the overall reconstruction overhead and the
approximation ratio of the two rounding algorithms.

blocks in each tier with a (ki, r) RS code, where ki is the
rank of the file and r is the number of failures to tolerate.
In particular, for the blocks of rank 1, i.e., ki = 1, they will
be replicated with 1 + r copies. Since data in each tier are
migrated from multiple files, the chance of having a tier with
no more than ki blocks is negligible. Inside each tier, we
encode every ki blocks into r parity blocks with the (ki, r)
RS code where such ki + r blocks belong to a stripe. All
blocks in each stripe will be stored into different servers. If
we have remaining blocks or the total number of blocks is
less than ki, we will temporarily encode them with an (l, r)
RS code if the number of remaining blocks is l. Since l < ki,
this will incur additional storage overhead. However, given
the large number of blocks stored in a distributed storage
system, this additional storage overhead is marginal.

In terms of storage overhead of additional metadata
introduced by Zebra, we can store the rank along with the
existing metadata of each file. Other metadata, such as r,
C, t, and other additional parameters introduced in the rest
of this paper, are global information and require only few
bytes to store.

5.4 Balancing load of hot data

So far, when the optimal solution of K solved from (7)-(9)
has ki no more than 1, we will use a (1, r) RS code, equiv-
alent to (1 + r)-way replication, to store the corresponding
block. As blocks with higher demand will have lower ranks,
we can believe that only the hottest block will be replicated.
This makes perfect sense because the demand is so high
that we probably cannot afford the cost to reconstruct them
with RS code if one data block is not available. However, as
shown in Fig. 2, the demand of the hot blocks can be much
more variable than cold blocks. Therefore, even if all of the
hottest blocks are stored with (1 + r)-way replication, their
demand will still be highly variable.

We notice that in the iterative rounding algorithm, the
storage overhead of each file, i.e., 1 + r

ki
, is determined by

1
ki

. When we choose any integer that is more than ki, we
actually use less storage space than the space assigned to
this file in the non-integer solution of (7)-(9). Therefore, if
ki ≤ 1, we can store the hot blocks of this file with more
copies such that the average load of these hot blocks can be
reduced and better balanced, while not affecting the ranks
of other blocks. Specifically, the number of copies will be
1 + r

⌊
1
ki

⌋
, and thus a block with lower ki will have more

copies than r + 1. Meanwhile, the storage overhead of this
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block will not exceed 1+ r
ki

, i.e., the overall storage overhead
will not exceed the given limit of C. The reconstruction
overhead will not be affected as well, since we only change
the number of copies for the block with ki ≤ 1.
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Fig. 7. Comparison of demand of hot blocks (of rank 1) with and without
load balance (LD), when r = 2 and t = 1.

To implement this load balancing, we only need to
change the three lines in Fig. 5. If ki < 1, we calculate
δi = widi(1 − ki) in line 6, and R = R + wî

⌊
1
kî

⌋
in

line 8. In line 9, we let kî = 1 and meanwhile replicate
this file with 1 + r

⌊
1
kî

⌋
copies. If ki ≥ 1, these three lines

remain unchanged. In this way, the storage space assigned
to the chosen file by the non-integer solution of (7)-(9) in this
round is preserved.

We show in Fig. 7 the mean and standard deviation
of the demand of blocks of rank 1 under the Facebook
workload, with C , the overall storage overhead, no more
than 1.5 and 1.8. With the load-balanced replication, we
can observe in Fig. 7a that the demand of hot blocks on
average can be saved by 49.8% when the limit of the storage
overhead is 1.5, and by 26.9% when the storage overhead
increases to C = 1.8. The load of hot blocks can also be
significantly more balanced. From Fig. 7b, we can observe
that the standard deviation of all these hot blocks can be
reduced by 57.3% (C = 1.5%) and 76.4% (C = 1.8%).

6 DEPLOYING ZEBRA WITH ONLINE DEMAND

6.1 Online demand
Before we deploy the Zebra framework in any practical
scenarios, we should be aware that ranks inside the Zebra
framework can only be constructed with the given demand,
however, they must work well with the demand in future.

