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Erasure Coding for Cloud Storage Systems: A Survey

Jun Li and Baochun Li�

Abstract: In the current era of cloud computing, data stored in the cloud is being generated at a tremendous

speed, and thus the cloud storage system has become one of the key components in cloud computing. By storing

a substantial amount of data in commodity disks inside the data center that hosts the cloud, the cloud storage

system must consider one question very carefully: how do we store data reliably with a high efficiency in terms of

both storage overhead and data integrity? Though it is easy to store replicated data to tolerate a certain amount

of data losses, it suffers from a very low storage efficiency. Conventional erasure coding techniques, such as

Reed-Solomon codes, are able to achieve a much lower storage cost with the same level of tolerance against

disk failures. However, it incurs much higher repair costs, not to mention an even higher access latency. In this

sense, designing new coding techniques for cloud storage systems has gained a significant amount of attention

in both academia and the industry. In this paper, we examine the existing results of coding techniques for cloud

storage systems. Specifically, we present these coding techniques into two categories: regenerating codes and

locally repairable codes. These two kinds of codes meet the requirements of cloud storage along two different

axes: optimizing bandwidth and I/O overhead. We present an overview of recent advances in these two categories

of coding techniques. Moreover, we introduce the main ideas of some specific coding techniques at a high level,

and discuss their motivations and performance.
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1 Introduction

With the decreasing of bandwidth and storage pricing,
a trend has been observed that leading IT companies,
such as Google, Microsoft, and Amazon, build their
services inside data centers and provide services
globally through a high-bandwidth network. This new
paradigm of providing computing services is called
cloud computing.

In the context of cloud computing, storage has
not only been an important component of large-scale
cloud services, but also been provided as a virtual
storage infrastructure in a pay-as-you-go manner, such
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as Amazon S3[1]. Moreover, the volume of data stored
inside data centers has been observed to be growing
even faster than Moore’s Law[2, 3]. It has been reported
that the storage space used for photo storage only in
Facebook has been over 20 PB in 2011 and is increasing
by 60 TB every week[4].

To meet the requirements of the massive volume of
storage, the cloud storage system has to scale out, i.e.,
storing data in a large number of commodity disks.
In this sense, it becomes a major challenge for cloud
storage systems to maintain data integrity, due to both
the large number of disks and their commodity nature.
Even though the number of disk failures is a small
portion inside the data centers, there can still be a
large number of such failures everyday due to the large
number of disks. For example[5], in a Facebook cluster
with 3000 nodes, there are typically at least 20 repairs
triggered everyday. Apart from storage devices, the
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other systems in the data center, such as the networking
or power systems, may cause outages in the data
center[6], making data unavailable or even get lost.

To compensate for the data loss and thus to guarantee
the integrity of data stored in the cloud, it is natural to
store replicas in multiple disks, such that data losses
can be tolerated as long as there is at least one replica
available. However, replicas can significantly reduce
the storage efficiency. For example, if data are stored
with 3-way replication, the effective storage space can

be no better than
1

3
of the total consumed storage space.

If the design objective is to maximize the storage
efficiency without sacrificing the ability to tolerate disk
failures, the storage system should store data encoded
by erasure coding. Before the emergence of cloud
computing, erasure coding has long been proposed to
detect or correct errors in storage or communication
systems. For example, RAID 6 can compensate for at
most 2 disk failures by parity coding, whose storage

efficiency is at most 1 �
2

n
where n is the total number

of disks. Reed-Solomon codes can provide even more
flexibility such that any number of disk failures under a
certain threshold can be tolerated. Wuala[7], an online
secure storage service, uses Reed-Solomon codes to
ensure data integrity, by encoding data with Reed-
Solomon codes after encryption.

However, two main drawbacks conventionally
prevent erasure coding from being practical and popular
in cloud storage. First, to read or write data, the
system needs to encode or decode data, leading to a
high access latency and a low access throughput due
to the CPU limit. Second, though erasure coding
stores data as multiple coded blocks, when one coded
block gets lost, the system must access multiple coded
blocks that are sufficient to recover all the data. It is
estimated that even if half of the data in the Facebook
cluster are encoded, the repair traffic will saturate the
network links in the cluster[5]. This overhead makes the
repair with erasure coding very expensive in terms of
both bandwidth and disk I/O overhead. Unfortunately,
applications hosted in the cloud are sensitive to the disk
I/O performance, and bandwidth is always a limited
resource inside the data center since most data centers
introduce link oversubscription[8].

To meet the requirements of cloud applications for
storage, the design of new coding techniques for cloud
storage has attracted a substantial amount of interest
in the research community. In this paper, we examine

recent advances of these coding techniques in the
context of cloud storage. Specifically, we introduce
coding techniques that optimize the overhead of data
repair in two different axes of design objectives:
minimizing the bandwidth consumption and optimizing
disk I/O overhead. Due to the high frequency of data
repairs and the high repair overhead of conventional
erasure coding, optimizations in both of these two axes
fall into the considerations of data repair.

In the axis of bandwidth consumption, Dimakis et
al.[9] proposed a family of regenerating codes. Based
on a model inspired by network coding, the repairs of
coded data can be modeled into an information flow
graph, with a constraint that maintains the ability to
tolerate disk failures. Based on this model, an optimal
tradeoff between storage and bandwidth can be derived,
such that given the amount of data stored on the disk,
we can obtain an optimal lower bound of the amount
of data that should be transferred during the repair.
In the tradeoff curve, two extreme points attract much
more attention than interior points, corresponding to
the minimum storage cost and the minimum bandwidth
cost, respectively. To achieve these two extreme points,
many papers proposed instances of regenerating codes
that either construct randomized codes that maintain the
tolerance against disk failures with a high probability,
or construct deterministic codes using interference
alignment. With the help of deterministic coding, lost
data can be repaired exactly, suggesting that we can
construct systematic codes to achieve an access latency
as low as replicas. Moreover, cooperative regenerating
codes make it possible to repair from multiple disk
failures with an even lower bound of bandwidth
consumption, with the help of cooperation among
participating servers.