To meet this requirement with online demand, the de-
mand D we use in the model will not be purely determined
by the most recent demand, but a linear combination of
demand over a longer period of time. Specifically, we split
the time into intervals. For example, if the interval is one
hour, we measure the demand of each file every hour,
and the demand measured in this hour is the most recent
demand in the next interval.

If we use the most recent demand to solve K, we may
imprudently increase ki of some block if this block gets
transiently high demand in the latest interval and in the next
interval there will be no such high demand. Therefore, we
also need to consider the consistency of the demand besides
the latest demand. In this paper, we use α to achieve a

flexible trade-off between the consistency and the transiency
of the demand. Assume that D0 is the most recent demand
and D is the demand we use to calculate K in the last
interval. After this interval, we are going to update the
demand D as

(1− α)D + αD0, α ∈ [0, 1]. (10)

It is straightforward that when α = 1, we will always use
the latest demand to calculate K used in the next interval.
On the other hand, as α goes to 0, the latest demand will
be less and less taken into account. When α = 0, D won’t
be updated at any time. In this way, the transient demand
will get smoother over time. Therefore, we won’t be easily
tricked by the transient demand. In other words, a smaller α
can help to make it more consistent in the updated demand
D over time.
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Fig. 8. Overall reconstruction overhead with demand updated online.

Once again, we run the simulation with the hourly
updated demand on the workload from Facebook, with
r = 2, C = 1.2, and t = 1. Fig. 8 illustrates the results.
Compared to the single RS code, Zebra can work well
with online demand, and we can on average save 68.3%
of reconstruction overhead in general. We can observe that
in this workload, the transiency is quite significant (from the
overhead of the single RS code), and thus with a larger α we
can slightly better adapt to the general workload change.
In fact, the best choice of α depends on the characteristics
of the workload, and we will show the results with more
workload in Sec. 8.

6.2 Data migration
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Once the demand changes after each time interval, we
will need to update the files if their ranks are changed. This
may involve quite a lot of migration overhead, especially
the network transfer. An naive way to update files with new
ranks is to compute new parity blocks with the new RS code
and then remove the old parity blocks. To encode r parity
blocks from k data blocks with a (k, r) RS code, we need
to transfer at least k + r − 1 blocks, by computing all parity
blocks on one server and sending r−1 ones to other servers.
Thus, if the rank of a file is updated, the traffic to generate
new parity blocks will be even more than the amount of this
file. Fig. 9 shows the number of blocks that have different
ranks after each hour. We can see that there can be 525.9 TB
of data to migrate to new RS codes at some hour when α =
1. The migration overhead varies with different values of α,
and it is hard to predict (in some hours we have more blocks
to migrate when α = 0.75 than α = 1 and α = 0.5. In other
words, we need to generate new parity blocks for almost
half of all data. Moreover, when α = 1, the amount of data
to migrate can even exceed the amount of data requested
by users. This will not only hinder the migration process
from finishing quickly, but hurt the performance of the data
access as well. Hence, though migration is unavoidable to
meet the ever-changing demand, our objective is to reduce
the network transfer for migration to a marginal level, for
any values of α.
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Fig. 10. Construction of the Cauchy RS code and its migration.

In this paper, we propose a different way to encode data
such that we can control the migration overhead without
increasing the overall reconstruction overhead significantly.
We use Cauchy RS codes [32], [33] in Zebra, which contains
a Cauchy matrix in its generator matrix. With a (k, r) RS
code, we have a (k + r)× k matrix G as its generator matrix,
such that the encoding operation can be formalized as the
multiplication of the generator matrix and the k data blocks,
as illustrated in Fig. 10a. In particular, if the first k rows of
G are an identity matrix, the corresponding RS code will

be systematic. In this way, we can write G as G =

[
I

Ĝ

]
.

In a Cauchy RS code, the matrix Ĝ is a Cauchy matrix. A
benefit of Cauchy RS code is that all encoding operations
can be converted into XOR operations. More importantly,
Cauchy matrix makes it easy to migrate from one RS code
into another RS code with significantly less overhead, since
any submatrix of a Cauchy matrix is still a Cauchy matrix
(Fig. 10b).

Because of this property, we can easily downgrade or
upgrade data between an (mk, r) and a (k, r) RS code, m ∈
Z+. We show in Fig. 10c and Fig. 10d how we can migrate
between these two RS codes. To downgrade from a (k, r)
RS code to an (mk, r) RS code, by applying the property of
the Cauchy matrix, we only need to XOR the r parity blocks
in the m stripes together. To upgrade from an (mk, r) RS
code to a (k, r) RS code, we need to generate the parity
blocks in the m − 1 stripes under the (k, r) RS code and
XOR the new parity blocks and the existing parity blocks
into the parity blocks of the last stripe. We show in Table 1
the network transfer of both upgrade and downgrade, as
well as the network transfer of the naive migration scheme.
We can see that the Cauchy matrix can help to save network
transfer in both cases, when m < 2+ k−1

r . Apparently when
m = 2 this condition can always be satisfied, and we will
use this property to save the migration overhead.

TABLE 1
Network transfer between (mk, r) and (k, r) RS codes.

without Cauchy matrix with Cauchy matrix
downgrade mk + r − 1 blocks (m− 1)r blocks

upgrade m(k + r − 1) blocks (m− 1)(k + 2r − 1) blocks

However, we can rely on the Cauchy matrix only when
the rank of the new code is multiple times or can be divided
into the rank of the old code. To maximize this effect, we
can also change the way to solve ranks. We set kmax, an
upper bound of ranks of all blocks, such that all ki should
be no more than kmax. Moreover, the rank of all blocks
should be a divisor of kmax. Given ki solved from (7)-(9)
with an additional constraint ki ≤ kmax,∀i ∈ T , we need to
additionally change line 5 in Fig. 5 by letting k′i be one of
the divisors of kmax that is nearest to ki, ∀i ∈ T , and then
encode the corresponding file with a (k′i, r) RS code.

When we migrate m stripes of blocks encoded with a
(k, r) RS code into one stripe with an (mk, r) RS code, we
may also need to move data blocks because two blocks in
different stripes may be stored in the same server. In Zebra,
if kmax is set, we store every kmax data blocks into different
servers, and compute parity blocks with the corresponding
(k, r) RS codes which will be stored into other servers.
Notice that such (k, r) RS codes are constructed by splitting
the generator matrix of the (kmax, r) Cauchy RS codes, as
if there were upgraded from the (kmax, r) RS codes before.
Therefore, when we need to migrate into an (mk, r) RS code,
we will not need to move any data blocks, but only migrate
parity blocks as described above. This method can also be
applied to the upgrade case as well. Apparently, we can
maximize the effect of the Cauchy matrix by wisely selecting
the value of kmax. For example, when kmax = 16, we have
5 available ranks (1, 2, 4, 8, 16). Thus, when downgrading
or upgrading to any neighbor ranks we can always exploit
the Cauchy matrix to save network transfer (with m = 2).
For some other values of kmax, some rank may not be
integer multiples of its neighboring rank (e.g., 3 and 4 when
kmax = 12), we will have to remove all existing parity blocks
and generate new parity blocks with the new ranks.

There is also a side effect of kmax which set a lower
bound of the data reliability. This is because with a higher
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value of k, the encoded data will have lower data reliability.
For example, data encoded with a (10, 2) RS code will have
a lower reliability than data encoded with a (4, 2) RS code,
even though they can both tolerate two failures. This can
happen in all designs with tiered architectures [17], [18],
[19]. By limiting the highest value of k, we can also allow
the user to control the data reliability in the worst case.
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Fig. 11. Network transfer incurred by the migration and the overall
reconstruction overhead with various values of kmax, when α = 0.5.