Regenerating codes saves bandwidth by not
transferring data that are unnecessary to the particular
newcomer. It is required that the data sent out of
providers must take the corresponding information
(i.e., the entropy) required by the newcomer, in
order to maintain the tolerance against disk failures.
Consequently, only except some special cases, most
instances of regenerating codes need to ask providers
to send linear combinations of their data to the
newcomer. In other words, regenerating codes can
only save bandwidth but not disk I/O. Compared
with conventional erasure coding, disk I/O will even
probably be increased with regenerating codes. With
regenerating codes, the eventual amount of data read
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from disks during repair is still going to be significantly
more than the amount of data written to the newcomer.
The excessive disk I/O operations can significantly
affect the overall disk I/O performance in the data
center.

In this sense, some families of coding techniques
have been proposed to reduce disk I/O overhead
during repair. Unlike regenerating codes that save the
bandwidth consumption by incurring more disk I/O
overhead, all of them feature a smaller number of disks
accessed in the repair. This feature is achieved by
enforcing that data in one disk can only be repaired
by data in some certain disks. This idea will make
the tolerance against disk failures be sacrificed, but
significantly reduce the number of disks to be visited
and thus the number of bits to be read. In this paper, we
introduce three representative proposals: hierarchical
codes, self-repairing codes, and simple regenerating
codes. Besides, we show the fundamental tradeoff
between failure tolerance and disk I/O overhead.

2 Erasure Coding and Its Performance
Metrics

2.1 Erasure coding in storage systems

In a storage system where data are stored on a large
number of commodity disks, it is clear that disk failures
can not be considered as just exceptions, but as a rule.
Therefore, the storage system has to store redundancy
such that when a certain number of disks lose data, data
can still be accessible from other disks. For example,
the N -way replication, which stores N replicas in N
different disks, is able to tolerate at most N � 1 disk
failures. Figure 1a illustrates an example of 3-way
replication, where the original data are disseminated
into 3 different disks and any one disk is able to repair
or access the original data. However,N -way replication

can only achieve a storage efficiency of
1

N
at best.

Erasure coding, on the other hand, is able to tolerate the
same number of disk failures, yet with a much better
storage efficiency. Among erasure coding, Maximum
Distance Separable (MDS) codes (e.g., Reed-Solomon
codes[10]) achieve the optimal storage efficiency.

Suppose that in the storage system, data are organized
in the unit of data object, which may correspond to a
file or a fix-sized block in different storage systems.
Assume that a data object can be stored onto n

disks. Given an arbitrary number of k, where k < n,
.n; k/ MDS codes can guarantee to tolerate at most

Fig. 1 Comparison of 3-way replication and (5,3) MDS
codes. In 3-way replication, the original data object is
replicated into 3 different disks, such that any bit of data can
be obtained from any one disk. In (5,3) MDS codes, data
are encoded into smaller blocks in which any three can be
decoded into the original data.

n � k disk failures, i.e., k disks are sufficient to access
any bit of the original data. Specifically, the data
object is encoded into n coded blocks and are uniformly
disseminated into the n disks. Suppose the size of the
data object is M bits, the size of each coded block

should be
M

k
bits, if we do not consider the metadata

of the data object. In this sense, the storage efficiency

of MDS codes is at best
k

n
. Compared to the 3-way

replication as shown in Fig. 1b, .5; 3/ MDS codes can
still tolerate at most 2 disk failures, while improving the
storage efficiency by 80%.

To access the data object, the system needs to
access k different coded blocks (from k different
disks) and recover the original data object by the
decoding algorithm of the corresponding MDS codes.
Apparently, the decoding algorithm incurs an additional
access latency. To improve the access latency, the
storage system can use a cache to store one replica of
the original data object as well[11].

Recovering the whole data object for data access
may sound reasonable in most cases. However, from
the point of view of the storage system, it is totally
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unnecessary to recover the whole data object if we
only need to repair one lost coded block, as what we
need is just a very small portion of the data object.
Unfortunately, before the appearance of regenerating
codes, all MDS codes, to our best knowledge, require
to access at least k disks to repair even only one
disk, while in the case of replication, to repair one
replica we only need to transfer one replica. This
requirement can dramatically increase both disk I/O and
bandwidth overhead in a data center, and significantly
affect the performance of the storage system and other
applications hosted in the cloud.

2.2 Performance metrics

It has been made clear that it is not enough to consider
only the storage efficiency and the tolerance against disk
failures in cloud storage systems. The performance
metrics that should be considered when designing
erasure coding for cloud storage should also include:
� Repair bandwidth. To repair a failed disk, data

stored on that disk should be repaired in a replacement
disk. The server with the replacement disk, called a
newcomer, needs to retrieve data from some existing
disks. If the servers that host these existing disks,
called providers, send out the raw data of their coded
blocks, the bandwidth used to transmit the existing
coded blocks equals the size of these coded blocks and
then the newcomer encodes the received data by itself to
generate the lost data. However, if encoding operations
can be performed both on the newcomer and providers
rather than on the newcomer only, a much smaller
amount of data can be transferred. As shown in Fig. 2,
if data stored in storage nodes are encoded by vector
codes, such that each coded block contains more than
one coded segments, the bandwidth consumption can
be saved when providers send out linear combinations
of their coded segments during the repair.

In the pioneering paper of Dimakis et al.[9], a
surprising and promising result was shown that the
bandwidth used in the repair can be approximately
as low as the size of the repaired block by encoding
operations of providers and the family of erasure
codes that achieves the optimal bandwidth consumption
during the repair was called regenerating codes.
� Repair I/O. Besides bandwidth, another

performance metric in the repair for erasure coding is
disk I/O at the participating servers. Specifically, the
writing operations are performed only at the newcomer,
and the amount of data written should equal the size

Fig. 2 Suppose that any two storage nodes suffice to recover
the original data (k=2), where each provider stores one coded
block including two coded segments. With conventional
erasure coding, at least two coded blocks must be sent to the
newcomer. With data encoded at providers, the amount of
data sent to the newcomer can be eliminated into 1.5 coded
blocks (3 coded segments), reducing bandwidth consumption
by 25%. This figure illustrates the basic idea of regenerating
codes.

of the coded block. As the writing operations are
unavoidable, what we really care is actually the amount
of data read from disks of providers.

Similar to the bandwidth consumption, conventional
erasure codes will ask for providers to read k blocks
in total just to repair one block. As shown in Fig. 2,
encoding operations on providers can not reduce the
amount of data read, and yet only reduce the amount
of data transferred to the newcomer, since the segments
sent out of providers are encoded from all coded
segments in providers, which all must be read from
disks. Therefore, new coding techniques need to be
proposed to improve the disk I/O during the repair.

In Fig. 3, we present two examples of techniques that

Fig. 3 The disk I/O during the repair can be saved
by accessing specific coded segments or/and from specific
providers. Suppose that any three storage nodes suffice to
recover the original data (k=3), conventional regenerating
codes or regenerating codes must read at least 6 coded
segments, while in this figure only 2 specific coded segments
should be read.
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can be used to construct erasure codes with low disk
I/O during the repair. One possible way is to obtain
specific coded segments from providers, and hence
other coded segments in the same provider will not be
encoded and thus will not be read. Another technique
is to access specific storage nodes as providers, rather
than accessing any k storage nodes. Some families of
erasure codes have been proposed such that when one
storage node fails, the newcomer must access data from
a very small number of specific storage nodes.
� Access latency. Due to the decoding operations,

the access latency of data encoded by erasure coding has
to be much larger than replicas. However, systematic
codes, in which the original data can be embedded
into code blocks, are able to maintain a higher
storage efficiency than replicas while achieving a low
access latency, since we now only need to access the
systematic part with no decoding operations. This
attractive property of systematic codes comes with a
high price that makes the repair much more complex
than non-systematic codes, because the repaired data
should be exactly the same as the lost data, at
least for the embedded original data. Therefore, the
deterministic construction of codes must be considered
when designing systematic erasure codes for cloud
storage.
� Storage efficiency. The storage efficiency

denotes the ratio of the amount of the original data
to the actual amount of data stored on disks. In other
words, given the same amount of data, with a higher
storage efficiency we can use a smaller amount of
storage space to tolerate the same number of disk
failures. MDS codes achieve the optimal storage
efficiency, i.e., given n and k, MDS codes can be
constructed such that any k among all n coded blocks
are sufficient to recover the original data. For example,
in Fig. 1, to tolerate two disk failures, 3M bits must

be stored with replications, while only
5M

3
bits are

required to store with MDS codes. However, if we
choose to hold this property, it is unavoidable to incur
high disk I/O overhead during the repair[5]. Due to the
decreasing costs of large-volume disks, the requirement
for storage efficiency can be relaxed such that a much
smaller number of disks are required to visit in the
repair.

In this paper, we focus on the first two metrics,
which are strongly related to the repair in the storage
system. Specifically, in Section 3 we present the coding

technique, called regenerating codes, that is able to
achieve the optimal bandwidth bound in the repair. In
Section 4, we review the coding techniques along the
axis of reducing the disk I/O in the repair. For each
coding technique, we discuss their performance in the
other two metrics along the way.

3 Tradeoff Between Storage and
Bandwidth: Regenerating Codes

3.1 Information flow graph

To investigate the bandwidth consumption in repairs
with erasure coding, Dimakis et al.[9] proposed to use
the information flow graph, which is a tool used in the
analysis of network coding, as a model to characterize
the tradeoff between storage and bandwidth.

As shown in Fig. 4, in the information flow graph,
all servers can be categorized as the source, storage
nodes, and the data collector. The source denotes the
server where the data object is originated. Suppose that
the size of the data object is M bits. After encoding,
coded blocks of ˛ bits are disseminated into n storage
nodes. Particularly, the source is represented by a vertex
and a storage node is represented by two vertices in
the information flow graph. The weight of the edge
corresponds to the amount of data stored in the storage
node. Thus, after the dissemination, all n storage nodes
store ˛ bits and any k of them suffice to recover the
original data object, suggesting that k˛ >M . A virtual
vertex called data collector is able to connect to any k
storage nodes to recover the original data object.

When a storage node fails, a newcomer does not
just connect to k available storage nodes, but d
storage nodes as providers (d > k). Different from

Fig. 4 An illustration of the information flow graph that
corresponds to (4,2) MDS codes. This figure was firstly shown
in Ref. [9].
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conventional MDS codes, the newcomer can receive
ˇ bits from each provider, ˇ 6 ˛, represented by
the weight of the edge between the provider and the
newcomer. After receiving a total of r D dˇ bits from
providers, the newcomer stores ˛ bits and becomes
a new storage node. It is required that after any
rounds of repairs, the MDS property that any k coded
blocks suffice to recover the original data object always
holds. In other words, the data collector can connect
to not only the storage nodes that receive data directly
from the source, but the storage nodes repaired from
newcomers in repairs as well. Besides, the weights of
edges attached to the source or the data collector are all
set to be infinity.