In Fig. 11, we compare the performance with different
values of kmax. We run the Facebook workload by updating
ranks of data every hour and calculate all the network
transfer incurred by the migration, with C = 1.2, r = 2,
t = 1, and α = 0.5. We can see that all values of kmax

in Fig. 11 can significantly reduce the network transfer
such that only 0.6% of the original network transfer will
be incurred (kmax = 16). The reasons are twofold. First,
limiting the number of possible ranks naturally reduces
the chance of having a different rank when the demand
of a file changes. Second, for files with very low demand
or no demand, i.e., when di is close to 0, their ranks are
both high and subject to frequent changes even if their own
demand does not change over time. Since the change of
ranks will also change the storage overhead of files, the
storage overhead given to cold data can also change when
the demand of hot data changes. Therefore, the cold data
can also be subject to frequent migration even though their
demand does not change so frequently. Limiting the rank to
the divisors of kmax can make cold data less sensitive to the
change of demand and more likely to keep their own ranks
(kmax in most cases). As most data are cold data in a typical
distributed storage systems, most (unnecessary) migration
overhead can be avoided.

The overall reconstruction overhead, on the other hand,
will increase by between 3.2% (kmax = 24) and 36.5%
(kmax = 20), still much less than one single RS code.

We show the results of other values of α in Fig. 12.
We can see that with any values of α, the total network
transfer for migration will be reduced by more than 93.1%.
In the worst case (α = 1), the network transfer in migra-
tion is no more than 63.9 TB, which occupies less than
4.1% of all traffic incurred by demand. Meanwhile, at most
7.4% more overhead for reconstruction will be incurred.
Hence, we reduce the network transfer for migration to a
marginal level without incurring much additional recon-
struction overhead.

f n

Fig. 12. Comparison of network transfer incurred by migration with
various values of α, when kmax = 12.

7 ZEBRA WITH LOCAL RECONSTRUCTION CODES

Besides RS codes, the principles of the Zebra framework
can also be used for other erasure codes. In this section, we
apply Zebra with another kind of erasure codes that are
specifically proposed for distributed storage systems, i.e.,
local reconstruction codes, currently deployed in Windows
Azure Storage [8].

7.1 Local Reconstruction Codes
Local reconstruction codes are proposed in order to achieve
a lower number of blocks visited than RS codes when an un-
available block is reconstructed. Local reconstruction codes
are associated with three integer parameters, k, l, g, where
k denotes the number of data blocks. There are also two
types of parity blocks in local reconstruction codes, i.e., local
and global parity blocks, denoted by l and g respectively
where l|k. We show in Fig. 13 an example of a (k, l, g) local
reconstruction codes where k = 6, l = 2, and g = 1.

B1 B2 B3

L1 L2

G1B4 B5 B6

(6,1) RS code

(3,1) RS code (3,1) RS code

Fig. 13. An illustration of a (6, 2, 1) local reconstruction code, with 6 data
blocks (B1 – B6), 2 local parity blocks (L1 and L2) and 1 global parity
blocks (G1).

A local reconstruction code is built upon RS codes. A
(k, g) RS code is used to compute g global parity blocks
from k data blocks. For every k/l data blocks, we use a
(k/l, 1) RS code to compute one local parity block. Hence,
we have l local parity blocks, and then we can reconstruct
any data block or local parity block from k/l blocks, which
is naturally less than k blocks with RS codes. For example,
in Fig. 13, if B1 is not available, we can reconstruct it with
3 blocks, i.e., B2, B3, and L1. On the other hand, it is
proved [8] that given a (k, l, g) local reconstruction code,
any g + 1 failures can be tolerated.

7.2 Configuring local reconstruction codes with Zebra
The same as RS codes in Sec. 5.1, we can temporarily group
blocks into n files by their demand when calculating their
ranks, which is updated per time interval by (10), and we
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use wi and di to denote the size and the demand of file i,
i = 1, . . . , n. For each file we encode all blocks in this file
with a (ki, li, gi) local reconstruction code. In other words,
in this file we encode every ki data blocks with the (ki, li, gi)
local reconstruction codes in one stripe, and generate li local
parity blocks and gi global parity blocks. Assuming that any
r failures should be tolerated, for all i we can set gi = r− 1.