Therefore, the repair problem in the storage
system can be interpreted as a multicast problem
in the information flow graph, where the source is
multicasting data to all possible data collectors. It is
well known in the multicast problem that the maximum
multicast rate equals the minimum cut separating the
source from any receivers, and this rate can be achieved
through network coding[12]. Thus, it can be proved that
the MDS property holds after any rounds of repairs, if
the min-cut in the information flow graph is no less that
the size of the original data object. By calculating the
minimum min-cut in the information flow graph, given
d and ˇ we can derive the minimum value of ˛, and
then we obtain the tradeoff curve between ˛ and the
total bandwidth consumption r .

3.2 Minimum-storage regenerating codes and
minimum-bandwidth regenerating codes

The codes that achieve that the min-cut in the
information flow graph equals the amount of the data
object is called regenerating codes. Given the tradeoff
between storage ˛ and bandwidth r , two special
cases of regenerating codes interest us most, which
correspond to the minimum storage space required
at storage nodes and the minimum total bandwidth
consumption in the repair, respectively.

The regenerating codes that achieve the minimum
storage in storage nodes is called Minimum-
Storage Regenerating (MSR) codes, where

.˛MSR; rMSR/ D

�
M

k
;

Md

k.d � k C 1/

�
. Notice that now

˛ equals to the size of coded blocks of
conventional MDS codes, and thus MSR codes
can be regarded as MDS codes. However, since

r D
Md

k.d � k C 1/
!

M

k
as d !1, MSR codes

consume bandwidth in the repair approximately
the same as the amount of one coded block, while
conventional MDS codes consume bandwidth that
equals the size of k coded blocks. In this sense, MSR
codes save a significant amount of bandwidth in the
repair.

The other extreme points in the tradeoff between
storage and bandwidth is called Minimum-
Bandwidth Regenerating (MBR) codes, where

.˛MBR; rMBR/ D

�
2Md

k.2d � k C 1/
;

2Md

k.2d � k C 1/

�
.

MSR codes achieve the minimum bandwidth
consumption among regenerating codes. Though
MBR codes require more storage than MSR codes, the
newcomer only needs to receive exactly the amount of
data it needs to repair, and the storage and bandwidth

both converge to
M

k
when d is large enough.

To implement regenerating codes, the simplest way
(but not necessarily the most efficient way) is to use
random linear coding[13] which is inspired by network
coding. Dividing the original data object into k blocks,
a coded block produced by random linear coding is
a random linear combination of the k blocks. The
encoding operations are performed on a Galois field
GF(2q). As a Galois field size of 28 corresponds
to a byte in the computer, q is usually set to be
an integral times of 8 to make encoding operations
convenient. Given any k coded blocks and their coding
coefficients, the decoding operations are just solving
the corresponding linear system with k unknowns (i.e.,
original blocks) and k equations. When q is large
enough, such as 16 or 32, any k coded blocks can be
decoded with a very high probability.

On the other hand, the randomized construction
of regenerating codes can suffer from a significant
computational complexity, especially when parameters
are not properly selected[14]. In additional, by no means
the randomized regenerating codes can guarantee to
repair data exactly as the lost data. Even worse, even
a very large Galois field can not ensure that any k

code blocks are decodable, but only with a very high
probability, due to the randomized coefficients. The
number of repairs, however, can not be easily limited,
suggesting that after a large number of repairs data
integrity can not be maintained, as the randomness
accumulates gradually in coded blocks.

Therefore, it is necessary to find explicit construction
of regenerating codes, especially for MSR and MBR
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codes. Further, it is desirable that the lost block can
be repaired exactly given the explicit construction.

3.3 Exact regenerating codes

The most important tool used to construct exact
regenerating codes is interference alignment, which
is initially proposed for wireless communication.
The basic idea of interference alignment is that the
undesired vectors can be eliminated by aligning them
onto the same linear subspace. Figure 5 illustrates
how interference alignment helps to achieve exact
regenerating codes.

We suppose that in Fig. 5 data are encoded by (n=4,
k=2, d=3) MSR codes, i.e., any two of the four nodes
can recover the original file. In each storage node,
each coded block contains two coded segments, such
as (A1, A2) in the failed storage node. To recover
A1 and A2, the newcomer contacts 3 storage nodes
as providers and downloads half of a coded block,
i.e., a coded segment from each provider to achieve
the bandwidth consumption of MSR codes. Notice
that each provider owns coded segments containing
components of B1 and B2, which are undesirable to
the newcomer. To eliminate B1 and B2, each provider
can send a segment in which B1 and B2 are aligned
onto the same linear subspace of B1 C B2. Clearly,
B1CB2 can be eliminated as one unknown and A1 and
A2 can be decoded by solving three equations with three
unknowns.

As for exact MBR codes, Rashmi et al.[15] proposed a
Product-Matrix construction which is able to explicitly
construct .n; k; d/ exact MBR codes on a finite field of
size n or higher with any choices of n; k; d if k 6 d <

n. The Product-Matrix construction produces vector
MBR codes such that a coded block contains multiple
coded segments, just like the example shown in Fig. 5.

As for exact MSR codes, the choices of parameters

Fig. 5 An example of (4,2,3) exact MSR codes. By
interference alignment, the loss of .A1;A2/ can be repaired
exactly since B1 and B2 are eliminated by aligning them onto
B1+B2 in three providers.

become more complicated. Suh and Ramchandran[16]

proposed an explicit construction of scalar exact MSR
codes where d > 2k � 1, over a finite field of size at
least 2.n�k/. Rashmi et al.[15] improved the choices of
parameters such that d > 2k � 2, by constructing exact
MSR codes using the Product-Matrix construction, with
a larger finite field of size at least n.d � k C 1/. In
Ref. [17], Shah et al. had proved that no scalar exact
MSR codes exist when d < 2k � 3.

Cadambe et al.[18] and Suh and Ramchandran[19]

showed that any choices of .n; k; d/ could be achieved
asymptotically when constructing vector exact MSR
codes, as the field size goes to infinity. Constructing
regenerating codes on a very large finite field is
impractical due to its overwhelming encoding/decoding
overhead. Papailiopoulos and Dimakis[20] showed that
.n D k C 2; k; d D k C 1/ vector exact MSR codes
can be constructed explicitly, combining interference
alignment and Hadamard matrices.

Since the exact repair makes much more sense for the
systematic part than the parity part of exact regenerating
codes, we can construct hybrid regenerating codes that
only support the exact repair of the systematic part,
while the parity part is still repaired by the functional
repair. Wu[21] constructed the .n; k; d D k C 1/ hybrid
vector MSR codes when 2k 6 n, where the field size

is greater than 2

 
2n � 1

2k � 1

!
. Tamo et al.[22] and

Cadambe et al.[23] both proposed .n; k; d D n � 1/

hybrid MSR codes for arbitrary n and k.

3.4 Cooperative regenerating codes

In some storage systems, such as Total Recall[24],
in order to prevent unnecessary repairs incurred by
temporary node departures, the system repairs failed
nodes in batch when the number of failed nodes reaches
a certain threshold. Hu et al.[25] first found that
if newcomers can cooperate, there exist cooperative
regenerating codes that achieve a better tradeoff curve
between storage and bandwidth. Still analyzing the
min-cut in the information flow graph, Hu et al.[25]

showed that .n; k; d D n � t; t / randomized Minimum
Storage Cooperative Regenerating (MSCR) codes can

achieve the bandwidth consumption of
M

k
�
n � 1

n � k
with

t providers (n � t > k). Notice that the bandwidth
consumption is independent of the number of providers.

A more general result of the bound
of bandwidth consumption is shown



266 Tsinghua Science and Technology, June 2013, 18(3): 259-272

that per newcomer, .˛MSCR; ˇMSCR/ D�
M

k
;
M

k
�
d C t � 1

d C t � k

�
[26, 27] and .˛MBCR; ˇMBCR/ D�

M

k
�
2d C t � 1

2d C t � k
;
M

k
�
2d C t � 1

2d C t � k

�
[27].

Shum and Hu[28] proposed an explicit construction of
.n; k; d D k; t D n � k/ exact MBCR codes. Wang
and Zhang[29] showed that as for all possible values of
.n; k; d; t/, there exist explicit constructions of exact
MBCR on a field of size at least n. On the other hand,
when d D k ¤ n � t , .n; k; d; t/ scalar MSCR codes
can be constructed[26]. Le Scouarnec[30] discussed the
construction of exact MSCR codes with some other
choices of parameters when d > k D 2. The existence
of exact MSCR codes with other values of parameters
still remains an open problem.

3.5 Repair-by-transfer regenerating codes

The regenerating codes we have mentioned above
require providers to encode their data to align vectors in
a specific linear subspace and the newcomer to encode
received data to eliminate undesired components. The
arithmetic operations performed on a finite field can
be expensive, if the field size is large. Thus, the
cloud storage systems will favor the repair-by transfer
property that in the repair no arithmetic operations
are required at providers. With the repair-by-transfer
property, the disk I/O overhead can be minimal since
only data needed by the newcomer will be read from
providers. Moreover, the storage node then can have
no intelligence, such that its functionality can be
implemented by hardware with a low cost.

Some choices of parameters have been considered
to construct the corresponding repair-by-transfer
regenerating codes. Shum and Hu[31] and Hu
et al.[32] constructed .n; k D 2; d D n � 1/ and
.n; k D n � 2; d D n � 1/ functional repair-by-
transfer MSR codes, respectively. On the other hand,
.n; k D n � 2; d D n � 1/ exact MBR codes can
be constructed over a finite field of size 2[33]. The
existence of exact regenerating codes remains an open
problem as for most other choices of parameters. The
only known result is that if d > 2 and t > 2, any
.n; k; d; t/ linear exact MBCR codes can not achieve
the repair-by-transfer property[29].

Nevertheless, Rashmi et al.[34] proposed an intuitive
graph-based construction of repair-by-transfer exact
MBR codes, where any missing block can only
be repaired from its direct neighbors in the graph.

Fractional repetition codes are employed in the
construction such that direct neighbors share the same
segment and the newcomer only needs to receive
replicas of the segments from its neighbors to repair
itself, where no arithmetic operations are required not
only at providers, but at the newcomer as well. It is
shown that any .n; k; d D n � 1/ MBR codes can be
constructed uniquely with this method, n > k.

Though repair-by-transfer regenerating codes are
able to achieve the minimum disk I/O overhead, only
some specific choices of parameters have instances of
corresponding regenerating codes so far. Nevertheless,
cloud storage systems can have a wide spectrum
of parameter choices due to their own requirements.
Therefore, it is desirable that erasure coding can achieve
low disk I/O overhead with a wide range of parameter
choices, even if some properties, such as the MDS
property or the storage efficiency, will be sacrificed.