As the demand to data all goes to data blocks, we
only consider the reconstruction overhead of data blocks.
To apply Zebra to local reconstruction codes, we need to
dynamically determine the “rank” of data blocks by their
demand. As the rank is defined as the number of blocks to
visit in the reconstruction in RS codes, in local reconstruction
codes the rank of a data block can be defined as ki/li. Hence
we use the technique in Sec. 6.2 by letting ki = kmax,
which is naturally an upper bound of ranks of all data
blocks. The overall reconstruction overhead can be written
as
∑N
i=1 widi

kmax

li
.

On the other hand, the storage overhead of a local
reconstruction code is 1 + li+gi

ki
. As the value of gi only

depends on the number of failures to tolerate and ki is a
constant, the overall storage overhead of all files,

n∑

i=1

wi

(
1 +

li + gi
kmax

)
= N

(
1 +

r − 1

kmax

)
+

n∑

i=1

wi ·
li

kmax
.

linearly depends on the inverse of the rank. By letting κi =
kmax/li, we can solve the rank of data blocks in each file by
a geometric programming problem that is similar to (4)-(6).

min
n∑

i=1

widiκi (11)

s.t.
n∑

i=1

wi
κi
≤

(C − 1− r−1
kmax

)N

r
(12)

κi > 0,∀i. (13)

Based on this problem, we can get the iterative rounding
algorithm to solve li in each file, as shown in Fig. 14. As
local reconstruction codes can be modeled as geometric
programming problems similar to RS codes, this algorithm
is largely based on the iterative rounding algorithm in Fig. 5,
except for the following differences:

First, we always choose li as a divisor of kmax, such that
κi is always a divisor of kmax as well. Once a non-integer
solution κi is obtained after line 4, we will round it to the
nearest integer that is a divisor of kmax. In this way, we
can also apply the technique used in Fig. 10 to construct
the generator matrix of the RS codes to compute the local
parity nodes. In other words, in one stripe with kmax data
blocks, the li generator matrixes that correspond to the li
local parity blocks can be split from the Cauchy generator
matrix of a (kmax, 1) RS code, helping us to save traffic in
the migration when the value of li is updated.

In Fig. 15, we compare the overall reconstruction over-
head of various values of kmax with one single local re-
construction codes, running under the Facebook workload,
with C = 1.2, r = 2, t = 1, α = 0.5, and one hour per
time interval. To meet the requirements of storage overhead
and failure tolerance, we use a (20, 4, 1) local reconstruction
codes as the single LRC in Fig. 15. It turns out that with

Input: wi and di where i = 1, . . . , n, C > 1, r ∈ Z+, and
N ∈ Z+

Output: li where i = 1, . . . , n
1: S = ∅, T = {1, . . . , n}
2: R = 0
3: while T 6= ∅ do
4: solve the problem

min
∑

i∈T
widiκi (14)

s.t.
∑

i∈T

wi
κi
≤

(C − 1− r−1
kmax

)N

r
−R (15)

κi > 0,∀i ∈ T (16)

5: for each i ∈ T do
6: if |T | > 1 then
7: let κ′i be the integer that is both nearest to κi

and a divisor of kmax

8: else
9: let κ′i be the integer that is no less than κi

and also a divisor of kmax

10: end if
11: calculate δi = |widi(κi −max(1, κ′i))|
12: end for
13: î = argmini∈T δi
14: if κî ≥ 1 then
15: R = R+

wî

k′
î

16: κî = κ′
î
, li = kmax

κî

17: else
18: R = R+ wî ·

⌊
1
κî

⌋

19: li = kmax ·
⌊

1
κi

⌋
, κî = 1

20: end if
21: S = S + {̂i}, T = T − {̂i}
22: end while

Fig. 14. The iterative rounding algorithm to solve li of local reconstruc-
tion codes.

Zebra we can save reconstruction overhead by between
49.1% (kmax = 12) and 68.2% (kmax = 30). On the other
hand, we can observe in Fig. 16 that with various values
of kmax, the traffic incurred in the migration between time
intervals can be well controlled, where the total amount of
traffic occupies no more than 1.2% of the data demand.

Second, we apply the technique used in Sec. 5.4 to
balance the load of hot blocks. When κi is solved to be
less than 1, we change the way to generate the local parity
blocks in the original local reconstruction codes, by repli-
cating each data block with

⌊
1
κi

⌋
more copies in line 19. In

Fig. 17, we calculate the mean and the standard deviation
of the demand of such hot blocks with kmax = 24. Similar
results as RS codes in Fig. 7 can be observed where both
the mean and the standard deviation of the demand can
be significantly reduced. We also notice that the average
demand of hot blocks with local reconstruction codes is
much less that that with RS codes in Fig. 7, implying that
local reconstruction codes allow more blocks to have low
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Fig. 15. Comparison of overall reconstruction overhead of various values
of kmax with one single local reconstruction code (LRC), when α = 0.5.
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Fig. 16. Comparison of network transfer incurred by migration with
various values of α, when kmax = 16.

ranks than RS codes with the same storage overhead. The
reason can be inferred from the fact that with the same
storage overhead, local reconstruction codes are designed
to have lower reconstruction overhead than RS codes.

8 SIMULATION

8.1 Methodology
We evaluate the performance of the Zebra framework with
more workloads in this section. The two workloads [14]
used in this paper are obtained from a 600-machine cluster
at Facebook running MapReduce jobs, each of which spans
24 hours. We show characteristics of the two workloads
in Table 2, and we have been using the FB2 workload
to evaluate the design of Zebra throughout this paper. In
Table 2, both workloads have a significant skewness of data
demand, where more than half of data have demand less
than the 1.6 and only a small portion has very high demand.

TABLE 2
Characteristics of workloads used in the simulation.

workload size # files max demand mean demand
FB1 0.96 PB 15223 688 1.6
FB2 1.07 PB 16256 721 1.5

Like previous evaluations, we divide the time in each
workload into intervals, where each time interval spans one
hour. In each interval, we calculate the rank of files with the
demand updated by (10). The new file that appears for the
first time in an interval will be stored with with a default
rank. The default rank is calculated as the minimum divisor
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Fig. 17. Comparison of demand of hot blocks (of rank 1) with and without
load balance (LD), when r = 2 and t = 1.

of kmax that is no less than r
C−1 , and can hence achieve the

required storage overhead C with r failures to tolerate. In
the simulation, the size of each block is 64 MB. After each
interval, the ranks of all existing files will be updated. Given
the rank of each file, we can further calculate the average
overhead of reconstruction per degraded read, the storage
overhead of blocks, and the network transfer of migration.

In the simulation, given the number of failures to tolerate
and the storage overhead, we compare the performance
of one static erasure code (RS code or local reconstruction
code) and Zebra with the corresponding erasure code. Be-
sides, we add another scheme that encodes data into two
tiers of erasure codes. This scheme is similar to the method
proposed in [19] which implements two tiers with two other
preconfigured erasure codes. In our simulation, the two tiers
both deploy RS codes or local reconstruction codes for the
purpose of fair comparison. For convenience, we name the
two tiers as hot tier and cold tier, as the hot tier will store
hot data with low reconstruction overhead while the cold
tier can provide low storage overhead for the cold data.
In this scheme, under the constraint of the overall storage
overhead, we try to assign as much hot data as possible
to the hot tier and store the rest in the cold tier. In the
simulation with RS codes, we deploy a (4, r) RS code in
the hot tier and a (12, r) RS code in the cold tier. With
local reconstruction code, a (16, 8, r−1) local reconstruction
code is deployed in the hot tier, and a (16, 2, r − 1) local
reconstruction code in the cold tier.