3.6 Regenerating codes for pipelined repair

Except for some specific choices of parameters that
have corresponding instances of repair-by-transfer
regenerating codes, most instances of regenerating
codes require providers to send out linear combinations
of their coded blocks to the newcomer. In other
words, providers need to read all of their data even
though the amount of data to be sent out covers only
a very small portion. In this sense, even though the
bandwidth consumption can be reduced to the optimum
by regenerating codes, the disk I/O increases with the
number of providers. As the number of providers can
be much larger than k, the disk I/O overhead with
regenerating codes will not be improved, but become
much severer than MDS codes.

Apparently, as the disk I/O overhead is dependent
with the number of providers during the repair, the
disk I/O can be saved if the number of providers
is reduced while maintaining the other properties of
regenerating codes, especially the optimum of the
bandwidth consumption. To achieve this goal, Li et
al.[35, 36] proposed a pipelined repair with minimum-
storage regenerating codes. The principle of pipelined
repair is that providers of consecutive newcomers are
selected to be overlapped, because any k or more
than k different providers are sufficient in the repair.
Hence, consecutive repairs can be pipelined, as shown
in Fig. 6. Still, a newcomer joins when there is
one disk failure, but newcomers will not be fully
repaired in just one but multiple rounds of repairs and
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different newcomers can receive and accumulate data
from providers during the repair. After each round
of repair, the “eldest” newcomer will contact enough
providers and “graduate” to become a storage node.

The most significant benefit of pipelined repair is
the reduction of providers in the repair. For example
in Fig. 6, the number of providers can be reduced by
67%. In fact, the independent .n; k; d/ regenerating
codes for the pipelined repair[35] can reduce the number
of participating nodes to as few as 2

p
d C 1 � 1

in which only
p
d C 1 � 1 are providers, while

still maintaining the same bandwidth consumption
of .n; k; d/ minimum-storage regenerating codes. It
is surprising to find that the number of providers
can be even less than k, as long as the newcomer
is able to receive data from at least d providers
before its “graduation”. The .n; k; d; t/ cooperative
pipelined regenerating codes, which can be regarded as
a generalization of independent pipelined regenerating
codes, have been discussed in Ref. [36], which
require

p
t .d C t / � t providers while maintaining

the bandwidth consumption of .n; k; d; t/ cooperative
regenerating codes.

The overhead brought by the pipelined repair is the
storage space required by partially repaired newcomers,
as newcomers can only be fully repaired after multiple
rounds of repairs. The additional storage overhead
equals the storage space used by

p
.d C t /t � t storage

nodes. Thus, the storage efficiency will be reduced.

Fig. 6 An example of pipelined repairs with five consecutive
newcomers. Suppose that each newcomer must contact at
least nine providers to be repaired. When providers are
overlapped, only three providers are required in each round
of repair while one newcomer can be fully repaired after each
round of repair.

However, it can be shown that this overhead is marginal
in practical cloud storage systems[36]. Moreover, every
block in fully repaired newcomers can still maintain the
MDS property, even though the number of providers in
the repair can be less than k.

4 Saving the Disk I/O Overhead: Locally
Repairable Codes

Regenerating codes optimize the repair overhead in
the axis of bandwidth consumption. However, the
optimization of bandwidth consumption does not
necessarily optimize the amount of data read by
providers in the repair. Apart from repair-by-transfer
regenerating codes, providers need to read all coded
blocks they store and to perform arithmetic operations,
in order to encode them into the data required by the
newcomer.

Like the MDS property that any k coded blocks can
recover the original file, regenerating codes enforce
implicitly a property in the information flow graph
that a newcomer should be able to finish the repair by
contacting any k available storage nodes as providers.
Though the MDS property aims for data integrity,
this property is not so necessary for the cloud
storage system, because the MDS property has already
guaranteed that k coded blocks can accomplish a repair
by decoding the original file first and then encoding
the original file into the particular coded block. If
this property can be relaxed, the corresponding erasure
coding may be benefited by other properties, e.g., a
repair-by-transfer property can be easily achieved in
Ref. [34].

Therefore, if it is possible to design erasure coding
that any particular coded block can be repaired by some
specific coded blocks, the disk I/O overhead in the
repair can be significantly reduced, because only a very
small number of providers will be contacted by the
newcomer. Actually, we can observe the trend of this
property from regenerating codes. Since in pipelined
repairs providers of consecutive newcomers must be
overlapped, in each repair storage nodes that have
recently appeared must not be selected as providers.
In return, the number of providers can be significantly
saved. Apart from regenerating codes, Li et al.[36] found
that random linear codes could also be applied in the
pipelined repair. In this section, we discuss the erasure
codes that are more explicitly optimized towards this
property.



268 Tsinghua Science and Technology, June 2013, 18(3): 259-272

In this paper, we categorize the erasure coding
techniques that achieve this property as locally
repairable codes and introduce three representative
families of the locally repairable codes: hierarchical
codes, self-repairing codes, and simple regenerating
codes. Then we review the analytical results of the
tradeoff between the tolerance against failures and the
disk I/O overhead.

4.1 Hierarchical codes

While a lost replica must be repaired from the same
replica and a lost block coded by MDS codes can be
repaired from any k coded blocks, hierarchical codes[37]

introduce a new flexible tradeoff between replication
and MDS codes, which reduce the number of blocks
accessed with a sacrifice of storage overhead.

As the name suggests, hierarchical codes are
constructed in a hierarchical way. Figure 7 illustrates an
example of the hierarchical construction of hierarchical
codes. In Fig. 7a, an instance of .2; 1/ hierarchical
codes are constructed which produces two systematic
blocks and one parity block. Given F1 and F2 as
original blocks, B1; B2; and B3 are linear combinations
of their direct neighbors, where only B3, of degree 2, is
the parity block. Any two of B1; B2; and B3 have two
edge-disjoint paths to F1 and F2, suggesting that any
two of them can repair the other one.

In Fig. 7b, .4; 3/ hierarchical codes are constructed
from .2; 1/ hierarchical codes, replicating the structure

F1

F1

F2

F2

F3

F4

B1

B2

B1

B2

B3

B3

B4

B5

B6

B7

(a) (2,1) hierarchical codes

(b) (4,3) hierarchical codes

Fig. 7 The hierarchical structure of hierarchical codes. This
example is originally shown in Ref. [37].

of .2; 1/ hierarchical codes twice and inserting one
more block B7 connected to all original blocks.
Apparently, to repair B7, all of the four original blocks
are required. However, as for the coded blocks in the
original structures of .2; 1/ hierarchical codes, their
repair degree, i.e., the number of blocks required to
repair a particular coded block, remains to be two.

In the way described above, an instance of large
hierarchical codes can be constructed step by step from
instances of smaller hierarchical codes. The repair
degrees of coded blocks vary from 2 to k. Duminuco
and Biersack[37] showed that to repair one coded block,
most coded blocks can be repaired by accessing only
two coded blocks. Though the worst case remains to be
k, only a very small ratio of coded blocks belongs to
this case. Only after a large number of coded blocks
have been lost, the worst case becomes significantly
noticeable.

By applying exact regenerating codes in the
minimum structure of hierarchical codes, Huang et
al.[38] proposed a family of ER-Hierarchical codes,
which combine the advantages of regenerating codes
and hierarchical codes, such that both a small
bandwidth consumption and a low repair degree can be
achieved.

Hierarchical codes offer a low repair degree on
average. However, the MDS property can not be
maintained. Given an instance of .k; h/ hierarchical
codes, not all groups of h failures can be tolerated.
Even worse, since the construction of hierarchical
codes depends on the hierarchical structure of the
specific instance, the ability of failure tolerance can
not be predicted just based on these two parameters.
Even though the structure of the hierarchical codes is
given, the ability of failure tolerance still can not be
characterized by explicit formulas.

4.2 Self-repairing codes

Different from hierarchical codes in which the repair
degree of a coded block may vary from 2 to k, self-
repairing codes can achieve a constant repair degree,
independent of any specific missing block. Moreover,
depending on how many coded blocks are missing, the
repair degree of a typical coded block can be as low as
2 or 3.

Oggier and Datta[39] proposed Homomorphic Self-
Repairing Codes (HSRC), the first construction of self-
repairing codes, based on linearly polynomials. Recall
that Reed-Solomon codes, a typical family of MDS
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codes, is defined by polynomial

p.X/ D

kX
iD1

oiX
i�1

over a finite field. A linearly polynomial is defined as

p.X/ D

k�1X
iD1

piX
qi

over a finite field of size 2m, such that p.ua C vb/ D
up.a/ C vp.b/. Therefore, any coded block can be
represented as a linear combination of some pairs of at
least two other coded blocks. This property does not
only give each coded block a very low repair degree,
but enables parallel repairs of multiple missing blocks
as well, as newcomers can have different choices of
providers to avoid collisions.

Apart from constructing linearly polynomials,
another family of self-repairing codes exists, which
can be built using projective geometry[40]. Projective
geometry Self-Repairing Codes (PSRC) retain the
properties of homomorphic self-repairing codes,
and also can be constructed as systematic codes,
significantly simplifying the decoding procedure.

Since self-repairing codes are constructed over a
finite field of size 2m, the encoding and decoding
operations can be done by XOR operations. Thus,
they achieve a high computational efficiency. On the
other hand, self-repairing codes can not maintain the
MDS property, unless k D 2 for PSRC. However, the
resilience probability of self-repairing codes is close to
that of MDS codes.

4.3 Simple regenerating codes

Though both hierarchical codes and self-repairing codes
can achieve a low repair degree, their resiliences to the
failures of storage nodes are probabilistic, i.e., there is
no guarantee that a certain number of coded blocks can
recover the original file. Thus, the storage system must
test the coefficients of coded blocks before actually
accessing the corresponding providers. Nevertheless,
the storage systems are able to refrain themselves from
this operation with simple regenerating codes[41], while
still maintaining a low repair degree and achieving the
exact repair.

An instance of .n; k; d/ simple regenerating codes
can be constructed by applying XOR operations over
MDS coded blocks. We take the construction of
.4; 2; 2/ simple regenerating codes as an example
in Fig. 8. The original file is divided into four
segments, and 8 coded segments (xi ; yi , i D 1; � � � ; 4)

are produced by two instances of .4; 2/ MDS codes.
Node i stores not only xi and y.iC1/ mod 4, but also
the XOR of x.iC2/ mod 4 and y.iC2/ mod 4. Therefore,
any segment can be repaired by accessing two other
segments in Node ..i � 1/ mod 4/ and Node ..i C
1/ mod 4/.

Though “regenerating codes” are included in the
name, simple regenerating codes do not achieve the
cut-set bound of regenerating codes and thus can not
be categorized as regenerating codes. On the other
hand, in .n; k; d/ simple regenerating codes, each node
can be repaired by visiting d C 1 specific nodes,
where d can be fewer than k instead of no less
than k in regenerating codes. The newcomer repairs
each segments by XORing corresponding two segments
obtained from two other nodes, and thus the repair
is exact. This disk I/O overhead and the bandwidth

consumption is
M

k
�
2.d C 1/

d
.