8.2 Results

We first evaluate the reconstruction overhead. At each time
interval, we calculate the average of the reconstruction
overhead per degraded read, where we define the recon-
struction overhead as the number of blocks to read in the
reconstruction. In other words, if the rank of a block is
k, its reconstruction overhead at that time is k as well.
This average reconstruction overhead per degraded read
can be considered as the expected reconstruction overhead
of visiting an unavailable block once we have a failure in
the distributed storage system. In all the simulations below,
we set t = 1, α = 0.5, and kmax = 24, unless mentioned
otherwise. With such settings, we evaluate the reconstruc-
tion overhead with RS codes and local reconstruction codes,
respectively. In the simulation with RS codes, we use two
RS codes, i.e., (6, 3) RS code (C = 1.5, r = 3) and (10, 4) RS
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Fig. 18. Average reconstruction overhead per degraded read with stor-
age overhead 1.5 and 1.4.

code (C = 1.4, r = 4) as single erasure codes, respectively.
In the other simulation with local reconstruction codes, we
use (12, 4, 2) and (20, 5, 3) local reconstruction codes, which
achieve the same storage overhead and failure tolerance as
corresponding RS codes.

We show the average reconstruction overhead in Fig. 18,
where we sort files by their demand, and then calculate
the average reconstruction overhead per degraded read of
files in a given percentage of top demanded files with
C = 1.5 and 1.4, respectively. From Fig. 18a and Fig. 18b,
we can see that all data can expect lower reconstruction
overhead per degraded read than the single erasure code
with the same storage overhead, no matter with RS codes
or with local reconstruction codes. The reason is that in the
Zebra framework, even though cold data may have higher
reconstruction overhead than the single erasure code, their
demand can actually occupy a very small portion of all
demand. Hence, on average, the reconstruction overhead
per degraded read of all data can be lower than the single
erasure code, especially for the hotter data. Two erasure
codes can also achieve lower average reconstruction over-
head than the single erasure codes. However, Zebra can
achieve better results as it tries to minimize the overall
reconstruction overhead. Similar results can also be obtained
when we require for a higher value of storage overhead.
In many cases, with two erasure codes we cannot even
compete with one single erasure code as the static configu-
ration of the two erasure codes cannot match the unknown
demand in advance.

On average of the two workloads, we can save the

average reconstruction overhead by up to 73.6% (C = 1.5)
for the top 15% demanded files in Fig. 18a, and by up
to 72.1% when C = 1.4. Comparing RS codes with local
reconstruction codes, with the same storage overhead, local
reconstruction codes can save the average reconstruction
overhead by 80.5% (C = 1.5) and 87.5% (C = 1.4), respec-
tively. This is credited to the low reconstruction overhead of
local reconstruction codes.

d

(a) RS codes.

d

(b) local reconstruction
codes.

Fig. 19. Average reconstruction overhead with various values of α.

We compare the choices of α in Fig. 19, in which we
use 1.5 as the storage overhead. We find that with both RS
codes and local reconstruction codes, the two workloads
demonstrate different reconstruction overhead with differ-
ent values of α, where FB1 favors lower α while FB2 is not
as sensitive to α as FB1. Hence, we believe that the best
choice of α depends on the characteristics of the workload.

d

(a) RS codes.

d

(b) local reconstruction
codes.

Fig. 20. Average reconstruction overhead with various values of kmax.

We also compare the reconstruction overhead with dif-
ferent values of kmax in Fig. 20. With C = 1.5 and r = 3,
we find that RS codes are not sensitive to different values of
kmax, as the demand for data with high ranks is so low that
little reconstruction overhead is contributed by such data.
However, local reconstruction codes are more easily affected
by the change of kmax than RS codes. This is because with a
higher value of kmax, a block with the same reconstruction
overhead is associated with lower storage overhead. For
example, data encoded with a (8, 4, 2) local reconstruction
code have lower storage overhead than that with a (16, 8, 2)
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local reconstruction code, while they (data blocks) both
require two blocks to reconstruct. Therefore, with a higher
kmax, more data can have lower reconstruction overhead.
With RS codes, on the other hand, different values of kmax
do not change the reconstruction overhead of data, but
only introduce one more tiers with lower storage overhead.
This tier, as mentioned above, has little demand that cannot
significantly change the overall reconstruction overhead.