It is easy to find out that any two nodes in Fig. 8b can
recover the original file. However, each node should

store coded segments size of
1

k
of the original file, plus

one more parity segment. Therefore, .n; k; d/ simple
regenerating codes incur additional storage overhead

by
M

k
�
n

d
. Compared with hierarchical codes and

self-repairing codes, the tolerance against failures and
storage overhead of simple regenerating codes becomes
predictable.

Fig. 8 An example[41] of (4,2,2) simple regenerating codes,
where any 2 nodes can recover the original file and one lost
node can be repaired from three other nodes.



270 Tsinghua Science and Technology, June 2013, 18(3): 259-272

4.4 Tradeoff between the failure tolerance and the
repair degree

Locally repairable codes claim a very promising
property of a low repair degree, suggesting low disk I/O
overhead in the repair. Microsoft has deployed their
own instance of locally repairable codes in its cloud
storage system, Windows Azure Storage[11]. However,
it has been shown that none of the locally repairable
codes can preserve the MDS property. There was no
fundamental understanding of the failure tolerance and
the repair degree, until Gopalan et al.[42] discovered a
tight bound of the repair degree d in terms n, k, and
the minimum distance of the codes D. Intuitively, the
original file can be recovered from any n � D C 1

coded blocks. Thus, the distance of MDS codes is
apparently n � k C 1. Gopalan et al.[42] proved that
in any .n; k; d/ codes with the minimum distance D,

n � k >

�
k

d

�
CD � 2: Given this tradeoff, it is easy

to find out that the repair degree of MDS codes can not
be less than k.

Using the bound above, Sathiamoorthy et al.[5]

pointed out that there existed .n; k; d/ locally repairable
codes with the logarithmic repair degree r D log k, and
the minimum distance D D n � .1C �k/k C 1, where

�k D
1

r
�
1

k
. Explicitly, they proposed .16; 6; 5/ locally

repairable codes, which have been implemented in
HDFS-Xorbas, an open source module that runs above
HDFS (Hadoop File System). Facebook has started
a transitioning deployment of HDFS RAID, an HDFS
module that implements .10; 4/ Reed-Solomon codes.
As shown in Fig. 9, the .16; 6; 5/ locally repairable
codes are built on the .10; 4/ systematic Reed-Solomon
codes, including two additional local parity blocks.
Thus, HDFS-Xorbas is compatible with the current
HDFS RAID, and the system can be migrated from
HDFS RAID to HDFS-Xorbas by simply adding the
two local parity blocks. The two local parity blocks are
linear combinations of the first and last five systematic
blocks, respectively. In addition, the coefficients are
constructed such that the two local parity block and
the four Reed-Solomon (non-systematic) parity blocks
are linearly dependent, i.e., S1 C S2 C S3 D 0.
Thus, any one block can be represented as a function
of five other blocks, and thus can be repaired by five
providers only. Experiments show that compared with
HDFS RAID, approximately 50% disk I/O and network
traffic in the repair have been saved, respectively. It is

Fig. 9 The (16, 6, 5) locally repairable codes that are
constructed in Ref. [5] and implemented in HDFS-Xorbas.
S3 does not exist in the system, but only logically. Since
S1+S2=S3, the four Reed-Solomon parity blocks will be
repaired by S1 and S2.

also proved that the distance of the .16; 10; 5/ locally
repairable codes is 5, achieving the bound of the
minimum distance with the present repair degree.

Papailiopoulos and Dimakis[43] investigated the
tradeoff between repair degree, the minimum distance,
and the size of coded blocks ˛. They showed that
the minimum distance is bounded as D 6 n ��
M

˛

�
�

�
M

d˛

�
C 2. An interesting perspective in

this bound is that we can simultaneously maintain the
MDS property and achieve an arbitrarily low repair
degree. Every instance of simple regenerating codes is
an example of .n; k; d/ locally repairable codes where

˛ D

�
1C

1

d

�
M

k
.

5 Concluding Remarks

Throughout this paper, we give an overview of the
advance of coding techniques for cloud storage systems.
The nature of commodity hardware in the cloud and the
large number of storage devices bring challenges to the
design of cloud storage systems. By introducing erasure
coding from regenerating codes to locally repairable
codes, we have witnessed a trend in the research
of erasure codes for cloud storage, that the design
objective gradually transfers from data integrity to
resource overhead, and from the bandwidth resource
to some other scarcer resource for the cloud storage
system, such as computation and disk I/O overhead.

To save computational resources, the construction of
exact regenerating codes has first been considered. The
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exact repair helps to maintain the systematic erasure
codes in the storage system, such that no decoding
operations are required to recover the original file.
Moreover, the repair-by-transfer regenerating codes
help to achieve a repair process without arithmetic
operations on both the newcomer and providers.

To save disk I/O overhead, locally repairable codes
are proposed such that visiting a very small number of
disks should be enough to accomplish a repair process.
In addition, some locally repairable codes, such as
simple regenerating codes, support the look-up repair
that the lost data can be produced from a specific part
of data stored on some particular disks. The repair-by-
transfer property is even stronger because only the same
data to be repaired will be accessed from other disks.

Even with the recent advances, there are still
some open problems to be investigated. In the
context of regenerating codes, there are still some
choices of parameters with which the existence and
the construction of regenerating codes are unknown
so far. In addition, regenerating codes for exact
pipelined repair also remains an open problem. With
respect to locally repairable codes, the tradeoff between
the repair degree and storage overhead has not been
established clearly. Besides, there are some other
practical considerations that can be discussed jointly
with the coding technique, such as geographical
nature of multiple data centers in the cloud. Given
that the cloud storage system scales globally in
multiple data centers, bandwidth, computation, and the
corresponding geographical heterogeneities should be
carefully discussed.
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