In Fig. 21, we measure the average storage overhead of
files in all time intervals, to compare the storage overhead
of data with different demand. This time we sort the files
by their demand (from bottom to top) and calculate the
average storage overhead of data in a 1% interval of files.
For example, data points with 99% on the x-axis indicate
the average storage overhead of files with demand in the
bottom 99%-100% interval, i.e., the top 1% most demanded
files. In fact, 90% files have very low demand in both
FB1 and FB2, and hence they all have very similar storage
overhead. Hence, in Fig. 21 we focus on the top 10% files.
We can see that at most 2% files have storage overhead
higher than the given constraint in Zebra, indicating their
extremely high demand. On the other hand, due to the static
configuration of the two erasure codes, more data with high
demand have to be stored in the cold tier with unnecessarily
low storage overhead. Hence, with the two static erasure
codes, we cannot fully utilize the storage space, and this also
explains why two erasure codes have higher reconstruction
overhead in Fig. 18.
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Fig. 21. Storage overhead of data with different demand.
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Fig. 22. The ratio of the total network transfer incurred by the migration
to the network transfer incurred to serve demand.

We illustrate the network transfer incurred by the mi-
gration in Fig. 22, by comparing it with the total network

transfer to serve the demand. With various constraints of the
overall storage overhead, we can see that the total migration
traffic never exceeds 13% of the total demand traffic, thanks
to the Cauchy RS codes used in Zebra. Though more migra-
tion traffic can be observed with higher storage overhead,
we can see that this increased amount of traffic is marginal.

Finally, we show the distribution of demand with the
Zebra framework with Fig. 23. We can observe that in
both FB1 and FB2, the load balance in Zebra can help to
significantly save the peak demand of blocks. With the load
balance in Zebra, we can achieve 12.1% less demand on
average for the top 15% demanded files with RS codes in
FB1 and 34.6% in FB2. With local reconstruction codes, we
can save the load on hottest files by 50.9% (FB1). Moreover,
the load balance can help to make the demand of blocks
more stable among files with different demand. It can also
be observed that hotter files can enjoy more savings of
demand. From the top 3% demanded files to the top 30%
demand files in Fig. 23b, the saving of demand can change
from 63.3% to 20.9%. The reason is easy to infer, as the load
balance in Zebra can only work for the replicated blocks, i.e.,
the hottest block of rank 1. Thus, with a higher percentage,
we will have more cold data, which not only reduce the
average demand, but dilute the load balance achieved by
the hot data as well.
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Fig. 23. Comparison of average demand of blocks, with/without the load
balance (LD) in Zebra.

With the same workload, we notice that RS codes can
offer better load balance than local reconstruction codes.
Though initially it looks conflicting to the fact that with
local reconstruction codes more data can be replicated with
the same storage overhead, we notice that to offer the
same level of failure tolerance, local reconstruction codes
cannot replicate the same number of copies as RS codes. For
example, with r = 3 RS codes can replicate data blocks at
least 4 times while local reconstruction codes can replicate
only twice. On the other hand, as local reconstruction codes
tend to have lower ranks than RS codes with the same
storage overhead, the average demand can be saved more
significantly with the load balance in Zebra.

9 CONCLUSIONS

In this paper, we exploit the skewness of demand in dis-
tributed storage systems and propose the Zebra framework
that can efficiently and dynamically encode data into mul-
tiple tiers with Reed-Solomon codes or local reconstruction
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codes, according to their demand. The Zebra framework can
achieve a much lower reconstruction overhead for the hot
data, while spending less storage space to store the cold
data. Zebra can also help to balance the demand, especially
for the hot data. With the ever-changing demand, Zebra can
update itself accordingly with a low network transfer.
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